
HAL Id: hal-04395549
https://hal.science/hal-04395549

Submitted on 15 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Strong Call-by-Value and Multi Types
Beniamino Accattoli, Giulio Guerrieri, Maico Leberle

To cite this version:
Beniamino Accattoli, Giulio Guerrieri, Maico Leberle. Strong Call-by-Value and Multi Types. ICTAC
2023 - 20th International Colloquium on Theoretical Aspects of Computing, Dec 2023, Lima, Peru.
�hal-04395549�

https://hal.science/hal-04395549
https://hal.archives-ouvertes.fr

Strong Call-by-Value and Multi Types

Beniamino Accattoli1[0000−0003−4944−9944], Giulio
Guerrieri2[0000−0002−0469−4279], and Maico Leberle1

1 Inria & LIX, École Polytechnique, UMR 7161, Palaiseau, France
beniamino.accattoli@inria.fr, maico-carlos.leberle@inria.fr

2 Aix Marseille Univ, CNRS, LIS UMR 7020, Marseille, France
giulio.guerrieri@lis-lab.fr

Abstract. This paper provides foundations for strong (that is, possibly
under abstraction) call-by-value evaluation for the λ-calculus. Recently,
Accattoli et al. proposed a form of call-by-value strong evaluation for
the λ-calculus, the external strategy, and proved it reasonable for time.
Here, we study the external strategy using a semantical tool, namely
Ehrhard’s call-by-value multi types, a variant of intersection types. We
show that the external strategy terminates exactly when a term is typable
with so-called shrinking multi types, mimicking similar results for strong
call-by-name. Additionally, the external strategy is normalizing in the
untyped setting, that is, it reaches the normal form whenever it exists.
We also consider the call-by-extended-value approach to strong evalua-
tion shown reasonable for time by Biernacka et al. The two approaches
turn out to not be equivalent: terms may be externally divergent but
terminating for call-by-extended-value.

1 Introduction

Plotkin’s call-by-value λ-calculus λv [40] is at the heart of programming lan-
guages such as OCaml and proof assistants such as Coq. In the study of program-
ming languages, call-by-value (shortened to CbV) evaluation is usually weak, that
is, it does not reduce under abstractions, and terms are assumed to be closed, i.e.,
without free variables. These constraints give rise to an elegant framework—we
call it Closed CbV, following Accattoli and Guerrieri [5].

Plotkin did not present the CbV λ-calculus λv with these restrictions, and
properties such as confluence also hold without the restrictions. As soon as open
terms are allowed, however, or evaluation is strong (that is, it can reduce under
abstractions), the calculus behaves badly at the semantical level. There are at
least two issues, first pointed out by Paolini and Ronchi Della Rocca [39,38,41].

1. False normal forms: some terms are contextually equivalent to the looping
term Ω := (λx.xx)(λx.xx) and yet they are normal in Plotkin’s setting.

2. Failing of denotational soundness/adequacy beyond the closed case: deno-
tational models are usually both sound (that is, denotations are stable by
reduction: if t→ u then JtK = JuK) and adequate (that is, the denotation JtK
is non-empty if and only if the evaluation of t terminates) only for Closed
CbV; at least one of the two properties fails in the open/strong case.

mailto:beniamino.accattoli@inria.fr
mailto:maico-carlos.leberle@inria.fr
mailto:giulio.guerrieri@lis-lab.fr

2 B. Accattoli, G. Guerrieri, and M. Leberle

Extensions of Plotkin’s Call-by-Value. A number of calculi extending Plotkin’s
λv have been proposed. A first line of work studies a related and yet different issue
of λv, namely the equational incompleteness with respect to continuation-passing
translations, pointed out by Plotkin himself in [40]. This issue was solved with
categorical tools by Moggi [37], which led to a number of studies, among others
[42,43,34,21,24,30], that introduced many proposals of improved calculi for CbV.

A second and more recent line of work, due to Accattoli, Guerrieri, and
coauthors, addresses the problem of open terms and strong evaluation directly
[11,17,1,5,29,6,7,2,8]. It builds on the work of Paolini and Ronchi Della Rocca
and on tools and techniques coming from the theory of Girard’s linear logic [26].

In [5], they compare four different extensions of Plotkin’s calculus in the
framework of weak evaluation with possibly open terms. Their result is that the
four calculi are all termination equivalent : t terminates in one of these extensions
if and only if terminates in the other ones. In particular, in these extensions the
issue of false normal forms is solved because all terms contextually equivalent to
Ω do diverge, in contrast to what happens in Plotkin’s calculus λv. The notion
of termination shared by the four calculi is then referred to as Open CbV in [5].

One of the aims of this paper is identifying an analogous notion of termi-
nation for strong CbV evaluation. Perhaps surprisingly, indeed, the termination
equivalent calculi of Open CbV do not agree on what such a notion should be.

Two Relevant Extensions. Two Open CbV calculi are relevant here. The first one
is a call-by-extended-values λ-calculus where the restriction on β-redexes by value
is weakened to β-redexes having as argument an extended, more general notion
of value. First used as a nameless technical tool by Paolini and Ronchi Della
Rocca [39,41], then rediscovered by Accattoli and Sacerdoti Coen [12] to study
cost models, it has some similarities with a calculus introduced by Grégoire and
Leroy [27] to study a CbV abstract machine for Coq. In [12], extended values
are called fireballs (a pun on fire-able) and the calculus is called fireball calculus.

The second extension is the value substitution calculus (shortened to VSC)
due to Accattoli and Paolini and related to linear logic proof nets [11,1]. It was
introduced to overcome some of the semantical problems of Plotkin’s setting,
and it is a flexible tool, used in particular to relate the four extensions in [5].

Beyond False Normal Forms. In later works [6,8], Accattoli and Guerrieri show
that the termination equivalence of Open CbV does not necessarily solve the
other semantical issue of Open CbV, namely the failing of denotational sound-
ness/adequacy beyond the closed case. On the one hand, they show that the
fireball calculus is adequate but not sound with respect to Ehrhard’s CbV rela-
tional model [25], a paradigmatic model arising from the theory of linear logic
and handily presented as a multi types system (a variant of intersection types).
On the other hand, they show that the open VSC is both adequate and sound
with respect to that model, suggesting that it is a better setting for Open CbV.

Strong Call-by-Value. The strong case has received less attention. In particular,
it is not even clear what is the right notion of termination. The recent literature

Strong Call-by-Value and Multi Types 3

contains two proposals of strong CbV evaluation, which have been carefully
studied from the point of views of abstract machines and reasonable cost models,
but not from a semantical point of view. The first one is the strong fireball
calculus, for which abstract machines have been recently designed in 2020 [14]
and 2021 [15] by Biernacka et al., the latter being reasonable for time (defined
as the number of β-steps). The second proposal is the strong VSC, and more
precisely the external strategy of the strong VSC, introduced in 2021 by Accattoli
et al. [2], together with a reasonable machine implementing it.

The works [15] and [2] have been developed independently and at the same
time, by two distinct groups, who cite each other. They state that both imple-
ment Strong CbV, but they fail to notice that they implement different notions of
termination, raising the question of what exactly should be considered as Strong
CbV. As we point out here, indeed, some terms are normalizing in the strong
fireball calculus but have no normal form with respect to the external strategy.

Strong Call-by-Value and Multi Types. To clarify the situation, we here explore
the semantic perspective provided by CbV multi types. For such types, typability
coincides with termination of open CbV evaluation, as shown by Accattoli and
Guerrieri [28,6,8], so they do not directly model strong evaluation. A similar mis-
match happens in call-by-name (CbN for short), where terms typable with multi
types coincide with the head (rather than strong) terminating ones. It is well
known, however, that the restriction to shrinking types (that have no negative
occurrences of the empty multiset) does model strong evaluation: in CbN, terms
typable with shrinking types coincide with the leftmost(-outermost) terminating
ones, and the leftmost strategy is a normalizing strategy of Strong CbN. Such a
use of shrinkingness is standard in the theory of intersection and multi types, see
Krivine [32], de Carvalho [19], Kesner and Ventura [31], Bucciarelli et al. [16].

