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We analyze a problem of optimal control of the Fokker-Planck equation with state constraints in the Wasserstein space of probability measures. We give first-order necessary conditions for optimality in the form of a mean-field game system of partial differential equations associated with an exclusion condition. Under suitable geometric conditions on the constraint we prove that optimal controls are Lipschitz continuous.

Introduction

This paper is devoted to the study of an optimal control problem of the Fokker-Planck equation under state constraints on the space of probability measures. The formulation of the problem is the following. We seek to minimize a cost Jpα, mq :"

ż T 0 ż R d L `x, αpt, xq ˘dmptqpxqdt `ż T 0 F `mptq ˘dt `G`m pT q ˘(1)
over pairs pα, mq with m P Cpr0, T s, P 2 pR d qq and α P L 2 dtbmptq `r0, T s ˆRd , R d ˘(the control) satisfying in the sense of distributions the Fokker-Planck equation:

B t m `divpαmq ´∆m " 0 (2) 
with the initial condition mp0q " m 0 P P 2 pR d q. The flow of probability measures m is also constrained to satisfy the inequality Ψ `mptq ˘ď 0, @t P r0, T s

for some function Ψ : P 2 pR d q Ñ R satisfying additional conditions. Here P 2 pR d q is the set of probability measures over R d with finite second order moment. The functions L : R d ˆRd Ñ R and F : P 2 pR d q Ñ R are the running costs and g : P 2 pR d q Ñ R is the final cost.

Our first motivation comes from the theory of stochastic control. The corresponding problem is to minimize:

E "ż T 0 L `Xt , α t ˘dt `ż T 0 F `LpX t q ˘dt `G`L pX T q ˘
over solutions of the stochastic differential equation dX t " α t dt `?2dB t , where the controller starts from a random position X 0 with law LpX 0 q " m 0 and controls their drift α t under the constraint ΨpLpX t qq ď 0 for all t P r0, T s. In this context, it is well-known that LpX t q, the law of X t , solves Equation [START_REF] Bonnet | A Pontryagin Maximum Principle in Wasserstein Spaces for Constrained Optimal Control Problems[END_REF] in the sense of distributions and therefore the stochastic control problem reduces to a problem of optimal control of the Fokker-Planck equation (see [START_REF] Daudin | Optimal Control of Diffusion Processes with Terminal Constraint in Law[END_REF] and the references therein). Stochastic optimal control problems with constraints on the probability distribution of the output have raised some interest in the past few years in connection with quantile hedging in [START_REF] Föllmer | Quantile hedging[END_REF], stochastic target problems with [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF][START_REF] Bouchard | Stochastic Target Problems with Controlled Loss[END_REF] and stochastic control problems with expectation constraints -see [START_REF] Chow | On Dynamic Programming Principle for Stochastic Control Under Expectation Constraints[END_REF][START_REF] Guo | Portfolio optimization with a prescribed terminal wealth distribution[END_REF][START_REF] Guo | Calibration of local-stochastic volatility models by optimal transport[END_REF][START_REF] Pfeiffer | Optimality conditions in variational form for non-linear constrained stochastic control problems[END_REF][START_REF] Pfeiffer | Duality and approximation of stochastic optimal control problems under expectation constraints[END_REF] -to name a few. This problem was recently addressed in [START_REF] Frankowska | Necessary optimality conditions for local minimizers of stochastic optimal control problems with state constraints[END_REF] where the authors give first and second order necessary optimality conditions for stochastic control problems with state constraints in expectation form.

Our second motivation for studying constraints in law is that they arise, at least formally, as limit of symmetric, almost-sure constraints for stochastic control problems involving a large number of agents. The pre-limit problem would take the form inf

pα i,N t q 1ďiďN E « ż T 0 1 N N ÿ i"1 LpX i t , α i t qdt `ż T 0 Fp mN t qdt `Gp mN T q ff (4) $ ' & ' % dX i t " bpX i t , mN t , α i t qdt `?2dB i t , mN t " 1 N N ÿ i"1
δ X i t X 1 0 , . . . , X N 0 i.i.d. " m 0 subject to Ψp mN t q ď 0 @t P r0, T s, almost-surely.

Almost-sure constraints in the case of non-degenerate diffusions are known to be difficult to handle.

In particular, as shown in [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints -1. The model problem[END_REF][START_REF] Leonori | The boundary behavior of blow-up solutions related to a stochastic control problem with state constraint[END_REF], the value function and the optimal controls blow-up near the boundary. We expect the analysis of Problem (4) to simplify by taking a limit as N Ñ `8.

Finally, we mention a motivation from the theory of large deviations for weakly interacting particles. Indeed, the asymptotic of rare event is understood, in this setting, by the value of a mean-field control problem with constraints in law. More precisely, if one considers the particle system # dX i,N t " bpX i,N t , mN t qdt `?2dB i,N

t mN t " 1 N ř N i"1 δ X i,N t , X i,N 0 " x i,N 0 P R d , lim N Ñ`8
mN 0 " m 0 , it is known from the seminal work of Dawson and Gärtner [START_REF] Dawson | Large deviations from the mckean-vlasov limit for weakly interacting diffusions[END_REF] that, under appropriate assumptions on b and Ψ the behavior as N Ñ `8 of the first exit time from tΨ ď 0u for the empirical measure mN t when mN 0 Ñ m 0 is given by lim

N Ñ`8 1 N log P « Ψ ˜1 N N ÿ i"1
δ X i t ¸ď 0, @t P r0, T s ff " ´inf pα,mq

ż T 0 ż R d 1 2 |αpt, xq| 2 dmptqpxqdt.
with the infimum taken over pα, mq solution to " B t m `divprbpx, mptqq `αpt, xqs mq ´∆m " 0 in p0, T q ˆRd , mp0q " m 0 .

under the constraint: Ψpmptqq ď 0, @t P r0, T s.

We refer to the forthcoming [START_REF] Daudin | Mean-Field Limit for Stochastic Control Problems under State Constraint[END_REF] for a precise discussion about these connections.

Given the type of constraints we are studying, here it is convenient to state our problem directly as an optimal control problem in the Wasserstein space. Such problems have been studied recently but mostly for control problems for the continuity equation (namely without diffusion term). Different approaches have been considered. In [START_REF] Jimenez | Optimal control of multiagent systems in the Wasserstein space[END_REF][START_REF] Marigonda | Mayer control problem with probabilistic uncertainty on initial positions[END_REF] the authors use the dynamic programming approach and prove that the value function is the viscosity (in a sense adapted to the infinite dimensional setting) of an HJB equation. Whereas in [START_REF] Bonnet | A Pontryagin Maximum Principle in Wasserstein Spaces for Constrained Optimal Control Problems[END_REF][START_REF] Bonnet | Necessary Optimality Conditions for Optimal Control Problems in Wasserstein Spaces[END_REF] the authors prove some adapted forms of the Pontryagin maximum principle. Notice that optimal control problems for the Fokker-Planck equation were previously considered in [START_REF] José | On a mean field optimal control problem[END_REF][START_REF] Fleig | Optimal Control of the Fokker-Planck Equation with Space-Dependent Controls[END_REF] but without constraint. Here we emphasize that the constraint is a smooth function defined on the Wasserstein space. In particular, our results do not cover the case of local constraints where the constraint acts on the density (when it exists) of m. This latter problem was addressed in [START_REF] Cardaliaguet | First order mean field games with density constraints: Pressure equals price[END_REF][START_REF] Di | Uniqueness issues for evolution equations with density constraints[END_REF][START_REF] Mészáros | A variational approach to second order mean field games with density constraints : The stationary case[END_REF][START_REF] Mészáros | On The Variational Formulation Of Some Stationary Second-Order Mean Field Games Systems[END_REF][START_REF] Santambrogio | Advection-Diffusion Equations With Density Constraints[END_REF].

Here we follow the path initiated in [START_REF] Daudin | Optimal Control of Diffusion Processes with Terminal Constraint in Law[END_REF] for a problem with terminal constraint and prove some optimality conditions in the form of a coupled system of partial differential equations associated with an exclusion condition. One of the equations is a Fokker-Planck equation satisfied by the solution of the problem. The other equation is a Hamilton-Jacobi-Bellman equation which is satisfied by an adjoint state, and from which we derive an optimal control. Besides these two equations, the exclusion condition reflects the effect of the constraint on the system. Our strategy is to proceed by penalization. We solve the penalized problem in a way that is closely related to Mean Field Game theory. Indeed, when the game has a potential structure -see for instance [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF][START_REF] Cardaliaguet | Second order mean field games with degenerate diffusion and local coupling[END_REF][START_REF] Lasry | Mean field games[END_REF][START_REF] Orrieri | A variational approach to the mean field planning problem[END_REF] -the system of partial differential equations which describes the value function of a typical infinitesimal player and the distribution of the players can be obtained as optimality conditions for an optimal control problem for the Fokker-Planck equation. With this optimality conditions at hand we proceed to show that solutions to the penalized problem -when the penalization term is large enoughstay inside the constraint at all times and are therefore solutions to the constrained problem. This second step is inspired by ideas in finite dimensional optimal control theory (see [START_REF] Frankowska | Optimal control under state constraints[END_REF]). In particular we follow a method used in [START_REF] Cannarsa | Regularity Properties of Attainable Sets Under State Constraints[END_REF][START_REF] Cannarsa | C1;1-smoothness of constrained solutions in the calculus of variations with application to mean field games[END_REF]. The idea is to look at local maximum points of the function t Þ Ñ Ψpmptqq for some solution m of the penalized problem and prove that they cannot satisfy Ψpmptqq ą 0 when the penalization is strong enough. To this end we compute the second order derivative of t Þ Ñ Ψpmptqq thanks to the optimality conditions previously proved. An interplay between the convexity of the Hamiltonian of the system, a tranversality assumption on the constraint and various estimates on the solutions of the optimality conditions of the penalized problem allows us to conclude. As a by-product of this method we can show that the solutions of the constrained problem enjoy the same regularity as the solutions of the penalized problem. In particular optimal controls are proved to be Lipschitz continuous. This result might seem surprising since the presence of state constraints generally leads to optimal controls which behave badly in time (see [START_REF] Frankowska | Optimal control under state constraints[END_REF] and the references therein). However it is reminiscent of classical results in finite dimensional optimal control theory in the presence of suitable regularity, growth and convexity assumptions as in see [START_REF] Galbraith | Regularity of optimal controls for state constrained problems[END_REF][START_REF] Hager | Lipschitz Continuity for Constrained Processes[END_REF].

The rest of the paper is organized as follows. In Section 1 we introduce the notations and state some useful preliminary results on the Fokker-Planck equation and the HJB equation on the one hand, and on the differentiability of maps defined on the space of measures on the other hand. We also state a form of Itô's lemma for flows of probability measures. In Section 2 we state the standing assumptions and our main results. In Section 3 we obtain optimality conditions for the penalized problem. In Section 4 we prove our main theorem. In section 5 we extend our results to a more general setting. Finally, we postpone to Section A.2 some technical results for the Hamilton-Jacobi equation satisfied by the adjoint state, that we use throughout the paper.

