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Abstract. Co-clustering is a widely used technique that allows the analysis of complex
and high-dimensional data in various domains. However, existing models mostly concentrate
on continuous and dense data in fixed time situations, where cluster assignments remain
unchanged over time. For example, in the field of pharmacovigilance, it is crucial to cluster
in real time drugs and adverse effects simultaneously, facilitating the automation of safety
signal detection processes. However, traditional co-clustering methods require all the data
to be loaded into memory, which can be a challenge for large datasets or even impossible
in certain scenarios. The proposed online co-clustering model is designed to overcome this
challenge by processing the data incrementally, one step at a time. This work introduces a
novel inference process for the latent block model that addresses the challenge of online co-
clustering of sparse data matrices. To properly model this type of data, we assume that the
observations follow a time and block dependent mixture of zero-inflated distributions, thus
combining stochastic processes with the time-varying sparsity modeling. To detect abrupt
changes in the dynamics we make use of a Bayesian online change point detection method on
both cluster memberships and data sparsity estimations. The inference relies on an original
variational procedure whose maximization step trains a LSTM neural network in order to
solve the dynamical systems. Numerical experiments on simulated datasets demonstrate the
effectiveness of the proposed methodology in the context of count data streams. Then, we fit
the model to a large-scale dataset supplied by the Regional Center of Pharmacovigilance of
Nice (France), providing meaningful online segmentation of drugs and adverse drug reactions.

Keywords. Co-clustering, change point detection, zero-inflated distributions, online
inference, VEM algorithm, data streams

1



1 Introduction

The use of unsupervised machine learning techniques, such as clustering, to summarize data
is increasingly needed. A topical application area is pharmacovigilance, whose main activity
concerns in gathering drug associated adverse events to detect safety signals about drugs.
Currently, the detection of safety signals heavily relies on manual expert analysis, leading
to potential incompleteness due to the workload involved and the need for substantial data
before critical events can be detected. Such methods would enable pharmacovigilance ex-
perts to focus on searching for ADRs in all the digital documents and reports generated
by healthcare establishments. Consequently, there is a pressing need to develop automated
methods for safety signal detection in pharmacovigilance. Clustering techniques can help in
this task to effectively summarize data to detect safety signals along the time. In addition to
pharmacovigilance, clustering methods are increasingly important in various domains such
as social media, e-commerce, biomedical data, finance, and genetics. Traditional cluster-
ing approaches may struggle with high-dimensional sparse datasets, making co-clustering an
appealing alternative. Co-clustering is useful in this context since it clusters both observa-
tions and features simultaneously, providing useful data summaries. Although many notable
methods have been introduced in this field in recent decades, the development of dynamic co-
clustering methods remains largely unexplored. Also, in many applications and particularly
in the case of pharmacovigilance, the data generating process can change over time, which
can result in changes in the clustering patterns. For example, drugs may have unexpected
adversarial effects in response to changes in the molecular principle, or new drugs may be in-
troduced to the market. Online change point detection algorithms can detect when the data
generating process has changed and trigger further investigations. In this paper, we address
this challenge by exploring the development of an online model-based co-clustering tool for
real-time safety signal detection. By treating adverse drug reaction (ADR) notifications as
count data observed over time, our approach allows for the identification of temporal breaks
in the safety signals. This facilitates the creation of alerts and provides room for further
investigation by medical authorities. The primary objective of this research is to showcase
the potential of our proposed method as a routine tool in pharmacovigilance.

1.1 Related Work

This section summarizes the related work in dynamic co-clustering and change point detec-
tion.
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Co-clustering and Latent Block Models Co-clustering is a valuable tool for analyz-
ing datasets as it allows for the simultaneous clustering of both observations and features.
There are various types of co-clustering methods, that can be distinguished into metric based
approaches, such as non-negative matrix tri-factorization (NMTF, Labiod and Nadif, 2011;
Ding et al., 2006), spectral co-clustering (Dhillon, 2001), information theory (Dhillon et al.,
2003), and model-based co-clustering approaches (e.g. Bouveyron et al., 2019).Among those
approaches, model-based co-clustering is widely appreciated for its robust statistical foun-
dations and adaptability to various data types and levels of sparsity. The cornerstone of
model-based co-clustering is the popular latent block model (LBM) (Govaert and Nadif,
2003) that was initially introduced for the co-clustering of binary data matrices. LBM is
based on the assumption that rows and columns are grouped into hidden clusters and that
observations within a block (intersection of a row cluster and a column cluster) are indepen-
dent and identically distributed. Whereas the original formulation of the model dealt with
binary data only, the model has been extended in the last two decades to count data (Gov-
aert and Nadif, 2010), continuous data (Lomet, 2012), categorical data (Keribin et al., 2015),
ordinal data (Jacques and Biernacki, 2018; Corneli et al., 2020), functional data (Bouveyron
et al., 2018), textual data (Bergé et al., 2019) and mixed-type data (Selosse et al., 2020).
Recently, Boutalbi et al. (2020) also proposed the tensor latent block model (TLBM) for co-
clustering, whose aim is to simultaneously cluster rows and columns of a 3D matrix, where
covariates represent the third dimension. TLBM, in the same paper, is also implemented
for different types of datasets: continuous data (Gaussian TLBM), binary data (Bernoulli
TLBM) and contingency tables (Poisson TLBM).

