
HAL Id: hal-04395635
https://hal.science/hal-04395635v1

Submitted on 15 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Diamond Machine for Strong Evaluation
Beniamino Accattoli, Pablo Barenbaum

To cite this version:
Beniamino Accattoli, Pablo Barenbaum. A Diamond Machine for Strong Evaluation. APLAS 2023
- The 21st Asian Symposium on Programming Languages and Systems, Nov 2023, Taipei, Taiwan.
�hal-04395635�

https://hal.science/hal-04395635v1
https://hal.archives-ouvertes.fr

A Diamond Machine for Strong Evaluation

Beniamino Accattoli1[0000−0003−4944−9944] and Pablo Barenbaum2,3

1 Inria & LIX, École Polytechnique, UMR 7161, Palaiseau, France
2 Universidad Nacional de Quilmes (CONICET), Bernal, Argentina

3 CONICET-Universidad de Buenos Aires, Instituto de Ciencias de la Computación,
Argentina

Abstract. Abstract machines for strong evaluation of the λ-calculus
enter into arguments and have a set of transitions for backtracking out
of an evaluated argument. We study a new abstract machine which avoids
backtracking by splitting the run of the machine in smaller jobs, one for
argument, and that jumps directly to the next job once one is finished.
Usually, machines are also deterministic and implement deterministic
strategies. Here we weaken this aspect and consider a light form of non-
determinism, namely the diamond property, for both the machine and the
strategy. For the machine, this introduces a modular management of jobs,
parametric in a scheduling policy. We then show how to obtain various
strategies, among which leftmost-outermost evaluation, by instantiating
in different ways the scheduling policy.

Keywords: Lambda calculus, abstract machines, strong evaluation.

1 Introduction

An abstract machine for the λ-calculus, or for one of its extensions, is an imple-
mentation schema for a fixed evaluation strategy →str with sufficiently atomic
operations (accounting for the machine part) and without too many implemen-
tative details (accounting for the abstract part). An abstract machine for →str,
ideally, refines the reduction of →str-redexes realizing the following three tasks:

1. Search: searching for →str-redexes;
2. Names: avoiding variable captures through some mechanism implementing

α-conversion, or allowing one to avoid α-conversion altogether;
3. Substitution: refining meta-level substitution with an approximation based

on delaying the substitution, which boils down to adopting a form of sharing,
and replacing one variable occurrence at a time, in a demand-driven fashion.

These tasks are usually left to meta-level operations in λ-calculi, meaning that
they happen outside the syntax of the calculus itself, in a black-box manner. The
role of abstract machines is to explicitly take care of these aspects, or at least of
some of them, reifying them from the meta-level to the object-level. Concretely,
this is obtained by enriching the specification of the operational semantics with
dedicated data structures. Additionally, such a specification is usually designed
as to be efficient, and usually the evaluation strategy →str is deterministic.

2 Accattoli and Barenbaum

Search, Backtracking, and Jumping. A first motivation of this paper is obtaining
a better understanding of the search mechanism of abstract machines. When
pushed at the meta-level, search is usually specified via deduction rules or via a
grammar of evaluation contexts, assuming that, at each application of a rewriting
rule, the term is correctly split into an evaluation context and a redex. The meta-
level aspect is the fact that the process of splitting the term (or applying the
deductive rules) is not taken into account as an operation of the calculus.

For simple evaluation strategies such as, for instance, weak call-by-name in
the pure λ-calculus (also known as weak head reduction), abstract machines (such
as the Krivine or the Milner abstract machine) have one search transition for ev-
ery production of the evaluation contexts for the meta-level definition of search.
For less simple strategies, the searching for redexes by the machine often also
accounts for the further mechanism of backtracking search, that is not visible in
the operational semantics, not even at meta-level. Such a form of search—which
is completely unrelated to backtracking-as-in-classical-logic—happens when the
machine has finished evaluating a sub-term and needs to backtrack to retrieve the
next sub-term to inspect. Typically, this happens when implementing strategies
that evaluate arguments, and in particular for strategies evaluating to strong
normal form (that is, also under abstraction), the paradigmatic and simplest
example of which is leftmost(-outermost4) evaluation.

As an example, let f be a strong normal form and consider executing a
machine for leftmost evaluation on λx.xft. The machine would go under λx., find
the head variable x and then start searching for a β-redex in f . Since there are
none, the machine arrives at the end of f and then it usually backtracks through
the structure of f , as to exit it and then start searching inside t. Backtracking
search is natural when one sees the searching process as a walk over the code,
moving only between adjacent constructors. This is the dominating approach in
the design of abstract machines for λ-calculi, since the entirety of the (small)
literature on machines for strong evaluation adopts it [20,24,4,23,14,12,8,15,16].

There is, however, a natural alternative approach which is saving the position
where one would next backtrack, and then directly jumping to that position,
instead of walking back to it. In this paper, we explore how to avoid backtracking
search by adopting a form of jumping search. The idea is embarrassingly simple:
creating a new job when an argument ready to be evaluated is found, adding it
to a pool of jobs; then when the active job terminates, jumping to another job
in the pool, without backtracking out of the terminated one.

Diamond Non-Determinism. A second motivation of the paper is to under-
stand how to deal with diamond non-determinism at the level of machines. It
is often the case that a deterministic strong strategy can be relaxed as to be
non-deterministic. For instance, on the head normal form x t u r leftmost evalu-
ation would first evaluate t, then u, and then r. But the evaluations of t, u, and
r are in fact independent, so that one could evaluate them in any order. One
could even interleave their evaluations, as it is done for instance by the least

4 To ease the language, in the paper we shorten leftmost-outermost to leftmost.

A Diamond Machine for Strong Evaluation 3

level strategy, a non-deterministic strong strategy coming from the linear logic
literature, introduced—we believe—by Girard [25] and studied for instance by
de Carvalho et al. [19] on proof nets and by Accattoli et al. [9] on the λ-calculus.

Such a form of non-determinism is benign, as it does not affect the result, nor
the length of the evaluation. Abstractly, it is captured by the diamond property
(here defined following Dal Lago and Martini [21], while Terese [32] defines it
more restrictively, without requiring u1 ̸= u2), the strongest form of confluence:

t u1

u2

and u1 ̸= u2 imply ∃r s.t.

t u1

u2 r

What makes it stronger than confluence is that both the opening span from t
and the closing one to r are made of single steps, not of sequences of steps.

The diamond property can be seen as a liberal form of determinism, because—
when it holds—all reductions to normal form have the same length, and if one
such reduction exists then there are no diverging reductions.

External Strategy and Machine. Here we introduce a relaxed, diamond version
of the leftmost strategy, which we deem external strategy. We are inspired by
Accattoli et al. [8], who study a similar strategy for strong call-by-value.

Diamond strategies can be seen as uniform frameworks capturing different de-
terministic strategies (for instance the leftmost and the least level strategy). Ac-
cordingly, a non-deterministic machine implementing a diamond strategy would
factor out the commonalities of different deterministic machines.

We then design a machine for the external strategy, the EXternal Abstract
Machine (EXAM) by building over the jumping search explained above. The
idea, again, is very simple. It amounts to relaxing the scheduling of jobs from the
pool, by allowing the machine to non-deterministically select whatever unfinished
job at each step, instead of having to terminate the active job and then having
to move to the next one in the pool.

In fact, we go one step further. We define a pool interface and the definition
of the EXAM is abstract in that it only refers to the interface. Then one can
define different pool templates that implement various scheduling policies for
jobs. The external strategy is implemented when adopting the most general,
non-deterministic template. By only replacing the template, we show how the
same machine can also implement the leftmost strategy. At the end of the paper,
we also quickly overview a template for the least level strategy, as well as one
for a fair strategy.