Notation For a map u defined on r0, T s ˆRd we will frequently use the notation uptq to denote the function x Þ Ñ upt, xq. Notice that uptq is therefore a function defined on R d . If a function u defined on r0, T s ˆRd is sufficiently smooth, we denote by B t u the partial derivative with respect to t and by Du, ∆u :" divDu, D 2 u (if u is a scalar function) or Du, Ý Ñ ∆u :" Ý Ñ divDu if u is vectorvalued, the derivatives with respect to x. The Wasserstein space of Borel probability measures over R d with finite moment of order r ě 1 is denoted by P r pR d q. It is endowed with the r-Wasserstein distance d r . The space of n-times differentiable bounded real functions over R d with continuous and bounded derivatives is denoted by C n b pR d q. Given m P Cpr0, T s, P 2 pR d qq we denote by L 2 dtbmptq pr0, T s ˆRd , R d q the space of R d -valued, mptq b dt-square-integrable functions over r0, T s ˆRd . The space of finite Radon measures over r0, T s is denoted by Mpr0, T sq, the subset of non-negative measures by M `pr0, T sq and the set of R d -valued Borel measures over r0, T sˆR d with finite total variation by Mpr0, T s ˆRd , R d q. The space of symmetric matrices of size d is denoted by S d pRq. We denote by C 1,2 b pr0, T s ˆRd q the space of bounded functions with one bounded continuous derivative in time and two bounded continuous derivatives in space. Finally we denote by W 1,8 pr0, T sˆR d q the subspace of L 8 pr0, T sˆR d q consisting of functions which have one bounded distributional derivative in space and one bounded distributional derivative in time. For n ě 1 we denote by E n the subspace of C n pR d q consisting of functions u such that

}u} n :" sup xPR d |upxq| 1 `|x| `n ÿ k"1 sup xPR d ˇˇD k upxq ˇˇă `8.
Similarly we define E n`α for n ě 1 and α P p0, 1q to be the subset of E n consisting of functions u satisfying

}u} n`α :" }u} n `sup x‰y |D n upxq ´Dn upyq| |x ´y| α ă `8.
For α P p0, 1q we say that u P Cpr0, T sˆR d q belongs to the parabolic Hölder space C p1`αq{2,1`α pr0, T sR d q if u is differentiable in x and }u} is finite. Finally we will use the heat kernel P t associated to ´∆ defined, when it makes sense, by

P t f pxq :" ż R d 1 p4πtq d{2 e ´|x´y| 2 4t f pyqdy.

Preliminaries

We start by introducing the main protagonists of this paper. The first one is the Fokker-Planck equation.

The Fokker-Planck equation. Given m P Cpr0, T s, P 2 pR d qq and α P L 2 dtbmptq `r0, T s ˆRd , R d ˘, we say that pm, αq satisfies the Fokker-Planck equation

B t m `divpαmq ´∆m " 0 (5) 
if for all ϕ P C 8 c pp0, T q ˆRd q we have

ż T 0 ż R d rB t ϕpt, xq `Dϕpt, xq.αpt, xq `∆ϕpt, xqs dmptqpxqdt " 0. (6) 
Using an approximation argument similar to [START_REF] Trevisan | Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients[END_REF] Remark 2.3, we can extend the class of test functions to C 1,2 b pr0, T s ˆRd q and for all ϕ P C 1,2 b pr0, T s ˆRd q and all t 1 , t 2 P r0, T s it holds

ż R d ϕpt 2 , xqdmpt 2 qpxq " ż R d ϕpt 1 , xqdmpt 1 qpxq `ż t 2 t 1 ż R d rB t ϕpt, xq `Dϕpt, xq.αpt, xq `∆ϕpt, xqs dmptqpxqdt.
Throughout the paper, we will repeatedly use the following properties of solutions to the Fokker-Planck equation. The proofs are given in the appendix.

Proposition 1.1. Assume that m P Cpr0, T s, P 2 pR d qq and α P L 2 dtbmptq `r0, T s ˆRd , R d ˘satisfy the Fokker-Planck equation [START_REF] Bouchard | Stochastic Target Problems with Controlled Loss[END_REF], starting from the initial position m 0 P P 2 pR d q then,

sup tPr0,T s ż R d |x| 2 dmptqpxq `sup t‰s d 2 2 pmptq, mpsqq |t ´s| ď C for some C " C ´żR d |x| 2 dm 0 pxq, ż T 0 ż R d |αpt, xq| 2 dmptqpxqdt ¯ą 0.
We also have the following compactness result.

Proposition 1.2. Assume that, for all k ě 1, pm k , α k q solves the Fokker-Planck equation (5) starting from m 0 P P 2 pR d q and satisfies the uniform energy estimate

ż T 0 ż R d |α k pt, xq| 2 dm k ptqpxqdt ď C,
for some C ą 0 independent of k. Then, for any δ P p0, 1q, up to taking a sub-sequence, pm k , α k m k q converges in C 1´δ 2 pr0, T s, P 2´δ pR d qq ˆMpr0, T s ˆRd , R d q toward some pm, ωq. The curve m belongs to C 1{2 pr0, T s, P 2 pR d qq, ω is absolutely continuous with respect to mptq b dt, it holds that

ż T 0 ż R d ˇˇˇd ω dmptq b dt pt, xq ˇˇˇ2 dmptqpxqdt ď lim inf kÑ`8 ż T 0 ż R d |α k pt, xq| 2 dm k ptqpxqdt
and, finally, pm, dω dtbdm q solves the Fokker-Planck equation (5) starting from m 0 .

The HJB equation The second protagonist of this paper is the following Hamilton-Jacobi-Bellman equation. It involves the Hamiltonian H : R d ˆRd Ñ R d of the system. For the following definition to make sense and the next theorem to hold, H is assumed to satisfy Assumption (AH), introduced in the next section.

Definition 1.1. Let f P L 1 pr0, T s, E n q and g P E n`α for some n ě 2. We say that u P L 1 pr0, T s, E n q is a solution to Let us point out that a solution u P Cpr0, T s, E n q for n ě 3 is differentiable in time whenever f is continuous and, at these times, the HJB equation is satisfied in the usual sense.

" ´Bt u `Hpx, Duq ´∆u " f in r0, T s ˆRd , upT, xq " g in R d , (7) 
We introduce this notion to handle solutions which are smooth in x at each time but not necessarily regular in the time variable.

The following theorem is proved in Section A.2.

Theorem 1.1. Take n ě 2. Assume that f belongs to L 1 pr0, T s, E n q, g belongs to E n`α and H satisfies Assumption (AH) then,

• The HJB equation (7) admits a unique solution u in Cpr0, T s, E n q in the sense of definition 1.1 and it satisfies the estimate

sup tPr0,T s }uptq} n ď Cp ż T 0 }f ptq} n dt, }g} n q.
• Assume that pf m , g m q belongs to L 1 pr0, T s, E n q ˆEn`α for all m ě 1 and that f m converges to f in L 1 pr0, T s, E n q and g m converges to g in E n`α . Let u m be the solution to [START_REF] Brunick | Mimicking an Itô process by a solution of a stochastic differential equation[END_REF] with data pf m , g m q, then u m converges to u in L 8 pr0, T s, E n q.

Differentiability on the Wasserstein space and chain rule for flows of probability measures. We say that a map U : P 2 pR d q Ñ R m is C 1 if there exists a jointly continuous map δU δm : P 2 pR d q ˆRd Ñ R m such that, for any bounded subset K Ă P 2 pR d q, x Ñ δU δm pm, xq has at most quadratic growth in x uniformly in m P K and such that, for all m, m 1 P P 2 pR d q,

U pm 1 q ´U pmq "

ż 1 0 ż R d δU δm pp1 ´hqm `hm 1 , xqdpm 1 ´mqpxqdh.
The function δU δm is defined up to an additive constant and we adopt the normalization convention

ż R d δU δm pm, xqdmpxq " 0.
In the terminology of [START_REF] Carmona | Probabilistic theory of mean field games with applications I[END_REF] it means that U admits a linear functional derivative. When the map

x Þ Ñ δU δm pm, xq is differentiable we define the intrinsic derivative of U D m U pm, xq :" D x δU δm pm, xq.
The following chain rule -formulated in terms of SDEs-is proved (under more general assumptions) in [START_REF] Carmona | Probabilistic theory of mean field games with applications I[END_REF] Theorem 5.99. Proposition 1.3. Take m P Cpr0, T s, P 2 pR d qq and α P L 2 dtbmptq `r0, T s ˆRd , R d ˘such that pm, αq is a solution of the Fokker-Planck equation (5) and suppose that U : P 2 pR d q ˆRd Ñ R is C 1 with δU δm satisfying

x Þ Ñ δU δm pm, xq P C 2 pR d q, @m P P 2 pR d q with pm, xq Þ Ñ D m U pm, xq and pm, xq Þ Ñ D x D m U pm, xq being bounded on P 2 pR d q ˆRd and jointly continuous. Then, for all t P r0, T s, it holds that

U pmptqq " U pmp0qq `ż t 0 ż R d D m U pmpsq, xq.αps, xqdmpsqpxqds `ż t 0 ż R d div x D m U pmpsq, xqdmpsqpxqds.
Proposition 5.48 of [START_REF] Carmona | Probabilistic theory of mean field games with applications I[END_REF] ensures that U satisfies the assumptions of Theorem 5.99.

Main results and assumptions

First, consider the unconstrained problem inf pα,mq Jpα, mq,

where Jpα, mq :"

ż T 0 ż R d L `x, αpt, xq ˘dmptqpxqdt `ż T 0 F `mptq ˘dt `G`m pT q ȋs
the total cost and the infimum runs over all pα, mq such that

$ ' ' & ' ' % m P Cpr0, T s, P 2 pR d qq, α P L 2 dtbmptq pr0, T s ˆRd , R d q, B t m `divpαmq ´∆m " 0 in p0, T q ˆRd , mp0q " m 0 , (8) 
where the Fokker-Planck equation is understood in the sense of distributions. Here, the Lagrangian L is defined by Lpx, qq :" sup

pPR d
t´p.q ´Hpx, pqu and the data are the finite horizon T ą 0, the Hamiltonian H : R d ˆRd Ñ R, the mean-field costs F : P 2 pR d q Ñ R and G : P 2 pR d q Ñ R and the initial measure m 0 P P 2 pR d q. The above data are supposed to satisfy the following conditions for some fixed integer n ě 3. For U " F, G, the map U :

P 2 pR d q Ñ R d satisfies
U is a bounded from below, C 1 map and δU δm belongs to CpP 2 pR d q, E n`α q.

(Ureg)

$ ' ' ' ' ' ' & ' ' ' ' ' ' % H belongs to C n pR d ˆRd q.
H and its derivatives are bounded on sets of the form R d ˆBp0, Rq for all R ą 0. For some C 0 ą 0, for all px, pq P R d ˆRd , |D x Hpx, pq| ď C 0 p1 `|p|q. For some µ ą 0 and all px, pq P R d ˆRd ,

1 µ I d ď D 2
pp Hpx, pq ď µI d .

(AH)

These assumptions imply in particular that H has quadratic growth with respect to the p-variable.

Taking convex conjugates, we see that L satisfies a similar growth condition: for some C ą 0 and all px,

qq P R d ˆRd , 1 C |q| 2 ´C ď Lpx, qq ď C 4 |q| 2 `C,
and the first term in the total cost J looks very much like a kinetic energy.