Dynamic models for clustering and co-clustering While there has been an extensive
body of literature, over the past decade, on static model-based clustering and co-clustering
techniques the use of dynamic models in this context is a more recent development. It is
worth noting that a more plentiful work has been made in the context of network clustering,
in particular, for the Stochastic Block Model (SBM, Nowicki and Snijders, 2001) than for
LBM, although SBM is a special case of LBM, which does not need that data matrices to
be square and/or symmetrical. Yang et al. (2011) proposed a dynamic version of SBM by
allowing the cluster of each node to switch at time t+1 depending on its current state at time
t, in a Markovian framework, where the switching probabilities are collected into a transition
matrix. In a more general framework, Matias and Miele (2017) showed that, in dynamic
SBMs, it is not possible to let vary over time both the connectivity parameters and cluster
memberships without incurring into identifiability issues. Recently, Marchello et al. (2022b)
proposed an extension of LBM allowing one to perform the simultaneous clustering of rows,
columns and slices of a three dimensional counting tensor. Although being a first attempt
to extend LBM to the dynamic case, this model has the limitation of not allowing cluster
switches of rows/columns. Later the same authors proposed Zip-dLBM (Marchello et al.,
2022a), a further dynamic extension of LBM. In Zip-dLBM, the authors allow observations
and features to change clusters over time, this paper has been proposed in a general way
for any Zero-Inflated distribution, to model highly sparse scenarios, typical of interaction
datasets. In a different framework, Casa et al. (2021) extended the latent block model to
deal with longitudinal data, relying on the shape invariant model (Lindstrom, 1995) and
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Boutalbi et al. (2021) developed a model-based co-clustering method for sparse three-way
data, where the third dimension can be seen as a discrete temporal one. Here, the sparsity
is handled following the same assumption as in Ailem et al. (2017) that all blocks outside
the main diagonal share the same parameter. However, while being a first step toward
the dynamic expansion of co-clustering methods, these methods can be used mostly for
macroscopic analysis, as they do not allow for the temporal dependence of variables.

Change point detection Change points refer to sudden shifts in the pattern of a time
series dataset. Identifying these points can be valuable in analyzing and forecasting time se-
ries data. Also, these algorithms are specifically designed to detect the precise moment when
a process that is evolving over time has undergone a significant change. This specific mo-
ment indicates a shift in the underlying process generating the observed data points. Several
change point detection algorithms have been proposed in the literature (e.g. Basseville et al.
(1993); Cheng and Thaga (2005); Van den Burg and Williams (2020); Montgomery (2020)).
These algorithms can be categorized into two types: online and offline. Online algorithms
are designed to operate in real-time, with upcoming time series data. In contrast, offline al-
gorithms are intended to run after the entire dataset has been collected. Since the goal here
is to detect on the fly pharmacovigilance events, we focus hereafter on online methods only.
Regarding online change point detection algorithms, recent studies have shown that among
the most effective methods there are the likelihood and probabilistic approaches (Kondratev
et al., 2022; Kavitha and Punithavalli, 2010). On this subject, a seminal paper was proposed
by Adams and MacKay (2007) introducing the Bayesian Online Change Point Detection
(BOCD). The idea of BOCD is to identify change points using the so-called run lengths or
segment. Whenever a new data point becomes available, the algorithm determines the likeli-
hood of the corresponding run length increasing by one. If the probability of change is higher
than that of growth, the run length resets to zero, and a change point is identified. Alterna-
tively, another approach has been proposed by Kawahara and Sugiyama (2009), introducing
subspace identification for change point detection. Here, the change points are detected by
estimating a state-space model behind time series.

1.2 Our contribution

This paper proposes an online extension of Zip-dLBM (Marchello et al., 2022a), a co-
clustering technique designed to handle time-evolving data matrices that may contain many
empty entries. We aim to introduce three novelties in this regard. The first is the ability of
the estimation algorithm to work online, with streams of data. The second is the addition
of an online change point detection method. By capturing the data dynamic behavior, the
method can identify abnormal events that affect the generative process. To detect these
changes we make use of the Bayesian Online Change Point Detection (BOCD, Adams and
MacKay, 2007) that runs on the estimated model parameters in real time. The algorithm
iteratively updates the posterior probabilities of the change points, based on the data ob-
served so far. The third novelty relies on a different modeling choice for the time evolving
parameter. In fact fully connected neural networks are substituted with LSTMs, as their
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structure is deemed more appropriate for the purpose. Therefore, this model introduces a
new approach by incorporating an online inference method for Zip-dLBM and online changing
point detection.

1.3 Organization of the paper

This paper is organized as follows. Section 2 recalls the generative model Zip-dLBM. Sec-
tion 3 introduces the proposed online inference for stream data. Section 4 presents various
experiments on simulated data to test and evaluate the model performances. In Section
5, an application on a real ADRs dataset is presented to illustrate the potential of Stream
Zip-dLBM in pharmacovigilance. Section 6 provides some concluding remarks.

2 Stream Zip-dLBM

The following section reminds the Zero-Inflated Poisson Dynamic Latent Block Model (Zip-
dLBM, Marchello et al., 2022a) for batch processing. Notice that, although this model has
been proposed in a general way for any Zero-Inflated distribution, we focus here on the Zero-
Inflated Poisson (ZIP) distribution, since count data are considered in pharmacovigilance. In
Zip-dLBM the observed data are assumed to be collected into time evolving matrices, over
the interval [0, T ]. Being in a discrete time setting, we assume a time partition of equally
spaced points:

0 = t0 < t1 < tu ≤ tU = T.

With a slight abuse of notation we denote by t the time point tu. At time t, the incidence
matrix X(t) ∈ NN×M has Xij(t) as generic element that counts the number of interactions
between the observation i and feature j that took place between t−1 and t. The rows of X(t)
are indexed by i = {1, ..., N} and the columns by j = {1, ...,M}. The goal of Zip-dLBM is
to cluster both the rows and columns of a series of data matrices, {X(t)}t, with t ∈ [0, T ].

2.1 A Zero-Inflated Dynamic Latent Block Model

First, let us now consider that we have a time interval of fixed lenght, [0, T ], and that the
model does not run online. The goal of Zip-dLBM is to cluster both the rows and columns
of a series of data matrices, {X(t)}t, that change over time. The numbers of clusters for
rows and columns are represented by Q and L, respectively, and remain constant over time.
However, the cluster membership of each row and column is allowed to change in [0, T ].