Here, we adapt to CbV the shrinking technique as presented by Accattoli et
al. for CbN multi types in [4], where the shrinking terminology is also introduced.
Our main result is the characterization of external termination via shrinking
types: a term t is typable with shrinking CbV multi types if and only if the
external strategy terminates on t. Technically, the result is a smooth adaptation
of the technique in [4]. Smoothness is here a plus, as it shows that the external
strategy is the notion of Strong CbV termination naturally validated by CbV
multi types, without ad-hoc stretchings of the technique.

Untyped Normalization Theorem. In an untyped setting, not every term nor-
malizes (think of Ω) and in the strong case some terms have both reductions
that normalize and reductions that diverge, for instance (λx.y)(λz.Ω). Thus, it
is important to have a strategy that reaches a normal form whenever possible,
i.e., that is normalizing in an untyped setting. The canonical evaluation strategy
in Strong CbN is leftmost reduction and its key property is precisely that it is
normalizing. A further contribution of the paper is an untyped normalization
theorem for the external strategy in the Strong VSC, obtained as an easy corol-
lary of the study via multi types. Such a result gives to the external strategy the
same solid status of the leftmost strategy in CbN, and completes the picture.

4 B. Accattoli, G. Guerrieri, and M. Leberle

No Tight Bounds. Multi types can be used to extract tight bounds on the length
of evaluations and the size of normal forms. Here, we only study termination, not
tight bounds, even if in the technical report [9] we also developed the enriched
results with tight bounds. A first reason is that the characterization of external
termination and the untyped normalization theorem we focus on here do not need
the bounds. A second reason is that the enriched results are considerably more
technical, while here we aim at a slightly weaker but more accessible treatment.

Proofs. Omitted proofs are in [10], the long version of this paper.

2 Technical Preliminaries

Basic Rewriting Notions. For a relation R on a set of terms, R∗ is its reflexive-
transitive closure. Given a relation →r, an r-evaluation (or simply evaluation if
unambiguous) d is a finite sequence of terms (ti)0≤i≤n (for some n ≥ 0) such
that ti →r ti+1 for all 1 ≤ i < n, and we write d : t →∗

r u if t0 = t and tn = u.
The length n of d is noted |d|, and |d|a is the number of a-steps (i.e. the number
of ti →a ti+1 for some 1 ≤ i ≤ n) in d, for a given subrelation →a of →r.

A term t is r-normal if there is no u such that t→r u. An evaluation d : t→∗
r u

is r-normalizing if u is r-normal. A term t is weakly r-normalizing if there is a
r-normalizing evaluation d : t →∗

r u; and t is strongly r-normalizing if there no
infinite sequence (ti)i∈N such that t0 = t and ti →r ti+1 for all i ∈ N. Clearly,
strong r-normalization implies weak r-normalization.

The Diamond Property. Following Dal Lago and Martini [22], we say that a
relation →r is diamond if u1 r← t →r u2 and u1 ̸= u2 imply u1 →r s r← u2 for
some s. Terminology in the literature is inconsistent: Terese [44, Exercise 1.3.18]
dubs this property CR1, and defines the diamond more restrictively, without
requiring u1 ̸= u2 in the hypothesis: u1 and u2 have to join even if u1 = u2.

Dal Lago and Martini show that if →r is diamond then:
1. →r is confluent, that is, u1

∗
r← t→∗

r u2 implies u1 →∗
r s ∗

r← u2 for some s;
2. all r-evaluations with the same start and r-normal end terms have the same

length (i.e. if d : t→∗
r u and d′ : t→∗

r u with u r-normal, then |d| = |d′|);
3. t is weakly r-normalizing if and only if it is strongly r-normalizing.

Properties 2 and 3 are called length invariance and uniform normalization, re-
spectively. Basically, the diamond captures a more liberal form of determinism.

Contextual Equivalence. The standard of reference for program equivalences is
contextual equivalence, that can be defined abstractly as follows.
Definition 1 (Contextual Preorder and Equivalence). Given a language
of terms T with its associated notion of contexts C and an operational semantics
given as a rewriting relation →, we define the associated contextual preorder ≾C

and contextual equivalence ≃C as follows:
– t ≾C t

′ if C⟨t⟩ weakly→-normalizing implies C⟨t′⟩ weakly→-normalizing for
all contexts C such that C⟨t⟩ and C⟨t′⟩ are closed terms.

– ≃C is the equivalence relation induced by ≾C: t ≃C t
′ ⇐⇒ t ≾C t

′ and t′ ≾C t.

Strong Call-by-Value and Multi Types 5

Terms t, u, s, q ::= x | λx.t | tu
Values v, v′ ::= λx.t

Evaluation contexts E ::= ⟨·⟩ | tE | Et

Rule at top level Contextual closure
(λx.t)v 7→βv t{x�v} E⟨t⟩ →βv E⟨u⟩ if t 7→βv u

Fig. 1: Our presentation of Plotkin’s calculus λv.

3 Call-by-Value and Call-by-Fireball

The call-by-value λ-calculus λv was introduced by Plotkin [40] in 1975 as the re-
striction of the λ-calculus where β-redexes can be fired only when their argument
is a value, and values are defined as variables and abstractions.

Our Presentation of CbV. In Fig. 1, we present λv adopting three specific choices,
departing from Plotkin’s presentation [40] in inessential details. Firstly, Plotkin
also considers constants in the term syntax, with their own reduction rules, which
are left unspecified. For simplicity, in our presentation there are no constants.

Secondly, for Plotkin values are variables and abstractions, while here values
are only abstractions, as it is the case in the papers about Strong CbV moti-
vating our study [12,14,15]. As stressed by Accattoli and Guerrieri [8], removing
variables from values provides a better inductive description of normal forms in
the open/strong case, without affecting properties such as termination or con-
fluence. For further quantitative benefits, see Accattoli and Sacerdoti Coen [13].
In our paper, variables are not values, but all our results could be restated by
considering them as values.

Thirdly, Plotkin defines both a multi-step non-deterministic (and confluent)
evaluation relation reducing redexes everywhere in the term, and a single-step
deterministic reduction (proceeding left-to-right) that is weak, that is, it does not
reduce under abstractions. We instead adopt the somewhat halfway approach by
Dal Lago and Martini [22]: our →βv is single-step, weak but non-deterministic.
The idea is that it can evaluate the left and right sub-term of an application in
any order (that is, the left sub-term is not forced to be evaluated first as Plotkin
does), because (in the weak case) the obtained reduction relation has the dia-
mond property (definition in Section 2), a relaxed form of determinism. Thus,
the obtained notion of reduction slightly generalizes Plotkin’s single-step reduc-
tion without changing whether a term terminates or not. The non-deterministic
version is obtained via the notion of evaluation context E defined in Fig. 1.

Problem with Open Terms. It is well known that Plotkin’s framework works well
only as long as terms are closed. The problem with open terms is that there
are false normal forms such as Ωl := (λx.δ)(yy)δ (where δ := λx.xx is the
duplicator) which are βv-normal, because yy is not a value (and cannot become
one), but are semantically divergent. Such a divergence can be formalized in
various ways, perhaps the simplest of which is that Ωl is contextually equivalent

6 B. Accattoli, G. Guerrieri, and M. Leberle

Terms, Values, Evaluation ctxs, and →βv As for Plotkin’s calculus
Fireballs f, f ′, f ′′ ::= v | i

Inert terms i, i′, i′′ ::= xf1 . . . fn n ≥ 0

Rule at top level Contextual closure
(λx.t)i 7→βi t{x�i} E⟨t⟩ →βi E⟨u⟩ if t 7→βi u

Fig. 2: The fireball calculus λfire.