A typical example of functions satisfying the condition (Ureg) is the class of cylindrical functions of the form

Fpmq " F ˆżR d f 1 pxqdmpxq, . . . , ż R d f k pxqdmpxq ˙,
where F and the f i , 1 ď i ď k are smooth with bounded derivatives. Assumption (Ureg) also implies that pm, xq Ñ D m U pm, xq is uniformly bounded in P 2 pR d q ˆRd and therefore, a simple application of Kantorovitch-Rubinstein duality for d 1 proves that U is Lipschitz continuous with respect to this distance.

Under the above assumptions on F, G and H it is well-known (see [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF][START_REF] Daudin | Optimal Control of Diffusion Processes with Terminal Constraint in Law[END_REF]), that solutions pm, αq of Problem (uP) exist and satisfy αpt, xq " ´Dp Hpx, Dupt, xqq with pm, uq solution to the Mean-Field Game (MFG) system of partial differential equations

$ ' ' ' & ' ' ' % ´Bt upt, xq `H`x , Dupt, xq ˘´∆upt, xq " δF δm `mptq, x ˘in p0, T q ˆRd , B t m ´div `Dp Hpx, Dupt, xqqm ˘´∆m " 0 in p0, T q ˆRd , upT, xq " δG δm `mpT q, x ˘in R d , mp0q " m 0 , (9) 
where the unknown pu, mq belong to C 1,2 pp0, T q ˆRd q.

The purpose of the present work is to investigate the effect of a state constraint Ψ `mptq ˘ď 0, @t P r0, T s, on the problem above. Here Ψ : P 2 pR d q Ñ R satisfies the regularity assumption (Ureg) and is convex for the linear structure of P 2 pR d q:

Ψ is convex. (APsiConv)
We also need to assume that the problem is initialized at a point m 0 in the interior of the constraint that is Ψpm 0 q ă 0.

(APsiInside)

In addition to the previous assumptions we will ask for second-order differentiability with respect to the measure variable for Ψ.

$ ' ' ' & ' ' ' % For all x P R d , m Þ Ñ δΨ δm pm, xq is C 1 with px, yq Þ Ñ δ 2 Ψ δm 2 pm, x, yq :" δ 2 Ψ δm 2 pm, xqpyq in C 2 pR d ˆRd
q for all m P P 2 pR d q and δ 2 Ψ δm 2 pm, x, yq and its derivatives being jointly continuous and bounded in P 2 pR d q ˆRd ˆRd .

(APsiC2) Notice that Assumption (APsiC2) implies in particular (see for instance [START_REF] Carmona | Probabilistic theory of mean field games with applications I[END_REF] Remark 5.27) that the map pm, xq Þ Ñ D m Ψpm, xq is uniformly Lipschitz continuous over P 1 pR d q ˆRd . Finally we require the following geometric assumption on the constraint.

ż R d |D m Ψpm, xq| 2 dmpxq ‰ 0 whenever Ψpmq " 0. (APsiTrans)
The transversality assumption (APsiTrans) is not necessary to get the optimality conditions however it is the key assumption to obtain the time regularity of optimal controls. Notice that (APsiTrans) is satisfied as soon as Ψ is displacement convex, there exists m 0 P P 2 pR d q such that Ψpm 0 q ă 0 and Ψ admits an intrinsic derivative.

An example of constraint Ψ : P 2 pR d q Ñ R satisfying Assumptions (Ureg), APsiConv and APsiC2 is Ψpmq :" We can finally state the main problem of interest in this paper:

inf pα,mq ż T 0 ż R d L `x, αpt, xq ˘dmptqpxqdt `ż T 0 Fpmptqqdt `GpmpT qq (P)
where the infimum runs over the pairs pm, αq satisfying ( 8) and the state constraint Ψpmptqq ď 0, @t P r0, T s.

Over the course of the paper we will introduce several auxiliary problems. The main one is the following. For ǫ, δ ą 0 the penalized problem (P ǫ,δ ) is inf pm,αq J ǫ,δ pα, mq

(P ǫ,δ )
where the infimum runs over all pm, αq satisfying (8) (but not necessarily the state constraint) and J ǫ,δ is defined by

J ǫ,δ pα, mq :" ż T 0 ż R d L `x, αpt, xq ˘dmptqpxqdt `ż T 0 F `mptq ˘dt `1 ǫ ż T 0 Ψ ``mptq ˘dt `G`m pT q ˘`1 δ Ψ ``mpT q " Jpα, mq `1 ǫ ż T 0 Ψ ``mptq ˘dt `1 δ Ψ ``mpT q ˘.
Here and in the following, Ψ `pmq " Ψpmq _ 0 " maxpΨpmq, 0q. Notice that Problem (P ǫ,δ ) is very similar to Problem (uP) although we have to deal with the non-differentiability at 0 of the map r Þ Ñ maxpr, 0q. We now state our main results. The first one is not expected without Assumption (APsiTrans). Roughly speaking, it asserts that optimal solutions to the penalized problems (P ǫ,δ ) stay inside the constraint when the penalization is strong enough.

Theorem 2.1. Take n ě 3. Assume that (AH) holds for H, (Ureg) holds for F and G. Assume further that Ψ satisfies Assumptions (Ureg), (APsiConv), (APsiInside), (APsiC2) and (APsiTrans). Then there exist ǫ 0 , δ 0 ą 0 depending on m 0 only through the value Ψpm 0 q such that, for all pǫ, δq in p0, ǫ 0 q ˆp0, δ 0 q Problems (P ǫ,δ ) and (P) have the same solutions.

As a consequence we find the following optimality conditions for the optimal control problem with constraint.

Theorem 2.2. Under the same assumptions as Theorem 2.1, Problem (P) admits at least one solution and, for any solution pα, mq there exist u P Cpr0, T s, E n q, ν P L 8 pr0, T sq and η P R `such that α " ´Dp Hpx, Duq

and

$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % ´Bt upt, xq `H`x , Dupt, xq ˘´∆upt, xq " νptq δΨ δm `mptq, x ˘`δF δm `mptq, x ˘in p0, T q ˆRd , B t m ´div `Dp Hpx, Dupt, xqqm ˘´∆m " 0 in p0, T q ˆRd , upT, xq " η δΨ δm `mpT q, x ˘`δG δm `mpT q, x ˘in R d , mp0q " m 0 , (11) 
where the Fokker-Planck equation is understood in the sense of distributions and u solves the HJB equation in the sense of Definition (1.1) and the Lagrange multipliers ν and η satisfy νptq "

" 0 if Ψpmptqq ă 0 νptq P R `if Ψpmptqq " 0, (12) η " " 0 if ΨpmpT qq ă 0 η P R `if ΨpmpT qq " 0. ( 13 
)
In particular optimal controls are globally Lipschitz continuous in time and space.

If we also assume that F and G are convex in the measure variable, then the above conditions are sufficient conditions: if pm, αq satisfies Ψpmptqq ď 0 for all t P r0, T s and if there exists pu, ν, ηq such that (10), ( 11), ( 12) and (13) hold then pα, mq is a solution to (P).

The strength of the above result relies on the regularity of the Lagrange multiplier ν associated to the constraint that for all t P r0, T s, Ψpmptqq ď 0. Indeed we would a priori expect ν to be a finite Radon measure over r0, T s but here we find that ν belongs to L 8 pr0, T sq. As a consequence -and as explained in Remark 3 below-optimal controls are Lipschitz continuous in time.

We complete this section with a few comments.

Remark 1. Arguing as in [START_REF] Cannarsa | C1;1-smoothness of constrained solutions in the calculus of variations with application to mean field games[END_REF], in the proof of Theorem 3.1, we can use the expression of d 2 dt 2 Ψpmptqq given by Proposition 4.2 to express νptq as a (non-local) feedback function of Duptq, D 2 uptq and mptq.

Remark 2. Computing the cost of an optimal control we see that the value of the problem denoted by Ū pm 0 q is given by

Ū pm 0 q " ż R d up0, xqdm 0 pxq `ż T 0 Fpmptqqdt `GpmpT qq
for any solution pm, ´Dp Hpx, Duqq of (P).

Remark 3. Differentiating the HJB equation with respect to x shows that Du actually belongs to W 1,8 pr0, T sˆR d , R d q and since Du is also continuous and D p H Lipschitz continuous on R d ˆBp0, Rq for all R ą 0, we get that α is Lipschitz continuous. In particular the Stochastic Differential Equation

X t " X 0 `ż t 0 αps, X s qds `?2B t
where X 0 " m 0 , admits a unique strong solution and we can proceed as in [START_REF] Daudin | Optimal Control of Diffusion Processes with Terminal Constraint in Law[END_REF] to find strong solutions to the stochastic analog of Problem (P) (as stated in the introduction).

Remark 4. Ideally we would like to consider constraints of the form Ψpmq " ż R d |x| 2 dmpxq ´κ (which does not satisfy the growth conditions of Assumptions (Ureg) and (APsiC2)) for some κ ą 0. However this would significantly increase the technicality of the paper and we leave this case for future research. Among other difficulties we would have to solve the backward HJB equation in [START_REF] Cardaliaguet | First order mean field games with density constraints: Pressure equals price[END_REF] when the source term has a quadratic growth in the space variable.

Remark 5. Our results could be naturally extended to multiple (possibly time dependent) equality or inequality constraints under suitable qualification conditions but we focus on this case of just one inequality constraint for the sake of clarity in an already technical paper.

Optimality conditions without Assumptions (APsiC2) and (APsiTrans). When Assumptions (APsiC2) and (APsiTrans) are not satisfied we do not expect the conclusions of Theorem 2.1 to hold and therefore optimal controls might not be Lipschitz continuous. However, we can pass to the limit as ǫ, δ go to 0 in the Penalized problem (P ǫ,δ ) and find the optimality conditions for the constrained problem. This is the content of the next theorem.

Theorem 2.3. Assume that (AH) holds for H, (Ureg) holds for F and G. Assume further that Ψ satisfies Assumptions (Ureg), (APsiConv) and (APsiInside). Then the conclusions of Theorem (2.2) hold true with ν P M `pr0, T sq, and u P L 8 pr0, T s, E n q. The exclusion condition for ν now reads Ψpmptqq " 0, for ν-almost all t P r0, T s. Finally optimal controls belong to

BV loc pr0, T s Rd , R d q Ş L 8 pr0, T s, C n´1 b pR d , R d qq.
In this (slightly more) general case, we lose the time regularity of the optimal controls. This is due to the shocks that can occur when the optimal curve t Ñ mptq touches the constraint. Indeed, the set of times where the optimal control is not continuous, is contained into the support of the singular part of the Lagrange multiplier ν. However, the space regularity of the backward component u of the system and of the optimal control ´Dp Hpx, Duq remains.

The proof of Theorem 2.3 is the aim of Section 5 where we discuss in particular the wellposedness of the HJB equation when the Lagrange multiplier ν belongs to M `pr0, T sq.

