
HAL Id: hal-04395695
https://hal.science/hal-04395695

Submitted on 15 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blockchain adapted to IoT via green mining and fractal
Proof of Work

Philippe Jacquet

To cite this version:
Philippe Jacquet. Blockchain adapted to IoT via green mining and fractal Proof of Work. PEMWN
2023 - The 12th IFIP/IEEE International Conference on Performance Evaluation and Modeling in
Wired and Wireless Networks, Emmanuel Baccelli, Sep 2023, Berlin, Germany. �hal-04395695�

https://hal.science/hal-04395695
https://hal.archives-ouvertes.fr

Blockchain adapted to IoT via green mining and fractal Proof
of Work
Philippe Jacquet

IEEE Fellow
Inria

Saclay, France
Email: philippe.jacquet@inria.fr

Abstract—Blockchain applications continue to grow in popularity, but
their energy costs are clearly becoming unsustainable. In most cases, the
primary cost comes from the amount of energy required for proof-of-
work (PoW). Here we study the application of blockchains to the IoT,
where most devices are underpowered and would not support the energy
cost of proof of work. PoW was originally intended for two main uses:
block moderation and protecting the blockchain from tampering. For IoT
we propose to replace the expensive moderation of PoW with the proposed
energy-efficient green mining [6]. The blockchain will be protected by a
fractal difficulty PoW. One of the results of this paper is the proof that
the average mining time in fractal PoW actually depends only on the
average difficulty. This crucial property will allow low-difficulty PoWs
to be reserved for devices with low computational capacity, while higher
difficulties will be reserved for devices with the highest computational
power. The consequence is to give equal opportunity to objects with
low computational power compared to objects with high computational
power.

I. INTRODUCTION

The concept of blockchain was popularized by the crypto-currency
Bitcoin. However, one of Bitcoin’s drawbacks is that moderating
the rate of block mining and protecting the ledger from tampering
relies on proof-of-work (PoW). Block mining is subject to fierce
competition. To prevent too many simultaneous blocks from being
mined and offered for confirmation, Bitcoin requires proof of work
by forcing block miners to perform a large number of CPU cycles
via iterated hash calculations before submitting their block. Proof-
of-work ensures rarity and uniqueness, helping to reduce the mining
rate of individual blocks.

In addition, the PoW protects the ledger against forgery by forcing
the forger to calculate a PoW for each forged block in order to be
accepted into the blockchain. This entails an unsustainable cost, since
the forgery must be completed to the end of the blockchain, and this
must be achieved in a very short time.

However, average PoW in Bitcoin currently costs more than 1022

computing cycles and mobilises a total instantaneous computing
power of 3.1020 calculated hash values per second which would be
excessive if used for IoT (e.g., [1], [2], [5], [7]). Our contribution
is to show how to modify the PoW to make it suitable for IoT and
make substancial energy savings.

II. BLOCKCHAIN FOR IOT, CONTRIBUTION OF THIS PAPER

In Bitcoin each block contains the references of several transactions
(up to one thousand) which are collected in a shared pool. Mining
a block is rewarded in Bitcoins by the protocol. Applied to IoT, the
transaction pool is superfluous, since there is no need of incentive to
mine blocks other than that the miners want to share their transactions
without delay. We can therefore expect smaller, and therefore much
more frequent, blocks.

Our contribution will focus on the block mining process, irrespec-
tive of how and where blocks are constructed. However, we will keep

in mind that the sources of the blocks, the transactions and the miners,
will be very diverse and will have very different computing powers.

We assume a network composed of IoT devices whose purpose is
to maintain the digital twin of a large complex system such as an
urban area, a large factory, a battlefield or a threatened natural area.
We consider that such a network will give rise to three sources of
data mined in the blockchain:

• the real time data originated from the monitored area to be
reflected in the digital twin;

• the software used to handle these data;
• the protocol updates of the network connecting the IoT.

Our two contributions are:

• on relieving the PoW of the task of moderating the flow of
mining blocks;

• using the PoW with fractal difficulty adapted to the computa-
tional capabilities of the miners.