2.1.1 Clusters modeling

To track the changes in cluster memberships over time, we use two evolving random matrices,
Z(t) and W (t), for rows and columns, respectively. With Z(t) ∈ {0, 1}N×Q, its the i-th row
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is denoted by Zi(t) and W (t) ∈ {0, 1}M×L, its j-th row is denoted by Wj(t). The two
distributions are respectively parametrized by α(t) and β(t). More formally:

Zi(t) ∼M(1, α(t) := (α1(t), . . . , αQ(t))), independently ∀i,∀t ∈ {0, . . . , T}, (1)

whereM(·, ·) denotes the multinomial probability mass function and αq(t) = P{ziq(t) = 1},

with
Q∑

q=1

αq(t) = 1. Thus Z(t) := {ziq(t)}i∈1,...,N ;q∈1,...,Q represents the clustering of N rows

into Q groups at a given time point t.
In a similar fashion, for the column clusters, we assume:

Wj(t) ∼M(1, β(t) := (β1(t), . . . , βL(t))), independently ∀j,∀t ∈ {0, . . . , T}, (2)

where β`(t) = P{wj`(t) = 1} and
L∑

`=1

β`(t) = 1.

The two random vectors Z and W are further assumed to be independent.

2.1.2 Sparsity modeling

In order to model a potentially extreme sparsity, the observed data are assumed to follow
a mixture of block-conditional Zero-Inflated Poisson (ZIP) distributions, where the entries
Xij(t) are conditionally independent in (i, j, t):

Xij(t)|Zi(t),Wj(t) ∼ ZIP (ΛZi(t),Wj(t), π(t)) , (3)

where Λ is the Q×L block-dependent intensity function of the Poisson component, and π(t)
is a vector of length T that indicates the level of sparsity at any given time period. In order
to ease the inference, we finally provide an equivalent formulation of the above equations in
terms of a hidden random matrix, A ∈ {0, 1}N×M , where, independently for all i and j:

Aij(t) ∼ B(π(t)),

with B(·) denoting the Bernoulli distribution of parameter π(t) and such that:

Aij(t) = 1⇒ Xij(t)|Zi(t),Wj(t) = 0

Aij(t) = 0⇒ Xij(t)|Zi(t),Wj(t) ∼ P(Xij(t),ΛZi(t),Wj(t)),
(4)

where P(·,Λ) denotes the Poisson distribution with intensity parameter Λ.

2.1.3 Modeling the temporal evolution of the parameters

We assume that the evolution of the mixing proportions α, β, and the sparsity parameter π
are governed by a system of ordinary differential equations (ODEs). By using ODEs, we can
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model the temporal evolution of both the composition of clusters and sparsity. Since we work
in discrete time we discretize the dynamic systems by making use of their Euler schemes:

a(t+ 1) = a(t) + fZ(a(t)),

b(t+ 1) = b(t) + fW (b(t)),

c(t+ 1) = c(t) + fA(c(t)),

(5)

where fZ , fW and fA are assumed to be three continuously differentiable functions and:
αq(t) = softmax(aq(t)) = eaq(t)/

∑Q
q=1 e

aq(t),

β`(t) = softmax(b`(t)) = eb`(t)/
∑L

`=1 e
b`(t),

π(t) = ec(t)/1 + ec(t).

(6)

2.2 The joint distribution

The set of the model parameters is denoted by θ = (Λ, α, β, π) and the latent variables used
so far are Z, W , and A, where we denote α , {α(t)}t, β , {β(t)}t, π , {π(t)}t. Thus, the
likelihood of the complete data reads:

p(X,Z,W,A|θ) = p(X|Z,W,A,Λ, π)p(A | π)p(Z|α)p(W |β). (7)

The terms on the right hand side of the above equation can be further developed, as in
Marchello et al. (2022a).

3 Online inference for stream data

In this section, we present the online extension of the Zip-dLBM method, called Stream Zip-
dLBM. The objective is to perform co-clustering of rows and columns in real-time as new
data become available. To prevent memory overload, we have revisited the original inference
algorithm of Zip-dLBM, enabling the data to be processed without the need to store it in
memory. To allow the algorithm to update the parameter estimates continuously as a new
data is incorporated, we use a moving window, Gd(t), of size d. In more detail, at time t, we
keep in memory only the data in the interval [t−d, t], namely X(t−d), X(t−d+1), . . . , X(t),
that will be used for the estimation of the model parameters. The data outside the interval
can be discarded to prevent memory overloads and maintain the algorithm’s functionality.
Once a time point t quit the time window (after passing through it) the parameter estimates
at that point become fixed, and the "past" data can be discarded by the inference procedure.

3.1 Variational Assumption

The traditional approach to estimate the model parameters involves maximizing the log-
likelihood p(X|θ). However, in our case a direct maximization is not feasible. Neither we can
adopt the EM-algorithm, because the joint conditional distribution of the latent variables
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p(Z,W, |X, θ) cannot be computed, due to the interdependent double missing structure of
(Z,W ) and their continuous evolution. Additionally, we cannot update α, β and π using
closed formulas because of their connection with systems of ordinary differential equations.
Therefore, we use a combination of Variational-EM inference and Stochastic Gradient Descent
(SGD) to estimate the parameters. Let us thus introduce a variational distribution q(.), over
(A,Z,W ), in order to decompose the observed data log-likelihood as follows:

log p(X|θ) = L(q, θ) +KL(q(.)||p(.|X, θ)),

where L denotes a lower bound of p(X|θ) and is defined as:

L(q, θ) =
∑
Z

∑
W

∑
A

q(Z,W,A) log
p(X,A,Z,W |θ)
q(Z,W,A)

= Eq(A,Z,W )

[
log

p(X,A,Z,W |θ)
q(A,Z,W

]
= Eq(A,Z,W )[log(p(X,A,Z,W |θ)]− Eq(A,Z,W )[log(q(A,Z,W ))],

(8)

and KL indicates the Kullaback-Liebler divergence between the true and the approximate
posterior q(·):

KL(q(.)||p(.|X, θ)) = −
∑
A

∑
Z

∑
W

q(A,Z,W ) log
p(A,Z,W |X, θ)
q(A,Z,W )

.

Now, the objective is to find a distribution q(.) that maximizes the lower bound L(q, θ). In
order to allow the optimization of L(q, θ), we further assume that q(A,Z,W ) factorizes as
follows for all t:

q(A(t), Z(t),W (t)) = q(A(t))q(Z(t))q(W (t)) =
N∏
i=1

M∏
j=1

q(Aij(t))
N∏
i=1

q(Zi(t))
M∏
j=1

q(Wj(t)).