The penalized problem

In this section we analyze the penalized problem (P ǫ,δ ). The main result is the following. Theorem 3.1. Problem (P ǫ,δ ) admits at least one solution and, for any solution pα, mq of (P ǫ,δ ) there exist u P Cpr0, T s, E n q, λ P L 8 pr0, T sq and β P r0, 1s such that α " ´Dp Hpx, Duq and

$ ' ' ' ' ' & ' ' ' ' ' % ´Bt upt, xq `Hpx, Dupt, xqq ´∆upt, xq " λptq ǫ δΨ δm pmptq, xq `δF δm pmptq, xq in p0, T q ˆRd , B t m ´divpD p Hpx, Dupt, xqqmq ´∆m " 0 in p0, T q ˆRd , upT, xq " β δ δΨ δm pmpT q, xq `δG δm pmpT q, xq in R d , mp0q " m 0 . (14) 
Moreover, λ and β satisfy λptq

$ & % " 0 if Ψpmptqq ă 0 P r0, 1s if Ψpmptqq " 0 " 1 if Ψpmptqq ą 0, (15) β $ 
& % " 0 if ΨpmpT qq ă 0 P r0, 1s if ΨpmpT qq " 0 " 1 if ΨpmpT qq ą 0. ( 16 
)
The proof of Theorem 3.1 will be divided into three steps. First we are going to prove the existence of (relaxed) solutions to the problem. This is Lemma 3.1. In the second step, we will show that these relaxed solutions are actually solutions of a suitable linearized problem. This is Lemma 3.2. Finally, we will conclude the proof of Theorem 3.1 by computing the optimality conditions for this linearized problem. The three steps above are very similar to what is done in [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF] Lemma 3.1 and in [START_REF] Daudin | Optimal Control of Diffusion Processes with Terminal Constraint in Law[END_REF] Section 3. Here, however we have to deal with the lack of differentiability at 0 of the function r Þ Ñ maxp0, rq. We also proceed differently at the end of the proof of Theorem 3.1, where we argue by verification to avoid the unnecessary use of a min/max argument.

We start with the existence of relaxed solutions. A relaxed candidate is a pair pm, ωq such that

$ ' ' & ' ' % m P Cpr0, T s, P 2 pR d qq, ω P Mpr0, T s ˆRd , R d q, B t m `divpωq ´∆m " 0 in p0, T q ˆRd , mp0q " m 0 , (17) 
where the Fokker-Planck equation is once again understood in the sense of distributions.

A relaxed solution is a minimizer over all the relaxed candidates of the following functional still denoted (with a slight abuse of notations) by J ǫ,δ J ǫ,δ pm, ωq :"

ż T 0 ż R d L ´x, dω dt b dmptq pt, xq ¯dmptqpxqdt `ż T 0 Fpmptqqdt `1 ǫ ż T 0 Ψ `pmptqqdt `GpmpT qq `1 δ Ψ `pmpT qq,
where we set J ǫ,δ pm, ωq " `8 if ω is not absolutely continuous with respect to dt b mptq.

Lemma 3.1. Problem (P ǫ,δ ) admits at least one relaxed solution.

The existence of relaxed solutions is standard (see [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF][START_REF] Daudin | Optimal Control of Diffusion Processes with Terminal Constraint in Law[END_REF]) but we give the proof in Appendix A.1 for the sake of completeness and because we will use the same line of arguments at different points in our analysis.

Notice that it would not be more difficult to obtain weak solutions directly for the constrained problem. However, for the constrained problem, we don't know how to directly compute the optimality conditions and more importantly they would not give us the regularity of the Lagrange multipliers that we get thanks to our penalization procedure. Now we fix a solution p m, ωq of the penalized problem and we proceed to show that p m, ωq is solution to a suitable linearized problem for which it will be easier to compute the optimality conditions. In the proof of the following lemma we will use a smooth distance-like function. To this end we consider a family pϕ i q iPN of functions in C 2 b pR d q such that for m 1 , m 2 P P 2 pR d q we have

m 1 " m 2 ô @i P N ż R d ϕ i pxqdpm 1 ´m2 qpxq " 0,
and we define q : P 2 pR d q ˆP2 pR d q Ñ R by

qpm 1 , m 2 q :" `8 ÿ i"0 ˇˇˇż R d ϕ i dpm 1 ´m2 q ˇˇˇ2 2 i p1 `}ϕ i } 2 8 `}Dϕ i } 2 8 q
.

Notice that q satisfies " qpm 1 , m 2 q ě 0 @m 1 , m 2 P P 2 pR d q qpm 1 , m 2 q " 0 if and only if m 1 " m 2 .

(

) 18 
It is straightforward to verify that q is C 1 with respect to both of its arguments and that

δq δm 1 pm 1 , m 2 qpxq " `8 ÿ i"0 2 ż R d ϕ i dpm 1 ´m2 q 2 i p1 `}ϕ i } 2 8 `}Dϕ i } 2 8 q pϕ i pxq ´żR d ϕ i dm 1 q.
In particular we have

$ ' & ' % ż R d δq δm 1 pm 1 , m 2 qpyqdm 1 pyq " 0 @m 1 , m 2 P P 2 pR d q,
δq δm 1 pm 1 , m 1 qpxq " 0 @m 1 P P 2 pR d q and @x P R d .

(

) 19 
Lemma 3.2. Let p m, ωq be a fixed solution to Problem (P ǫ,δ ). Then there exist λ P L 8 pr0, T sq and

β P R `satisfying λptq " $ & % 0 if Ψp mptqq ă 0, λptq P r0, 1s if Ψp mptqq " 0, 1 if Ψp mptqq ą 0, (20) β $ 
& % " 0 if Ψp mpT qq ă 0, P r0, 1s if Ψp mpT qq " 0, " 1 if Ψp mpT qq ą 0, (21) 
such that p m, ωq minimizes J l ǫ,δ pω, mq :" Proof. To avoid uniqueness issues we add an additional cost to J ǫ,δ so that the new problem reads inf

ż T 0 ż R d L ´x, dω dt b dmptq pt, xq ¯dmptqpxqdt `ż T 0 ż R d "
" J ǫ,δ pm, ωq `ż T 0 qpmptq, mptqqdt  . ( 22 
)
If p m1 , ω1 q is a solution of the above problem, then m1 " m. This is a direct consequence of [START_REF] Di | Uniqueness issues for evolution equations with density constraints[END_REF] and the fact that p m, ωq is a solution of the penalized problem. We use this function q (and not the Wasserstein distance for instance) because it is smooth and therefore we can differentiate it to get optimality conditions and also because δq δm p m, m, xq " 0 for all x P R d (see [START_REF] Fleig | Optimal Control of the Fokker-Planck Equation with Space-Dependent Controls[END_REF]): therefore q will not appear in the optimality conditions for p m, ωq. Now, we introduce a suitable regularization of the function r Þ Ñ maxp0, rq. For all h ą 0, let γ h : R Ñ R `be functions satisfying

$ ' ' ' ' & ' ' ' ' % γ h P C 2 pRq, γ h ě 0, γ h prq " maxp0, rq in Rzr´h, hs, sup rPR |γ 1 h prq| ď 1, sup rPR |γ h prq ´maxp0, rq| Ñ 0 as h Ñ 0.
We consider the regularized, penalized cost functionals J ǫ,δ,h pm, ωq :"

ż T 0 ż R d L ´x, dω dt b dmptq pt, xq ¯dmptqpxqdt `ż T 0 Fpmptqqdt `1 ǫ ż T 0 Ψ h pmptqqdt `GpmpT qq `1 δ Ψ h pmpT qq
where Ψ h is defined for all m P P 2 pR d q by Ψ h pmq " γ h pΨpmqq. Now we argue as in the proof of Lemma 3.1 (see Appendix A.1) and find for all h P p0, 1q a solution pm h , ω h q of inf

" J ǫ,δ,h pm, ωq `ż T 0 qpmptq, mptqqdt  . ( 23 
)
Taking for granted that we can find a candidate p m, ωq such that Jp m, ωq ă `8 and Ψp mptqq ď 0 for all t P r0, T s (we explicitly construct such a candidate in Lemma 4.1 in Section 4.1 below) we find that J ǫ,δ,h pm h , ω h q is bounded from above by Jp m, ωq independently of ǫ, δ and h. By coercivity of L we deduce that

ż T 0 ż R d ˇˇˇd ω h dt b dm h ptq pt, xq ˇˇˇ2 dm h ptqpxqdt ď C
for some C ą 0 independent of ǫ, δ and h. Following the proof of Lemma 3.1 in Appendix A.1, we deduce that pm h , ω h q converges, up to a sub-sequence, in Cpr0, T s, P r pR d qq ˆMpr0, T s ˆRd , R d q for some r P p1, 2q to an element pm 1 , ω 1 q of Cpr0, T s, P 2 pR d qq ˆMpr0, T s ˆRd , R d q satisfying (17) with ω 1 absolutely continuous with respect to m 1 . Let us prove that pm 1 , ω 1 q is a minimizer of ( 22) and therefore, by uniqueness -that is why we added the q-term in the cost functional-, m 1 " m. We just need to show that J ǫ,δ pm 1 , ω 1 q `ż T 0 qpm 1 ptq, mptqqdt ď J ǫ,δ p m, ωq.

However, for any h P p0, 1q, using the minimality of pm h , ω h q for Problem (23) it holds,

J ǫ,δ pm 1 , ω 1 q `ż T 0 qpm 1 ptq, mptqqdt ´Jǫ,δ p m, ωq " J ǫ,δ,h pm h , ω h q `ż T 0 qpm h ptq, mptqqdt ´Jǫ,δ,h p m, ωq `Jǫ,δ pm 1 , ω 1 q ´Jǫ,δ,h pm h , ω h q `ż T 0 qpm 1 ptq, mptqqdt ´ż T 0 qpm h ptq, mptqqdt `Jǫ,δ,h p m, ωq ´Jǫ,δ p m, ωq ď J ǫ,δ pm 1 , ω 1 q ´Jǫ,δ,h pm h , ω h q `ż T 0 qpm 1 ptq, mptqqdt ´ż T 0 qpm h ptq, mptqqdt
`Jǫ,δ,h p m, ωq ´Jǫ,δ p m, ωq.

