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Abstract

Background: DNA methylation-based classification of cancer provides a comprehensive

molecular approach to diagnose tumours. In fact, DNA methylation profiling of human

brain tumours already profoundly impacts clinical neuro-oncology. However, current

implementation using hybridisation microarrays is time consuming and costly. We

recently reported on shallow nanopore whole-genome sequencing for rapid and cost-

effective generation of genome-wide 5-methylcytosine profiles as input to supervised

classification. Here, we demonstrate that this approach allows us to discriminate a wide

spectrum of primary brain tumours.

Results: Using public reference data of 82 distinct tumour entities, we performed nano-

pore genome sequencing on 382 tissue samples covering 46 brain tumour (sub)types.

Using bootstrap sampling in a cohort of 55 cases, we found that a minimum set of 1000

random CpG features is sufficient for high-confidence classification by ad hoc random

forests. We implemented score recalibration as a confidence measure for interpretation

in a clinical context and empirically determined a platform-specific threshold in a ran-

domly sampled discovery cohort (N = 185). Applying this cut-off to an independent vali-

dation series (n = 184) yielded 148 classifiable cases (sensitivity 80.4%) and

demonstrated 100% specificity. Cross-lab validation demonstrated robustness with con-

cordant results across four laboratories in 10/11 (90.9%) cases. In a prospective bench-

marking (N = 15), the median time to results was 21.1 h.

Conclusions: In conclusion, nanopore sequencing allows robust and rapid methylation-

based classification across the full spectrum of brain tumours. Platform-specific confi-

dence scores facilitate clinical implementation for which prospective evaluation is war-

ranted and ongoing.
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BACKGROUND

DNA methylation is a stable epigenomic mark of cell identity and has

become a powerful tool in tissue-based cancer diagnosis. The applica-

tion of supervised machine learning to genome-wide DNA methyla-

tion profiles enables the classification of unknown samples with

respect to a reference cohort, providing a method that is both inde-

pendent and complementary to histomorphology. It has been used in

a variety of clinical scenarios, such as classification of brain tumours

[1], soft tissue sarcoma [2] or cancer of unknown primary (CUP) [3]. In

addition to offering an unbiased method of mandatory molecular test-

ing, required by the current WHO classification of CNS tumours

(e.g., for medulloblastoma subtypes), systematic application of

methylation-based classification has revealed weaknesses of histo-

morphology, which is associated with misdiagnoses in approximately

10% of cases [1]. However, for current microarray-based implementa-

tion, turnaround times are in the range of several days to weeks [4]

due to complex wet-lab procedures and sample multiplexing. Together

with high capital costs, reasonable per-assay costs are only achieved

in high-throughput settings like tertiary care centres.

To address these shortcomings, we have recently used nanopore

whole-genome sequencing (WGS) for the simultaneous generation of

copy number and DNA methylation profiles [5]. Nanopore sequencing

determines DNA sequence as well as base modifications, such as

5-methylation of cytosine (5mC), by detecting changes in ionic cur-

rents when molecules pass a biological nanopore inserted in a dielec-

tric membrane [6, 7]. Methylation detection in native DNA, in

combination with time-efficient hands-on procedures in the range of

less than an hour in total, significantly decreases turnaround times.

Here, we extend this pilot approach to methylation-based classifi-

cation to 82 brain tumour entities, define criteria for robust diagnostic

implementation and provide benchmarking data from cross-laboratory

as well as cross-method validation. Moreover, we share first insights

into the prospective analysis of turnaround times in comparison to

routine diagnostic procedures as part of an ongoing multicentric clini-

cal trial.

METHODS

Experimental design

A total of 382 brain tumour biopsies were included in this study, com-

prising 15 prospective cases, 41 retrospective cases from previously

published datasets [5, 8] and 326 cases collected during routine clini-

cal application at the Division of Neuropathology, Institute of Pathol-

ogy, Basel, Switzerland (as an in-house validated diagnostic test)

(Figure S1). The local ethics committee (Charité – Universitätsmedizin

Berlin, Berlin, Germany; EA2/041/18) approved generation of

prospective data in the context of this study. In order to refine

machine learning and to define quality criteria for reliable classifica-

tion, the cohort was randomly split (50/50) into a discovery and vali-

dation cohort (N = 191 each). All cases underwent routine diagnostic

procedures, including microarray-based analysis [1] in 321/382

(84.03%) cases, and were classified in accordance with the 2016

World Health Organisation Classification of Tumours of the Central

Nervous System [9] (Table 1).