Related Work. This work adopts terminologies and techniques from the work on
abstract machines by Accattoli and coauthors [3,4,1,5,7,10,8], and in particular
refines their machine for leftmost evaluation [4]. They focus on the complexity
of machines, while here we focus on search and ignore complexity, since their
work shows that search has linear cost (in the time cost model, i.e. the number
of β-steps) and thus it does not affect the asymptotic behavior, which is instead

4 Accattoli and Barenbaum

linked to how the machine realizes the orthogonal substitution task. The study of
machines for strong evaluation is a blind spot of the field, despite the relevance
for the implementation of proof assistants. The few studies in the literature
have all been cited above. Search for abstract machines is related to Danvy and
Nielsen’s (generalized) refocusing [22,17], which however has never dealt with the
jumping search introduced here. General non-deterministic machines are studied
by Biernacka et al. [13], but the setting is different as they are not diamond.

Proofs. Proofs are in the technical report [2].

2 Normal Forms and the Importance of Being External

Basics of λ. The set T of untyped λ-terms is defined by t ::= x | λx. t | t t. The
capture-avoiding substitution of x by u in t is written t{x := u}. The relation of
β-reduction at the root 7→β ⊆ T × T is defined by (λx. t)u 7→β t{x := u}.

We shall use various notions of contexts, which are terms with a single oc-
currence of a free variable ⟨·⟩, called a hole. If C is a context, C⟨t⟩ denotes the
plugging of t in C which is the textual substitution of ⟨·⟩ by t in C. Plugging
might capture variables, for instance if C = λx.λy.⟨·⟩ then C⟨xy⟩ = λx.λy.xy.
Note that instead one would have (λx.λy.z){z := xy} = λx′.λy′.xy.

The relation of β-reduction →β ⊆ T × T is the context closure of 7→β , i.e.
C⟨t⟩ →β C⟨u⟩ if t 7→β u, compactly noted also as →β := C⟨7→β⟩. An evaluation
e : t→β

∗ u is a possibly empty sequence of β-steps.

Proposition 1 (Normal forms). β-Normal forms are described by:

Neutral terms n ::= x | nf Normal forms f ::= n | λx.f

Weak Head Reduction and External Redexes. The simplest evaluation strategy
is weak head reduction→wh, which is obtained as the closure A⟨7→β⟩ of the root
β-rule 7→β by the following notion of applicative contexts:

Applicative contexts A ::= ⟨·⟩ | A t.

Example: (λx.t)ur →wh t{x←u}r. Weak head reduction is deterministic. It fails
to compute β-normal forms because it does not reduce arguments nor abstraction
bodies, indeed r((λx.t)u) ̸→wh r(t{x←u}) and λy.((λx.t)u) ̸→wh λy.t{x←u}.

The key property of the weak head redex is that it is external, a key concept
from the advanced rewriting theory of the λ-calculus studied by many authors
[27,28,29,26,30,11,18,31,32,6]. Following Accattoli et al. [6], the intuition is that
a redex R of a term t is external if:

1. Action constraint : no other redex in t can act on (that is, can erase or
duplicate) R, and

2. Hereditary clause: the same it is true, hereditarily, for all the residuals of R
after any other redex.

A Diamond Machine for Strong Evaluation 5

In δ(Ix), where δ := λy.yy is the duplicator combinator and I := λz.z is the
identity combinator, the redex Ix can be duplicated by δ, so it is not external
because the action constraint is not respected. In Iδ(Ix), instead, the redex Ix
respects the action constraint, because Ix is an outermost redex, and yet Ix is
not external because it does not validate the hereditary clause: its only residual
after the step Iδ(Ix)→β δ(Ix) can be duplicated by δ.

Defining external redexes requires the introduction of the theory of residuals,
which is heavy and beyond the scope of this paper. The intuition behind it
however guides the study in this paper, and we consider it a plus—rather than
a weakness—that this can be done circumventing the theory of residuals.

Leftmost Reduction. One way to extend weak head reduction to compute β-
normal forms as to always reduce external redexes is provided by leftmost-
outermost reduction →lo (shortened to leftmost). The definition relies on the
notion of neutral term n used to describe normal forms, and it is given by the
closure L⟨7→β⟩ of root β by the following notion of leftmost contexts, defined by
mutual induction with neutral contexts:

Neutral ctxs N ::= ⟨·⟩ | nL | Nt Leftmost ctxs L ::= N | λx.L

Some examples: y((λx.t)u) →lo y(t{x←u}) and λy.((λx.t)u) →lo λy.t{x←u}
but Iy((λx.t)u) ̸→lo Iy(t{x←u}). Leftmost reduction is deterministic and nor-
malizing, that is, if t has a reduction to normal form f then leftmost reduction
reaches f . Formally, if t→β

∗ f with f normal then t→∗lo f—for a recent simple
proof of this classic result see Accattoli et al. [9]. The normalization property
can be seen as a consequence of the fact that the strategy reduces only external
redexes. Note that the outermost strategy (that reduces redexes not contained in
any other redex) is instead not normalizing, as the following Ω redex is outermost
(but not leftmost), where Ω := δδ is the paradigmatic looping λ-term:

(λx. λy. x) z Ω →β (λx. λy. x) z Ω →β . . . (1)

The key point is that the outermost strategy does reduce redexes that cannot
be acted upon, but it does not satisfy the hereditary clause in the intuitive
definition of external redex given above, for which one also needs an additional
requirement such as selecting the leftmost redex among the outermost ones.

External Reduction. It is possible to define a strategy relaxing leftmost reduc-
tion, still reducing only external redexes, what we call external reduction. The
definition uses the auxiliary notions of rigid terms and contexts, plus the ap-
plicative contexts A used for weak head reduction. The terminology is inspired
by Accattoli et al.’s similar strategy for strong call-by-value evaluation [8].

Definition 1. The following categories of terms and contexts are defined mutu-
ally inductively by the grammar:

Rigid terms r ::= x | r t
Rigid ctxs R ::= ⟨·⟩ | r E | R t External ctxs E ::= R | λx.E

6 Accattoli and Barenbaum

External reduction is the rewriting relation →x ⊆ T × T on λ-terms defined as
the closure of root β-reduction under external contexts, that is, →x := E⟨7→β⟩.

Alternative streamlined definitions for these notions are:

r ::= x t1 . . . tn
R ::= ⟨·⟩ t1 . . . tn | xu1 . . . um E t1 . . . tn E ::= λx1 . . . xk. R

As proved below, the leftmost strategy is a special case of the external one.
The converse does not hold: t = x(Iy)(Iz)→x x(Iy)z = u but t ̸→lo u. Instead,
t→lo xy(Iz) = r. Note also a case of diamond: t→x r and r →x xyz x← u.

Proposition 2 (Properties of external reduction).

1. Leftmost is external: if t→lo u then t→x u.
2. External diamond: if u x← · →x r with u ̸= r then u→x · x← r.

3 Preliminaries: Abstract Machines

Abstract Machines Glossary. Abstract machines manipulate pre-terms, that is,
terms without implicit α-renaming. In this paper, an abstract machine is a
quadruple M = (States,⇝, · ◁ ·, ·) the component of which are as follows.

– States. A state s ∈ States is composed by the active term t, and some data
structures. Terms in states are actually pre-terms.

– Transitions. The pair (States,⇝) is a transition system with transitions
⇝ partitioned into β-transitions ⇝β (usually just one), that are meant to
correspond to β-steps, and overhead transitions ⇝o, that take care of the
various tasks of the machine (searching, substituting, and α-renaming).

– Initialization. The component ◁ ⊆ Λ × States is the initialization relation
associating λ-terms to initial states. It is a relation and not a function be-
cause t ◁ s maps a λ-term t (considered modulo α) to a state s having a
pre-term representant of t (which is not modulo α) as active term. Intu-
itively, any two states s and s′ such that t ◁ s and t ◁ s′ are α-equivalent. A
state s is reachable if it can be reached starting from an initial state, that is,
if s′ ⇝∗ s where t◁s′ for some t and s′, which we abbreviate using t◁s′ ⇝∗ s.