(9)

3.2 Variational E-Step

The optimal variational updates of q(·), under the assumption in Eq. (9), can be obtained
as in Bishop (2006, Ch.10). Denoting by δij(t) := q(Aij(t) = 1) the variational probability of
success for Aij(t), the optimal update is:

δij(t) =
exp(Rij(t))

1 + exp(Rij(t))
, (10)

with:

Rij(t) = log(π(t)1{Xij(t)=0}) +

Q∑
q=1

L∑
`=1

[
− Eq(W,Z)[Ziq(t)]Eq(W,Z)[Wj`(t)]Xij(t) log Λq`+

+ Eq(W,Z)[Ziq(t)]Eq(W,Z)[Wj`(t)]Λq`

]
+ logXij(t)!− log(1− π(t)).
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Note that, formally, when Xij(t) 6= 0, Rij(t) = −∞ and δij(t) = 0, which makes sense: non-
null observations in X come from a Poisson distribution with probability one (see Eq. (4)).

Regarding q(Z), let us denote by τiq(t) := q(Ziq(t) = 1) the variational probability of
success of Ziq(t). The optimal update can be written as:

τiq(t) =
riq(t)∑Q

q0=1 riq0(t)
, (11)

with riq(t) is denoted by:

riq(t) ∝ exp

(
M∑
j=1

L∑
`=1

{
(1− Eq(A,W )[Aij(t)])

[
Eq(A,W )[Wj`(t)]Xij(t) log(Λq`)+

− Eq(A,W )[Wj`(t)]Λq`

]}
+ log(αq(t))

)
.

Similarly for the latent variable W , denoting by ηj`(t) := q(Wj`(t) = 1) the variational
probability for Wj`(t), the optimal update of q(W ) is:

ηj`(t) =
sj`(t)∑L

`o=1 sj`o(t)
, (12)

where :

sj`(t) ∝ exp

(
N∑
i=1

Q∑
q=1

{
(1− Eq(A,Z)[Aij(t)])

[
Eq(A,Z)[Ziq(t)]Xij(t) log(Λq`)+

− Eq(A,Z)[Ziq(t)]Λq`

]}
+ log(β`(t))

)
.

The proofs of Equations 10, (11) and (12) are provided in Marchello et al. (2022a). It is worth
noting that these update equations can be executed step by step, allowing for incremental
updates of the variational parameters. Also, note that the update in these equations can be
computed independently for any pair (i, j), at any time point t.

3.3 Online variational M-Step

While the updates in the E-step for τ(t), η(t), and δ(t) depend solely on the current time
instant t, the same cannot be said for the updates in the M-step. The M-step involves
updating the model parameters, such as θ = (Λ, α, β, π), based on the current estimates
obtained in the E-step. In order to obtain the updates of the parameter set θ, the objective
of the M-Step is the maximization of the lower bound L(q, θ) with respect to θ = (Λ, α, β, π),
while holding the variational distribution q(·) fixed. Denoting t as the current time instant,
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we develop Eq.(8) such that the variational lower bound L(q, θ) can be written as:

L(q, θ) =
t∑

u=1

N∑
i=1

M∑
j=1

{
δij(u) log(π(u)1{Xij(u)=0}) + (1− δij(u))

[
log(1− π(u))+

+

Q∑
q=1

L∑
`=1

{
τiq(u)ηj`(u)Xij(u) log Λq` − τiq(u)ηj`(u)Λq`

}]
− (1− δij(u)) log(Xij(u)!)

}

+
t∑

u=1

N∑
i=1

Q∑
q=1

τiq(u) log(αq(u)) +
t∑

u=1

M∑
j=1

L∑
`=1

ηj`(u) log(β`(u))−
t∑

u=1

N∑
i=1

Q∑
q=1

τiq(u) log(τiq(u))+

−
t∑

u=1

M∑
j=1

L∑
`=1

ηj`(u) log(ηj`(u))−
t∑

u=1

N∑
i=1

M∑
j=1

(
δij(u) log(δij(u)) + (1− δij(u)) log(1− δij(u))

)
.

(13)

3.3.1 Update of Λ

Here our goal is to derive the online update of the Zero-inflated Poisson intensity parameter,
Λ. The variational distribution q(A,Z,W ) is kept fixed, while the lower bound is maximized
with respect to Λ at every time instant t, to obtain its update, Λ̂. To find the optimal update
we compute the derivative of the lower bound L(q, θ) in Eq. (13) with respect to Λ and set
it equal to zero, as follows:

∂ logL(q, θ)

∂Λq`

=
N∑
i=1

M∑
j=1

t∑
u=1

(1− δij(u))
[τiq(u)ηj`(u)Xij(u)

Λq`

− τiq(u)ηj`(u)
]

= 0

⇔
N∑
i=1

M∑
j=1

t∑
u=1

(1− δij(u))
[
τiq(u)ηj`(u)Xij(u)− τiq(u)ηj`(u)Λq`

]
= 0

⇔
N∑
i=1

M∑
j=1

t∑
u=1

(1− δij(u))τiq(u)ηj`(u)Λq` =
N∑
i=1

M∑
j=1

t∑
u=1

τiq(u)ηj`(u)
[
Xij(u)−Xij(u)δij(u)

]

⇒Λ̂q` =

∑N
i=1

∑M
j=1

∑t
u=1 τiq(u)ηj`(u)

(
Xij(u)− δij(u)Xij(u)

)
∑N

i=1

∑M
j=1

∑t
u=1 τiq(u)ηj`(u)

(
1− δij(u)

) .