Patient material and tissue processing

Fresh tumour tissue of prospective cases was transferred to the local

neuropathology laboratory during routine diagnostic procedures. Tissue

was then snap-frozen, and H&E cryosections were inspected to assess

tumour purity. DNA was extracted using spin columns (DNeasy Blood &

Tissue Kit, Qiagen, NL) according to the manufacturer’s protocol with

�25 mg of tumour tissue. For the cross-laboratory cohort, tumour

DNA obtained from the Institute Curie was extracted using phenol/

chloroform. Eluted genomic DNA was quantified on a Qubit 4.0 fluo-

rometer using the dsDNA BR Assay (Thermo Fisher, USA) and quality

controlled using the 260/280 ratio (NanoDrop, Thermo Fisher, USA).

Nanopore WGS

Library preparation with barcode labelling was performed with

�400 ng input of genomic DNA using the Rapid Barcoding Kit

(RBK004, Oxford Nanopore Technologies, UK) according to the manu-

facturer’s instructions. During the library preparation, input DNA is frag-

mented while simultaneously attaching barcodes using a time-efficient

transposase-based approach. The final library was loaded onto an

R9.4.1 flow cell (FLO-MIN106D, Oxford Nanopore Technologies, UK;

alternatively, FLG-0001 cells sharing the architecture with FLO-

MIN106D were used), and WGS was performed for 6–24 h on a Min-

ION Mk 1B device (Oxford Nanopore Technologies, UK). FAST5 files

Key Points

• Nanopore methylome sequencing allows for high-

confidence methylation-based classification of brain

tumours.

• A platform-specific threshold for classification scores

results in high specificity while maintaining sensitivity.

• Easy setup, low per-assay cost and rapid turnaround

times enable widespread implementation.
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T AB L E 1 Summary of tumour entities in this study

Discovery Validation Overall
(N = 191) (N = 191) (N = 382)

WHO 2016 integrated diagnosis

Adamantinomatous craniopharyngioma 1 (0.5%) 3 (1.6%) 4 (1.0%)

Anaplastic astrocytoma, IDH-mutant 7 (3.7%) 7 (3.7%) 14 (3.7%)

Anaplastic oligodendroglioma, IDH-mutant and

1p/19q-codeleted

5 (2.6%) 3 (1.6%) 8 (2.1%)

Atypical teratoid/rhabdoid tumour 2 (1.0%) 1 (0.5%) 3 (0.8%)

Central neurocytoma 1 (0.5%) 0 (0%) 1 (0.3%)

Chordoma 1 (0.5%) 1 (0.5%) 2 (0.5%)

CNS neuroblastoma with FOXR2 activation 1 (0.5%) 0 (0%) 1 (0.3%)

Diffuse astrocytoma, IDH-mutant 2 (1.0%) 1 (0.5%) 3 (0.8%)

Diffuse large B-cell lymphoma (DLBCL) 5 (2.6%) 4 (2.1%) 9 (2.4%)

Diffuse leptomeningeal glioneuronal tumour 1 (0.5%) 0 (0%) 1 (0.3%)

Diffuse midline glioma, H3 K27M-mutant 1 (0.5%) 0 (0%) 1 (0.3%)

Embryonal tumour with multilayered rosettes,

C19MC-altered

1 (0.5%) 2 (1.0%) 3 (0.8%)

Ependymoma 4 (2.1%) 2 (1.0%) 6 (1.6%)

Glioblastoma, IDH wild type, H3.3 G34 mutanta 1 (0.5%) 0 (0%) 1 (0.3%)

Glioblastoma, IDH wild type, subclass midlinea 1 (0.5%) 0 (0%) 1 (0.3%)

Glioblastoma, IDH-mutant 3 (1.6%) 2 (1.0%) 5 (1.3%)

Glioblastoma, IDH-wild type 48 (25.1%) 52 (27.2%) 100 (26.2%)

Haemangioblastoma 1 (0.5%) 1 (0.5%) 2 (0.5%)

Medulloblastoma, genetically defined, group 3 1 (0.5%) 3 (1.6%) 4 (1.0%)

Medulloblastoma, genetically defined, non-WNT/

non-SHH

1 (0.5%) 3 (1.6%) 4 (1.0%)