The problem of moderating block mining arises when the number of
blocks competing for extraction is highly dynamic. In this situation,
the network and the ledger may be subject to more or less temporary
congestion. More specifically, if millions of miners were to compete
for access to the blockchain, this would generate collisions and huge
conflicts, with a risk of collapse in a network made up of low-speed
wireless components, which were probably not designed to carry
millions of access requests. Under these conditions the moderation
via PoW is the main source of energy waste and in passing makes it
unpratical for device with low computing power.

A. The green leader election

Our proposition described in section III is to replace the block
moderation by proof of work by a moderation by green leader
election [8]. The algorithm is described in [6]. The action which
consists into among n contenders to select a winner or a small
set of leaders is called "leader election". A classic algorithm uses
a fixed parameter p, called the "decimation probability". An election
proceeds in different rounds. At the first round, the n contenders try
to access the network. If their number is too high for a selection,
i.e. leads to a fruitless collision, then they decimate themselves by
a random selection with probability p, and the survivors access the
network. If their number is still too high they proceed to a third
round and so forth until the survivors are in an enough small number
to select. Since the average number of survivors at round ` is p`n
which decays like a downward stairway (see figure 1, left), then one
would expect that the election process will take logn

log(1/p)
to converge.

The problem is that meanwhile the network would have supported
the pressure of n + pn + . . . + p`n individual accesses in a short
interval of time, which would be too much if we suppose large values
for n (say one million).

Fig. 1: Classic leader election via downward stairway (left), green
leader election via upward stairway (right)

In [8] is described an inverted leader election, called a green
leader election, which consists of inverting the direct leader election
described above. We assume that the maximum number of rounds is
less than a given integer k, which leads us to assume that n� p−k.
In the first round (let’s say round 0), candidates access the network
with probability pk, if none access it, a new round takes place where
candidates access it with probability pk−1, and so on. The probability
increases geometrically with each new round until some candidates
actually access the network. Figure 1, on the right, shows the average
number of accesses to the network as a function of round, resembling
an ascending staircase. In the ` round, the probability of access is
pk−` and if any winners access the network, this ends the election,
since the number of potential leaders is already low enough.

The property of moderation through the green election of a leader
is that no access to the network takes place until a winner has been
designated. There can be several simultaneous winners, but their
number will be limited whatever the initial number of competing
blocks. Of course, as long as this number is less than a large
but arbitrary number (several billion, or billions of billions). The
consequence of the green election is that no PoW calculations
are performed for election purposes which considerably reduce the
energy footprint of the blockchain and make it practical for low
powered miners.

The green election algorithm operates in epochs, with each epoch
ending with the extraction of a winning block. An epoch is divided
into several rounds, each lasting a few seconds, depending on the
precision of the time synchronization. All rounds are empty, except
for the last one, which ends the epoch (otherwise, the epoch ends
when the maximum number of rounds is reached). The protocol
therefore depends on three parameters fixed by design: (i) the
probability of decimation p, (ii) the maximum number k of rounds per
election, (iii) the duration of the rounds. The probability of access
per round will be given by an implicit target to be respected by
the block’s election hash value, as will be explained in section III.
In [6], the following theorem is proved (albeit with some variations
in notation):

Theorem 1: The average number of network accesses per
green leader election for an initial contention of n blocks
is upper bounded by the quantity npk + A with A =

1/p
log(1/p)

∑
k∈Z |Γ (1 + 2ikπ/ log p)|, where Γ(.) is the Euler

"Gamma" function.
We remark that if n � p−k then the quantity npk is negligible.

For k = 16, p = 1/4 we have A ≈ 2.9104. For k = 8, p = 1/16
and A ≈ 7.0608. In both case p−k = 232.

B. The variable PoW with fractal difficulty

Our second contribution to the blockchain for IoT is the fractal
PoW and will be analysed in section IV. The block moderation by
green election above described, enables to leave the use the PoW for
the blockchain protection, regardless on how blocks are moderated.

In this case a PoW with variable difficulty D is interesting, since for
a blockchain of length L the resilience to forgery is asymptotically
equal to E[D]L, thus the same resilience as for a blockchain where
the difficulty would be identical for all blocks and equal to E[D].
Meanwhile miners with low CPU will have equal chance to mine their
blocks. It is not question that the miners would compete with different
difficulties at the same time, since in this case the miners with low
D would have a permanent undue priority. Indeed the difficulty will
be fixed as a function of the last mined block so that all miners will
have the same PoW difficulty in their attempts in mining their own
block. The difficulty is assumed to be in seconds of a normalized
CPU, but in the block format it will be expressed as a target for the
final block hash value.