(definition in Section 2) to the diverging term Ω := δδ. This problem was first
pointed out by Paolini and Ronchi Della Rocca [39,38,41]. It is discussed at
length by Accattoli and Guerrieri [5], who analyze various ways of extending
Plotkin’s calculus to solve the issue, that is, as to make false normal forms such
as Ωl diverge without simply switching to CbN (which, intuitively, amounts to
diverge on (λx.y)Ω as done by CbV but not by CbN), and show their equivalence
with respect to termination, referring to them collectively as Open CbV.

The Fireball Calculus. The simplest presentation of Open CbV is probably the
fireball calculus, defined in Fig. 2. The idea is that the values of the CbV λ-
calculus are generalised to fireballs (a pun on fire-able terms), by adding inert
terms, which contain in particular variables. Actually fireballs and inert terms
are defined by mutual induction (in Fig. 2). For instance, λx.t is a fireball as a
value, while x, y(λx.x), xy and z(λx.x)(zz)(λy.t) are fireballs as inert terms.

The main feature of inert terms is that they are open, normal, and that when
plugged in a context they cannot create a redex, hence the name. Essentially,
they are the neutral terms of Open CbV.

Dynamically, β-redexes can also be fired if their argument is an inert term,
via→βi . Evaluation is weak, as evaluation contexts do not go under abstractions.
Note that Ωl given above now diverges: Ωl = (λx.δ)(yy)δ →βi δδ →βv . . .

Two relevant properties of the fireball calculus are that its reduction is non-
deterministic but diamond and that a term is a normal form if and only if it is
a fireball, a property called harmony by Accattoli and Guerrieri [5].

Issues with the Fireball Calculus. In later works [6,8], Accattoli and Guerrieri
show that, despite the termination equivalence of the various formalisms for
Open CbV, they can behave quite differently with respect to semantical notions.
In particular, they show that the fireball calculus does not behave well with
respect to Ehrhard’s multi types [25], which are a notion of type inducing a
paradigmatic denotational model of the λ-calculus, the relational model, linked
to linear logic. Technically, they show that multi types do not satisfy subject
reduction with respect to the fireball calculus. The issue can be illustrated with-
out multi types, and amounts to the fact that the fireball calculus allows one
to erase and duplicate inert terms. The erasure is particularly problematic. We
reformulate here the problem in terms of contextual equivalence, to stress that
the issue concerns the fireball calculus independently of multi types.

Strong Call-by-Value and Multi Types 7

An expected property of any calculus is what we call here contextual stability,
that is, the fact that its operational semantics → is included in its contextual
equivalence ≃C—in symbols: if t →∗ u then t ≃C u. In the fireball calculus,
contextual stability fails. Consider t := (λx.I)(yy), where I := λz.z is the identity
combinator, and note that t →βi

I because yy is an inert term. Now, consider
the closing context C := (λy.⟨·⟩)δ and note that C⟨I⟩ = (λy.I)δ →βv

I, while

C⟨t⟩ = (λy.((λx.I)(yy)))δ →βv (λx.I)(δδ)→βv (λx.I)(δδ)→βv . . .

That is, t→βi
I but t ̸≃C I because C⟨t⟩ diverges while C⟨I⟩ terminates.

To overcome false normal forms such as Ωl, one has to work around redexes
having inert terms has arguments. But substituting inert terms (thus sometimes
erasing them) as done by the fireball calculus is a brute force solution. At the open
level, it does not alter termination but it deteriorates semantics properties of the
calculus such as contextual stability or the relationship with multi types. The
alternative presentation of Open CbV given by the value substitution calculus
[11], discussed in the next section, does not suffer of these shortcomings.

Issues with the Strong Fireball Calculus. The strong evaluation strategy by Bier-
nacka et al. [14,15] is a deterministic version of the fireball calculus (namely
proceeding right-to-left) extended to evaluate under abstractions. We omit the
actual definition of its extension under abstractions because it is non-trivial and
the issue we want to point out can be explained without detailing them.

At the open level, the issue with the fireball calculus is about the semantics,
but not about termination. The semantical issue of the open level, however, in-
duces a termination issue at the strong level. Indeed, the strong fireball calculus
suffers of a phenomenon similar to the one of false normal forms, even if no re-
dexes are stuck. Consider the term u := (λx.I)(y(λz.Ω)). In the fireball calculus,
one has u →βi

I because y(λz.Ω) is an inert term. That is, u terminates on a
strong normal form, namely I. Instead, u is semantically divergent at the strong
level, as it was the case for Ωl in Plotkin’s calculus. Intuitively, the inert sub-
term y(λz.Ω) should be somehow kept, instead of being erased, and evaluated
strongly, which would lead to divergence because of the Ω under abstraction.

The non-trivial point is how to bring evidence that this is what should happen
in a good definition of strong CbV evaluation. One way to see that something is
wrong with the strong fireball calculus is to observe that the step u→βi

I provides
another breaking of contextual stability. This is detailed in the Appendix of [10],
because although interesting it does not involve strong evaluation.

Better evidence is developed along the paper. We adopt the value substitution
calculus (VSC) and the external strategy by Accattoli et al. [2] for which t is
divergent. Then, we show that, when refining Ehrhard’s CbV multi types [25] by
adding the machinery for characterizing termination of strong evaluation, one
obtains that t above is not typable. That is, t is also semantically diverging.

8 B. Accattoli, G. Guerrieri, and M. Leberle

4 Value Substitution Calculus

Here we present the value substitution calculus (VSC for short) introduced by
Accattoli and Paolini [11], and recall some properties. The operational semantics
shall be different from the fireball calculus of the previous section, but we shall
nonetheless exploit the concept of fireball to describe its normal forms.

Terms. The VSC is a CbV λ-calculus extended with let-expressions, similarly to
Moggi’s CbV calculus [36,37]. We do however write a let-expression let x = u in t
as a more compact explicit substitution t[x�u] (ES for short), which binds x in
t. Moreover, our let/ES does not fix an order of evaluation between t and u, in
contrast to many papers in the literature (e.g. Sabry and Wadler [43] or Levy et
al. [33]) where u is evaluated first. The grammars follow:

Values v ::= λx.t Terms t, u, s ::= x | v | tu | t[x�u]

The set of free variables of term t is denoted by fv(t) and terms are identified
up to α-renaming of bound variables. We use t{x�u} for the capture-avoiding
substitution of u for each free occurrence of the variable x in t.

Contexts. All along the paper, we use (many notions of) contexts, i.e. terms with
exactly one hole, noted ⟨·⟩. For now, we need general contexts and the notion of
substitution contexts L, which are simply lists of ES. The grammars are:

(General) Contexts C ::= ⟨·⟩ | Ct | tC | λx.C | C[x�t] | t[x�C]
Substitution Contexts L ::= ⟨·⟩ | L[x�t]

Plugging a term t in a context C is noted C⟨t⟩, possibly capturing variables,
for instance (λx.λy.⟨·⟩)⟨xy⟩ = λx.λy.xy (while (λx.λy.z){z�xy} = λx′.λy′.xy).
An answer is a term of shape L⟨v⟩.

Reduction Rules. The reduction rules of VSC are slightly unusual as they use
contexts both to allow one to reduce redexes located in sub-terms, which is
standard, and to define the redexes themselves, which is less standard—this
kind of rule is called at a distance. The rewriting rules in fact mimic exactly cut-
elimination on proof nets, via Girard’s CbV translation (A⇒ B)v = !(Av ⊸ Bv)
[26] of intuitionistic logic into linear logic, see Accattoli [1].

There are two rewrite rules. Their root cases (that is, before context closure)
follow (the terminology is inherited from linear logic):

Multiplicative root rule L⟨λx.t⟩u 7→m L⟨t[x�u]⟩
Exponential root rule t[x�L⟨v⟩] 7→e L⟨t{x�v}⟩

Both root rules are at a distance in that they involve a substitution context L,
and L does not capture the free variables of u in 7→m (resp. of t in 7→e). We shall
consider two variants of the VSC, the open and the strong version. They differ
only in the choice of evaluation contexts for the root rewrite rules.