– Read-back. The read-back function · : States → Λ turns reachable states
into λ-terms and satisfies the initialization constraint : if t ◁ s then s =α t.

Further Terminology and Notations. A state is final if no transitions apply. A
run ρ : s ⇝∗ s′ is a possibly empty finite sequence of transitions, the length
of which is noted |ρ|; note that the first and the last states of a run are not
necessarily initial and final. If a and b are transitions labels (that is,⇝a⊆⇝ and
⇝b⊆⇝) then ⇝a,b:=⇝a ∪⇝b and |ρ|a is the number of a transitions in ρ.

Well-Namedness and Renaming. For the machines at work in this paper, the pre-
terms in initial states shall be well-named, that is, they have pairwise distinct
bound names; for instance (λx.x)(λy.yy) is well-named while (λx.x)(λx.xx) is
not. We shall also write tR in a state s for a fresh well-named renaming of t,
i.e. tR is α-equivalent to t, well-named, and its bound variables are fresh with
respect to those in t and in the other components of s.

A Diamond Machine for Strong Evaluation 7

Implementation Theorem, Abstractly. We now formally define the notion of a
machine implementing a strategy.

Definition 2 (Machine implementation). A machine M = (States,⇝, ·◁·, ·)
implements a strategy →str when given a λ-term t the following holds:

1. Runs to evaluations: for any M-run ρ : t ◁ s ⇝∗M s′ there exists a →str-
evaluation e : t→∗str s′.

2. Evaluations to runs: for every →str-evaluation e : t →∗str u there exists a
M-run ρ : t ◁ s⇝∗M s′ such that s′ = u.

3. β-Matching: in both previous points the number |ρ|β of β-transitions in ρ is
exactly the length |e| of the evaluation e, i.e. |e| = |ρ|β.

Next, we give sufficient conditions that a machine and a strategy have to satisfy
in order for the former to implement the latter, what we call an implementation
system. In the literature, strategies and machines are usually assumed to be de-
terministic. In Accattoli et al. [8], there is the case of a deterministic machine
implementing a diamond strategy. Here we shall have a diamond machine imple-
menting a diamond strategy, which is why the requirements are a bit different
than for previous notion of implementation systems in the literature [10,7,8].

Definition 3 (Implementation system). A machine M = (States,⇝, ·◁·, ·)
and a strategy →str form an implementation system if:

1. Overhead transparency: s⇝o s
′ implies s = s′;

2. β-projection: s⇝β s′ implies s→str s
′;

3. Overhead termination: ⇝o terminates;

4. β-reflection: if s is ⇝o-normal and s →str u then there exists s′ such that
s⇝β s′ and s′ = u.

The first two properties guarantee that the runs to evaluations part of the
implementation holds, the third and fourth properties instead induce the evalua-
tion to runs part, which is slightly more delicate. In the deterministic case, such
a second part usually follows from a weaker notion of implementation system,
where β-reflection is replaced by the weaker halt property, stating that if s is
final then s is normal. The diamond aspect of our study requires the stronger
β-reflection property, which actually subsumes the halt one. Indeed, if s is not
normal then by β-reflection s is not final.

Thanks to a simple lemma for the evaluation to runs part (in the technical
report [2]), we obtain the following abstract implementation theorem.

Theorem 1 (Sufficient condition for implementations). Let M be a ma-
chine and →str be a strategy forming an implementation system. Then, M im-
plements →str. More precisely, β-projection and overhead transparency imply
the runs to evaluations part (plus β-matching), and overhead termination and
β-reflection imply the evaluations to runs part (plus β-matching).

8 Accattoli and Barenbaum

Data structures, States, and Initialization

Stacks S, S′ ::= ϵ | t : S Environments E,E′ ::= ϵ | [x←t] : E
States s, s′ ::= (t | S |E) Initialization t ◁ s if s = (tR | ϵ | ϵ)

Transitions

Active Term | Stack |Env Active Term | Stack | Env

tu | S | E ⇝sea@ t | u : S | E

λx.t | u : S | E ⇝β t | S | [x←u] : E

x | S | E ⇝sub E(x)R | S | E
If x ∈ domE

Fig. 1: Definition of the Milner Abstract Machine (MAM).

4 Preliminaries: The Milner Abstract Machine

The new machine for the external strategy that we are about to introduce builds
on the Milner Abstract Machine (shortened to MAM) for weak head reduction
by Accattoli et al. [3], that is probably the simplest abstract machine for the
λ-calculus in the literature. In this section, we overview the MAM, the data
structures and transitions of which are defined in Fig. 1.

Data Structures. The MAM has two data structures, the stack S and the envi-
ronment E, which are lists. We use ’:’ for consing a single element onto a list, but
also for list concatenation, so for instance S : S′ stands for the concatenation of
stacks. The set of variables bound by an environment E = [x1←t1] . . . [xk←tk]
is {x1, . . . , xk} and it is noted domE.

Transitions of the MAM. A term t is initialized into an initial state t◁s by simply
using an arbitrary well-named renaming tR as active term together with empty
stack and environment. The MAM searches for β-redexes in the active term by
descending on the left of applications via transition ⇝sea@ , while accumulating
arguments on the (applicative) stack, which is simply a stack of terms. If it finds
an abstraction λx.t and the stack has u on top, then it performs the machine
analogous of a β-redex, that is a ⇝β transition, which adds the entry [x←u] on
top of the environment, to be understood as a delayed, explicit substitution. If
the MAM finds a variable x, then it looks up in the environment E if it finds an
associated entry [x←t], and replaces x with an α-renamed tR copy of t.

Transitions ⇝sea@ and ⇝sub are the overhead transitions of the MAM, that
is, ⇝o:=⇝sea@,sub, and ⇝β is its only β-transition. The MAM is deterministic.

Read-Back. The read-back of MAM states to terms can be defined in at least
two ways, by either first reading back the environment or the stack. Here we
give an environment-first definition, which shall be used also for the EXAM.

Definition 4 (MAM read-back). The read-back tE and SE of terms and
stack with respect to an environment E are the terms and stacks given by:

A Diamond Machine for Strong Evaluation 9

Terms tϵ := t t[x←u]:E := (t{x := u})
E

Stacks ϵE := ϵ t : SE := tE : SE

The read-back tS of t with respect to a stack S is the term given by:

tϵ := t tu:S := (t u)
S

Finally, the read-back of a state is defined as (t | S |E) := tESE

.

Theorem 2 ([3]). The MAM implements weak head reduction →wh.

Environments are defined as lists of entries, but they are meant to be con-
cretely implemented as a store, without a rigid list structure. The idea is that
variables are implemented as memory locations, as to obtain constant-time ac-
cess to the right entry of the environment via the operation E(x). It is nonethe-
less standard to define environments as lists, as it helps one stating invariants
concerning them. For more implementative details, see Accattoli and Barras [5].

Comparison with the KAM. For the reader acquainted with the famous Krivine
Abstract Machine (KAM), the difference is that the stack and the environment
of the MAM contain codes, not closures as in the KAM, and that there is a single
global environment instead of many local environments. A global environment
indeed circumvents the complex mutually recursive notions of local environment
and closure, at the price of the explicit α-renaming tR which is applied on the fly
in⇝sub. The price however is negligible, at least theoretically, as the asymptotic
complexity of the machine is not affected, see Accattoli and co-authors [3,5] (the
same can be said of variable names vs de Bruijn indexes/levels).

5 The External Abstract Machine

In this section, we define the EXternal Abstract Machine (EXAM), an abstract
machine for the external strategy →x, by using the MAM as a sort of building
block. The EXAM is given in Fig. 2 and explained in the following paragraphs.
An example of run is given at the end of this section.

Data Structures. The EXAM has three data structures, two of which are new
with respect to the MAM:

– The approximant (of the normal form) A, which collects the parts of the
normal form already computed by the run of the EXAM. The approximant
is a named multi-context, defined below, that is, a context with zero, one, or
more named holes ⟨·⟩α, each one identified by a distinct name α, β, etc.