The concept of variable PoW difficulty is not new, but to the best of
the authors’ knowledge, most proposals [10] introduce protocols for
smoothly adapting and adjusting block difficulty to the computational
capacity of the miner population. It has never been proposed to finely
modify PoW difficulty from one block to the next as part of a dynamic
process, such as a "fractal" stationary process. Figure 2 shows that
for a classical blockchain, each link (block) will be mined with a
fixed root depth (left). With variable difficulty, some links will have
a shorter or longer root, so that the average difficulty remains the
same.

Fig. 2: Fixed difficulty mining (left), fractal difficulty mining (right)

Theorem 2: Let λ be the Poisson rate of creation of new block
per second. Assuming that every miner has the same computational
capacity, the average number of miners in simultaneous PoW for the
next block is equal to λE[D]. The average time a miner is in PoW
before mining its own block is E[D]

We assume that the PoW difficulty for the next block is determined
by the previous block. It can be determined by the block sequence
number. But it’s quite possible for a miner to experience different
successive PoW difficulties before successfully mining his own block.

The consequence of this theorem is that varying difficulty has no
impact on the first moment of the mining waiting time, which is a
remarkable result. In the context of this theorem, we assume that all
miners have the same computing power, but in real-life situations,
computing power will differ between miners and, in practice, miners
with low computing power will have no chance when difficulty is
high, but will have "more equal" chances when difficulty is low (in
fact, difficulty may be zero in some cases).

C. The block format

The proposed block format is:

field # value
1 previous block hash
2 ID & date & sequence number
3 next block election target
4 election hash value
5 payload
... ...
6 next block difficulty target
7 nonce
8 final block hash value

For the green leader election algorithm, the miner will calculate
the election hash value (field 4) from fields 1, 2 and 3. The payload
is intentionally left outside the scope of the election hash value to
prevent devices with powerful CPUs from modifying their payload
at will, if it is not selected from a common repository. The nonce
is already excluded for the same reason (see section III). For the
variable-difficulty part, a nonce will be added after the election hash
value, after the payload fields and before the final hash value of
the block to match the required difficulty (the hash value must be
less than or equal to a required target). A block is mined when the
following two conditions are simultaneously met:
• (i) its election hash value corresponds to the election target of the

current round, the round index is calculated as the ratio between
the time elapsed since the date of the last mined block and the
round delay fixed by convention

• (ii) the second hash value fits with the current demanded PoW
difficulty.

The condition (i) is not affected by a nonce value, so that miner
with a powerful CPU won’t take the lead over miner with slower
CPU.

The election target of the next block is also predetermined by
the protocol design parameters and its display could be optional.
Displaying the difficulty target of the next block could also be
optional, as it should be a specified function of the block sequence
number (which is the number of the previous block plus 1).

III. THE GREEN ELECTION

Each mined block requires its successor to have an election hash
value lower than the election target value displayed. If no successor
comes forward in the current round, the target interval is updated
in the next round and corresponds to the previous target interval
multiplied by 1/p (and rounded up to the nearest integers). The
election hash value does not involve a nonce field or payload, so
the hash value cannot be modified by the brute force of a powerful
CPU. The election target increases until a winner is designated and
a successor is finally extracted. The hash interval increases at a rate
of 1

p
, typically 4 or 16. When the hash interval reaches 2h, where h

is the length of the hash field, all pending miners are called.
The protocol creates an ascending exponential staircase to deter-

mine the winner(s) of the election. The steps are enumerated by
` = 0, 1, . . . , k. The initial call corresponds to the smallest election
target which is b2h+1pkc − 1, h being the number of bits in the
hash value (i.e. h = 256). The probability of a random hash value
matching the initial election target is pk. As long as the staircase
levels increase, the target intervals evolve as b2h+1pk−`c−1 and the
probability of a hash value falling within the interval is pk−`.