Medulloblastoma, genetically defined, SHH-

activated and TP53-wildtype

1 (0.5%) 0 (0%) 1 (0.3%)

Medulloblastoma, genetically defined, WNT-

activated

1 (0.5%) 1 (0.5%) 2 (0.5%)

Meningioma 60 (31.4%) 62 (32.5%) 122 (31.9%)

Pilocytic astrocytoma 6 (3.1%) 4 (2.1%) 10 (2.6%)

Pituitary adenoma ACTH producing 2 (1.0%) 4 (2.1%) 6 (1.6%)

Pituitary adenoma densely granulated GH/STH

producing

3 (1.6%) 1 (0.5%) 4 (1.0%)

Pituitary adenoma gonadotropin producing 16 (8.4%) 10 (5.2%) 26 (6.8%)

Pituitary adenoma sparsely granulated GH/STH

producing

1 (0.5%) 1 (0.5%) 2 (0.5%)

Pituitary adenoma TSH producing 1 (0.5%) 0 (0%) 1 (0.3%)

Rosette-forming glioneuronal tumour 1 (0.5%) 0 (0%) 1 (0.3%)

Schwannoma 10 (5.2%) 12 (6.3%) 22 (5.8%)

Solitary fibrous tumour/haemangiopericytoma 1 (0.5%) 1 (0.5%) 2 (0.5%)

Anaplastic pilocytic astrocytoma 0 (0%) 1 (0.5%) 1 (0.3%)

CNS embryonal tumour, NOS 0 (0%) 1 (0.5%) 1 (0.3%)

CNS Ewing sarcoma family tumour with CIC

alteration

0 (0%) 1 (0.5%) 1 (0.3%)

Medulloblastoma, NOS 0 (0%) 1 (0.5%) 1 (0.3%)

Medulloblastoma, SHH-activated 0 (0%) 1 (0.5%) 1 (0.3%)

Pleomorphic xanthoastrocytoma 0 (0%) 2 (1.0%) 2 (0.5%)

(Continues)
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containing the raw data were obtained in real time using the manufac-

turer’s software MinKNOW (v.1.3.1-v.3.6.0) and transferred to a high-

performance computing (HPC) cluster for further analysis. Each flow

cell was washed after sequencing (WSH002/WSH003, Oxford Nano-

pore Technologies, UK) and reused for up to four samples. When multi-

plexing retrospective samples, up to five libraries were sequenced

simultaneously, and sequencing for up to 24 h was performed.

Sequencing data processing

Base calling of raw data was performed using the manufacturer’s pro-

prietary software (guppy v3.1.5, CPU-based, fast mode, or v3.4.3,

GPU-based, Oxford Nanopore Technologies, UK). Demultiplexing to

identify carry-over of barcodes from previous samples run on the

same flow cell was performed. No significant (> 1%) cross-

contamination was detected in any sample, and all reads were used

for subsequent analysis. Reads were then aligned to the hg19 human

reference genome using minimap2 v.2.15 [10]. Copy number profiles

were generated using R/Bioconductor and the QDNAseq package

v.1.20 [11] using public data from a single flow cell sequencing run

(FAF04090) generated with NA12878 reference DNA [12] for

pseudo-germline subtraction.

The methylation status of CpG sites (5mC) was called using nano-

polish v0.13.2 [7]. All workflows were implemented using snakemake

v5.4.0–v.6.1.1 [13] for parallelisation and deployment to an HPC clus-

ter. When not using HPC, the pipeline was deployed to a single

x86_64 workstation with 120 cores and 2 TB RAM, augmented with

an RTX2070 consumer-grade GPU (NVIDIA, Santa Clara, CA, USA) for

base calling, running a Linux operating system (Ubuntu 18.04).

Random forest classification

5mC signals at sites overlapping with sites probed by the Illumina

BeadChip 450 K array were then used to train a random forest

(RF) classifier using the Heidelberg reference cohort of brain tumour

methylation profiles [1]. Thirteen out of 382 samples (3.4%) with less

than 1000 overlapping CpG sites between nanopore and reference

data were excluded to ensure a minimum technical quality of

sequencing data generated. Beta values from the training set and sam-

ple set were binarised using 0.6 as a threshold value. When more than

50,000 features, the 50,000 most variable features were selected by

standard deviation. RF classification was implemented in Python using

the RandomForestClassifier from the scikit-learn package v.1.0.2 [14].