Strong Call-by-Value and Multi Types 9

The Open VSC. We first focus on the open fragment of the VSC, where rewriting
is forbidden under abstraction and terms are possibly open (but not necessarily).
This fragment has a nice inductive description of its normal forms, called fireballs
and inert terms as they are the lifting to the VSC of the respective notions from
the fireball calculus. Open contexts and rules are defined as follows.

Open contexts O ::= ⟨·⟩ | Ot | tO | O[x�t] | t[x�O]

Open rewrite rules: t 7→a t′

O⟨t⟩ →oa O⟨t′⟩(a ∈ {m, e})
Open reduction :
→o :=→om ∪ →oe

Proposition 1 (Properties of open reduction [8]).

1. Open reduction →o is diamond.
2. A term is o-normal if and only if it is a fireball, where fireballs (and inert

terms) are defined by:

Inert terms i, i′ ::= x | if | i[x�i′] Fireballs f ::= v | i | f [x�i]

Plotkin vs VSC. The open fragment of the VSC is enough to discuss the relation-
ship with Plotkin’s CbV λ-calculus as defined in the previous section. Plotkin’s
calculus can be easily simulated in the VSC. Indeed, if (λx.t)v 7→βv

t{x�v} then
(λx.t)v 7→m t[x�v] 7→e t{x�v}.

There is no sensible way, instead, to simulate VSC into Plotkin’s calculus.
Indeed, VSC is a proper extension of Plotkin’s: false normal forms of Plotkin’s
calculus such as Ωl = (λx.δ)(yy)δ and Ωr := δ((λx.δ)(yy)) are divergent in VSC:

Ωl →om δ[x�yy]δ →om (xx)[x�δ][x�yy]→oe (δδ)[x�yy]→om . . .

Ωr →om δδ[x�yy]→om (xx)[x�δ[x�yy]]→oe (δδ)[x�yy]→om . . .

Note that divergence of Ωl crucially uses distance on →m (in the second step),
while divergence of Ωr crucially uses distance on →e (in the third step).

VSC and Contextual Equivalence. Pleasantly, Plotkin’s calculus and the VSC
induce the same notion of contextual equivalence on λ-terms without ES, since
contextual equivalence is defined with respect to contexts that close terms, see
Accattoli and Guerrieri [8]. Moreover, the Open VSC is contextually stable.

Proposition 2 (Contextual stability [3]). The Open VSC is contextually
stable, that is, if t→∗

o u then t ≃C u.

The Strong VSC. The Strong VSC is obtained by allowing rewriting rules ev-
erywhere, including under abstractions, via a closure by general contexts.

Strong rewrite rules: t 7→a t′

C⟨t⟩ →a C⟨t′⟩(a ∈ {m, e})
Strong reduction:
→vsc := →m ∪ →e

Unlike the previous cases, →vsc is not diamond: consider all the vsc-evaluations
of (xx)[x�λy.II], with I := λz.z.

10 B. Accattoli, G. Guerrieri, and M. Leberle

Proposition 3 (Properties of strong reduction [11,8]).

1. The reduction →vsc is confluent.
2. A term is vsc-normal if and only if it is a strong fireball, where strong fireballs

(and strong inert terms, strong values) are:

Strong inert terms is ::= x | isfs | is[x�i′s] Strong values vs ::= λx.fs
Strong fireballs fs ::= is | vs | fs[x�is]

The notions of strong inert terms and strong fireballs are a generalization of inert
terms and fireballs, respectively, by simply iterating the construction under all
abstractions. Note that they are similar to normal forms of the (CbN) λ-calculus,
but they can have ESs containing strong inert terms.

5 The External Strategy

In this section, we define Accattoli et al.’s (strong) external strategy [2], that
shall be studied via multi types in Sect. 8. Its role is analogous to the leftmost-
outermost strategy of the λ-calculus. A notable difference, however, is that the
external strategy is itself non-deterministic, but in a harmless way, because it is
diamond. The idea is the same used for Plotkin’s calculus, that is, allowing one
to reduce sub-terms of applications (and ES) in any order. In a strong setting,
however, it is a bit trickier to enforce it.

We need a few notions. Firstly, rigid terms, i.e. the variation over inert terms
where the arguments of the head variable can be whatever term:

Rigid terms r, r′ ::= x | rt | r[x�r′]

Every (strong) inert term is a rigid term, but the converse does not hold—
consider y(δI), which is rigid but not inert.

Secondly, we need evaluation contexts for the external strategy →x, which is
defined on top of open evaluation. The base case is given by the open rewriting
rules (themselves defined via a closure by open contexts, see Section 4), which
are then closed by external contexts, defined mutually with rigid contexts:

External contexts X ::= ⟨·⟩ | λx.X | t[x�R] | X[x�r] | R
Rigid contexts R ::= rX | Rt | R[x�r] | r[x�R]

External rewrite rules: t→oa t′

X⟨t⟩ →xa X⟨t′⟩(a ∈ {m, e})
External reduction:
→x :=→xm ∪ →xe

Clearly,→x ⊊→vsc. The strategy diverges on y(λz.Ω) (as yλz.⟨·⟩ is a rigid—thus
external—context) and normalizes the potentially diverging term (λx.y)(λz.Ω)
→∗

x y, because values can be erased even if they diverge under abstraction.
Key example: the external strategy diverges on the term t = (λx.I)(y(λz.Ω))

of Sect. 3 on which the strong fireball calculus terminates, showing that the two
strong settings have different notions of termination. Indeed, t→xm I[x�y(λz.Ω)]

Strong Call-by-Value and Multi Types 11

and then the external strategy diverges because y(λz.Ω) cannot be erased and
Ω occurs in the external evaluation context I[x�y(λz.⟨·⟩)].

The grammars of external and rigid contexts allow evaluation to enter only
inside non-applied abstractions, e.g. (λx.(II))v ̸→x (λx.(y[y�I]))v. This is a
sort of outside-in order which is neither left-to-right nor right-to-left—we have
both (II)(II) →xm (y[y�I])(II) and (II)(II) →xm (II)(y[y�I])—since open con-
texts do not impose an order on applications. As just showed, the strategy
is non-deterministic: another example is given by t = x(λy.(II))[x�x(II)] →xm

x(λy.z[z�I])[x�x(II)], and t→xm x(λy.(II))[x�x(z[z�I])]. Such a behavior how-
ever is only a relaxed form of determinism, as it satisfies the diamond property.

Proposition 4 (Properties of external reduction →x [2]).
1. External reduction →x is diamond.
2. Fullness: let t be a VSC term, t is x-normal if and only if t is vsc-normal.

6 Multi Types by Value

We present here the system of CbV multi types that we shall use to characterize
the termination of the external strategy in Sect. 8. The system was introduced by
Ehrhard [25] for Plotkin’s CbV λ-calculus, as the CbV version of de Carvalho’s
multi types system for CbN [18,19]. Both systems can be seen as presentations of
the relational semantics of linear logic restricted to the CbV/CbN interpretation
of the λ-calculus. The CbV multi type system is also used in [23,17,28,6,8,3].

Multi Types. There are two layers of types, linear and multi types:
Linear types A,B ::= G | M ⊸ N
Multi types M,N ::= [A1, . . . ,An] n ∈ N

where G is an unspecified ground type and [A1, . . . ,An] is our notation for finite
multisets. The empty multi type [] obtained by taking n = 0 is also denoted by
0. When CbV multi types are used to study weak evaluation, they are usually
presented without the ground type G, as one can use 0 as base case for types.
For studying strong evaluation, however, G is mandatory, as we shall see.

A multi type [A1, . . . ,An] has to be intended as a conjunction A1∧· · ·∧An of
linear types A1, . . . ,An, for a commutative, associative, non-idempotent conjunc-
tion ∧ (morally a tensor ⊗), of neutral element 0. Note however that [A] ̸= A.