Note that when ` = k, the target of the election is the entire hash
interval 2h+1−1, so all values are called. We call this last round the
terminal round. By convention, if no blocks are extracted during a
terminal round, because no new blocks were ready, we assume that

Fig. 3: Histogram of the simulations, p = 1/4, k = 16, borrowed
from [6].

the terminal round is extended indefinitely and that we remain in the
unrestricted call interval [0, 2h+1−1], until a new block is extracted.

For h = 256, k = 8, p = 1
16

, the election target sequence is:

round number Access probabilities election target
0 ≤ ` ≤ k = 8 pk−`

0 (initial) 2−32 2224 − 1
1 2−28 2228 − 1

2 2−24 2232 − 1
3 2−20 2236 − 1
4 2−16 2240 − 1
5 2−12 2244 − 1

6 2−8 2248 − 1
7 2−4 2232 − 1
8 1 2256 − 1

As the value of the election target increases, the original [6]
protocol has a central entity that produces empty blocks that update
the target value. But the protocol also has the option of implicit calls
without empty blocks, and the value of the call interval is determined
by the date of the new block relative to the date of the previous one.
Assuming that the round delay (say 10 seconds) and the call sequence
are fixed by the protocol, we think this is the best solution. Of course,
one could imagine tricking these implicit calls by dating the blocks
in advance to give a miner more chances, but this would be easily
thwarted by the clock consensus. Especially if priority is given to the
smallest dates.

The figure 3 is borrowed from [6], it displays the average number
of winners for various values of n for k = 16 and p = 1/4. Each
point is supposed to have been simulated 1,000 times. We notice
that the values are well below the theoretical upper-bound given by
theorem 1 which is 2.9103.

IV. THE FRACTAL PROOF-OF-WORK DIFFICULTY

In this section, we describe our main contribution, namely the
apparent insensitivity of PoW performance to variable difficulty, as
expressed in Theorem 2. The difficulty may simply be a predeter-
mined function of the block index number; for example, indexes
that are multiples of ten, hundred or thousand might be of greater
difficulty. For the sake of completeness, we’ll assume that the
difficulty of the next block is recalled in the previous block, as
described in the block format.

The difficulty display follows the same format as the election
target, i.e. is an integer of the form b2h+1 1

C
c − 1 where C is the

average number of hash values, calculated on a standardized CPU,
that are required to reach the difficulty D (expressed in seconds). C
is more or less proportional to D (except that when D is small, we
limit C to 1).

The nonce is a field of h bits that is determined by the miner in
such a way that the final hash value of the block is less than the
difficulty target. It is assumed that there is no other way than brute
force.

We present a theoretical analysis for fractal difficulty PoW for the
first two moments of the number of simultaneous miners. We make
a simplifying assumption that decouples the green election from the
PoW. The coupling of the green election and the PoW should not
overly affect the result of theorem 2 and will be the subject of a
further work.

We do not comment on the strategy to be adopted by low-capacity
devices in the event of variable PoW. For example, they could suspend
their PoW in the terminal rounds, since they would no longer stand a
chance against powerful CPUs (but be ready to resume if no mining
takes place). To clarify, we assume that all miners have the same
computing capacity, the case with different classes of computation
powers and how it impacts the energy cost will be addressed in a
forthcoming work. We assume that the green election is doing well
its job and also, that only one winner is selected, which is not fully
correct but is good enough for the present work.

A. Proof of theorem 2 with fixed difficulty D

Proof: The proof is quite simple. We assume that the green
election and extraction of the winning block are instantaneous and
that only one winner completes his PoW at any given time. The fact
that the miner has had to modify certain fields of his own block
several times during the PoW, because other blocks have been mined
in the meantime, does not change the probability that the miner
will complete his PoW within a given time interval [t, t + dt], the
probability being dt

D
.

Thus, the average waiting time between the creation of a block
and its extraction is D, and according to Little’s formula, the average
number of miners simultaneously in proof of work is λD.

The proof is rather trivial, but unfortunately it cannot be gen-
eralized to the case where the difficulty changes according to the
last blocks mined. In this case, the average miner will alternate
between different difficulties during his PoW, which will complicate
the expression of his probability of unconditional termination in an
arbitrary time interval [t, t+ dt].