Since ż T 0 qpm 1 ptq, mptqqdt ´ż T 0 qpm h ptq, mptqqdt and J ǫ,δ,h p m, ωq ´Jǫ,δ p m, ωq converge to 0 as h converges to 0, it is sufficient to prove that J ǫ,δ pm 1 , ω 1 q ď lim inf hÑ0 J ǫ,δ,h pm h , ω h q. For all h ą 0 we can rewrite

J ǫ,δ,h pm h , ω h q " J ǫ,δ pm h , ω h q `1 ǫ ż T 0 " Ψ h pm h ptqq ´Ψ`p m h ptqq ‰ dt `1 δ " Ψpm h pT qq ´Ψ`p m h pT qq ‰ but lim hÑ0 1 ǫ ż T 0 " Ψ h pm h ptqq ´Ψ`p m h ptqq ‰ dt `1 δ " Ψ h pm h pT qq ´Ψ`p m h pT qq ‰ " 0
and therefore lim inf hÑ0 J ǫ,δ,h pm h , ω h q " lim inf hÑ0 J ǫ,δ pm h , ω h q. Finally we can conclude by lower semi-continuity of J ǫ,δ that lim inf hÑ0 J ǫ,δ pm h , ω h q ď J ǫ,δ pm 1 , ω 1 q. The lower semi-continuity of J ǫ,δ can be proved following Theorem 2.34 of [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]. Now we argue as in [START_REF] Daudin | Optimal Control of Diffusion Processes with Terminal Constraint in Law[END_REF] Section 4.1 to show that, for all h ą 0, pm h , ω h q is actually an infimum of the linearized problem

inf J l ǫ,δ,h pm, ωq `ż T 0 ż R d δq δm 1 pm h ptq, mptq, xqdmptqpxqdt (24) 
where the infimum is still taken over relaxed candidates pm, ωq satisfying [START_REF] Dawson | Large deviations from the mckean-vlasov limit for weakly interacting diffusions[END_REF] with the linearized cost functional J l ǫ,δ,h defined by

J l ǫ,δ,h pω, mq " ż T 0 ż R d L ´x, dω dt b dmptq pt, xq ¯dmptqpxqdt `ż T 0 ż R d " 1 ǫ δΨ h δm pm h ptq, xq `δF δm pm h ptq, xq  dmptqpxqdt `żR d " 1 δ δΨ h δm pm h pT q, xq `δG δm pm h pT q, xq  dmpT qpxq,
with, once again J l ǫ,δ,h pω, mq " `8 if ω is not absolutely continuous with respect to mptq b dt. Indeed, take a candidate pm, ωq with finite cost, take r P p0, 1q and define pm r , ω r q :" p1 ŕqpm h , ω h q `rpm, ωq. By minimality of pm h , ω h q we have, for all r P p0, 1q 1 r " J ǫ,δ,h pm h , ω h q `ż T 0 qpm h ptq, mptqqdt ´Jǫ,δ,h pm r , ω r q ´ż T 0 qpm r ptq, mptqqdt

 ď 0.
Letting r Ñ 0 in the expression above and using, on the one hand, the convexity of pm, ωq Þ Ñ

ż T 0 ż R d
Lpx, dω dt b dmptq pt, xqqdmptqpxq and, on the other hand, the differentiability of the meanfield costs, we show that pm h , ω h q is indeed a minimum of [START_REF] Guo | Portfolio optimization with a prescribed terminal wealth distribution[END_REF]. Now we are going to pass to the limit in the linearized problems when h Ñ 0. On the one hand, being the family of functions t Þ Ñ γ 1 h pΨpm h ptqq bounded in L 8 pr0, T sq, it converges -up to a sub-sequence-for the weak-˚topology σpL 8 , L 1 q of L 8 pr0, T sq to a function λ in L 8 pr0, T sq. It is easily seen that λ satisfies [START_REF] Föllmer | Quantile hedging[END_REF]. On the other hand the functions t Þ Ñ ż

R d δΨ δm pm h ptq, xqdmptqpxq converge uniformly to t Þ Ñ ż R d δΨ δm
p mptq, xqdmptqpxq as h goes to 0.

Therefore we can conclude that, up to a sub-sequence,

ż T 0 ż R d δΨ h δm pm h ptq, xqdmptqpxqdt " ż T 0 γ 1 h pΨpm h ptqq ż R d δΨ δm pm h ptq, xqdmptqpxqdt Ñ ż T 0 λptq ż R d δΨ δm p mptq, xqdmptqpxqdt
as h goes to 0. A similar statement holds for 1 δ ż R d δΨ h δm pm h pT q, xqdmpT qpxq and we can conclude that, up to a sub-sequence, J l ǫ,δ,h pm, ωq converges to J l ǫ,δ pm, ωq for any relaxed candidate pm, ωq, where J l ǫ,δ is defined in the statement of the lemma for some λ, β satisfying the conditions ( 20) and [START_REF] Frankowska | Optimal control under state constraints[END_REF]. We deduce that p m, ω 1 q is an infimum of J l ǫ,δ . Notice that the term involving δq δm 1 in [START_REF] Guo | Portfolio optimization with a prescribed terminal wealth distribution[END_REF] disappeared since δq δm 1 p mptq, mptq, xq " 0 for all x P R d . To conclude that p m, ωq is a solution to the linearized problem, it suffices to notice that, p m, ωq being a solution to the penalized problem it must hold that

ż T 0 ż R d L ´x, dω dt b d mptq pt, xq ¯d mptqpxqdt ď ż T 0 ż R d L ´x, dω 1 dt b d mptq pt, xq ¯d mptqpxqdt
(all the other terms in the J ǫ,δ only involve m) and therefore J l ǫ,δ p m, ωq ď J l ǫ,δ p m, ω 1 q. This concludes the proof of the lemma.

Before we can prove Theorem 3.1 we need the following duality formula. Lemma 3.3. Assume that pm, αq P Cpr0, T s, P 2 pR d qq ˆL2

dtbdmptq pr0, T s ˆRd , R d q solves the Fokker-Planck equation (5) in the sense of distributions. Assume that u P Cpr0, T s, E n q is a solution to the HJB equation [START_REF] Brunick | Mimicking an Itô process by a solution of a stochastic differential equation[END_REF] in the sense of Definition 7 with inputs pf, gq P L 1 pr0, T s, E n q ˆEn`α . Then, for all t 1 , t 2 P r0, T s it holds

ż R d upt 2 , xqdmpt 2 qpxq " ż R d upt 1 , xqdmpt 1 qpxq ´ż t 2 t 1 ż R d f pt, xqdmptqpxqdt `ż t 2 t 1 ż R d rHpx, Dupt, xqq `αpt, xq.Dupt, xqs dmptqpxqdt. (25) 
Proof. We take a sequence of functions f m P Cpr0, T s, E n q converging to f in L 1 pr0, T s, E n q and we let u m be the corresponding solutions to the HJB equation with data pf m , gq. Being f m in Cpr0, T s, E n q, it is straightforward from the definition of solution 7 that u m is differentiable in time, B t u m belongs to L 8 pr0, T s, E n´2 q and the HJB equation is satisfied in the strong sense. The curve mptq being bounded in P 2 pR d q, an approximation argument similar to [START_REF] Trevisan | Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients[END_REF] where we used the equation satisfied by u m at the last line. Now we can use the stability result of Theorem 1.1 to pass to the limit as m Ñ `8 and conclude the proof of the proposition.

Finally we can conclude the proof of Theorem 3.1. 

Proof of Theorem

J l ǫ,δ (27) 
and ω " ´Dp Hpx, Dũpt, xqq mptq b dt.

Combining the Fokker-Planck equation in [START_REF] Dawson | Large deviations from the mckean-vlasov limit for weakly interacting diffusions[END_REF] where ω is replaced by ´Dp Hpx, Dũpt, xqq mptq b dt with the HJB equation ( 26) and recalling that λ and β satisfy the conditions of Lemma 3.2 concludes the proof of the theorem.

From the penalized problems to the constrained one

The first goal of this section is to find estimates on the system of optimality conditions (14) which are independent from ǫ and δ. This is Section 4.1. Next we prove the regularity and find suitable expressions for the first two derivatives of the map t Þ Ñ Ψpmptqq when pm, αq is a solution to the penalized problem. This is Section 4.2. Finally we prove Theorems 2.1 and 2.2 in Section 4.3.

Uniform (in epsilon, delta) estimates

First we construct a candidate p m, ᾱq which stays uniformly inside the constraint at all time with a finite cost.

Lemma 4.1. Provided Ψpm 0 q ă 0, we can build a trajectory p m, ᾱq in Cpr0, T s, P 2 pR d qqˆL 2 dtbmptq pr0, T sR d , R d q such that Jpᾱ, mq ă `8 and Ψp mptqq ď ´θ for all t in r0, T s, for some θ ą 0.

Proof. First we introduce a probability space pΩ, F, Pq supporting a random variable X 0 with law m 0 and an independent Brownian motion pB t q. Take c ą 0 and consider a solution to the SDE dX t " ´cpX t ´X0 qdt `?2dB t , X| t"0 " X 0 .

A simple application of Itô's lemma proves that X t can be rewritten as

X t " X 0 `?2 ż t 0 e ´cpt´sq dB s (28) 
and therefore

E " |X t ´X0 | 2 ‰ " 2 ż t 0 e ´2cpt´sq ds " 1 c p1 ´e´2ct q.
Now let mptq be the law of X t . The above computation shows that

d 2 2 p mptq, m 0 q ď 1 c , @t P r0, T s.
With an abstract mimicking argument as in [START_REF] Brunick | Mimicking an Itô process by a solution of a stochastic differential equation[END_REF] we can find a measurable drift ᾱ :

r0, T s ˆRd Ñ R d such that B t m `divpᾱ mq ´∆ m " 0 and ż T 0 ż R d |ᾱpt, xq| 2 d mptqpxqdt ď E "ż T 0 c 2 |X t ´X0 | 2 dt  ď cT.
However a direct computation, using Jensen's inequality, shows that it is enough to take, for all pt, xq P p0, T s ˆRd , ᾱpt, xq :"

c mpt, xq ż R d px ´yqm y pt, xqdm 0 pyq
where m y ptq is the solution to " B t m y ´cdivppx ´yqm y q ´∆m y " 0 m y p0q " δ y .

Notice that X 0 being independent from the Brownian motion, we easily deduce from ( 28) that mpt, xq ą 0 for all pt, xq P p0, T s ˆRd . Being Ψ Lipschitz continuous and Ψpm 0 q ă 0 we can choose c large enough so that Ψp mptqq ď Ψpm 0 q 2 for all t P r0, T s and this concludes the proof of the lemma.

Using this particular candidate and the convexity of the constraint we can obtain the following estimate which is crucial to find compactness in the problem.

Although the notations do not make it clear, from now on pm, u, λ, βq will generally denote a solution to the optimality conditions [START_REF] Chow | On Dynamic Programming Principle for Stochastic Control Under Expectation Constraints[END_REF] for the penalized problem (P ǫ,δ ) and therefore depend upon a particular pǫ, δq. Lemma 4.2. There is a constant C " CpΨpm 0 qq ą 0 such that, for all ǫ, δ ą 0 and for all tuple pu, m, λ, βq satisfying the conditions of Theorem 3.1 it holds

1 ǫ ż T 0 λptqdt `β δ ď C.
Proof. By Lemma 4.1 we can build a solution of the Fokker-Planck equation pᾱ, mq such that Jpᾱ, mq ă `8 and, for all t P r0, T s, Ψp mptqq ď ´θ for some θ ą 0 independent of t. Using the fact that p m, ᾱq solves the Fokker-Planck equation, we can apply Lemma 3.3 to get 

ż T 0 ż R d " ᾱpt,
) 29 
On the one hand -using [START_REF] Jimenez | Optimal control of multiagent systems in the Wasserstein space[END_REF] in the proof of Theorem 3.1 and the notations therein-we have that ż R d up0, xqdm 0 pxq " J ǫ,δ l p m, ωq. But the linearized costs cancel out when applied to p m, ωq and therefore J ǫ,δ l p m, ωq " Jp m, ωq. And since L, F and G are bounded from below we get a lower bound on ż R d up0, xqdm 0 pxq independent of ǫ and δ. The other terms in the right-hand side of ( 29 and by definition of λ and β we have λptqΨpmptqq ě 0 for all t P r0, T s and βΨpmpT qq ě 0 and thus, if C ą 0 is an upper bound for the right-hand side of (29) we get

ż T 0 λptq ǫ dt `β δ ď C θ ,
which concludes the proof of the Lemma.

Remark 6. Notice that this estimate, together with the construction of Lemma (4.1) are the only steps which require the convexity of Ψ, Assumption (APsiConv) as well as the condition that Ψpm 0 q must be strictly negative, Assumption (APsiInside).