The intuition is that a linear type corresponds to a single use of a term t,
and that t is typed with a multiset M of n linear types if it is going to be used
(at most) n times. The meaning of using a term (once) is not easy to define
precisely. Roughly, it means that if t is part of a larger term u, then a copy of
t shall end up in evaluation position during the evaluation of u. More precisely,
the copy shall end up in evaluation position where it is applied to some terms.

The derivation rules for the multi types system are in Figure 3 (explanation
follows). The rules are the same as in Ehrhard [25], up to their extension to ESs.

Judgments have shape Γ ⊢ t :M or Γ ⊢ t :A where t is a term, M is a multi
type, A is a linear type, and Γ is a type context, that is, a total function from
variables to multi types such that dom(Γ) := {x | Γ (x) ̸= 0} is finite.

12 B. Accattoli, G. Guerrieri, and M. Leberle

ax
x : [A] ⊢ x :A

Γ ⊢ t : [M⊸N] ∆ ⊢ u :M
@

Γ ⊎∆ ⊢ tu :N

Γ, x :M ⊢ t :N
λ

Γ ⊢ λx.t :M ⊸ N

Γ, x :M ⊢ t :N ∆ ⊢ u :M
es

Γ ⊎∆ ⊢ t[x�u] :N

[Γi ⊢ vt :Ai]i∈I
many⊎

i∈I Γi ⊢ vt : [Ai]i∈I

Fig. 3: Call-by-value multi type system. In rule many, vt is a theoretical value,
i.e. a variable or an abstraction, and I is a finite set.

Technicalities about Types. The type context Γ is empty if dom(Γ) = ∅. Multi-
set sum ⊎ is extended to type contexts point-wise, i.e. (Γ ⊎∆)(x) := Γ (x)⊎∆(x)
for each variable x. This notion is extended to a finite family of type contexts as
expected, in particular

⊎
i∈JΓi is the empty type context if J = ∅. A type context

Γ is denoted by x1 :M1, . . . , xn :Mn (for some n ∈ N) if dom(Γ) ⊆ {x1, . . . , xn}
and Γ (xi) = Mi for all 1 ≤ i ≤ n. Given two type contexts Γ and ∆ such that
dom(Γ) ∩ dom(∆) = ∅, the type context Γ,∆ is defined by (Γ,∆)(x) := Γ (x) if
x ∈ dom(Γ), (Γ,∆)(x) := ∆(x) if x ∈ dom(∆), and (Γ,∆)(x) := 0 otherwise.
Note that Γ, x :0 = Γ , where we implicitly assume x /∈ dom(Γ).

We write Φ ▷ Γ ⊢ t :M if Φ is a (type) derivation (i.e. a tree constructed
using the rules in Figure 3) with conclusion the multi judgment Γ ⊢ t :M. In
particular, we write Φ ▷⊢ t :M when Γ is empty. We write Φ ▷ t if Φ ▷ Γ ⊢ t :M
for some type context Γ and some multi type M.

We need a notion of size of type derivations, which shall be used as the
termination measure for typable terms.

Definition 2 (Derivation size). Let Φ be a type derivation. The size |Φ| of Φ
is the number of rule occurrences in Φ except for rule many.

Multisets and Rule many. Rule many plays a crucial role, as it is the only rule
introducing multisets on the right-hand side of judgments: it takes as premises a
finite multiset of derivations of linear types for a term vt, and glues them together
giving a judgment with the finite multiset of linear types to vt. The term vt is
a theoretical value vt, that is, a variable or an abstraction—the terminology
is taken from Accattoli and Sacerdoti Coen [13]. Rule many is the multi types
analogous of the promotion rule of linear logic, which, in the CbV representation
of the λ-calculus, is indeed used for typing abstractions and variables. Note that
in particular all abstractions are typable with 0 via a many rule with no premises.

Subject Reduction and Expansion. The first properties of the type system that
we show are subject reduction and expansion, which hold for every VSC step,
not only external ones. They rely on a substitution lemma (and its inverse for
subject expansion) in the Appendix of [10].

Proposition 5 (Qualitative subjects). Let t→vsc t
′.

1. Reduction: if Φ ▷ Γ ⊢ t :M then there is Φ′ ▷ Γ ⊢ t′ :M such that |Φ| ≥ |Φ′|.

Strong Call-by-Value and Multi Types 13

2. Expansion: if Φ′ ▷ Γ ⊢ t′ :M then there is a derivation Φ ▷ Γ ⊢ t :M.

Note that subject reduction (Prop. 5.1) says also that the derivation size
cannot increase after a reduction step. It does not say that it decreases at every
step because, for instance, if λx.t →vsc λx.t′ and λx.t is typed using a empty
many rule (i.e. with 0 premises), which is a derivation of size 0, then also λx.t′ is
typed using a empty many rule, of size 0. Hence, not all typable terms terminate
for strong/external evaluation, as for instance λx.Ω is typable (with 0).

There are two ways to strengthen subject reduction without changing the
type system and recover termination: restricting either the reductions to not
take place under abstraction, which is what we shall do in the next section for
the open case, or the kind of types taken into account (roughly, as to limit the
use of 0), which is what shall guarantee termination for the external strategy.

7 Multi Types for Open CbV

Here we recall the qualitative part of the relationship between CbV multi types
and Open CbV studied by Accattoli and Guerrieri in [8], where they develop also
a quantitative study not used here. The reason to recall their result is twofold.
Firstly, the external case relies on the open one. Secondly, the open case provides
the blueprint for the strong case, allowing us to stress similarities and differences.

The result is that the open evaluation →o of t terminates if and only if t is
typable. Since →o does not reduce under abstractions, every abstraction is o-
normal and indeed typable, for instance with 0. As an example, note that λx.Ω
is typable with 0 (rule many with 0 premises), though Ω is not.

Correctness. Open correctness establishes that all typable terms are o-normalizing
and it is proved by showing that the size of type derivation decreases with every
o-step. Open correctness is proved following a standard scheme, namely prov-
ing a quantitative version of open subject reduction, stating that every →o step
preserves types and decreases the general size of a derivation.

Proposition 6 (Open quantitative subject reduction). Let Φ ▷ Γ ⊢ t :M
be a derivation. If t→o t

′ then there is Φ′ ▷ Γ ⊢ t′ :M with |Φ| > |Φ′|.

The size of derivations decreases after any→o step, thus proving→o-termination
for typable terms. Clearly, the size provides a bound to the number of steps.

Theorem 1 (Open correctness). Let Φ ▷ t be a derivation. Then there is a
o-normalizing evaluation d : t→∗

o f with |d| ≤ |Φ|.

Completeness. Open completeness establishes that every o-normalizing term is
typable. Again, the proof technique is standard: a lemma states that every o-
normal form is typable, and subject expansion (Prop. 5.2) allows us to pull back
typability along →o steps. The lemma about open normal forms says that they
are all typable with 0 and relies on a stronger statement about inert terms:
they can be assigned whatever multi type M, by tuning the type context Γ
accordingly.

14 B. Accattoli, G. Guerrieri, and M. Leberle

Right multi type Mr ::= [Ar
1, . . . ,A

r
n] n ≥ 1 Right linear type Ar ::= G | Ml ⊸ Mr

Left multi type Ml ::= [Al
1, . . . ,A

l
n] n ≥ 0 Left linear type Al ::= G | Mr ⊸ Ml

Fig. 4: Right and left (shrinking) types.

Lemma 1 (Typability of open normal forms).

1. Inert: for every inert term i and multi type M, there exists a type context Γ
and a derivation Φ ▷ Γ ⊢ i :M.

2. Fireball: for every fireball f there exists a type context Γ and a derivation
Φ ▷ Γ ⊢ f :0.

Theorem 2 (Open completeness). Let d : t→∗
o f be an o-normalizing eval-

uation. Then there is a derivation Φ ▷ Γ ⊢ t :0.

8 Shrinking Multi Types for the External Strategy

In this section, we restrict the set of judgments as to characterize the typable
terms that terminate with respect to the external strategy. The restriction is
obtained by adapting to CbV the shrinking technique for CbN multi types in
Accattoli et al. [4]. At the end of the section, we also obtain the untyped nor-
malization theorem for the external strategy.