We will introduce an alternative proof that can be extended to
conditions of variable difficulty. The analysis is done at the epoch
level. We assume that an epoch begins at time t = 0 after the last
block has been extracted. Let Sn(t) be the probability that at time t
the epoch is still running and has exactly n blocks in PoW phase.

We assume that the rate at which new blocks enter PoW mode
is a Poisson process with parameter λ per second. For convenience,
we ignore the entanglement with the green election of leaders, as
we’ll assume that blocks are extracted during a terminal cycle and
that extraction after PoW takes zero delay, as we explained in
the introduction to the section. We also ignore the issues of time
synchronization.

We have the following time evolution:

Sn(t+ dt) = (1− λdt− n

D
dt)Sn(t) + λdtSn−1(t).

which leads to the continuous markovian transition equation:

∂tSn(t) = (Sn−1(t)− Sn(t))λ− n

D
Sn(t).

where ∂t indicates the derivative with respect to variable t. Let
S(z, t) =

∑
n Sn(t)zn, we have:

∂tS(z, t) = λ(z − 1)S(z, t)− z

D
∂zS(z, t).

Let σ0(z) the probability generating function of the initial queue
length of the epoch. In other words σ0(z) = S(z, 0) and the p.g.f.
is naturally unitary, i.e. σ0(1) = 1. We notice that S(1, t) strictly
decays; this is because the epoch may have stopped before t, and
indeed S(1, t) is the probability that the epoch lasts more than t
seconds. In passing the average epoch duration is

∫∞
0
S(1, t)dt.

Let S∗(z) =
∫∞
0
S(z, t)dt, we have the identity (by integration

by part):
−σ0(z) = λ(z − 1)S∗(z)− z

D
∂zS

∗(z).

When the epoch ends, a block is mined and the remaining blocks
stop their current proof-of-work and start a new one, as they form
the initial queue for the next epoch. Let σ1(z) be the p.g.f. of the
next epoch’s queue. When we have the identity σ0(z) = σ1(z),
the epoch process is stationary and we’ll see that the unconditional
average number of blocks in simultaneous PoW, whatever the epoch,
is exactly ∂zS

∗(1)
S∗(1) .

The probability that the previous epoch ends in the interval [t, t+
dt] and that the next epoch begins with n blocks is n+1

D
Sn+1(t)dt.

Taking the contributions of all the time intervals, we obtain the p.g.f
:

σ1(z) =

∫ ∞
0

1

D
∂zS(z, t)dt =

1

D
∂zS

∗(z).

If σ0(z) is the stationary state then we should have σ1(z) = σ0(z)
and simplifying by the factor (z − 1) the simple identity:

σ0(z) = λS∗(z).

With the identity σ0(1) = 1 we get S∗(1) = 1
λ

which comes with no
surprise since we should have

∫∞
0
S(1, t)dt = 1

λ
: the average time

between two mining should be equal to the average time between
two arrivals in stationary situation.

Since block creation follows a Poisson process and epochs are
renewal periods, the cumulative average number of blocks waiting
during an epoch is ∂zS

∗(1)
S∗(1) , i.e. λD, since ∂zS∗(1) = Dσ1(1) = D.

Therefore, thanks to Little’s formula, the average waiting time is D.
This is an alternative proof of the theorem 2.

Theorem 3: The unconditional second moment of the number of
blocks in simultaneous PoW when the difficulty is constant and equal
to D is (λD)2 + λD

Proof: We can go further within this framework by finding
the second moment of the number of blocks in PoW, which is
∂2zS
∗(1)+∂zS

∗(1)
S∗(1) . From the identity σ0(z) = λS∗(z) which is

equivalent to the identity 1
D
∂zS

∗(z) = λS∗(z), we naturally have
1
D
∂2
zS
∗(1) = λ∂zS

∗(1) = λD, thus the second moment of the

number of blocks in PoW is ∂2zS
∗(1)+∂zS

∗(1)
S∗(1) = (λD)2 + λD.