– The pool P , which is a data structure containing a set of named MAM jobs,
providing operations for scheduling the execution of these jobs. Each named
job jα has shape (t, S)α, that is, it contains a term and a stack. The idea
is that the job jα = (t, S)α of name α is executing the term correspond-
ing to (t, S) and that the result of such execution shall be plugged in the
approximant A, replacing the hole ⟨·⟩α. Pools are discussed in detail below.

– The environment E, which is as for the MAM except that it is shared among
all the jobs in the pool.

10 Accattoli and Barenbaum

Data structures, States, and Initialization

Approx. A ::= ⟨·⟩α | R | λx.A Rigid approx. R ::= x | RA
Jobs jα ::= (t, S)α States s ::= JA | P |EK with P a pool

Initialization t ◁ s if s = J⟨·⟩α | new((tR, ϵ)α) | ϵK

Transitions

Ap. | Pool |Env Ap. | Pool | Env

A | (t u, S)α
sel
↽ P | E ⇝sea@ A | (t, u : S)α

dro
⇁ P | E

A | (λx. t, u : S)α
sel
↽ P | E ⇝β A | (t, S)α

dro
⇁ P | [x←u] : E

A | (x, S)α
sel
↽ P | E ⇝sub A | (E(x)R, S)α

dro
⇁ P | E

If x ∈ domE and tR is a fresh renaming of t

A | (λx. t, ϵ)α
sel
↽ P | E ⇝seaλ A′ | (t, ϵ)α

dro
⇁ P | E
With A′ := A⟨λx. ⟨·⟩α⟩α

A | (x, t1 : .. : tn)α
sel
↽ P | E ⇝seaV A′ | (t1, ϵ)β1 : .. : (tn, ϵ)βn

add
⇁ P | E

If x ̸∈ domE, and with n ≥ 0, A′ := A⟨x ⟨·⟩β1 ..⟨·⟩βn⟩α, and β1, .., βn fresh

Fig. 2: Definition of the EXternal Abstract Machine (EXAM).

Transitions and Functioning of the EXAM. A term t is initialized into an initial
state t◁s by creating a pool with a single named job (tR, ϵ)α (having a well-named
tR version of t and an empty stack) and pairing it with the approximant A = ⟨·⟩α
and empty environment. The EXAM proceeds as the MAM until it reaches a
MAM final state. Let us consider the normal forms for weak head reduction and
the corresponding final states of the MAM, which are of two kinds:

1. Abstractions (with no arguments): the →wh normal form is λx.u which is
the read-back of a final MAM state (λx.t, ϵ, E) with empty stack (that is,
u = tE). In this case, the EXAM performs a⇝seaλ transition, storing λx.⟨·⟩α
into the approximant A at α, and adding a named job (t, ϵ)α to the pool P .

2. Possibly applied variables (with no substitution): the →wh normal form is
xu1 . . . un with n ≥ 0, which is the read-back of a final state (x, t1 : . . . :
tn, E) with x /∈ domE (that is, ui = tiE). In this case, the EXAM performs
a⇝seaV transition. If n = 0 then⇝seaV simply adds x into the approximant
A at α. If n > 0 then ⇝seaV adds n new named jobs (t1, ϵ)β1 , .., (tn, ϵ)βn to
the pool P and adds x⟨·⟩α1

..⟨·⟩α1
into the approximant A at α.

Transitions ⇝sea@ , ⇝seaλ , and ⇝seaV are the search transitions of the EXAM.
Together with ⇝sub, they are the overhead transitions of the EXAM, that is,
⇝o:=⇝sea@,sub,seaλ,seaV , and⇝β is its only β-transition. The transition relation
of the EXAM is the union of all these relations, i.e.⇝EXAM :=⇝sea@,β,sub,seaλ,seaV .

Pool Interface and Templates. The EXAM selects at each step a (named) job
from the pool—the one performing the step—according to a possibly non-deter-
ministic policy, and drops it back in the pool after the transition, unless the job
is over, which happens in transition ⇝seaV . In general, dropping a job back into

A Diamond Machine for Strong Evaluation 11

a pool and adding a job to a pool are not the same operation, since the former
applies to jobs that were in the pool before being selected, while addition is
reserved to new jobs. We actually abstract away from a job scheduling policy
and from the details of the pool data structure: the pool is an abstract interface
which can be realized by various concrete data structures called pool templates.

Definition 5 (Pool templates). A pool template is a data structure P coming
with the following five operations of the pool interface:

– Names, support, and new: there are a name function names(P) = {α1, .., αn}
providing the finite and possibly empty set of the names of the jobs in the pool
(N ∋ n ≥ 0), a support function supp(P) = {jα1 , .., jαn} providing the set
of jobs in the pool (indexed by names(P)), and a function new(jα) creating
a pool containing jα, that is, such that supp(new(jα)) = {jα}.

– Selection: there is a selection relation
sel
↽ (P, jα, P

′) such that jα ∈ supp(P)
and supp(P ′) = supp(P) \ {jα}. The intuition is that P ′ is P without jα,
which has been selected and removed from P . There is a choice constraint:

if P is non-empty then
sel
↽ (P, jα, P

′) holds for some jα and P ′. We write

jα
sel
↽ P ′ for a pool P such that

sel
↽ (P, jα, P

′).

– Dropping: there is a dropping function
dro
⇁ (jα, P) = P ′ defined when α /∈

names(P) and such that supp(P ′) = supp(P) ∪ {jα}. Dropping is meant to
add a job jα back to a pool P from which jα was previously selected. It is not

necessarily the inverse of selection. We write jα
dro
⇁ P for the pool

dro
⇁ (jα, P).

– Adding: similarly, there is an adding function
add
⇁ (jα, P) = P ′ defined when

α /∈ names(P) and such that supp(P ′) = supp(P) ∪ {jα}. Adding is meant
to add a new job jα to a pool P , that is, a job that has never been in P .

We write jα
add
⇁ P for

add
⇁ (jα, P) = P ′, and extend it to lists as follows:

ϵ
add
⇁ P := P , and jα1

: .. : jαn

add
⇁ P := jαn

add
⇁

(
jα1

: .. : jαn−1

add
⇁ P

)
.

Set EXAM. The simplest pool template is the set template where pools P are
sets of named jobs, the support is the pool itself (and the name set is as ex-
pected), new(jα) creates a singleton with jα, selection is the relation {(P, jα, P \
{jα}) | jα ∈ P}, and both dropping and adding are the addition of an element.
The set template models the most general behavior, as any job of the pool can
then be selected for the next step. The EXAM instantiated on the set template
is called Set EXAM. Other templates shall be considered at the end of the paper,
motivating in particular the distinction between dropping and adding.

Approximants and Named Multi-Contexts. The definition of the EXAM rests on
approximants, which are stable prefixes of normal forms, that is, normal forms
from which some sub-terms have been removed and replaced with named holes.
In fact, we are going to introduce more general (named) multi-contexts to give
a status to approximants in which some but not all holes have been replaced
by an arbitrary term—which shall be needed in proofs (when manipulating the
read-back)—thus losing their ”normal prefix” property.

12 Accattoli and Barenbaum

Definition 6 (Named multi-contexts). A (named) multi-context C is a λ-
term in which there may appear free occurrences of (named) holes, i.e.:

(Named) Multi-contexts C ::= x | ⟨·⟩α | λx.C | CC

The plugging C⟨C′⟩α of α by C′ in C, is the capture-allowing substitution of
⟨·⟩α by C′ in C. We write names(C) for the set of names that occur in C. We
shall use only multi-contexts where named holes have pairwise distinct names.

Note that a multi-context C without holes is simply a term, thus the defined
notion of plugging subsumes the plugging C⟨t⟩α of terms in multi-contexts.