We can combine this Lemma with Theorem 1.1 to find uniform in ǫ, δ estimates for the system of Optimality Conditions [START_REF] Chow | On Dynamic Programming Principle for Stochastic Control Under Expectation Constraints[END_REF]. At this stage, the above estimates would be sufficient to pass to the limit when ǫ and δ go to zero in the penalized problem (P ǫ,δ ). We would find, at the limit, solutions of the constrained problem (P) and passing to the limit in the optimality conditions we would find that the solutions to the constrained problem satisfy similar conditions with λ ǫ replaced by a non-negative Radon measure ν P M `pr0, T sq. This would lead to a priori discontinuous (in time) optimal controls. However, we refrain from following such approach for now. Instead we are going to exhibit a special behavior of the optimal solutions of the penalized problem. Indeed we are going to show in the next section that solutions of the penalized problem stay inside the constraint when the penalization is strong enough. Consequently it is sufficient to take ǫ and δ small to get solutions to the constrained problem and optimal controls for the constrained problem are still continuous.

Second order analysis

The special behavior (described just above) of the solutions will be a simple consequence of the fact that we cannot have simultaneously Ψpmptqq ą 0 and d 2 dt 2 Ψpmptqq ď 0 (here m is a solution to (P ǫ,δ )) when the penalization is strong enough. The purpose of this section is to prove the regularity and a suitable expansion of the map t Þ Ñ Ψpmptqq. Proposition 4.2. Suppose that pm, u, λ, βq is a solution of (14) for some ǫ, δ ą 0. Then the map t Þ Ñ Ψpmptqq is C 1 in r0, T s and C 2 in r0, T s Ş tt : Ψpmptqq ‰ 0u with derivatives given by

d dt Ψpmptqq " ´żR d D m Ψpmptq, xq.D p Hpx, Dupt, xqqdmptqpxq `żR d div x D m Ψpmptq, xqdmptqpxq and 
d 2 dt 2 Ψpmptqq " λptq ǫ ż R d D m Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD m Ψpmptq, xqdmptqpxq `F pDuptq, D 2 uptq, D∆uptq, mptqq
for some functional F : C b pR d , R d q ˆCb pR d , S d pRqq ˆCb pR d , R d q ˆP2 pR d q Ñ R independent of ǫ and δ and bounded in sets of the form A ˆP2 pR d q for bounded subsets

A of C b pR d , R d q ˆCb pR d , S d pRqq Ĉb pR d , R d q.
Proof. Since Ψ is supposed to satisfy Assumption (Ureg), we can use Proposition 1.3 and, for all t P r0, T s we get

Ψpmptqq " Ψpm 0 q ´ż t 0 ż R d D m Ψpmpsq, xq.D p Hpx, Dups, xqqdmpsqpxqds `ż t 0 ż R d div x D m Ψpmpsq, xqdmpsqpxqds.
Being u in Cpr0, T s, E n q and m in Cpr0, T s, P The parameter λ is constant (equal to 0 or 1) in a neighborhood pt 1 , t 2 q of t because of the exclusion condition [START_REF] Daudin | Mean-Field Limit for Stochastic Control Problems under State Constraint[END_REF] and u solves the HJB equation according to Definition 1.1 so we have that u belongs to C 1,2 ppt 1 , t 2 q ˆRd q. Moreover, 

B
`żR d ∆ x div x D m Ψpx, mptqqdmptqpxq `żR d ż R d div x div y D 2 mm Ψpmptq, x, yqdmptqpxqdmptqpyq ´2 ż R d ż R d div y D 2 mm Ψpmptq, x, yq.D p Hpx, Dupt, xqqdmptqpxqdmptqpyq ´2 ż R d Ý Ñ ∆ x D m Ψpmptq,
´2 n ÿ i"1 ż R d B x i δΨ δm pmptq, xqD 2 xp B p i Hpx, Dupt, xqq.D 2 upt, xqdmptqpxq.
The formula above shows in particular that the terms in D∆u cancel out and thus F depends only on the derivatives of u up to order two.

Proof of the main theorems

Proposition 4.3. There is some ǫ 0 , δ 0 ą 0 such that any solution pm, αq of Problem (P ǫ,δ ) for some pǫ, δq P p0, ǫ 0 s ˆp0, δ 0 s stays inside the constraint at all time:

Ψpmptqq ď 0, @t P r0, T s.

Proof. The proof follows closely the methodology of [START_REF] Cannarsa | C1;1-smoothness of constrained solutions in the calculus of variations with application to mean field games[END_REF] Lemma 3.7. Toward a contradiction we suppose that there exist a sequence pǫ k , δ k q kPN P pp0, 1qˆp0, 1qq N converging to p0, 0q, corresponding solutions pm k , ´Dp Hpx, Du k pt, xqqq kPN satisfying the conditions of Theorem 3.1 with corresponding multipliers pλ k , β k q and times pt k q kPN P p0, T s which are local maximum points of t Þ Ñ Ψpm k ptqq and such that Ψpm k pt k qq ą 0. The couples pm k , ω k q are uniformly bounded in C 1{2 pr0, T s, P 2 pR d qq Mpr0, T sˆR d , R d q and we can assume that they converge in C p1´δq{2 pr0, T s, P 2´δ pR d qqˆMpr0, T sR d , R d q, for some δ P p0, 1q, toward some solution p m, ωq to the constrained problem. In particular, Ψp mptqq ď 0 for all t P r0, T s.

We first notice that, thanks to Lemma 4.2, for large enough k, β k ă 1 and therefore Ψpm k pT qq ď 0 and t k ‰ T .

Using Proposition 4.2 yields that t Þ Ñ Ψpm k ptqq is C 2 in a neighborhood of t k and,

d 2 dt 2 Ψpm k ptqq| t"t k " 1 ǫ k ż R d D m Ψpm k pt k q, xq.D 2 pp Hpx, Du k pt k , xqqD m Ψpm k pt k q, xqdm k pt k qpxq `F pDu k pt k q, D 2 u k pt k q, D∆u k pt k q, m k pt k qq ě 1 µǫ k ż R d |D m Ψpm k pt k q, xq| 2 dm k pt k qpxq `F pDu k pt k q, D 2 u k pt k q, D∆u k pt k q, m k pt k qq,
where we used the strict convexity of H with respect to the p variable as stated in Assumption (AH).

On the one hand, using the estimates of Proposition 4.1 we have that F pDu k ptq, D 2 u k ptq, D∆u k ptq, m k ptqq is bounded independently from k. On the other hand, using the regularity assumption (APsiC2) and up to taking a subsequence we can assume that lim Proof of Theorem 2.1. Denote by Ūǫ,δ the value of Problem (P ǫ,δ ) and by Ū the value of the constrained problem (P). We assume that pǫ, δq belongs to p0, ǫ 0 q ˆp0, δ 0 q with pǫ 0 , δ 0 q the parameters from Proposition 4.3.

kÑ`8 ż R d |D m Ψpm k pt k q, xq| 2 dm k pt k qpxq " ż R d |D m Ψp
We have that Ūǫ,δ " Ū and the minimizers for problems (P ǫ,δ ) and (P) coincide. Indeed, it is straightforward that Ūǫ,δ ď Ū . Now if pm 1 , α 1 q is a solution to Problem (P ǫ,δ ), by Proposition 4.3, pm 1 , α 1 q is admissible for Problem (P). This means that Ūǫ,δ " J ǫ,δ pm 1 , α 1 q " Jpm 1 , α 1 q ě Ū and, therefore Ūǫ,δ " Ū and pm 1 , α 1 q is a solution to (P). Conversely, if pm 2 , α 2 q is a solution to (P) then J ǫ,δ pm 2 , α 2 q " Jpm 2 , α 2 q " Ū " Ūǫ,δ and pm 2 , α 2 q is a solution to (P ǫ,δ ).

Looking carefully at the proof of Proposition 4.3, using Theorem (1.1) with the estimates given by Proposition 4.1 and Lemma 4.1 we see that the threshold pǫ 0 , δ 0 q depends on m 0 only through the value Ψpm 0 q. Now we are finally able to conclude the proof of Theorem 2.2.

Proof of Theorem 2.2. We use Theorem 2.1 and the optimality conditions for the penalized problem: If pm, αq is any solution to Problem (P), we can find pǫ, δq P p0, ǫ 0 q ˆp0, δ 0 q, λ P L 8 pr0, T sq, β ě 0, u P Cpr0, T s, C n b pR d qq such that αpt, xq " ´Dp Hpx, Dupt, xqq for all pt, xq P r0, T s ˆRd and pm, u, λ, βq satisfies the conditions of Theorem 3.1. Taking νptq :" λptq ǫ and η :" β δ concludes the proof of the first part of the theorem. Now, if we suppose that F and G are convex in the measure variable we can proceed as in [16] Section 4.3 and easily show that the conditions are sufficient.

The general case

The goal of this section is to prove Theorem 2.3 . We first need to extend the results of Theorem 1.1 to HJB equations with right hand-side of the form νψ 1 `ϕ1 where ν belongs to M `pr0, T sq and ψ 1 , ϕ 1 belong to Cpr0, T s, E n q.

The HJB equation

Definition 5.1. Suppose that n ě 3. Let ψ 1 , ϕ 1 be in Cpr0, T s, E n q and ψ 2 be in E n`α . Let also ν be in M `pr0, T sq. We say that u P L 1 pr0, T s, E n q is a solution to 

" ´Bt u `Hpx, Duq ´∆u " νptqψ 1 `ϕ1 , in r0, T s ˆRd upT, xq " ψ 2 , in R d , (30) if 
Proceeding exactly as in the proof of Theorem 1.1, we find that there exists a unique solution v P L 8 pr0, T s, E n q to (32) and it satisfies essup tPr0,T s }vptq} n ď Cp

ż T 0 }zptq} n dtq.
As a consequence we get the following well-posedness result for [START_REF] Leonori | The boundary behavior of blow-up solutions related to a stochastic control problem with state constraint[END_REF].

Theorem 5.1. Suppose that n ě 3. Let ψ 1 , ϕ 1 be in Cpr0, T s, E n q and ψ 2 be in E n . Let also ν be in M `pr0, T sq. Under these conditions, there is a unique solution u P L 8 pr0, T s, E n q to (30) in the sense of Definition 5.1. Moreover it satisfies essup tPr0,T s }uptq} n ď Cp|ν|, sup tPr0,T s

}ψ 1 ptq} n , sup tPr0,T s }ϕ 1 ptq} n , }ψ 2 } n q,
where |ν| is the total variation norm of ν.

Proposition 5.2. Let u P L 8 pr0, T s, E n q be a solution to (39) satisfying (40) for all pt, xq P r0, T s ˆRd . Let also pm, αq P Cpr0, T s, P 2 pR d qq ˆL2 dtbdmptq pr0, T s ˆRd , R d q be a solution in the sense of distributions to " B t m `divpαmq ´∆m " 0, in p0, T q ˆRd , mp0q " m 0 .

Then the following duality formula holds for any t 1 P r0, T s such that νptt 1 uq " 0, We can conclude with the proof of Theorem 2.3.

ż R d upt 1 ,
Proof of Theorem 2.3. We proceed similarly to the proof of Theorem 3.1. Take p m, ωq a relaxed solution to the constrained problem P. Let also u P L 8 pr0, T s, E n q be the solution to (39) satisfying (40) with ν and η satisfying respectively [START_REF] Pfeiffer | Duality and approximation of stochastic optimal control problems under expectation constraints[END_REF] and [START_REF] Santambrogio | Advection-Diffusion Equations With Density Constraints[END_REF].