(14)

Although the update of Λ̂q` sums over all the past observations (Xij(1), . . . , Xij(t)), we can
develop Eq. (14) as follows:

Λ̂q` =

∑N
i=1

∑M
j=1

∑(t−1)
u=1 τiq(u)ηj`(u)

(
Xij(u)− δij(u)Xij(u)

)
+
∑N

i=1

∑M
j=1 τiq(t)ηj`(t)

(
Xij(t)− δij(t)Xij(t)

)
∑N

i=1

∑M
j=1

∑(t−1)
u=1 τiq(u)ηj`(u)

(
1− δij(u)

)
+
∑N

i=1

∑M
j=1 τiq(t)ηj`(t)

(
1− δij(t)

)
=
N old

q` +N
(t)
q`

Dold
q` +D

(t)
q`

=
N old

q`

Dold
q` +D

(t)
q`

+
N

(t)
q`

Dold
q` +D

(t)
q`

.

(15)
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By splitting Λ in two different parts, we can distinguish between a part known at time t− 1,
namely N old

q` and Dold
q` , and the current updates at time t, N (t)

q` and D(t)
q` . Then, we divide and

multiply the first term for Dold
q` , such that, denoting Λ̂old

q` =
N old

q`

Dold
q`

, we obtain the final online

update:

Λ̂q` = Λ̂old
q` ·

Dold
q`

Dold
q` +D

(t)
q`

+
N

(t)
q`

Dold
q` +D

(t)
q`

, (16)

Hence, when a new observation comes Λ can be updated thanks to Eq.(16), along with the
update of Dold

q` .

3.3.2 Update of α, β and π through deep neural networks

As mentioned in Section 2.1.3, the mixture proportions α and β, as well as the sparsity
parameter π are driven by three systems of differential equations, respectively. Hence, the
update process for these parameters in the online inference algorithm poses a challenge be-
cause they lack closed-form updating formulas. As a result, the decomposition strategy used
for updating Λ cannot be applied. To address this issue, we introduce an approximation tech-
nique that leverages a moving window Gd(t) of size d, allowing us to update the parameters
based on the most recent d observations. In addition to its role in parameter updates, the
moving window Gd(t) serves another purpose as the input for a deep neural network. As we
assumed that the functions fA, fW and fZ are continuous, we propose to parametrize them
with three LSTM networks (Hochreiter and Schmidhuber, 1997). LSTM is a type of recur-
rent neural network that operates on sequences of a specific length and produces a sequence
of the same length, shifted one time step ahead. For instance, let’s consider the current time
t and the time window Gd(t) with a length of d. The input for the LSTM networks consists
of a series of values ranging from t− 1− d to t− 1, representing the historical observations
within the window. The LSTM networks then predict a sequence of values from t − d to t,
which correspond to the updated parameter values for α, β, and π. Optimizing the lower
bound in Eq.(13) with respect to α, β, and π reduces to maximize it with respect to the
parameters of the neural networks. For instance, the loss function for α can be expressed as
follows:

L =
∑

u∈Gd(t)

N∑
i=1

Q∑
q=1

τiq(u) logαq(u), (17)

The loss functions of β and π can be similarly derived using their respective distribution-
specific equations. In the experiments, this update is implemented in PyTorch via automatic
differentiation (Paszke et al., 2017) and relies on stochastic optimisation (ADAM, Kingma
and Ba, 2014). Once the neural nets are trained via back-propagation (SGD) they provide
us with the current ML estimates of α(t), β(t) and π(t). The whole inference procedure is
summarized in Algorithm 1.

11



3.4 Initialization and model selection

When it comes to clustering methods based on the EM algorithm, the initialization process
and selecting the appropriate number of clusters (for rows and columns in this case) are
two important aspects that require careful consideration. These issues become slightly more
complex when deep neural networks are employed to model cluster dynamics and sparsity
proportions. Despite the inherent complexity introduced by these networks, they offer un-
expected flexibility that can help reduce the computational burden of the entire algorithm.
This becomes evident through the results of numerical experiments, as shown in Section 4.2.

In this section, modifications to the initialization method presented in Marchello et al.
(2022a) are proposed to make the algorithm adaptable to run online. First, we select the
first slice of the data Xt0 and apply on it a static LBM algorithm for a list of pairs of cluster
numbers, i.e. (q, `) for q = 2, . . . , Qmax and ` = 2, . . . , Lmax. Subsequently, we employ
the ICL criterion (Integrated Completed Likelihood, Biernacki et al. (2000)) to determine
the optimal number of row and column clusters for this particular subset of data. The
ICL criterion approximates the integrated log-likelihood of the complete dataset and can be
derived as follows:

ICL(Q,L) = log p(X, Ẑ, Ŵ ; θ̂)− Q− 1

2
logN − L− 1

2
logM − QL

2
log(NM)− 1

2
log(NM).

(18)

The pair (Q̂, L̂) that leads to the highest value for the ICL is considered as the most mean-
ingful cluster numbers for the considered slice of data Xt0 . However, as we expect that the
choice of Q̂ row and L̂ column cluster components could not be the best for all the future time
instants, the VEM-SGD algorithm (see Algorithm 1) will be then run with more components
than the ones found by the ICL. Indeed, we run the VEM-SGD algorithm with Qmax ≥ Q̂
and Lmax ≥ L̂ cluster components. Then, every time there is a new data entry, part of
the model parameters are initialized with θ̂(t) obtained via a static run of LBM and the
remaining parameters, corresponding to the additional row and column clusters are set to
zero.

Therefore, our objective is to leverage the advantage of using deep neural networks, which
enables our VEM-SGD algorithm to initialize with empty clusters. These empty clusters can
potentially be activated in the future, if required. As a result, we can avoid the typically
computationally intensive task of running the entire algorithm with all possible combinations
of row and column cluster numbers for the complete dataset. This strategy enables our
approach to handle large-scale datasets within a reasonable computation time while achieving
satisfactory results, as demonstrated in the forthcoming section.
Also, at the initial stage of the algorithm (i.e. the first d time points), the parameters α(t),
β(t) and π(t) are modeled via a two-layer fully connected neural networks, following the
approach of Marchello et al. (2022a), until t = d. Then, as explained in Section 3.3.2, at
t = d+ 1, the estimates from the previous time step, obtained via fully connected networks,
serve as input to LSTM, which is used for online parameter estimation from this point on.
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Algorithm 1 VEM-SGD Algorithm for Stream Zip-dLBM

Require: X, Q̂, L̂, Qmax, Lmax,max.iter,Gd(t).
Initialization of τ(t = 0) and η(t = 0): sampling from M(α(t = 0)) and M(β(t = 0)),
respectively;
Initialization of δ(t = 0): matrix of 1, then setting δ(t = 0) = 0 when X > 0;
while New observations X(t) come: do

Initialization of α(t), β(t), π(t),Λ with LBM; % with Q̂, and L̂
I Add Qmax − Q̂ columns of zeros to α(t);
I Add Lmax − L̂ columns of zeros to β(t);
I Add Qmax − Q̂ rows and Lmax − L̂ columns of zeros to Λ;
for it = 1 to max.iter do

VE-Step:
for p = 1 to Fixed.Point do

alternatively update δ(t), τ(t), η(t); % fix point eqs
end for
M-Step:

Update θ = (Λ, π(t), α(t), β(t)).