Approximants A are defined in Fig. 2 by mutual induction with rigid ap-
proximants R, and are special cases of multi-contexts. Alternative streamlined
definitions for (rigid) approximants are (possibly y = xi for some i ∈ {1, . . . , n}):

R ::= xA1..An A ::= λx1..xn. ⟨·⟩α | λx1..xn. yA1..An

Note that in A and R holes are never applied, that is, they are non-applying
multi-contexts. For the sake of readability, in the paper we only give statements
about approximants, which are then reformulated in the technical report [2] by
pairing them with a similar statement about rigid approximants, and proving
the two of them simultaneously by mutual induction.

We prove two properties of approximants. Firstly, to justify that transitions
⇝seaλ and ⇝seaV are well-defined, we show that the first component of the
state on their right-hand side is indeed an approximant. Secondly, we relate
approximants with normal forms, to justify the terminology.

Lemma 1 (Inner extension of approximants). If A is an approximant
and β1, . . . , βn /∈ names(A) then A⟨λx. ⟨·⟩α⟩α and A⟨x ⟨·⟩β1

..⟨·⟩βn
⟩α are approxi-

mants.

Lemma 2. An approximant A without named holes is a normal form.

Read-Back. To give a notion of read-back that is independent of the pool tem-
plate, we define the read-back using a set X of uniquely named jobs—standing
for the support supp(P) of the pool—rather than the pool P itself. Moreover,
we need a way of applying the substitution induced by an environment to named
jobs and sets of named jobs, which is based on the notions tE and SE for terms
and stacks given for the MAM, from which we also borrow the definition of tS .

Definition 7 (EXAM read-back). Applying an environment E to jobs and
job sets is defined as follows:

Jobs/jobs sets (t, S)α
E
:= (tE , SE)α {jα1

, .., jαn
}
E
:= {jα1E

, .., jαnE
}

The read-back of jobs, and of a multi context C with respect to a set of uniquely
named jobs {jα1

, .., jαn
} are defined as follows:

(t, S)α := tS C{jα1 ,..,jαn} := C⟨jα1
⟩α1

..⟨jαn
⟩αn

An EXAM state s is read-back as a multi-context setting JA | P |EK := Asupp(P)
E

.

A Diamond Machine for Strong Evaluation 13

Diamond. Since the selection operation is non-deterministic, the EXAM in gen-
eral is non-deterministic. The most general case is given by the Set EXAM, which
is the EXAM instantiated with the set template for pools described after Defi-
nition 5. As for the external strategy, the Set EXAM has the diamond property
up to a slight glitch: swapping the order of two β-transitions on two different
jobs, adds entries to the environment in different orders.

Let ≈ be the minimal equivalence relation on environments containing the
following relation:

E : [x←t] : [y←u] : E′ ∼ E : [y←u] : [x←t] : E′ if x /∈ u and y /∈ t

Let ≡ be the relation over states s. t. JA | P |E1K ≡ JA | P |E2K if E1 ≈ E2.

Proposition 3. The Set EXAM is diamond up to ≡, i.e., if s ⇝EXAM s1 and
s⇝EXAM s2 then ∃s′1 and s′2 such that s1 ⇝EXAM s

′
1, s2 ⇝EXAM s

′
2, and s′1 ≡ s′2.

Example 1. The following is a possible run of the Set EXAM—that is, the EXAM
with the set template for pools—on the term t := x(Iyz)(δwz) where Iy = λy.y
and δw = λw.ww, ending in a final state.

Approx. | Pool | Env Tran. Selected Job

⟨·⟩α | {(x(Iyz)(δwz), ϵ)α} | ϵ ⇝sea@ α
⟨·⟩α | {(x(Iyz), δwz)α} | ϵ ⇝sea@ α
⟨·⟩α | {(x, Iyz : δwz)α} | ϵ ⇝seaV α

x⟨·⟩β⟨·⟩γ | {(Iyz, ϵ)β , (δwz, ϵ)γ} | ϵ ⇝sea@ γ
x⟨·⟩β⟨·⟩γ | {(Iyz, ϵ)β , (δw, z)γ} | ϵ ⇝β γ
x⟨·⟩β⟨·⟩γ | {(Iyz, ϵ)β , (ww, ϵ)γ} | [w←z] ⇝sea@ β
x⟨·⟩β⟨·⟩γ | {(Iy, z)β , (ww, ϵ)γ} | [w←z] ⇝sea@ γ
x⟨·⟩β⟨·⟩γ | {(Iy, z)β , (w,w)γ} | [w←z] ⇝β β
x⟨·⟩β⟨·⟩γ | {(y, ϵ)β , (w,w)γ} | [y←z] : [w←z] ⇝sub β
x⟨·⟩β⟨·⟩γ | {(z, ϵ)β , (w,w)γ} | [y←z] : [w←z] ⇝sub γ
x⟨·⟩β⟨·⟩γ | {(z, ϵ)β , (z, w)γ} | [y←z] : [w←z] ⇝seaV γ

x⟨·⟩β(x⟨·⟩γ′) | {(z, ϵ)β , (w, ϵ)γ′} | [y←z] : [w←z] ⇝sub γ′

x⟨·⟩β(x⟨·⟩γ′) | {(z, ϵ)β , (z, ϵ)γ′} | [y←z] : [w←z] ⇝seaV β
xz(x⟨·⟩γ′) | {(z, ϵ)γ′} | [y←z] : [w←z] ⇝seaV γ′

xz(zz) | ∅ | [y←z] : [w←z]

6 Runs to Evaluations

In this section, we develop the projection of EXAM runs on external evalua-
tions, and then instantiates it with a deterministic pool template obtaining runs
corresponding to leftmost evaluations.

Overhead Transparency. By the abstract recipe for implementation theorems in
Sect. 3, to project runs on evaluations we need to prove overhead transparency
and β-projection. Overhead transparency is simple, it follows from the definition
of read-back plus some of its basic properties (in the technical report [2]).

Proposition 4 (Overhead transparency). If s⇝o s
′ then s = s′.

14 Accattoli and Barenbaum

Invariants. To prove the β-projection property, we need some invariants of the
EXAM. We have a first set of invariants concerning variable names, hole names,
and binders. A notable point is that their proofs use only properties of the pool
interface, and are thus valid for every pool template instantiation of the EXAM.

Terminology : a binding occurrence of a variable x is an occurrence of λx. t in
A, P or E, or an occurrence of [x←t] in E, for some t.

Lemma 3 (EXAM Invariants). Let s = JA | P |EK be an EXAM reachable
state reachable. Then:

1. Uniqueness. There are no repeated names in A.
2. Freshness. Different binding occurrences in s refer to different variable names.
3. Bijection. The set of names in A is in 1–1 correspondence with the set of

names in P , that is, names(A) = names(P).
4. Freeness. The free variables of A are globally free, that is, fv(A)∩domE = ∅.
5. Local scope. For every sub-term of the form λx. t in a job in supp(P) or in

E, there are no occurrences of x outside of t. Moreover, in the environment
[x1←t1] : .. : [xn←tn], there are no occurrences of xi in tj if i ≤ j.

The read-back of an EXAM state is defined as a multi-context, but for reach-
able states it is a term, as stated by Point 2 of the next lemma, proved by putting
together the bijection invariant for reachable states (Lemma 3.3) and Point 1.

Lemma 4 (Reachable states read back to terms).

1. Let A be an approximant and let X be a set of uniquely named jobs such that
names(A) ⊆ names(X). Then AX is a term.

2. Let s be a reachable state. Then its read-back s is a term.

Contextual Read-Back. The key point of the β-projection property is proving
that the read-back of the data structures of a reachable state without the active
term/job is an evaluation context—an external context in our case. This is en-
sured by the following lemma. It has a simple proof (using Lemma 4) because we
can state it about approximants without mentioning reachable state, given that
we know that the first component of a reachable state is always an approximant
(because of Lemma 1). The lemma is then used in the proof of β-projection.

Lemma 5 (External context read-back). Let X be a set of uniquely named
jobs and A be an approximant with no repeated names such that names(A) \
names(X) = {α}. Then AX⟨⟨·⟩⟩α is an external context.