The following parameters were modified from default:

n_estimators = 5000. Stratified sampling (to match the smallest class

size, i.e. eight) was used to account for class imbalance. Although RF

are effective for many classification tasks, they typically report poor

estimates of class probabilities. Given the importance of interpretable

probability scores in a clinical context, the estimated class probabilities

from such a classifier can be calibrated, which rescales predicted prob-

abilities to be more accurately interpreted as confidence levels. We

adopted a calibration strategy using Platt scaling by fitting a logistic

regression model as previously described [15] as follows. In order to

recalibrate the output of the RF classifier, we use fivefold cross-

validation to collect the raw prediction probabilities from the indepen-

dent cross-validation fold. The collection of raw prediction probabili-

ties was then used to train the calibration model. Platt scaling was

originally suggested for binary classification tasks, so we reduced our

multi-class classification task to a series of binary calibration tasks

using the 1-vs-rest method [16]. Platt scaling was implemented by fit-

ting the sigmoid regression using the CalibratedClassifierCV function

from the scikit-learn package in Python [14].

Prospective cases and cross-laboratory testing

As a pilot phase for a multicentric clinical trial (Universal Trial Num-

ber: U1111-1239-3456), a small series of prospective cases (N = 15)

were evaluated regarding turnaround time and concordance to

results from routine diagnostic workup. Prospective samples were

obtained from the local neurosurgery department after written

informed consent was given by the patient. Pseudonymised study

data (start of surgery, time point of tissue receipt, DNA extraction,

library preparation, sequencing metrics, classification results) was

collected and managed using REDCap software [17], which was pro-

vided by the Berlin Institute of Health’s Clinical Research Unit in a

certified computing environment.

Statistics

Data analysis was performed using R v.4.0.2. Receiver operator char-

acteristics (ROC) were analysed with the ROCit v.2.1.1 package.

Figures were mainly visualised using ggplot2 v.3.3.2.

T AB L E 1 (Continued)

Discovery Validation Overall
(N = 191) (N = 191) (N = 382)

Subependymal giant cell astrocytoma 0 (0%) 2 (1.0%) 2 (0.5%)

Subependymoma 0 (0%) 1 (0.5%) 1 (0.3%)

Reference diagnosis is reported in accordance with the 2016 WHO classification of central nervous system tumours. A detailed summary of the clinical

characteristics of all cases can be found in Table S1.
aOf note, these entities are not yet recognised as distinct entities in the 2016 WHO classification.
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Code and data availability

The current nanoDx classification and analysis pipeline is publicly

available at https://gitlab.com/pesk/nanoDx (version v.0.4.0rc1 was

used for pre-processing of all sequencing data). The source code for

the outlined RF implementation and to reproduce all analyses and fig-

ures in this manuscript is available at https://gitlab.com/pesk/

nanoBenchmark. Raw sequencing data from 56 samples have been

deposited at the European Genome-Phenome Archive

(EGAS00001006540 and EGAS00001002213). Methylation microar-

ray raw data and methylation calls are deposited at Gene Expression

Omnibus (GSE209865).

RESULTS

Robustness of pan-brain cancer classification using
nanopore sequencing

In low-pass nanopore WGS, genome coverage is sparse, and only a

random subset of the �30 million CpG sites in the genome are

probed. We have therefore proposed ad hoc training of RF using the

overlap of the random CpG feature set of each sequencing run and

the fixed feature space of the microarray-based training set [5]. Here,

we used the Heidelberg brain tumour classifier as a reference, which

distinguishes 82 tumour entities and nine non-tumour control classes.

It implements a two-tier approach for methylation classes that are

prone to misclassification without current clinical consequences

(e.g. subtypes of IDH-wild-type glioblastoma). In these situations,

superclasses, termed methylation class families (MCFs), were defined

followed by subtype classification where applicable. Similarly, we per-

formed classification against the full training set of 91 methylation

classes. For MCF level classification (composed of eight MCFs and

67 methylation classes, totalling 75 classes), the resulting recalibrated

votes by methylation classes were grouped by their respective MCFs

(if available), and the addition of recalibrated votes was performed.

Classification results were compared to the institutional WHO 2016

integrated diagnosis. The majority vote across the discovery cohort of

185 brain tumour samples was correct in 172/185 (93.0%) and

177/185 (95.7%) cases for the MCF and full training set, respectively.