The definition of shrinking judgments is standard and not due to [4], see for
instance Krivine’s book [32], but the proof technique that we shall use is due to
[4] and it is different from others in the literature [32,19,31,16]. Its key ingredient
is the isolation of a key property of rigid terms (Lemma 2 below).

The Need for Shrinking. As already pointed out at the end of Sect. 6, some terms
that diverge with strong evaluation are typable. We have that Ω itself is not
typable, but λy.Ω is typable with 0 (via a many rule with 0 premises). It might
seem that the problem is being typable with 0, but also x(λy.Ω) is externally
divergent and can be typed by assigning [0 ⊸ M] to x (any M works). In this
case the problem is that, since 0 is on the left of ⊸, the argument is meant to be
erased, but x cannot actually erase it. This is a problem typical of strong settings,
as it occurs also in Strong CbN. The solution is to restrict to type derivations
satisfying a predicate that forbids types where 0 plays these dangerous tricks; in
particular a ground type G ̸= 0 is needed. This is unavoidable and standard, see
[32,4]. Following [4], the predicate is here called shrinkingness because it ensures
that the size of type derivations shrinks at each →x step (see Prop. 7 below).

Defining Shrinking. The definition of shrinking forbids the empty multiset 0
on the left of some type arrows ⊸. We actually need two notions of shrinking
types, left and right. Intuitively, it is because the typing rule λ shifts a type
from the left-hand side of a judgment to the left of ⊸ on the right-hand side of
a judgment. Formally, left and right shrinking (multi or linear) types are defined

Strong Call-by-Value and Multi Types 15

in Figure 4 (we omit shrinking when referring to left or right types, for brevity),
by mutual induction. The key point is that right multi types cannot be empty
(note n ≥ 1), thus 0 is forbidden on the left of top ⊸ for left linear types.

The notions extend to type contexts and to derivations as follows:

– A type context x1 :M1, . . . , xn :Mn is left if each Mi is left;
– A derivation Φ ▷ Γ ⊢ t :M is shrinking if Γ is left and M is right.

Examples: [G] is both left and right (this fact shall play a role below), while 0 is
left but not right, and [0 ⊸ [G]] is right but not left.

Key Property of Left Shrinking. Shrinkingness is a predicate of derivations de-
pending only on their final judgment. For proving properties of shrinking deriva-
tions, we have to analyze how shrinking propagates to sub-derivations, to apply
the i.h. in proofs. The following lemma is specific to left shrinkingness, on which
the propagation of shrinkingness then builds. It says that for specific terms—
typable rigid terms—left shrinkingess spreads from the type context to the right-
hand multi type in a judgment. It is the key property of the proof technique.

Lemma 2 (Spreading of left shrinkingness on judgments). Let Φ ▷ Γ ⊢
r :M be a derivation and r be a rigid term. If Γ is left then M is left.

Correctness. Shrinking correctness establishes that all typable terms with a
shrinking derivation are externally normalizing. We follow the same pattern as
for the open case, but the proof of subject reduction is trickier—this is the deli-
cate point of the proof technique by Accattoli et al. [4]. It crucially uses the key
property of left shrinking for rigid terms above (Lemma 2), and it also requires
an auxiliary statement with a weaker hypothesis for the induction to go through.

Proposition 7 (Shrinking quantitative subject reduction for →x).

1. Auxiliary statement: Let Γ be a left context. Suppose that Φ ▷ Γ ⊢ t :M and
that if t is a answer then M is right. If t →x t′ then there is a derivation
Φ′ ▷ Γ ⊢ t′ :M with |Φ| > |Φ′|.

2. Actual statement: Let Φ ▷ Γ ⊢ t :M be a shrinking derivation. If t →x t′

then there is a derivation Φ′ ▷ Γ ⊢ t′ :M with |Φ| > |Φ′|.

Proof. Note that the auxiliary statement is stronger, because every shrinking
derivation (defined as having Γ left and M right) satisfies it: if t is not an answer
then M can be whatever, in particular it can be right. For the auxiliary statement,
we give two cases, the one motivating the use of the auxiliary statement and one
showing the use of the key property for rigid terms. The other cases are in the
Appendix of [10]. The proof is by induction on the external context X such that
t = X⟨u⟩ →x X⟨u′⟩ = t′ with u→o u

′. The two cases:

– Rigid context applied to term, i.e. X = Rs. Then, t = X⟨u⟩ = R⟨u⟩s →x

R⟨u′⟩s = X⟨u′⟩ = t′ with u→o u
′. The derivation Φ has the following shape:

16 B. Accattoli, G. Guerrieri, and M. Leberle

Φ =
Ψ ▷ ∆ ⊢ R⟨u⟩ : [N ⊸ M] Θ ▷ Σ ⊢ s :N

@
∆ ⊎Σ ⊢ R⟨u⟩s :M

where Γ = ∆ ⊎ Σ is left by hypothesis, and then so is ∆. By i.h. (as R⟨u⟩
is not an answer), there is a derivation Ψ ′ ▷ ∆ ⊢ R⟨u′⟩ : [N ⊸ M] with
|Ψ ′| < |Ψ |. We can then build the following derivation:

Φ′ =
Ψ ′ ▷ ∆ ⊢ R⟨u′⟩ : [N ⊸ M] Θ ▷ Σ ⊢ s :N

@
∆ ⊎Σ ⊢ R⟨u′⟩s :M

where Γ = ∆ ⊎Σ and |Φ′| = |Ψ ′|+ |Θ|+ 1 < |Ψ |+ |Θ|+ 1 = |Φ|. Note that
in this case we have no hypothesis on N, thus on [N ⊸ M], which is why we
need a weaker statement in order to use the i.h.

– Rigid term applied to external context, i.e. X = rX ′. Then, t = X⟨u⟩ =
rX ′⟨u⟩ →x rX

′⟨u′⟩ = X⟨u′⟩ = t′ with u→o u
′. The derivation Φ is:

Φ =
Ψ ▷ ∆ ⊢ r : [N ⊸ M] Θ ▷ Σ ⊢ X ′⟨u⟩ :N

@
∆ ⊎Σ ⊢ rX ′⟨u⟩ :M

where Γ = ∆⊎Σ is left by hypothesis, and then so are ∆ and Σ. According to
spreading of left shrinkingness applied to Ψ (Lemma 2, which can be applied
because r is a rigid term), [N ⊸ M] is a left multi type and hence N is a right
multi type. Thus, the i.h. applied to Θ gives a derivation Θ′ ▷ Σ ⊢ X ′⟨u′⟩ :N
with |Θ′| < |Θ|. We then build the following derivation:

Φ′ =
Ψ ▷ ∆ ⊢ r : [N ⊸ M] Θ′ ▷ Σ ⊢ X ′⟨u′⟩ :N

@
∆ ⊎Σ ⊢ rX ′⟨u′⟩ :M

where Γ = ∆ ⊎Σ and |Φ′| = |Ψ |+ |Θ′|+ 1 < |Ψ |+ |Θ|+ 1 = |Φ|. ⊓⊔
Theorem 3 (Shrinking correctness for →x). Let Φ ▷ t be a shrinking
derivation. Then there is a x-normalizing evaluation d : t→∗

x fs with |d| ≤ |Φ|.
Shrinking correctness for →x shows that the term t = (λx.I)(y(λz.Ω)) diverging
for →x but normalizing for the strong fireball calculus is not typable, otherwise
it would →x-terminate. That is, it shows that t is semantically diverging.

Completeness. Shrinking completeness is proven as in the open case, using a
lemma about the shrinking typability of strong fireballs. Note that the lemma
now has an existential quantification on the type M of strong fireballs, while
in the open case the type was simply 0; here 0 would not work, because it is
not right. Note also the part about inert terms, stating that M is left : it is not
a mistake, it can be seen as an instance of the key properties of rigid terms
(Lemma 2, inert terms are rigid), and it gives shrinking derivations when M is
instantiated with, say, [G], which is both left an right.