Theorem 3 (β-projection). If s⇝β s′ then s→x s
′.

Now, we obtain the runs to evaluations part of the implementation theorem,
which by the theorem about sufficient conditions for implementations (Theo-
rem 1) follows from overhead transparency and β-projection.

Corollary 1 (EXAM runs to external evaluations). For any EXAM run
ρ : t ◁ s⇝∗EXAM s

′ there exists a →x-evaluation e : t→∗x s′. Moreover, |e| = |ρ|β.

A Diamond Machine for Strong Evaluation 15

Last, we analyze final states.

Proposition 5 (Characterization of final states). Let s be a reachable fi-
nal state. Then there is a normal form f such that s = Jf | ∅ |EK and s = f .
Moreover, if s ≡ s′ then s′ is final and s′ = f .

6.1 Leftmost Runs to Leftmost Evaluations

Now, we instantiate the EXAM with the stack template for pools, obtaining a
machine implementing leftmost evaluation.

Leftmost EXAM. Let the Leftmost EXAM be the deterministic variant of the
EXAM adopting the stack template for pools, that is, such that:

– Pools are lists jα1 : .. : jαn of named jobs, new(jα) creates the list containing
only jα, and the support of a pool is the set of jobs in the list;

– Selection pops from the pool, that is, if P = jα1
: .. : jαn

then jα
sel
↽ P pops

jα from the list jα : jα1
: .. : jαn

;
– Both dropping and adding push on the list, and are inverses of selection.

Example 2. The Leftmost EXAM run on the same term t := x(Iyz)(δwz) used
for the Set EXAM in Example 1 follows (excluding the first three transitions,
that are the same for both machines, as they are actually steps of the MAM).

Approx. | Pool | Env Trans. Selected Job

x⟨·⟩β⟨·⟩γ | (Iyz, ϵ)β : (δwz, ϵ)γ | ϵ ⇝sea@ β
x⟨·⟩β⟨·⟩γ | (Iy, z)β : (δwz, ϵ)γ | ϵ ⇝β β
x⟨·⟩β⟨·⟩γ | (y, ϵ)β : (δwz, ϵ)γ | [y←z] ⇝sub β
x⟨·⟩β⟨·⟩γ | (z, ϵ)β : (δwz, ϵ)γ | [y←z] ⇝seaV β
xz⟨·⟩γ | (δwz, ϵ)γ | [y←z] ⇝sea@ γ
xz⟨·⟩γ | (δw, z)γ | [y←z] ⇝β γ
xz⟨·⟩γ | (ww, ϵ)γ | [w←z] : [y←z] ⇝sea@ γ
xz⟨·⟩γ | (w,w)γ | [w←z] : [y←z] ⇝sub γ
xz⟨·⟩γ | (z, w)γ | [w←z] : [y←z] ⇝seaV γ

xz(z⟨·⟩γ′) | (w, ϵ)γ′ | [w←z] : [y←z] ⇝sub γ′

xz(z⟨·⟩γ′) | (z, ϵ)γ′ | [w←z] : [y←z] ⇝seaV γ′

xz(zz) | ϵ | [w←z] : [y←z]

Proving that Leftmost EXAM runs read back to leftmost evaluations requires
a new β-projection property. Its proof is based on the following quite complex
invariant about instantiations of the approximants computed by the Leftmost
EXAM. Terminology : a context C is non-applying if C ̸= D⟨⟨·⟩t⟩ for all D and
t, that is, it does not apply the hole to an argument.

Proposition 6 (Leftmost context invariant). Let

– s = JA | jα1
: .. : jαn

|EK be a reachable Leftmost EXAM state with n ≥ 1;
– fj be a normal form for all j such that 1 ≤ j < n,

16 Accattoli and Barenbaum

– tj be a term for all j such that 1 < j ≤ n, and
– L be a non-applying leftmost context.

Then Cs
f1,..,fi−1|L|ti+1,..,tn

:= A⟨f1⟩α1 ..⟨fi−1⟩αi−1⟨L⟩αi⟨ti+1⟩αi+1 ..⟨tn⟩αn is a non-

applying leftmost context for every i ∈ {1, . . . , n}.

From the invariant, it follows that a reachable state less the first job reads
back to a leftmost context, which implies the leftmost variant of β-projection,
in turn allowing us to project Leftmost EXAM runs on leftmost evaluations.

Lemma 6 (Leftmost context read-back). Let s = JA | jα1 : .. : jαn |EK be
a reachable Leftmost EXAM state with n ≥ 1 and s• := JA | jα2

: .. : jαn
|EK.

Then s•⟨⟨·⟩⟩α1
is a non-applying leftmost context.

Proposition 7 (Leftmost β-projection). Let s be a reachable Leftmost EXAM
state. If s⇝β s′ then s→lo s′.

Corollary 2 (Leftmost EXAM runs to leftmost evaluations). For any
Leftmost EXAM run ρ : t ◁ s⇝∗EXAM s

′ there exists a →lo-evaluation e : t→∗lo s′.
Moreover, |e| = |ρ|β.

7 Evaluations to Runs

Here, we develop the reflection of external evaluations to EXAM runs. By the
abstract recipe for implementation theorems in Sect. 3, one needs to prove over-
head termination and β-reflection. At the level of non-determinism, the external
strategy is matched by the most permissive scheduling of jobs, that is, the set
template. Therefore, we shall prove the result with respect to the Set EXAM.

Overhead Termination. To prove overhead termination, we define a measure.
The measure does not depend on job names nor bound variable names, which is
why the definition of the measure replaces them with underscores (and it is well
defined even if it uses the renaming E(x)R).

Definition 8 (Overhead measure). Let jα be a job and E be an environ-
ment satisfying the freshness name property (together) of Lemma 3, and s be a
reachable state. The overhead measures |jα, E|o and |s|o are defined as follows:

|(λ .t, u : S) , E|o := 0
|(λ .t, ϵ) , E|o := 1 + |(t, ϵ) , E|o
|(tu, S) , E|o := 1 + |(t, u : S) , E|o
|(x, ϵ) , E|o := 1 + |(E(x)R, ϵ) , E|o if x ∈ domE

|(x, t1 : .. : tn) , E|o := 1 +
∑n

i=1 |(ti, ϵ) , E|o with n ≥ 0, if x /∈ domE

|JA | P |EK|o :=
∑

jα∈supp(P) |jα, E|o

Proposition 8 (Overhead termination). Let s be a Set EXAM reachable

state. Then s⇝|s|oo s′ with s′ ⇝o-normal.

A Diamond Machine for Strong Evaluation 17

Addresses and β-Reflection. For the β-reflection property, we need a way to
connect external redexes on terms with β-transitions on states. We use addresses.

Definition 9 (Address and sub-term at an address). An address a is a
string over the alphabet {l, r, λ}. The sub-term t|a of a term t at address a is
the following partial function (the last case of which means that in any case not
covered by the previous ones t|a is undefined):

t|ϵ := t (tu)|l:a := t|a (tu)|r:a := u|a (λx.t)|λ:a := t|a
|c:a := ⊥ if c ∈ {l, r, λ}

The sub-term C|a at a of a multi-context is defined analogously. An address a
is defined in t (resp. C) if t|a ̸= ⊥ (resp. C|a ̸= ⊥), and undefined otherwise.

There is a strong relationship between addresses in the approximant of a
state and in the read-back of the state, as expressed by the following lemma.
The lemma is then used to prove β-reflection, from which the evaluation to runs
part of the implementation theorem follows.

Lemma 7. Let s = JA | P |EK be a state and a a defined address in A. Then a
is a defined address in s, and s|a starts with the same constructor of A|a unless
A|a is a named hole.

Proposition 9 (β-reflection). Let s be a⇝o-normal reachable state. If s→x u
then there exists s′ such that s⇝β s′ and s′ = u.

Corollary 3 (Evaluations to runs). For every →x-evaluation e : t →∗x u
there exists a Set EXAM run ρ : t ◁ s⇝∗EXAM s

′ such that s′ = u.