B. Proof of theorem 2 with Variable difficulty

Proof: For the purposes of theoretical analysis, we assume that
after each epoch, the difficulty of the next extraction is given by a
random process (it could be predetermined) without memory. The
sequence of epochs forms a Markov chain. We denote S〈D〉(z, t) the
p.g.f. of the queue length at time t obtained with difficulty D. Calling
σ0(z) the p.g.f. of the initial queue, we obtain the new equation :

−σ0(z) = λ(z − 1)S〈D〉∗(z)− z

D
∂zS

〈D〉∗(z)

with S〈D〉∗(z) =
∫∞
0
S〈D〉(z, t)dt.

In fact, this is the same identity as in the previous section, except
that we keep an exponent 〈D〉 to remind us that the transition is
made in difficulty D. In this case, we denote σ〈D〉1 (z) the p.g.f of the

initial queue of the next epoch and we have the identity σ〈D〉1 (z) =
1
D
∂zS

〈D〉∗(z). But even if the stationary state is σ0(z), there’s no
reason why σ〈D〉1 (z) = σ0(z). In fact, we have the identity σ0(z) =

ED[σ
〈D〉
1 (z)] by averaging over all difficulties (see figure 4).

We therefore get in passing the identity

σ0(z) = λED[S〈D〉∗(z)]

Fig. 4: Transition with variable D

The average number of waiting blocks per time unit is
∂zED [S〈D〉∗(1)]
ED [S〈D〉∗(1)]

which is λE[D]. Indeed ED[S〈D〉∗(1)] = 1
λ

because

(i) 1 = λED[S〈D〉∗(1)] and (ii) ED[∂zS
〈D〉∗(1)] = ED[Dσ〈D〉(1)]

and σ〈D〉1 (1) = 1.
Theorem 4: The unconditional second moment of the number of

blocks in simultaneous PoW is(
E[D2] + ED[DS〈D〉∗(1)]

)
λ2.

Proof: The second moment is ED [∂2zS
〈D〉∗(1)]+ED [∂zS

〈D〉∗(1)]

ED [S〈D〉∗(1)]

which is equal to λED[∂2
zS
〈D〉∗(1)]+λE[D], since ED[S〈D〉∗(1)] =

1
λ

and ED[∂zS
〈D〉∗(1)] = D.

We are specifically looking at ED[∂2
zS
〈D〉∗(1)]. If we average over

D the identity −σ0(z) + z
D
∂zS

〈D〉∗(z) = λ(z− 1)S〈D〉∗(z) we get

σ0(z) = λED[S〈D〉∗(z)],

since 1
D
∂zS

〈D〉∗(z) = σ
〈D〉
1 (z) and ED[σ

〈D〉
1 (z)] = σ0(z). From

this identity at z = 1 we get ED[S〈D〉∗(1)] = 1
λ

, something we
already know.

If we let z = 1 in the identity −σ0(z) + z
D
∂zS

〈D〉∗(z) = λ(z −
1)S〈D〉∗(z) and let z = 1 we get −1 + 1

D
∂zS

〈D〉∗(1) = 0, thus

∂zS
〈D〉∗(1) = D.

If we derive the identity σ0(z) = λED[S〈D〉∗(z)] and make z = 1
we get ∂zσ0 = λED[∂zS

〈D〉∗(1)] = λE[D].
If we derive the identity −σ0(z) + z

D
∂zS

〈D〉∗(z) = λ(z −
1)S〈D〉∗(z) with respect to the variable z and make z = 1 we obtain

−∂zσ0(1) +
1

D
∂2
zS
〈D〉∗(1) +

1

D
∂zS

〈D〉∗(1) = λS〈D〉∗(1).

Thus the previously obtained identities lead to

∂2
zS
〈D〉∗(1) = λDS〈D〉∗(1)−D + λDE[D]

and finally

ED[∂2
zS
〈D〉∗(1)] =

(
ED[DS〈D〉∗(1)] + E[D]2

)
λ− E[D].

Unfortunately, we can’t conclude here as we don’t have an expres-
sion for ED[DS〈D〉∗(1)] in the general case.

C. Block waiting time distribution

The distribution of miners’ waiting time is more difficult to
analyze, as the waiting time per block may straddle several epochs.
So we’ll just give an overview of how it can be analyzed theoretically.