Recall that the linearized cost J l is defined in Lemma 5.1. On the one hand, by definition of L, it holds that 

J l p m, ωq " ż T 0 ż R d L ´x,
Being Ψpm 0 q ă 0, it holds that νpt0uq " 0 because of the exclusion condition [START_REF] Pfeiffer | Duality and approximation of stochastic optimal control problems under expectation constraints[END_REF] and we can use the duality relation (41) with t 1 " 0 and α " dω dt b d mptq to conclude that

J l p m, ωq ě ż R d up0, xqdm 0 pxq.
On the other hand, we can apply relation (41) to the candidate pm 1 , ´Dp Hpx, Dupt, xqqm 1 q where m 1 is solution to " B t m 1 ´divpD p Hpx, Dupt, xqqm 1 q ´∆m 1 " 0, in p0, T q ˆRd m 1 p0q " m 0 .

We get J l pm 1 , ´Dp Hpx, Dupt, xqqm 

A Appendix A.1 Existence of relaxed solutions

Proof of Proposition 1.1. Consider a weak solution of " dX t " αpt, X t qdt `?2dB t , X t"0 " X 0 " m 0 such that LpX t q " mptq, @t P r0, T s. The existence of such a solution is guaranteed by the fact that pα, mq solves the Fokker-Planck equation (see [START_REF] Trevisan | Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients[END_REF] and also Proposition 3. Proof of Proposition 1.2. We set ω n " α n m n . By Cauchy-Schwarz inequality we find that the total variation |ω n | of ω n is uniformly bounded. Indeed we have

|ω n | " ż T 0 ż R d ˇˇˇd ω n dt b dm n ptq pt, xq ˇˇˇd m n ptqpxqdt ď ? T ˜ż T 0 ż R d ˇˇˇd ω n dt b dm n ptq pt, xq ˇˇˇ2 dm n ptqpxqdt ¸1{2 .
This estimate together with Proposition 1.1 allow us to use Banach-Alaoglu theorem on the one hand and Ascoli theorem on the other hand and deduce that for all r P p1, 2q, up to a subsequence, pm n , ω n q nPN converges in Cpr0, T s, P r pR d qq ˆMpr0, T s ˆRd , R d q to some element p m, ωq of Cpr0, T s, P r pR d qq ˆMpr0, T s ˆRd , R d q. It is straightforward that mp0q " m 0 and the fact that p m, ωq satisfies the Fokker-Planck equation is a consequence of the weak-˚convergence of measures. Using Theorem 2.34 of [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] (see also Exemple 2.36) in [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]) we find that ω is absolutely continuous with respect to mptq b dt and

ż T 0 ż R d ˇˇˇd ω dt b dmptq pt, xq ˇˇˇ2 dmptqpxqdt ď lim inf nÑ`8 ż T 0 ż R d |α n pt, xq| 2 dm n ptqpxqdt.
By Proposition 1.1 again, this shows that m belongs to C 1{2 pr0, T s, P 2 pR d qq.

Now we give the proof of Lemma 3.1.

Proof of Lemma 3.1. The result follows from Proposition 1.1 and Proposition 1.2. We consider a minimizing sequence pm n , ω n q satisfying (17) and such that, for all n P N, J ǫ,δ pm n , ω n q ď inf J ǫ,δ pm n , ω n q `1. By coercivity of H and therefore -by taking convex conjugates-of L we find that there is C 1 ą 0 such that, for all n P N,

ż R d ż T 0 ˇˇˇd ω n dt b dm n ptq pt, xq ˇˇˇ2 dm n ptqpxqdt ď C 1 . (43) 
Using that pm n , ω n q satisfies the Fokker-Planck equation and m 0 belongs to P 2 pR d q we deduce from Proposition (1.2) that, for all r P p1, 2q, up to a subsequence, pm n , ω n q nPN converges in Cpr0, T s, P r pR d qq ˆMpr0, T s ˆRd , R d q to some element p m, ωq of Cpr0, T s, P 2 pR d qq ˆMpr0, T s Rd , R d q which satisfies the Fokker-Planck equation with initial position mp0q " m 0 . To conclude we use Theorem 2.34 of [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] to prove that J ǫ,δ p m, ωq ď lim inf nÑ`8 J ǫ,δ pm n , ω n q.

Therefore p m, ωq is indeed a minimum of J ǫ,δ .

A.2 Technical Results about the HJB equation

We start with a (slightly unusual) version of Grönwall lemma.

Lemma A.1. Assume that l : r0, T s Ñ R `is a bounded measurable map which satisfies, for some C 1 , C 2 ą 0 and

lptq ď C 1 `C2 ż T t lpsq ? s ´t ds. (44) 
Then, for almost all t P r0, T s,

lptq ď C 1 p1 `C2 ? π ? T ´tqe C 2 2 πpT ´tq .
Proof. Arguing by induction, using (44) we find that, for all t P r0, T s and all n P N ˚, it holds

lptq ď C 1 ˜1 `n ÿ k"1 C k 2 I k ptq ¸`}l} 8 C n`1 2 I n`1 ptq
where I k : r0, T s Ñ R is defined for all k P N ˚by

I k ptq " ż T t ż T t 1 . . . ż T t k´1 1 ? t 1 ´t . . . ? t k ´tk´1 dt 1 . . . t k .
Once we have found by induction that, for all k ě 1 and t ě 0, I k ptq " π k{2 Γpk{2 `1q pT ´tq k{2 , where Γ is Euler's Gamma function, we conclude by elementary computations.

Lemma A.2. Assume that u P Cpr0, T s, E n q is a solution to the HJB equation (7) with f P Cpr0, T s, E n q and g P E n . Then Proof. We use the classical Bernstein method. Let µ ą 0 and wpt, xq :" }f ptq} 1 dt, }g} 1 q ą 0.

Lemma A.3. Assume that u P Cpr0, T s, E n q is a solution to the HJB equation with data f P L 1 pr0, T s, E n q and g P E n and assume that u satisfies the estimate of the previous lemma then Proof. For all pt, xq P r0, T s ˆRd , it holds that and we conclude by induction.

Following similar computations we can prove the following stability result.

Lemma A.4. Take f 1 , f 2 P L 1 pr0, T s, E n q and g 1 , g 2 P E n . Suppose that, u 1 , u 2 P Cpr0, T s, E n q are solutions to the HJB equation [START_REF] Brunick | Mimicking an Itô process by a solution of a stochastic differential equation[END_REF] with data pf 1 , g 1 q, pf 2 , g 2 q respectively and satisfy the estimate of Lemma A. for some C " Cp}u 1 psq} k , }u 2 psq} k q ą 0. The proof of the lemma follows from this observation and the same computations as the proof of Lemma A.3.

Lemma A.5. Assume that u P L 8 pr0, T s, E n q solves the HJB equation with data pf, gq P Cpr0, T s, E n qÊ n`α then u belongs to Cpr0, T s, E n q.

Proof. Let us take k P 1, n . We fix h ą 0. For t P r0, T ´hs it holds Being f in Cpr0, T s, E n q, the right-hand side converges to 0 when h goes to 0 and therefore lim hÑ0 sup tPr0,T ´hs }upt `hq ´uptq} n " 0 which concludes that u belongs to Cpr0, T s, E n q.

D k upt `h,
As a consequence, we get the existence of solutions from the classical case.

Proposition A.1. Take f P L 1 pr0, T s, E n q and g P E n`α . Then there exists a unique solution in u P Cpr0, T s, E n q to the HJB equation with data pf, gq and it satisfies the estimate of Lemma A.3.

Proof of Proposition A.1. We take a sequence of smooth functions f m : r0, T s ˆRd Ñ R and g m : R d Ñ R converging respectively to f in L 1 pr0, T s, E n q and to g in E n`α . For each m, the existence of a strong solution u m P Cpr0, T s, E n q follows from Schauder theory and our a priori Lipschitz estimate. Thanks to the previous lemma, we know that u m is a Cauchy sequence in L 8 pr0, T s, E n q and therefore it converges in this space to some u. The subspace Cpr0, T s, E n q being closed in L 8 pr0, T s, E n q we have that u belongs to Cpr0, T s, E n q. We can also pass to the limit in the equation 

u
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 21 ψpxqdmpxq where ψ is any function in E n . If if holds as well that |Dψpxq| ‰ 0 whenever ψpxq ě 0 then Ψ satisfies Assumption (APsiTrans). Indeed if ż R d |Dψpxq| 2 dmpxq " 0 then m must be concentrated on the set of points in R d where ψpxq ă 0 and therefore it cannot be that ż A typical example which satisfies Assumptions (Ureg), (APsiConv), (APsiC2) and (APsiTrans) that we have in mind is Ψpmq " ż R d ´a|x ´x0 | 2 `δ2 ´δ¯d mpxq ´κ with x 0 P R d , δ ą 0 and κ ą 0.

Proposition 4 . 1 .

 41 There is some C ą 0 such that, for any ǫ, δ ą 0 and any solution pm, u, λ, βq of (14) satisfying (15) and (16) it holds sup tPr0,T s }uptq} n ď C.

Theorem 2 .

 2 1 is a direct consequence of the above proposition.

dω dt b d mptq pt, xq ¯d mptqpxqdt

  mptq pt, xq.Dupt, xq `Hpx, Dupt, xqq  d mptqpxqdt with equality if and only if dω dt b d mptq " ´Dp Hpx, Duq, dt b d mptq ´ae.

  0 pxq and we can conclude that the infimum of the linearized problem is indeed ż R d up0, xqdm 0 pxq, it is achieved at p m, ωq and (42) holds true. Collecting the equations satisfied by u and m, relation (42) as well as the exclusion conditions of Lemma 5.1, we get the optimality conditions for the constrained problem. Differentiating in space the equation satisfied by u we find that optimal control belong to BV loc pr0, T s Rd , R d q Ş L 8 pr0, T s, C n´1 b pR d , R d qq.

  sup pt,xqPr0,T sˆR d |Dupt, xq| ď Cp ż T 0 }f ptq} 1 dt, }g} 1 q.

sup tPr0,T s }uptq} n ď Cp ż T 0

 0 }f ptq} n , }g} n q.

}u 1 0 }f 1 0 }f 2 1 0Dp

 101021 ptq ´u2 ptq} n ď C ´ż T ptq ´f2 ptq} n dt `}g 1 ´g2 } n ¯. for some C " C `ż T 0 }f 1 ptq} n dt, ż T ptq} n dt, }g 1 } n , }g 2 } n ˘ą 0.Proof. For all ps, xq P r0, T s ˆRd we can write Hpx, Du 1 ps, xqq ´Hpx, Du 2 ps, xqq " pDu 1 ps, xq ´Du 2 ps, xqq. ż Hpx, rDu 1 ps, xq `p1 ´rqDu 2 ps, xqqdr and deduce that, for all k ě 1, sup xPR d |D k´1 rHpx, Du 1 ps, xqq ´Hpx, Du 2 ps, xqqs | ď C}u 1 psq ´u2 psq} k

  m pt, xq " P T ´tg m pxq `ż T t P s´t f m psqpxqds ´ż T t P t´s rHp., Du m ps, .qqs pxqds to conclude that u is a solution. The uniqueness of solutions is a straightforward consequence of the stability estimate of Lemma A.4. We are finally ready to prove Theorem 1.1. Proof of Theorem 1.1. Combining Proposition A.1 and Lemma A.4 we get Theorem 1.1.

  if, for dt-almost all t P r0, T s it holds, for all x P R d

	upt, xq " P T ´tgpxq	`ż T t	P s´t f psqpxqds	´ż T t	P s´t rHp., Dups, .qqs pxqds.