Lemma 3 (Shrinking typability of normal forms).
1. Inert: for every strong inert term is and left multi type M, there exists a left

type context Γ and a derivation Φ ▷ Γ ⊢ is :M.
2. Fireball: for every strong fireball fs there is a shrinking derivation Φ ▷ fs.

Theorem 4 (Shrinking completeness for →x). Let d : t →∗
x fs be a x-

normalizing evaluation. Then there is a shrinking derivation Φ ▷ t.

Strong Call-by-Value and Multi Types 17

Untyped Normalization Theorem. By exploiting an elegant proof technique used
by de Carvalho et al. [20] and Mazza et al. [35], we obtain an untyped normal-
ization theorem for the external strategy of the VSC, as a corollary of our study
of multi types. The key points are subject expansion (Prop. 5.2) for the whole
reduction →vsc, instead that just for the external strategy, and the fact that
shrinkingness is a predicate of derivations depending only on their conclusion.

Theorem 5 (Untyped normalization for →x). If there is a vsc-normalizing
evaluation d : t→∗

vsc fs, then t→∗
x fs.

Proof. Shrinking typability of normal forms (Lemma 3) gives a shrinking deriva-
tion Φ ▷ Γ ⊢ fs :M. Subject expansion (Prop. 5.2) iterated along t→∗

vsc fs gives
a shrinking derivation Ψ ▷ Γ ⊢ t :M. By shrinking correctness (Thm. 3), t→∗

x f ′
s

for a strong fireball f ′
s . By confluence of the VSC (Prop. 3.1), fs = f ′

s . ⊓⊔

Relational Semantics. Multi types induce a denotational model, the relational se-
mantics, interpreting a term as the set of its derivable judgments [18,19,25,28,6,8].
Here we focus on the semantics induced by shrinking derivations. Let t be a
term and let x⃗ = (x1, . . . , xn) be a list of pairwise distinct variables with n ≥ 0
and fv(t) ⊆ {x1, . . . , xn}: the shrinking semantics JtKx⃗ of t for x⃗ is defined by
JtKx⃗ := {((N1, . . . ,Nn),M) | ∃ shrinking Φ ▷ x1 :N1, . . . , xn :Nn ⊢ t :M}.

Subject reduction and expansion (Prop. 5) guarantee that JtKx⃗ is sound for
→vsc: if t→vsc u then JtKx⃗ = JuKx⃗. Shrinking correctness (Thm. 3) and complete-
ness (Thm. 4), along with untyped normalization (Thm. 5), guarantee adequacy
for this semantics, i.e., they give a semantic characterization of normalization in
Strong VSC: t is weakly vsc-normalizing if and only if JtKx⃗ ̸= ∅.

9 Conclusions

This paper studies call-by-value strong evaluation defined as the external strat-
egy →x of the value substitution calculus (VSC). Such a strategy is analyzed
using the semantical tool of Ehrhard’s multi types, declined in their shrinking
variant as it is standard for studying strong evaluation. The main contributions
are that →x-normalizing terms are exactly those typable with shrinking call-by-
value multi types, plus an untyped normalization theorem for →x in the strong
VSC. These results mimic faithfully similar results for strong call-by-name.

These contributions are developed to validate the external strategy as the
good notion of termination for strong call-by-value, in contrast to the other non-
equivalent proposal in the literature given by the strong fireball calculus, which
we show to terminate on some terms on which the external strategy diverges.

We conjecture that all x-normalizing terms are also normalizing in the strong
fireball calculus, but a proof is likely to be very technical.

References

1. Accattoli, B.: Proof nets and the call-by-value λ-calculus. Theor. Comput. Sci.
606, 2–24 (2015). https://doi.org/10.1016/j.tcs.2015.08.006

https://doi.org/10.1016/j.tcs.2015.08.006
https://doi.org/10.1016/j.tcs.2015.08.006

18 B. Accattoli, G. Guerrieri, and M. Leberle

2. Accattoli, B., Condoluci, A., Sacerdoti Coen, C.: Strong Call-by-Value is Rea-
sonable, Implosively. In: LICS 2021. IEEE (2021). https://doi.org/10.1109/
LICS52264.2021.9470630

3. Accattoli, B., Faggian, C., Lancelot, A.: Normal form bisimulations by value. CoRR
abs/2303.08161 (2023). https://doi.org/10.48550/arXiv.2303.08161

4. Accattoli, B., Graham-Lengrand, S., Kesner, D.: Tight typings and split bounds.
PACMPL 2(ICFP), 94:1–94:30 (2018). https://doi.org/10.1145/3236789, https://
doi.org/10.1145/3236789

5. Accattoli, B., Guerrieri, G.: Open Call-by-Value. In: APLAS 2016. Springer (2016).
https://doi.org/10.1007/978-3-319-47958-3_12

6. Accattoli, B., Guerrieri, G.: Types of fireballs. In: APLAS 2018. Springer (2018).
https://doi.org/10.1007/978-3-030-02768-1_3

7. Accattoli, B., Guerrieri, G.: Abstract machines for open call-by-value. Sci. Comput.
Program. 184 (2019). https://doi.org/10.1016/j.scico.2019.03.002

8. Accattoli, B., Guerrieri, G.: The theory of call-by-value solvability. Proc. ACM
Program. Lang. 6(ICFP), 855–885 (2022). https://doi.org/10.1145/3547652, https:
//doi.org/10.1145/3547652

9. Accattoli, B., Guerrieri, G., Leberle, M.: Semantic bounds and strong call-by-value
normalization. CoRR abs/2104.13979 (2021), https://arxiv.org/abs/2104.13979

10. Accattoli, B., Guerrieri, G., Leberle, M.: Strong call-by-value and multi types (long
version). CoRR abs/2309.12261 (2023), https://arxiv.org/abs/2309.12261

11. Accattoli, B., Paolini, L.: Call-by-value solvability, revisited. In: FLOPS 2012.
Springer (2012). https://doi.org/10.1007/978-3-642-29822-6_4

12. Accattoli, B., Sacerdoti Coen, C.: On the relative usefulness of fireballs. In: LICS
2015. IEEE (2015). https://doi.org/10.1109/LICS.2015.23

13. Accattoli, B., Sacerdoti Coen, C.: On the value of variables. Information and
Computation 255, 224–242 (2017). https://doi.org/10.1016/j.ic.2017.01.003, https:
//doi.org/10.1016/j.ic.2017.01.003

14. Biernacka, M., Biernacki, D., Charatonik, W., Drab, T.: An abstract ma-
chine for strong call by value. In: APLAS 2020 (2020). https://doi.org/10.1007/
978-3-030-64437-6_8

15. Biernacka, M., Charatonik, W., Drab, T.: A derived reasonable abstract machine
for strong call by value. In: PPDP 2021. ACM (2021). https://doi.org/10.1145/
3479394.3479401

16. Bucciarelli, A., Kesner, D., Ventura, D.: Non-idempotent intersection types for the
lambda-calculus. Log. J. IGPL (2017). https://doi.org/10.1093/jigpal/jzx018

17. Carraro, A., Guerrieri, G.: A semantical and operational account of call-by-
value solvability. In: FOSSACS 2014. Springer (2014). https://doi.org/10.1007/
978-3-642-54830-7_7

18. de Carvalho, D.: Sémantiques de la logique linéaire et temps de calcul. Thèse de
doctorat, Université Aix-Marseille II (2007)

19. de Carvalho, D.: Execution time of λ-terms via denotational semantics and in-
tersection types. Math. Str. in Comput. Sci. 28(7), 1169–1203 (2018). https:
//doi.org/10.1017/S0960129516000396

20. de Carvalho, D., Pagani, M., Tortora de Falco, L.: A semantic measure of the
execution time in linear logic. Theor. Comput. Sci. 412(20), 1884–1902 (2011).
https://doi.org/10.1016/j.tcs.2010.12.017