Consider a queue of n blocks at time t. Let T be the time already
spent in the queue by an arbitrary miner. Let T1, . . . , Tn be the
respective waiting times of the n blocks, including their waiting
times in previous epochs. Let Pn(t, T1, . . . , Tn) be the probability
that the current epoch started t seconds ago and that the respective
waiting times (including previous epochs) of the blocks are n-triple
(T1, . . . , Tn). Let ω be a complex number, and we define

Pn(ω, t) =
1

n

∑
T1,...,Tn

Pn(t, T1, . . . , Tn)
(
eωT1 + · · ·+ eωTn

)
.

We notice that Pn(0, t) = Sn(t). During the evolution from time
t to time t + dt, the waiting time increases of dt (thus the block
eωT1 + · · · eωTn is multiplied by eωdt). With probability n

D
dt the

epoch terminates, with probability λdt a new block is added with
a waiting time Tn+1 = 0. It consists into replacing the Laplace
function eωT1 + · · ·+ eωTn by the new Laplace expression eωT1 +

· · · + eωTn + 1. Said differently, the block eωT1+···+eωTn

n
by the

block n
n+1

eωT1+···+eωTn

n
+ 1

n+1
e0T1+···+e0Tn

n
.

This naturally leads to the following time evolution, since
Pn(0, t) = Sn(t):

Pn(ω, t+ dt) = eωdt
(

1− λdt− n

D
dt
)
Pn(ω, t)

+λdt

(
Pn−1(ω, t)

n− 1

n
+

1

n
Sn−1(t)

)
The last term indicates that when a new block arrives in a queue of
length n − 1 its starts with a waiting time T = 0, the other blocks
share a fraction n−1

n
of the previous distribution of the waiting times.

Thus defining the p.g.f: P (z, ω, t) =
∑
n Pn(ω, t)zn and letting

dt→ 0:

∂tP (z, ω, t) = (ω + λ(z − 1))P (z, ω, t) + λIS(z, t)

−λIP (z, ω, t)− z

D
∂zP (z, ω, t)

where I is the "primitivation" operator: If(z) =
∫ z
0
f(x)dx. Let

P ∗(z, ω) =
∫∞
0
P (z, ω, t)dt, and P (z, ω, 0) = P0(z, ω):

−π0(z, ω) = (ω + λ(z − 1))P ∗(z, ω)− λIP ∗(z, ω)

+λIS∗(z)− z

D
∂zP

∗(z, ω).

where π0(z, ω) = P (z, ω, 0).
What remains to establish is the connection with the next epoch

p.g.f. Assume that an epoch ends with n blocks with respective
waiting times T1, . . . , Tn, which correspond to a Laplace function
eωT1 + · · ·+ eωTn . When the epoch ends, one of the waiting blocks
selected at random will be mined and the other blocks will remain in
the queue. All possibilities added up, the mean of the new Laplace
function is after normalization is 1

n
(eωT1 + ·+eωTn). In fact, we can

keep only the mean value, as the subsequent evolution of the Markov
chain that makes up the sequence of epochs depends only on the
number of remaining blocks n− 1 and not on the individual waiting
times. In other words, the average Laplace function is unchanged

when a block leaves the queue. Therefore the initial p.g.f. of the next
epoch satisfies

π1(z, ω) =

∫ ∞
0

1

D
∂zP (z, ω, t)dt =

1

D
∂zP

∗(z, ω).

In stationary situation we would have to average on all D in-
troducing P 〈D〉(z, ω, t) and P 〈D〉∗(z, ω), the epoch starting on the
stationary initial distribution π0(z, ω) and get π1(z, ω) = π0(z, ω).

V. PRACTICAL SIMULATIONS

We have simulated block mining, first with a fixed proof of work,
and second with a variable proof of work. We assume that all devices
have same computing power, the analysis with different computing
powers will be done in another work. We place ourselves under the
conditions of the proof where the block creation process is Poisson
with a rate λ = 0.5, the block deposit time after PoW is zero (i.e.
takes a negligible time), PoW is a continuous process that stops in the
interval [t, t+dt] with probability dt

D
where D is the current difficulty.

We ignore the fine-grained interaction with the green election of the
leader. We simulated a block mining process, in a short time interval
of 200 seconds, and tracked the evolution of the number of blocks
which are simultaneously in PoW during this time interval. The model
is rather simple, the simulations are done with the formal language
Maple.