Λ̂q` = Λ̂old
q` ·

Dold
q`

Dold
q` +D

(t)
q`

+
N

(t)
q`

Dold
q` +D

(t)
q`

.

Update α(t), β(t), π(t) %LSTM on the moving window t ∈ Gd(t)
end for
Discard all the observation before Gd(t)

end while
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3.5 Bayesian online change point detection

As previously stated, one of the aims of Stream Zip-dLBM is to perform multivariate online
change point detection. To accomplish this task, we combine the Bayesian Online Change
Point Detection (BOCD) method, proposed in a seminal paper by Adams and MacKay
(2007), with our strategy. BOCD detects change points based on the estimation of the
posterior distribution over the current "run length", or time segment since the last change
point, given the data observed so far, using a simple message-passing algorithm. Essentially,
the run length is used to determine if a new data point belongs to the current partition based
on previous observations. If the new data point belongs to the current partition, the run
length will increase by 1 at the next time step, otherwise it will reset to 0. This process is
continuously repeated at each time step. It is worth noticing that the BOCD algorithm is
typically implemented in an online fashion, analyzing the data as it streams in. However,
in our case, we directly apply the algorithm to detect change points on the estimates of
α(t), β(t), and π(t) that are generated by the LSTM. To prevent detecting change points on
parameters that will be recalculated in future time steps, we run the BOCD algorithm only
on time points "behind" Gd(t). Stated differently, at time t, BOCD operates on parameter
values at time instances t− d.

4 Numerical experiments

The main purpose of this section is to highlight the most important features of Stream Zip-
dLBM over simulated datasets and to demonstrate the validity of the inference algorithm
presented in the previous sections. The first experiment consists in applying Stream Zip-
dLBM to a specific dataset with evolving block pattern and sparsity to show that it recovers
the data structure in real-time. While the second experiment demonstrates the model selec-
tion procedure on a simulated dataset.

4.1 Introductory example

A simulated dataset with dimension 350 × 300 × 150 has been generated according to our
model to perform this experiment. The simulated dynamics of α, β and π can be seen on
the left-hand side of Figure 2. Concretely, α, β and π are three time series independently
fluctuating around constant trends. Fluctuations are obtained at each time by means of
independent Gaussian distributions with constant variance. The mean levels change when a
change point occurs. The levels of the simulated change points and the values of the simulated
parameter Λ are indicated in Table 1. Based on the mixture proportions α, β, the values of the

latent variables were then simulated through their distributions. Next, we used the sparsity
proportions, π, and the intensity parameter, Λ, to simulate the three-dimensional tensor X as
Zero-Inflated Poisson variables. We then applied the Stream Zip-dLBM inference algorithm
to the simulated dataset, using the actual values of Q = 3 and L = 2 to demonstrate the
model’s ability to recover the parameters. Figure 2 displays the true mixture proportions
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Figure 1: Simulated time instants for change points of α, β and π and simulated values of Λ.

on the left side and the online estimates on the right side. The red dashed lines depict
the simulated and estimated change points, respectively. From these results we see that
Stream Zip-dLBM perfectly recovers the evolution of the mixing proportion and the sparsity
parameter over time, including the change points.

4.2 Model selection experiment

In this experiment, we assess the ability of Stream Zip-dLBM to determine the optimal
number of clusters for rows and columns. Initially, we utilize the Integrated Completed
Likelihood (ICL) criterion to compute the optimal number of clusters on the first slice. This
ensures that the algorithm is initialized with the best possible parameters. Once initialized,
the algorithm maintains consistent results without making any alterations, thus retaining
the optimal number of clusters. To evaluate the effectiveness of the algorithm and verify if it
activates new clusters, we generate a dataset based on the configuration described in Section
4.1. The dataset consists of 3 row clusters (Q=3) and 2 column clusters (L=2). We then apply
Stream Zip-dLBM to this dataset, with maximum values of Qmax = 7 and Lmax = 7. Figure
3 provides an illustrative demonstration of the algorithm’s behavior, specifically regarding
the activation of clusters. It is clear from the figure that the unnecessary clusters remain
empty and that the estimates of the α, β, and π parameters are also accurate. Finally, it is
worth noticing that Stream Zip-dLBM successfully identifies the changing points in α, β and
π over time, despite not using the optimal number of input clusters. Finally, to evaluate the
performance of the model in identifying the correct rows and columns partitions, we use the
adjusted Rand index (ARI) (Rand, 1971). The adjusted Rand index, from a mathematical
point of view, is closely related to the accuracy measure, however it is a commonly used
method for evaluating clustering problems since it can be applied for measuring the similarity
between two partitions even with different number of clusters and it is invariant to label
switching. We also use a measure called CARI, recently introduced by Robert et al. (2021).
This new criterion is based on the Adjusted Rand Index (Rand, 1971) and it was developed
especially for being applied to co-clustering methods. The closer these indexes are to 1,
the more two label vectors are similar to each other. We compared the original matrices Z
and W , with the estimates τ and η given by the output of Stream Zip-dLBM. We evaluate
the performance indexes at each time step, obtaining the following results:
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ARI rows ARI columns CARI
0.99± 0.03 1± 0 0.99± 0.02

Thus, we can conclude that our algorithm satisfyingly identifies the composition of the
original clusters in time.
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(a) True α.
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(b) Estimated α.
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(c) True β.
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(d) Estimated β.
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(e) True π.
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(f) Estimated π.