A similar result for leftmost evaluation and the Leftmost EXAM follows
more easily from the characterization of final states (Proposition 5), overhead
termination (Proposition 8), and determinism of the Leftmost EXAM—this is
the standard pattern for deterministic strategies and machines, used for instance
by Accattoli et al. for their machine for leftmost evaluation [4].

Names and Addresses. It is natural to wonder whether one can refine the EXAM
by using addresses a as a more precise form of names for jobs. It is possible, it
is enough to modify the EXAM as to extend at each step the name/address. For
instance, transition ⇝sea@ would become:

Ap. | Pool |Env Ap. | Pool |Env
A | (t u, S)a

sel
↽ P | E ⇝sea@ A | (t, u : S)l:a

dro
⇁ P | E

Then a β-transition of address a in a reachable state s corresponds exactly to a β-
redex of address a in s. We refrained from adopting addresses as names, however,
because this is only useful for proving the β-reflection property of the EXAM,
the machine does not need such an additional structure for its functioning.

18 Accattoli and Barenbaum

8 Further Pool Templates

Least Level. Another sub-strategy of external reduction that computes β-normal
forms is provided by least level reduction →ℓℓ, a notion from the linear logic
literature. Picking a redex of minimal level, where the level is the number of
arguments in which the redex is contained, is another predicate (similarly to
the leftmost one) that ensures externality of an outermost redex. Note that the
Ω redex in (1) (page 5) is not of minimal level (it has level 1 while the redex
involving z has level 0). Least level reduction is non-deterministic but diamond.
For instance the two redexes (of level 1) in x(Iy)(Iz) are both least level. Note
that the leftmost redex might not be least level, as in x(x(Iy))(Iz), where the
leftmost redex is Iy and has level 2, while Iz has level 1.

By replacing the stack template with a queue one, the Leftmost EXAM turns
into a machine for least level evaluation. The key point is that when new jobs are
created, which is done only by transition ⇝seaV , they all have level n+ 1 where
n is the level of the active job. To process jobs by increasing levels, then, it is
enough to add the new jobs at the end of the pool, rather than at the beginning.
This is an example where dropping (which pushes an element on top of the list
of jobs) and adding (which adds at the end) are not the same operation.

Fair Template. Another interesting template is the one where pools are lists and
dropping always adds at the end of the list. In this way the EXAM is fair, in
the sense that even when it diverges, it keeps evaluating all jobs. This kind of
strategies are of interest for infinitary λ-calculi, where one wants to compute all
branches of an infinite normal form, instead of being stuck on one.

9 Conclusions

This paper studies two simple ideas and applies them to the paradigmatic case of
strong call-by-name evaluation. Firstly, avoiding backtracking on the search for
redexes by introducing jobs for each argument and jumping to the next job when
one is finished. Secondly, modularizing the scheduling of jobs via a pool interface
that can be instantiated by various concrete schedulers, called pool templates.

The outcome of the study is a compact, modular, and—we believe—elegant
abstract machine for strong evaluation. In particular, we obtain the simplest
machine for leftmost evaluation in the literature. Our study also gives a compu-
tational interpretation to the diamond non-determinism of strong call-by-name.

For the sake of simplicity, our study extends the MAM, which implements
weak head reduction using global environments. Our technique, however, is rea-
sonably modular in the underlying machine/notion of environment. One can,
indeed, replace the MAM with Krivine abstract machine (KAM), which instead
uses local environments, by changing only the fact that the jobs of the EXAM
have to carry their own local environment. Similarly, the technique seems to
be adaptable to the CEK or other machines for weak evaluation. It would be
interesting to compare the outcome of these adaptations with existing machines
for strong call-by-value [14,8,15] or strong call-by-need [12,16].

A Diamond Machine for Strong Evaluation 19

References

1. Accattoli, B.: The Useful MAM, a Reasonable Implementation of the Strong λ-
Calculus. In: Väänänen, J.A., Hirvonen, Å., de Queiroz, R.J.G.B. (eds.) Logic,
Language, Information, and Computation - 23rd International Workshop, WoL-
LIC 2016, Puebla, Mexico, August 16-19th, 2016. Proceedings. Lecture Notes in
Computer Science, vol. 9803, pp. 1–21. Springer (2016). https://doi.org/10.

1007/978-3-662-52921-8_1

2. Accattoli, B., Barenbaum, P.: A diamond machine for strong evaluation. CoRR
abs/2309.12515 (2023), https://arxiv.org/abs/2309.12515

3. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: Pro-
ceedings of the 19th ACM SIGPLAN international conference on Functional
programming, Gothenburg, Sweden, September 1-3, 2014. pp. 363–376 (2014).
https://doi.org/10.1145/2628136.2628154

4. Accattoli, B., Barenbaum, P., Mazza, D.: A Strong Distillery. In: Programming
Languages and Systems - 13th Asian Symposium, APLAS 2015. Lecture Notes in
Computer Science, vol. 9458, pp. 231–250. Springer (2015). https://doi.org/10.
1007/978-3-319-26529-2_13

5. Accattoli, B., Barras, B.: Environments and the complexity of abstract machines.
In: Vanhoof, W., Pientka, B. (eds.) Proceedings of the 19th International Sympo-
sium on Principles and Practice of Declarative Programming, Namur, Belgium, Oc-
tober 09 - 11, 2017. pp. 4–16. ACM (2017). https://doi.org/10.1145/3131851.
3131855

6. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization
theorem. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014. pp. 659–670. ACM (2014). https://doi.
org/10.1145/2535838.2535886

7. Accattoli, B., Condoluci, A., Guerrieri, G., Sacerdoti Coen, C.: Crumbling ab-
stract machines. In: Komendantskaya, E. (ed.) Proceedings of the 21st Interna-
tional Symposium on Principles and Practice of Programming Languages, PPDP
2019, Porto, Portugal, October 7-9, 2019. pp. 4:1–4:15. ACM (2019). https:

//doi.org/10.1145/3354166.3354169

8. Accattoli, B., Condoluci, A., Sacerdoti Coen, C.: Strong Call-by-Value is Reason-
able, Implosively. In: 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. pp. 1–14. IEEE (2021).
https://doi.org/10.1109/LICS52264.2021.9470630

9. Accattoli, B., Faggian, C., Guerrieri, G.: Factorization and normalization, essen-
tially. In: Lin, A.W. (ed.) Programming Languages and Systems - 17th Asian Sym-
posium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceed-
ings. Lecture Notes in Computer Science, vol. 11893, pp. 159–180. Springer (2019).
https://doi.org/10.1007/978-3-030-34175-6_9

10. Accattoli, B., Guerrieri, G.: Abstract machines for open call-by-value. Sci. Comput.
Program. 184 (2019). https://doi.org/10.1016/j.scico.2019.03.002

11. Barendregt, H.P., Kennaway, R., Klop, J.W., Sleep, M.R.: Needed reduction and
spine strategies for the lambda calculus. Inf. Comput. 75(3), 191–231 (1987).
https://doi.org/10.1016/0890-5401(87)90001-0

12. Biernacka, M., Biernacki, D., Charatonik, W., Drab, T.: An abstract machine for
strong call by value. In: d. S. Oliveira, B.C. (ed.) Programming Languages and
Systems - 18th Asian Symposium, APLAS 2020, Fukuoka, Japan, November 30 -

https://doi.org/10.1007/978-3-662-52921-8_1
https://doi.org/10.1007/978-3-662-52921-8_1
https://doi.org/10.1007/978-3-662-52921-8_1
https://doi.org/10.1007/978-3-662-52921-8_1
https://arxiv.org/abs/2309.12515
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.1007/978-3-319-26529-2_13
https://doi.org/10.1007/978-3-319-26529-2_13
https://doi.org/10.1007/978-3-319-26529-2_13
https://doi.org/10.1007/978-3-319-26529-2_13
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/3354166.3354169
https://doi.org/10.1145/3354166.3354169
https://doi.org/10.1145/3354166.3354169
https://doi.org/10.1145/3354166.3354169
https://doi.org/10.1109/LICS52264.2021.9470630
https://doi.org/10.1109/LICS52264.2021.9470630
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1016/j.scico.2019.03.002
https://doi.org/10.1016/j.scico.2019.03.002
https://doi.org/10.1016/0890-5401(87)90001-0
https://doi.org/10.1016/0890-5401(87)90001-0