21. Curien, P., Herbelin, H.: The duality of computation. In: ICFP 2000 (2000). https:
//doi.org/10.1145/351240.351262

22. Dal Lago, U., Martini, S.: The weak lambda calculus as a reasonable machine.
Theor. Comput. Sci. 398 (2008). https://doi.org/10.1016/j.tcs.2008.01.044

https://doi.org/10.1109/LICS52264.2021.9470630
https://doi.org/10.1109/LICS52264.2021.9470630
https://doi.org/10.1109/LICS52264.2021.9470630
https://doi.org/10.1109/LICS52264.2021.9470630
https://doi.org/10.48550/arXiv.2303.08161
https://doi.org/10.48550/arXiv.2303.08161
https://doi.org/10.1145/3236789
https://doi.org/10.1145/3236789
https://doi.org/10.1145/3236789
https://doi.org/10.1145/3236789
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1016/j.scico.2019.03.002
https://doi.org/10.1016/j.scico.2019.03.002
https://doi.org/10.1145/3547652
https://doi.org/10.1145/3547652
https://doi.org/10.1145/3547652
https://doi.org/10.1145/3547652
https://arxiv.org/abs/2104.13979
https://arxiv.org/abs/2309.12261
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1109/LICS.2015.23
https://doi.org/10.1109/LICS.2015.23
https://doi.org/10.1016/j.ic.2017.01.003
https://doi.org/10.1016/j.ic.2017.01.003
https://doi.org/10.1016/j.ic.2017.01.003
https://doi.org/10.1016/j.ic.2017.01.003
https://doi.org/10.1007/978-3-030-64437-6_8
https://doi.org/10.1007/978-3-030-64437-6_8
https://doi.org/10.1007/978-3-030-64437-6_8
https://doi.org/10.1007/978-3-030-64437-6_8
https://doi.org/10.1145/3479394.3479401
https://doi.org/10.1145/3479394.3479401
https://doi.org/10.1145/3479394.3479401
https://doi.org/10.1145/3479394.3479401
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1145/351240.351262
https://doi.org/10.1145/351240.351262
https://doi.org/10.1145/351240.351262
https://doi.org/10.1145/351240.351262
https://doi.org/10.1016/j.tcs.2008.01.044
https://doi.org/10.1016/j.tcs.2008.01.044

Strong Call-by-Value and Multi Types 19

23. Díaz-Caro, A., Manzonetto, G., Pagani, M.: Call-by-value non-determinism in a
linear logic type discipline. In: LFCS 2013. Springer (2013). https://doi.org/10.
1007/978-3-642-35722-0_12

24. Dyckhoff, R., Lengrand, S.: Call-by-Value lambda-calculus and LJQ. J. Log. Com-
put. 17(6), 1109–1134 (2007). https://doi.org/10.1093/logcom/exm037

25. Ehrhard, T.: Collapsing non-idempotent intersection types. In: CSL 2012. pp. 259–
273. Schloss Dagstuhl (2012). https://doi.org/10.4230/LIPIcs.CSL.2012.259

26. Girard, J.Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987). https:
//doi.org/10.1016/0304-3975(87)90045-4

27. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: ICFP
2002. pp. 235–246. ACM (2002). https://doi.org/10.1145/581478.581501

28. Guerrieri, G.: Towards a semantic measure of the execution time in call-by-value
λ-calculus. In: DCM/ITRS 2018 (2019). https://doi.org/10.4204/EPTCS.293.5

29. Guerrieri, G., Paolini, L., Ronchi Della Rocca, S.: Standardization and conser-
vativity of a refined call-by-value lambda-calculus. Logical Methods in Computer
Science 13(4) (2017). https://doi.org/10.23638/LMCS-13(4:29)2017

30. Herbelin, H., Zimmermann, S.: An operational account of Call-by-Value Minimal
and Classical λ-calculus in Natural Deduction form. In: TLCA 2009,. Springer
(2009). https://doi.org/10.1007/978-3-642-02273-9_12

31. Kesner, D., Ventura, D.: Quantitative types for the linear substitution calculus.
In: TCS 2014. Springer (2014). https://doi.org/10.1007/978-3-662-44602-7_23

32. Krivine, J.: Lambda-calculus, types and models. Ellis Horwood, New York (1993)
33. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value pro-

gramming languages. Inf. Comput. 185(2), 182–210 (2003). https://doi.org/10.
1016/S0890-5401(03)00088-9

34. Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name, Call-by-value,
Call-by-need and the Linear λ-Calculus. Theor. Comput. Sci. 228(1-2), 175–210
(1999). https://doi.org/10.1016/S0304-3975(98)00358-2

35. Mazza, D., Pellissier, L., Vial, P.: Polyadic approximations, fibrations and in-
tersection types. Proc. ACM Program. Lang. 2(POPL), 6:1–6:28 (2018). https:
//doi.org/10.1145/3158094

36. Moggi, E.: Computational λ-Calculus and Monads. LFCS report ECS-LFCS-
88-66, University of Edinburgh (1988), http://www.lfcs.inf.ed.ac.uk/reports/88/
ECS-LFCS-88-66/ECS-LFCS-88-66.pdf

37. Moggi, E.: Computational λ-Calculus and Monads. In: LICS ’89. IEEE Computer
Society (1989). https://doi.org/10.1109/LICS.1989.39155

38. Paolini, L.: Call-by-value separability and computability. In: ICTCS 2001 (2001).
https://doi.org/10.1007/3-540-45446-2_5

39. Paolini, L., Ronchi Della Rocca, S.: Call-by-value solvability. RAIRO Theor. In-
formatics Appl. 33(6), 507–534 (1999). https://doi.org/10.1051/ita:1999130

40. Plotkin, G.D.: Call-by-Name, Call-by-Value and the lambda-Calculus. Theoretical
Computer Science (1975). https://doi.org/10.1016/0304-3975(75)90017-1

41. Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus – A Metamodel for
Computation. Texts in Theoretical Computer Science. An EATCS Series, Springer
(2004). https://doi.org/10.1007/978-3-662-10394-4

42. Sabry, A., Felleisen, M.: Reasoning about Programs in Continuation-Passing Style.
Lisp and Symbolic Computation 6(3-4), 289–360 (1993)

43. Sabry, A., Wadler, P.: A Reflection on Call-by-Value. ACM Trans. Program. Lang.
Syst. 19(6), 916–941 (1997). https://doi.org/10.1145/267959.269968

44. Terese: Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press (2003)

https://doi.org/10.1007/978-3-642-35722-0_12
https://doi.org/10.1007/978-3-642-35722-0_12
https://doi.org/10.1007/978-3-642-35722-0_12
https://doi.org/10.1007/978-3-642-35722-0_12
https://doi.org/10.1093/logcom/exm037
https://doi.org/10.1093/logcom/exm037
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/581478.581501
https://doi.org/10.1145/581478.581501
https://doi.org/10.4204/EPTCS.293.5
https://doi.org/10.4204/EPTCS.293.5
https://doi.org/10.23638/LMCS-13(4:29)2017
https://doi.org/10.23638/LMCS-13(4:29)2017
https://doi.org/10.1007/978-3-642-02273-9_12
https://doi.org/10.1007/978-3-642-02273-9_12
https://doi.org/10.1007/978-3-662-44602-7_23
https://doi.org/10.1007/978-3-662-44602-7_23
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0304-3975(98)00358-2
https://doi.org/10.1016/S0304-3975(98)00358-2
https://doi.org/10.1145/3158094
https://doi.org/10.1145/3158094
https://doi.org/10.1145/3158094
https://doi.org/10.1145/3158094
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1007/3-540-45446-2_5
https://doi.org/10.1007/3-540-45446-2_5
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1007/978-3-662-10394-4
https://doi.org/10.1007/978-3-662-10394-4
https://doi.org/10.1145/267959.269968
https://doi.org/10.1145/267959.269968

	Strong Call-by-Value and Multi Types