As a measure of certainty of the classification, we recalibrated scores

by Platt scaling of RF raw votes. This transformation allows the applica-

tion of a single cut-off value to identify valid predictions. We used ROC

analysis to identify the optimal cut-off value in the discovery cohort. For

MCF level classification (75 classes), the calibrated score allowed reliable

prediction of correct classification (AUC = 0.95; Figure 1A) by applying a

cut-off value of >0.15 (which is slightly more conservative than the opti-

mal cut-off of >0.13 suggested by Youden index interpretation). This

resulted in 86.5% sensitivity and 100% specificity in the discovery cohort

(Figure 1C). Youden index analysis suggested a similar cut-off (>0.13) for

the full methylation class-level (91 classes) training set (AUC = 0.98;

Figure 1B). Therefore, we decided to implement >0.15 as an empirical

nanopore-specific threshold for both classification methods. This resulted

in 75.7% sensitivity and 100% specificity to correctly predict methylation

class in the discovery cohort (Figure S2A).

We then applied this approach to the independent validation

cohort of 184 primary brain tumour cases. On the MCF level, 167/184

cases (90.7%) were classified correctly overall, that is, a methylation

class concordant with the sample’s WHO integrated diagnosis was

called. Applying the nanopore-specific threshold >0.15 resulted in the

correct classification of all 148 cases with scores above the cut-off, cor-

responding to 80.4% sensitivity and 100% specificity (Figure 1C,D). On

the methylation class level, overall correct classification was found in

170/184 cases (92.4%). Requiring a cut-off >0.15 yielded 69.7% sensi-

tivity while retaining 100% specificity (Figure S2A,B).

Matched array-based methylation data and classification results were

available for 312/369 (84.6%) cases. The microarray data IDAT files were

uploaded to the Heidelberg classifier, and the methylation class output

was compared to our nanopore-based approach. Identical methylation

classes were assigned in 254/312 (81.4%) cases overall and in 214/232

(92.2%) cases where a nanopore sequencing-based classification yielded

a score >0.15 (Table S1). All discordant cases 12/232 (5.2%) were IDH-

wild-type glioblastomas, and classification was concordant at the MCF

level, but different glioblastoma subtypes were called.

The impact of the number of CpG features

Next, we investigated whether there was a correlation between the

number of CpG features and recalibrated classification score, as we

hypothesised that a minimum number of features would be required

for robust classification. Surprisingly, no significant correlation

between the number of CpG features and the classification score

was observed (Pearson’s r = 0.06, p = 0.4) within the discovery

cohort. Next, we performed iterative random subsampling of CpG

features for a cohort of 55 samples with five different seeds. How-

ever, when less than 1000 CpG sites were used, low scores were

frequent, and even misclassification with high confidence scores

was observed (Figure S3). Additionally, when investigating all sub-

sampling iterations with a minimum of 1000 CpGs and a score above

0.15, the correct call rate was 1289/1290 (99.9%). We, therefore,

considered 1000 overlapping CpG sites between the fixed feature

space of the microarray-based training set and whole-genome nano-

pore sequencing, the absolute minimum number for reasonable

analysis.

Cross-laboratory validation

Next, to assess reproducibility across laboratories, a series of

11 tumours were profiled independently by nanopore WGS at four

sites using the same DNA sample. Global correlation of all methylation

calls using Pearson’s r between any two samples reproducibly showed

the best correlation for matched pairs (Figure 2A). Classification of

matched samples was identical in 10/11 (90.1%) cases (Table S2) with

very similar raw vote distributions (Figure 2B). In addition, DNA
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methylation microarray (Illumina Infinium BeadArray 850 K chip) data

were available for all samples. Concordant results across all nanopore

and microarray-based tests were obtained in 10/11 (90.9%) cases. In

the one mismatch case, the nanopore-based classification matched

the histology-only based reference diagnosis (medulloblastoma, NOS)

in 2/4 (50.0%) cases on MCF level and 3/4 cases (75.0%) on MC level.

The corresponding microarray resulted in classification as non-

neoplastic (cerebellar) control.