Figure 2: Evolution of the true (left) and estimated (right) proportions of the parameters α,
β and π, respectively.
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(a) True α.
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(b) Estimated α.
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(c) True β.
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(d) Estimated β.
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(e) True π.
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(f) Estimated π.

Figure 3: Evolution of the true (left) and estimated (right) proportions of the parameters α,
β and π, respectively.
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5 Analysis of the adverse drug reaction dataset

This section focuses on the online application of Stream Zip-dLBM to a large-scale pharma-
covigilance dataset, with the aim of illustrating the potential of the tool for such studies.

5.1 Protocol and data

This section considers a large dataset consisting of an adverse drug reaction (ADR) dataset,
collected by the Regional Center of Pharmacovigilance (RCPV), located in the Univer-
sity Hospital of Nice (France). The RCPV survey an area of three departments totalling
2.3 millions inhabitants. A time horizon of 7 years is considered, from January 1st, 2015
to March 3rd, 2022. Since the data are extremely sparse, we aggregate them summing up
along the time dimension, such that one time instant corresponds to one month. The overall
dataset is made of 39,267 declarations, for which the market name of the drug, the noti-
fied ADR and the reception date are considered. Moreover, we only considered drugs and
ADRs that were notified more than 10 times over the 7 years. The resulting dataset con-
tains 419 drugs, 614 ADRs and 87 time intervals with 23,264 non-zero entries. To prevent
medicines with the same molecule but marketed under different brand names from being
considered more than once, we decided to use the international nonproprietary name (INN)
of the drug (to simplify the comprehension, the INNs would be referred as drugs for the rest
of the study). Looking at Figure 4, it can be clearly noticed that there are at least two peaks
to detect, one in 2017 and the other one in 2021.
In 2017, an unexpected rise of reports for ADRs happened concerning a specific drug called
Lévothyrox®, containing the active compound levothyroxine. This has been marketed in
France for about 40 years as a treatment for hypothyroidism and, in 2017, to correct drug
stability problems, a new formula (with an innocuous change of excipients) was introduced
on the market. The Lévothyrox® case had an extremely high media coverage in France:
Lévothyrox® spontaneous reports represent almost the 90% of all the spontaneous notifica-
tions that the RCPV received in 2017 (Viard et al., 2019). In addition, since the end of the
year 2020, vaccinations against Covid-19 have been introduced. At that time, three vaccines
are licensed in Europe, Comirnaty® was the first Covid-19 vaccine available in France in
December 2020, followed by Moderna® in January 2021 and Vaxzevria® in February 2021.
From Figure 4, one can understand the difficulty to work with such data which contain

signals of very different amplitude. Indeed, behind those very visible effects, many other
ADR signals, somehow less trivial, need to be detected for obvious public health reasons.
In particular, those data also contain ADR reports regarding another public health problem
which occurred in 2017, involving Mirena®, which is here far less visible than Lévothyrox®,
but also led to many avoidable health policy concerns. This is why, we expect Stream Zip-
dLBM to be a useful tool to reveal such hidden signals. It is important to highlight that
the data being used exhibit extreme sparsity, ranging from a minimum of 99.25% to a maxi-
mum of 99.98% per month. To avoid encountering numerical issues, the LSTM network was
employed only for inferring the parameters α and β. Point estimates of π̂ were used in the
inference process.
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Figure 4: Number of declarations received by the pharmacovigilance center from 2015 to 2022,
sorted by month.

5.2 Summary of the results

To initialize the algorithm, as explained in Section 3.4, we computed the ICL criterion on one
data slice, corresponding to the first month, where the optimal numbers of clusters identified
by the model selection criterion are Q̂ = 3 and L̂ = 3. Then, we run Stream Zip-dLBM and
every time a new entry is added in the tensor X. We initiate the model parameters through
the process described in Section 3.4. Also, we ran Stream Zip-dLBM with Qmax = 7 and
Lmax = 7 to allow the model to fill or empty clusters as needed. The process takes a running
time of about one hour on a MacBook Pro, 2020, with a processor of 2,3 GHz Quad-Core
Intel Core i7 and 16 GB of RAM.
In Figure 5a, the frequency of declarations received by the RCPV from 2015 to 2022 is de-
picted, organized by month. Here, the identified change points are represented by dashed
lines. Specifically, the green dashed lines indicate the change points detected in the evolu-
tion of drug clusters, while the blue dashed lines indicate the change points detected in the
evolution of ADR clusters.
Figure 5b displays the estimated Poisson intensity parameter, Λ. This figure only focuses on
the 3 groups of drug clusters, denoted by the letter D, and the 3 groups of ADR clusters,
denoted by the letter A, that have been activated in the inference. This representation pro-
vides valuable insights for model interpretation as it gives an overview of the relationships
between drug clusters and ADR clusters and how they evolve over time. Each color refers
to a drug (rows) or ADR (columns) cluster and the higher is the value in each block, the
strongest is the relationship (i.e the expected number of declarations received in the time
unit) between the related pair of clusters. Looking at this figure, it can be seen that some
clusters are strongly related whereas others are not at all.
Figures 5c and 5d display the estimated mixture proportions of drug clusters (α̂) and ADR
clusters (β̂) respectively. The dashed lines in the figures represent the change points identi-
fied by the BOCD algorithm.
Figure 6 illustrates the estimated sparsity parameter, with the y-axis scale ranging from 0.99
to 1. It is worth noting that no change points have been detected in π̂ because the values
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Figure 5: Histogram of declarations over time, with the change points detected for the drugs
and ADRs (top left) and estimated Poisson intensities, each color represents a different drug
(ADR) cluster (top right); evolution of the estimates of α̂ (bottom left); evolution of the
estimates of β̂ (bottom right).