Figure 5 shows the histogram of the number of blocks in simulta-
neous PoW, when difficulty D is set to 5. Figure 6 shows the same
thing, but with difficulty D variable over values (2, 4, 8, 16) with
respective probabilities (1

2
, 1
4
, 1
8
, 1
8
), so E[D] = 5. In both figures,

we add, below the time axis and in negative, the difficulty values as
established at each epoch change.

Fig. 5: number of blocks in PoW versus time, fixed D in brown,
below in negative and in blue the fixed difficulty D determined at
each epoch starting point

Although this may not be obvious over a short period, both graphs
should show the same average value over a very long period. To be
convinced that these quantities are indeed the same in both figures,
we simulate the long-term average for t = 10, 000 in figure 7 and
compare it with the theoretical value λE[D] = 2.5.

Fig. 6: number of blocks in PoW versus time, fixed D in brown,
below in negative and in blue the fractal difficulty D determined at
each epoch starting time

Fig. 7: number of blocks in PoW versus time, for fixed D (blue) and
fractal D (brown), dashed the theoretical value λE[D]

VI. CONCLUSION

We have shown that merging green leader election and fractal
difficulty PoW is a powerful tool for reducing the energy footprint of
blockchains for IoT when the computing capacity of devices is too
diverse and makes the energy cost of PoW unsustainable.

The surprising result of this study is that the average performance
of a PoW with fractal difficulty seems to depend only on the
average difficulty. The surprise comes from the fact that the average
performance of a queuing system generally depends on the second
moment of service times, so that a small variation in the service time
statistic has a greater impact on the queuing system. But this is not
the case with variable difficulty PoW.

The theoretical analysis presented in this paper is limited to devices
with same computing power. The case with different power classes
will be the subject of a further work which will show that fractal
difficulties can indeed reduce the computing burden on low powered
class of devices.

REFERENCES

[1] Elie Bouri, Naji Jalkh, Peter Molnár and David Roubaud, Bitcoin for
energy commodities before and after the December 2013 crash: diversifier,
hedge or safe haven?, Applied Economics, 49(50):5063-5073, 2017.

[2] Debojyoti Das and Anupam Dutta, Bitcoin’s energy consumption: Is it the
Achilles heel to miner’s revenue?, Economics Letters, Available online
July 2019, In Press.

[3] Cynthia Dwork and Moni Naor, Pricing via processing or combatting
junkmail, in proceedings of the 12th Annual International Cryptology
Conference on Advances in Cryptology (CRYPTO), pp. 139–147, Lon-
don, UK, 1993.

[4] P.J. Grabner and H. Prodinger, Sorting algorithms for broadcast commu-
nications: Mathematical analysis, Theoretical computer science, 289(1),
pp. 51-67, 2002.

[5] Adam S. Hayes, Cryptocurrency value formation: An empirical study
leading to a cost of production model for valuing bitcoin, Telematics and
Informatics, 34(7), pp. 1308-1321, 2017.

[6] Jacquet, Philippe, and Bernard Mans. "Green mining: Toward a less ener-
getic impact of cryptocurrencies." IEEE INFOCOM 2019-IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 2019.

[7] Qiang Ji, Elie Bouri, David Roubaud, and Ladislav Kristoufek, Informa-
tion interdependence among energy, cryptocurrency and major commodity
markets, Energy Economics, 81, pp. 1042-1055, 2019.

[8] Cichon, J., Kapelko, R., & Markiewicz, D. (2016). On Leader Green
Election. In proceedings of the 27th International Conference on Prob-
abilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA), Kraków, Poland, July 4–8, 2016, arXiv preprint
arXiv:1605.00137.

[9] K.J. Dwyer and D. Malone, Bitcoin mining and its energy footprint. In
proceedings of the 25th IET Irish Signals Syst. Conf. (ISSC 14), Jun.
2014, pp. 280-285.

[10] Garay, Juan, Aggelos Kiayias, and Nikos Leonardos. "The bitcoin back-
bone protocol with chains of variable difficulty." Advances in Cryptol-
ogy–CRYPTO 2017: 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20–24, 2017, Proceedings, Part I 37.
Springer International Publishing, 2017.