Benchmarking of nanopore sequencing over time

Nanopore sequencing data are generated sequentially over time and

permits real-time analysis. Therefore, next, we reanalysed a cohort of

56 tumours by extracting subsets of sequencing data that were gener-

ated within a given time interval. As the raw yield is roughly propor-

tional to elapsed sequencing time, the number of sampled CpG sites

overlapping with the training set steadily increased over time. The

minimum number of 1000 CpG sites was sequenced within the first

30 min of the nanopore run in 38/56 samples (67.9%; Figure 3B).

After 90 min, the correct call rate from cases with a minimum of 1000

and a score above 0.15 with later correct classification result with

their full set of CpG features was 100% (Figure 3A). A correct, high-

confidence classification (i.e. correct call with score > 0.15) was made

within 30 min of sequencing in 38/56 samples (67.9%). Importantly,

high-confidence classifications based upon more than 1000 CpG fea-

tures, no matter at what time point they were made, were correct in

54/56 (96.4%) samples (Figure S4).

Benchmarking of turnaround times

Finally, as part of the pilot phase for a multicentric clinical trial, samples

from 15 patients were analysed prospectively. Results of nanopore

methylation-based classification were available in a mean of 39.4 h

(median = 21.1 h) after receiving tissue from histological tumour purity

assessment (Figure 3C). Furthermore, hands-on time spent on DNA

extraction, quality control and nanopore library preparation was

146.5 min on average for singleplex sequencing (Figure 3D).

DISCUSSION

In the present study, we demonstrate that methylation profiles gener-

ated by low-pass nanopore WGS allow robust and unbiased

classification of primary brain tumours over the entire spectrum cov-

ered by the Heidelberg brain tumour classifier. We define cut-off

values for reliable clinical interpretation and show that ad hoc training

and classification using RF yields classification with very high specific-

ity and acceptable sensitivity in real-world data. Moreover, results are

concordant and reproducible across laboratories. The sensitivity of

the method on MCF and MC levels was 80.4% and 69.7%, respec-

tively, for the >0.15 cut-off. This is comparable to previously reported

sensitivity for microarray-based classification, which ranged from 56%

in a real-world cohort enriched for challenging cases [4] to 88% in a

well-defined validation cohort [1].

Opportunities for nanopore methylation-based
tumour classification

With a median time to diagnosis of 21 h within the prospective

cohort, nanopore-based methylation classification offers the chance

to dramatically shorten turnaround times allowing completion of

methylation-based molecular profiling without delaying first-line ther-

apy. Nanopore methylation-based classification was usually available

prior to immunohistochemistry in routine pathological workup due to

delay by fixation and paraffin embedding. This allows neuropatholo-

gists to decide which staining and complementary methods could fur-

ther contribute to the diagnostic procedure, avoiding time-consuming

sequential testing and accelerating the overall time to integrated diag-

nosis. Moreover, our data suggest a further potential to reduce the

turnaround time of nanopore-based testing, and even intraoperative

classification may be possible. In addition, genome-wide copy number

profiles generated from nanopore WGS data have proven highly use-

ful in diagnostic decision making, replacing, for example, time-

consuming and costly fluorescence in situ hybridisation assays.

Machine learning aspects

Our current implementation of ad hoc random forests uses binarisa-

tion of methylated allele frequencies to normalise for platform differ-

ences between microarrays (reference data) and nanopore

sequencing. Consequently, the binominal distribution of CpG methyla-

tion due to low coverage of nanopore data results in significantly

lower recalibrated scores compared to the corresponding microarray-

based classification score. By implementing a platform-specific thresh-

old, we account for this and allow reliable interpretation in clinical

applications. However, recalibrated scores cannot be interpreted as

F I GU R E 1 Performance of ad hoc random forest pan-brain tumour classification. (A,B) Determination of cut-offs for recalibrated scores to
detect correct classification using a methylation class family (A) and methylation class (B) training set. (C) Waterfall plots indicate the relation of
the methylation class family level classification result and the recalibrated classification score in the discovery (N = 185) and validation cohort
(N = 184). Colour indicates concordance (blue) or discordance (red) of the called methylation class family or methylation class with the
institutional WHO 2016 integrated diagnosis. The cut-off identified by ROC analysis (>0.15) is indicated by the horizontal solid line.
(D) Classification results with respect to WHO diagnosis and corresponding methylation classification result in the validation cohort of N = 184
independent samples.
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probabilities. Resampling simulated binary distributions from the

microarray reference data as input for training the model may further

improve interpretability in the future. In addition, CpG sites called

from individual long nanopore reads are not independent features but

are currently treated this way. Exploiting this epi-haplotype informa-

tion could possibly further improve the classification.