did not exhibit sufficient variability.
By examining the information provided in Figures 5b, 5c, and 5d, we can observe an in-
teresting pattern. The clusters with the highest intensity are also the least populated. For
instance, cluster D3 (drug cluster) demonstrates a remarkably high intensity of interactions
with clusters A1 and A2 (ADR clusters). Despite its high intensity, cluster D3 appears to
be relatively small in Figure 5c. This phenomenon is attributed to the presence of drugs
associated with significant health crises that happened during the reporting period. Notably,
Mirena® in the first half of 2017, Lévothyrox® in the latter part of 2017, and Covid-19
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vaccines throughout 2021 were the primary drivers of these crises. Interestingly, each crisis
period is marked by a detected change point in both the drug cluster proportions (Figure 5c)
and ADR cluster proportions (Figure 5d).
Similarly, by analyzing the composition of clusters A1 and A2, it is possible to identify which
ADRs were the most reported in each of the aforementioned crises. For instance, from the
composition of cluster A2 we notice that the most reported side effects during the Mirena®

health crisis are mostly hormonal ones, such as anxiety, heat shock, and aggressive behavior.
Then, looking at Figure 5d, during the Lévothyrox® health crisis we notice a peak in the A3
cluster of adverse drug reactions, probably because the great media coverage that the scandal
had in those years made people declare the most disparate side effects. Also, we see that in
2021 there is another peak, corresponding to the period of the Covid-19 vaccination. Here,
the adverse drug reactions found in cluster A1 are mostly linked to problems related to the
injection of the vaccine (e.g. arm pain, arm inflammation, skin reaction) or flu syndrome as
a result. Cluster D2 presents an interesting contrast as it remains empty until August 2017.
Subsequently, it contains a few but widely used drugs that are frequently reported, such as
paracetamol, amoxicillin, and some popular antidepressants. The evolution of cluster D2’s
proportion, as shown in Figure 5c, aligns with the change points identified by the algorithm.
This cluster begins to populate after the Lévothyrox® health crisis, with a peak in the early
stages of the Covid-19 crisis, before the introduction of the vaccines. From Figure 5b, it
can be observed that the intensity of interactions with clusters of undesirable effects does
not differ significantly for cluster D2. Cluster D1, on the other hand, exhibits remarkably
low interaction intensities and is densely populated by all other drugs. Initially, from the
beginning of the analysis until 2017, it contains all drugs. However, after 2017, it includes
only drugs with a low frequency of reports. From Figure 5c, we see that the evolution of
Cluster D1 over time aligns with the change points identified by the algorithm.
Upon examining Figures 5b and 5d, a distinct behavior is observed in the clusters of ad-
verse effects. Initially, until June 2017, cluster A1 contains all adverse effects. However, it
gradually empties over time. Specifically, during the Mirena® crisis, only the adverse effects
not associated with that particular health scandal remain in cluster A1. Subsequently, a
significant change in the cluster membership occurs following the change point identified in
October 2017. From this point onward, the number of ADRs in cluster A1 decreases signif-
icantly, and they are specifically related to Lévothyrox® (e.g. hair loss, cramps, insomnia,
etc.). After the Lévothyrox® crisis, cluster A1 becomes empty until the subsequent change
point detected in January 2021. From this moment until the peak of Covid-19 vaccine reports
in February 2022, cluster A1 includes the main adverse effects reported for Covid-19 vaccines
(e.g. pain at the vaccination site, skin rash, pericarditis, etc.).
Also, from Figure 5d we clearly notice as the Lévothyrox® crisis marked a cornerstone in

the history of pharmacovigilance, probably because from this moment on people realized its
importance and began to declare side effects of drugs and vaccines much more frequently.
Lastly, Figure 6 provides the estimated evolution of the sparsity parameter over time. The
y-axis scale is set from 0.99 to 1 in order to visualize the changes over time. Notably, no
change points were detected in the estimated parameter π̂ due to insufficient variability in
the values. Initially, in 2015, the sparsity is recorded at 99.83%. As we approach the peak in
2017, the number of declarations increases, leading to a decrease in sparsity, reaching a local
minimum of 99.38%. Subsequently, as we approach the peak related to Covid-19 vaccines,
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Figure 6: Evolution of the estimates π̂.

the sparsity level reaches its global minimum at 99.25% in March 2021.
As a summary, Stream Zip-dLBM method successfully identified meaningful clusters within
the extensive initial data matrix of ADR reports. This provides a proof of concept of the
possible use of this algorithm to detect public safety events from streams of ADR data.

6 Conclusions

This paper is born out of the need to analyze and summarize observations and features of
a dynamic matrix in an online setting for an application to pharmacovigilance. We have
proposed an online dynamic co-clustering technique that enables simultaneous clustering of
rows and columns along the time dimensions. As observations and features can change their
cluster memberships over time, detecting structural changes in cluster interactions through-
out the time period becomes crucial. We have introduced a generative zero-inflated dynamic
latent block model as online extension of Zip-dLBM. The time modeling approach relies on
three systems of ordinary differential equations. Inference is conducted using a Variational
EM algorithm, combined with stochastic optimization of LSTM network parameters for the
dynamic systems. Also, we added an online change points detection method to the process
such that Stream Zip-dLBM is able to detect abrupt changes and create alerts in real time.
The performance of our approach is evaluated through applications to some simulated data
scenarios. Then, Stream Zip-dLBM was fit to a large-scale dataset supplied by the Regional
Center of Pharmacovigilance of Nice (France). In this context, the model provided mean-
ingful online segmentation of drugs and adverse drug reaction. Its potential use by medical
authorities for identifying meaningful pharmacovigilance patterns or emerging public health
concerns looks very promising. In fact, we are actively developing a web platform based on
the Stream Zip-dLBM model for the Regional Center of Pharmacovigilance in Nice, France.
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Once implemented, it will regularly run on a center machine, automatically fitting the model
to incoming data. The goal is to promptly identify structural changes and send email notifi-
cations with concise reports. The software effectiveness will be assessed over 6 months, with
plans to expand its use nationally. The online inference algorithm, combined with change
point detection, allows Stream Zip-dLBM to operate in real-time, continuously analyzing the
flow of ADR declarations and triggering alerts as soon as a change point is detected. This
provides an opportunity for further investigation and intervention by medical authorities.
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