20 Accattoli and Barenbaum

December 2, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12470,
pp. 147–166. Springer (2020). https://doi.org/10.1007/978-3-030-64437-6_8

13. Biernacka, M., Biernacki, D., Lenglet, S., Schmitt, A.: Non-deterministic abstract
machines. In: Klin, B., Lasota, S., Muscholl, A. (eds.) 33rd International Conference
on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland.
LIPIcs, vol. 243, pp. 7:1–7:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2022). https://doi.org/10.4230/LIPIcs.CONCUR.2022.7

14. Biernacka, M., Charatonik, W.: Deriving an abstract machine for strong call by
need. In: Geuvers, H. (ed.) 4th International Conference on Formal Structures for
Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany.
LIPIcs, vol. 131, pp. 8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPIcs.FSCD.2019.8

15. Biernacka, M., Charatonik, W., Drab, T.: A derived reasonable abstract machine
for strong call by value. In: Veltri, N., Benton, N., Ghilezan, S. (eds.) PPDP
2021: 23rd International Symposium on Principles and Practice of Declarative
Programming, Tallinn, Estonia, September 6-8, 2021. pp. 6:1–6:14. ACM (2021).
https://doi.org/10.1145/3479394.3479401

16. Biernacka, M., Charatonik, W., Drab, T.: A simple and efficient implementation of
strong call by need by an abstract machine. Proc. ACM Program. Lang. 6(ICFP),
109–136 (2022). https://doi.org/10.1145/3549822

17. Biernacka, M., Charatonik, W., Zielinska, K.: Generalized refocusing: From hybrid
strategies to abstract machines. In: 2nd International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2017, September 3-9, 2017, Oxford,
UK. pp. 10:1–10:17 (2017). https://doi.org/10.4230/LIPIcs.FSCD.2017.10

18. Boudol, G.: Computational semantics of term rewriting systems. In: Algebraic
methods in semantics, pp. 169–236. Cambridge University Press (1986)

19. de Carvalho, D., Pagani, M., Tortora de Falco, L.: A semantic measure of the
execution time in linear logic. Theor. Comput. Sci. 412(20), 1884–1902 (2011).
https://doi.org/10.1016/j.tcs.2010.12.017

20. Crégut, P.: Strongly reducing variants of the Krivine abstract machine.
High. Order Symb. Comput. 20(3), 209–230 (2007). https://doi.org/10.1007/
s10990-007-9015-z

21. Dal Lago, U., Martini, S.: The weak lambda calculus as a reasonable machine.
Theor. Comput. Sci. 398(1-3), 32–50 (2008). https://doi.org/10.1016/j.tcs.
2008.01.044

22. Danvy, O., Nielsen, L.R.: Refocusing in Reduction Semantics. Tech. Rep. RS-04-26,
BRICS (2004)

23. Garćıa-Pérez, Á., Nogueira, P.: The full-reducing krivine abstract machine KN sim-
ulates pure normal-order reduction in lockstep: A proof via corresponding calculus.
J. Funct. Program. 29, e7 (2019). https://doi.org/10.1017/S0956796819000017

24. Garćıa-Pérez, Á., Nogueira, P., Moreno-Navarro, J.J.: Deriving the full-reducing
Krivine machine from the small-step operational semantics of normal order. In:
15th International Symposium on Principles and Practice of Declarative Program-
ming, PPDP’13. pp. 85–96. ACM (2013). https://doi.org/10.1145/2505879.

2505887
25. Girard, J.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998). https://doi.

org/10.1006/inco.1998.2700
26. Gonthier, G., Lévy, J.J., Melliès, P.A.: An abstract standardisation theorem. In:

Proceedings of the Seventh Annual Symposium on Logic in Computer Science
(LICS ’92), Santa Cruz, California, USA, June 22-25, 1992. pp. 72–81. IEEE Com-
puter Society (1992). https://doi.org/10.1109/LICS.1992.185521

https://doi.org/10.1007/978-3-030-64437-6_8
https://doi.org/10.1007/978-3-030-64437-6_8
https://doi.org/10.4230/LIPIcs.CONCUR.2022.7
https://doi.org/10.4230/LIPIcs.CONCUR.2022.7
https://doi.org/10.4230/LIPIcs.FSCD.2019.8
https://doi.org/10.4230/LIPIcs.FSCD.2019.8
https://doi.org/10.1145/3479394.3479401
https://doi.org/10.1145/3479394.3479401
https://doi.org/10.1145/3549822
https://doi.org/10.1145/3549822
https://doi.org/10.4230/LIPIcs.FSCD.2017.10
https://doi.org/10.4230/LIPIcs.FSCD.2017.10
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1007/s10990-007-9015-z
https://doi.org/10.1007/s10990-007-9015-z
https://doi.org/10.1007/s10990-007-9015-z
https://doi.org/10.1007/s10990-007-9015-z
https://doi.org/10.1016/j.tcs.2008.01.044
https://doi.org/10.1016/j.tcs.2008.01.044
https://doi.org/10.1016/j.tcs.2008.01.044
https://doi.org/10.1016/j.tcs.2008.01.044
https://doi.org/10.1017/S0956796819000017
https://doi.org/10.1017/S0956796819000017
https://doi.org/10.1145/2505879.2505887
https://doi.org/10.1145/2505879.2505887
https://doi.org/10.1145/2505879.2505887
https://doi.org/10.1145/2505879.2505887
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1109/LICS.1992.185521
https://doi.org/10.1109/LICS.1992.185521

A Diamond Machine for Strong Evaluation 21

27. Huet, G.P., Lévy, J.J.: Computations in orthogonal rewriting systems, I. In: Lassez,
J., Plotkin, G.D. (eds.) Computational Logic - Essays in Honor of Alan Robinson.
pp. 395–414. The MIT Press (1991)

28. Huet, G.P., Lévy, J.J.: Computations in orthogonal rewriting systems, II. In:
Lassez, J., Plotkin, G.D. (eds.) Computational Logic - Essays in Honor of Alan
Robinson. pp. 415–443. The MIT Press (1991)

29. Maranget, L.: Optimal derivations in weak lambda-calculi and in orthogonal
terms rewriting systems. In: Wise, D.S. (ed.) Conference Record of the Eigh-
teenth Annual ACM Symposium on Principles of Programming Languages, Or-
lando, Florida, USA, January 21-23, 1991. pp. 255–269. ACM Press (1991).
https://doi.org/10.1145/99583.99618

30. Melliès, P.A.: Description Abstraite de système de réécriture. PhD thesis, Paris 7
University (1996)

31. van Oostrom, V.: Normalisation in weakly orthogonal rewriting. In: Narendran, P.,
Rusinowitch, M. (eds.) Rewriting Techniques and Applications, 10th International
Conference, RTA-99, Trento, Italy, July 2-4, 1999, Proceedings. Lecture Notes in
Computer Science, vol. 1631, pp. 60–74. Springer (1999). https://doi.org/10.
1007/3-540-48685-2_5

32. Terese: Term rewriting systems., Cambridge tracts in theoretical computer science,
vol. 55. Cambridge University Press (2003)

https://doi.org/10.1145/99583.99618
https://doi.org/10.1145/99583.99618
https://doi.org/10.1007/3-540-48685-2_5
https://doi.org/10.1007/3-540-48685-2_5
https://doi.org/10.1007/3-540-48685-2_5
https://doi.org/10.1007/3-540-48685-2_5

	A Diamond Machine for Strong Evaluation