F I GU R E 2 Cross-laboratory
validation. (A) Pearson’s correlation of
methylation status of shared CpG features
between paired samples of four
laboratory sites. (B) Comparison of
random forest vote distribution for each
sample quadruplet. Bar plots show the
Top 10 raw majority votes per
methylation class.

8 of 11 KUSCHEL ET AL.

 13652990, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/nan.12856 by C

ochrane France, W
iley O

nline L
ibrary on [15/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Limitations

Although this study aims to offer benchmarking of nanopore sequenc-

ing for DNA methylation-based classification of brain tumours and

demonstrates its robustness, further research is needed in order to

evaluate non-inferiority against current gold standard techniques

(e.g. methylation bead array techniques) in larger cohorts. This should

especially be evaluated regarding turnaround times with different

setup and computing options. This is the scope of an ongoing multi-

centric clinical trial (German Clinical Trials Register, Universal Trial ID:

U1111-1239-3456). In addition, while methylation microarrays work

well with formalin-fixated paraffin-embedded (FFPE) tissue, current

protocols for nanopore sequencing depend on the availability of

native or fresh-frozen tumour tissue. To support widespread imple-

mentation and analysis of archival tissues, protocols for robust nano-

pore sequencing from FFPE-derived DNA remain to be evaluated.

Finally, with 31/66 (46.9%) MCF and 46/82 (56.1%) MC (excluding

non-tumour control classes), not the full spectrum of brain tumours

was studied in our cohort, and especially some rare entities were

under-represented, and further studies are needed. Given the low

prevalence of many tumour types, the growing number of newly

described tumour entities and the ongoing refinement of brain tumour

classifiers, however, it will be challenging to determine class-specific

sensitivity and specificity of methylation-based classification on any

technology platform in a statistically sound manner for very rare

entities.

F I GU R E 3 Benchmarking of nanopore sequencing over time and laboratory turnaround times. (A) Per cent of correctly classified samples in
the discovery cohort with a score >0.15 with a correct majority vote at a given time point (in hours). (B) Number of CpG features with respect to
sequencing time passed. Light grey lines show the standard deviation for each time point. (C) Boxplots indicate the median and quartile ranges of
time elapsed from receipt of tumour material to timestamp of nanopore sequencing-based classification reports, respectively. (D) Analysis of
hands-on time with respect to time spent on DNA extraction (green), DNA quality control and quantification (blue) and library preparation (red).
The average time elapsed across all samples is indicated as a dashed line.
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Cost implications for nanopore methylation-based
classification

Competitive costs per assay are essential for the clinical adoption of a

diagnostic test. Based on current list prices, the per-sample cost for

nanopore singleplex sequencing is � €240. This includes the (reusable)

flow cell for use on a MinION device and sequencing chemistries. The

initial hardware investment is �€1000 for the sequencing device and

�€2000 for an analysis workstation (comprising a PC with consumer

graphics processing unit [GPU] for hardware acceleration) in cases

where a high-performance computing environment is not available.

Given the results of sequencing time and required CpG sites, further

optimisation of singleplex sequencing (reducing sequencing time per

sample, increasing sample numbers per flow cell) may be feasible and

could decrease cost per assay even further. Cost reduction by sample

multiplexing is interesting; however, we observed a substantial reduc-

tion in read yield in the multiplex setting due to barcoding efficiency

and probably the negative impact of low DNA contaminants in a sin-

gle sample on the entire run. The above-stated per-sample cost only

includes the consumables needed to perform low-pass whole-genome

nanopore sequencing and neglects the further costs such as hardware

investments for computing and the required workforce for library

preparation.

CONCLUSION

In conclusion, we see great potential for routine implementation of

nanopore sequencing in DNA methylation-based classification in brain

tumour diagnostics not only to shorten the time to diagnosis but to

augment neuropathological decision making and improve diagnostic

precision. Further prospective evaluation in the context of a multi-

centric trial is warranted and ongoing. The approach might be particu-

larly attractive to laboratories that see only a few neuro-oncological

cases per week. Software compatibility with GPU-equipped multi-

core PCs significantly reduces the cost for the compute infrastructure

and eliminates the need for access to a high-performance computing

architecture.
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