  3.1. We consider ũ P Cpr0, T s, E n q solution to

	-the existence of such a solution is guaranteed by Theorem 1.1-and we proceed by verification.
	We use Lemma 3.3 to get					
	ż	R d	ũp0, xqdm 0 pxq "	´ż T 0	ż R d	"	Hpx, Dũpt, xqq	`dω dt b d	 m pt, xq.Dũpt, xq	d mptqdt.
	Here we used the equation satisfied by ũ and the convention	ż	R d	δU δm	pm, xqdmpxq " 0 for all m P
	P 2 pR d q and all C 1 map U . But the inequality
				´Hpx, Dũpt, xqq	´dω dt b d mptq	pt, xq.Dũpt, xq ď Lpx,	dω dt b d	m pt, xqq
	holds, with equality if and only if	
								dω dt b d	m pt, xq " ´Dp Hpx, Dũpt, xqq.
	Therefore,								
									ż
										R d	ũp0, xqdm 0 pxq ď J l ǫ,δ p m, ωq
	with equality if and only if	dω dt b d	
										R d	ũp0, xqdm 0 pxq " inf pω,mq
		$							
		'							
		' ' & ' ' ' %	ũpT, xq "	β δ	δm δΨ	" p mpT q, xq λptq ǫ δΨ δm `δG p mptq, xq δm p mpT q, xq `δF δm	p mptq, xq in R d ,	in p0, T q ˆRd ,	(26)

´Bt ũpt, xq `Hpx, Dũpt, xqq ´∆ũpt, xq m pt, xq " ´Dp Hpx, Dũpt, xqq, dt b mptq-almost everywhere. Now if we consider m1 solution to B t m1 ´divpD p Hpx, Dũpt, xqq m1 q ´∆ m1 " 0 with m1 p0q " m 0 , a similar computation shows that ż R d ũp0, xqdm 0 pxq " J l ǫ,δ p´D p Hpx, Dũpt, xqq m1 , m1 q which means that the cost ż R d ũp0, xqdm 0 pxq can indeed be reached and, by minamility of pω, mq we get ż

  ) are also bounded from above since Jpᾱ, mq ă `8 and since x Þ Ñ δF δm pm, xq and x Þ Ñ δG δm pm, xq are bounded in E n with bounds uniform in m and mptq belongs to P 2 pR d q for all t P r0, T s . On the other hand, by convexity of Ψ we get for all t P r0, T s,

	ż R d	δΨ δm	pmptq, xqd mptqpxq ď Ψp mptqq ´Ψpmptqq
			ď ´θ ´Ψpmptqq

  2 pR d qq we get that t Þ Ñ Ψpmptqq is C 1 with Ψpmptq, xq.D p Hpx, Dupt, xqqdmptqpxq `żR d div x D m Ψpmptq, xqdmptqpxq. Now we assume that Ψpmptqq ‰ 0. We denote by vpt, xq the integrand vpt, xq :" ´Dm Ψpmptq, xq.D p Hpx, Dupt, xqq `div x D m Ψpmptq, xq

	d dt	Ψpmptqq "	´żR d	D m

  rB t vpt, xq ´Dp Hpx, Dupt, xqq.Dvpt, xq `∆vpt, xqs dmptqpxq. Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD m Ψpmptq, xqdmptqpxq `F pDuptq, D 2 uptq, D∆uptq, mptqq Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD 2 upt, xqD p Hpx, Dupt, xqqdmptqpxq ´żR d D m Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD x Hpx, Dupt, xqqdmptqpxq `żR d D m Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD∆upt, xqdmptqpxq `żR d D m Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD m Fpmptq, xqdmptqpxq. Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD m Ψpmptq, xqdmptqpxq

	d 2 dt 2 Ψpmptqq " Computing B t v leads to B t vpt, xq " ´Dm Ψpmptq, xq.D 2 ż R d ´d dt D m Ψpmptq, xq.D p Hpx, Dupt, xqq pp Hpx, Dupt, xqqB t Dupt, xq `d dt div x D m Ψpmptq, xq " ´d dt D m Ψpmptq, xq.D p Hpx, Dupt, xqq `d dt divD m Ψpmptq, xq ´Dm Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD 2 upt, xqD p Hpx, Dupt, xqq ´Dm Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD x Hpx, Dupt, xqq `Dm Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD∆upt, xq `λptq ǫ F pDuptq,D 2 uptq, D∆uptq, mptqq " ż R d r´D p Hpx, Dupt, xqq.Dvpt, xq `∆vpt, xqs dmptqpxq ´żR d d dt D m Ψpmptq, xq.D p Hpx, Dupt, xqqdmptqpxq `żR d d dt div x D m Ψpmptq, xqdmptqpxq ´żR d D m Remark 7. An explicit formula for Dv, ∆v or F is not necessary for our purpose however a tedious but straightforward computation leads to D and therefore d 2 dt 2 Ψpmptqq " λptq ǫ ż R d D m with d 2 dt 2 Ψpmptqq " ż λptq ǫ R d D m

t upt, xq " Hpx, Dupt, xqq ´∆upt, xq ´λptq ǫ δΨ δm pmptq, xq ´δF δm pmptq, xq and u belongs to Cpr0, T s, E n q with n ě 3. This means that B t u is differentiable with respect to x with ´Bt Dupt, xq `Dx Hpx, Dupt, xqq `D2 upt, xqD p Hpx, Dupt, xqq ´D∆upt, xq " λptq ǫ D m Ψpmptq, xq `Dm Fpmptq, xq. But m solves the Fokker-Planck equation, Ψ satisfies Assumptions (Ureg) and (APsiC2) so we can apply Proposition 1.3 to D m Ψpmptq, xq and div x D m Ψpmptq, xq and deduce that v belongs to C 1,2 b ppt 1 , t 2 q ˆRd q and therefore t Þ Ñ d dt Ψpmptqq is differentiable at t with m Ψpmptq, xqD 2 pp Hpx, Dupt, xqq.D m Ψpmptq, xq `Dm Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD m Fpmptq, xq,

  xq.D p Hpx, Dupt, xqqdmptqpxq `żR d D m Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD m Fpmptq, xqdmptqpxq Ψpmptq, x, yqD p Hpx, Dupt, xq.D p Hpy, Dupt, yqqdmptqpxqdmptqpyq `żR d D x D m Ψpmptq, xqD p Hpx, Dupt, xqq.D p Hpx, Dupt, xqqdmptqpxq xqD 2 upt, xq.D 2 upt, xqD 2 pp B p i Hpx, Dupt, xqqdmptqpxq

			ż
	`żR d mm ´2 ż R d D 2 R i"1 ż R d D x i δΨ δm pmptq, ´żR d D m Ψpmptq, xq. Ý Ñ ∆ x D p Hpx, Dupt, xqqdmptqpxq
	´2 ż	R d	D x D m Ψpmptq, xqD 2 xp Hpx, Dupt, xqqdmptqpxq
	´żR d	D m Ψpmptq, xq.D 2 pp Hpx, Dupt, xqqD x Hpx, Dupt, xqqdmptqpxq
	`żR d	D 2 xp Hpx, Dupt, xqqD

d D x D m Ψpmptq, xq.D 2 upt, xqD 2 pp Hpx, Dupt, xqqdmptqpxq ´n ÿ m Ψpmptq, xq.D p Hpx, Dupt, xqqdmptqpxq

  mp tq, xq| 2 d mp tqpxq for some t P r0, T s such that Ψp mp tqq " 0. This is where Assumption (APsiTrans) comes into play. Ψpm k ptqq| t"t k ą 0 for k large enough. This leads to a contradiction since t k is assumed to be a local maximum point of t Ñ Ψpm k ptqq.

	Since Ψp mp tqq " 0, we have that
		ż
		R d	|D m Ψp mp tq, xq| 2 d mp tqpxq ą 0,
	and we deduce that,	d 2 dt 2

  , for almost all t P r0, T s, for all x P R d ,

		upt, xq " P T ´tψ 2 pxq	`ż T 0	1 pt,T s psqP s´t ψ 1 psqpxqdνpsq	`ż T t	P s´t ϕ 1 psqpxqds
		´ż T t	P s´t rHp., Dups, .qqs pxqds.	(31)
	We can remark that u is a solution of (30) if and only if v :" u ´z is a solution to " ´Bt v `Hpx, Dv `Dzq ´∆v " 0 in r0, T s ˆRd , vpT, xq " 0 in R d .	(32)
	where	zpt, xq :" P T ´tψ 2 pxq	`ż T 0	1 pt,T s psqP s´t ψ 1 psqpxqdνpsq	`ż T

t P s´t ϕ 1 psqpxqds.

  xqdmpt 1 qpxq " η

	ż	R d	δΨ δm	p mpT q, xqdmpT qpxq	`żR d	δG δm	p mpT q, xqdmpT qpxq
	´ż T t 1	ż	R d	rHpx, Dupt, xqq `αpt, xq.Dupt, xqs dmptqpxqdt
	`ż T t 1	ż	R d	δΨ δm	p mptq, xqdmptqpxqdνptq	`ż T t 1	ż	R d	δF δm	p mptq, xqdmptqpxqdt. (41)

  1 in[START_REF] Daudin | Optimal Control of Diffusion Processes with Terminal Constraint in Law[END_REF]). Using Jensen inequality, we get for t, s P r0, T s with s ă t

			Ep|X t ´Xs | 2 q ď 2E	«	ˇˇˇż s t	αpu, X u qdu ˇˇˇ2	ff	`4E	" |B t ´Bs | 2	ı
						ď 2pt ´sq 2 E ż T "ż t s ż	|αpu, X u q| 2 du t ´s 	`4pt ´sq
						ď 2pt ´sq	0	R d	|αpt, xq| 2 dmptqpxqdt `4pt ´sq
	and therefore	ż T	ż			d 2 pmpsq, mptqq ď C	? t	´s
	for some C " Cp	0	R R d	|x| dmptq ď 2Ep|X t ´Xs | 2 q	`2 ż	R d	|x| 2 dm 0 pxq ď C
			ż			ż T	ż
	for another C " Cp	R d	|x| 2 dm 0 pxq,	0		R

d |αpt, xq| 2 dmptqpxqdtq ą 0 since d 2 pmpsq, mptqq ď Ep|X t ´Xs | 2 q 1{2 . Taking s " 0 in the above computation also shows that ż d |αpt, xq| 2 dmptqpxqdtq ą 0.

  1 2 e µt |Dupt, xq| 2 . Being f in Cpr0, T s, E n q, u is smooth in space and satisfies the HJB equation in the strong sense. Differentiating the equation with respect to x and taking the scalar product with e µt Dupt, xq gives ´Bt wpt, xq `Dwpt, xq.D p Hpx, Dupt, xqq ´∆wpt, xq " ´µwpt, xq ´Dx Hpx, Dupt, xqq.e µt Dupt, xq `Df pt, xq.e µt Dupt, xq ´eµt |D 2 upt, xq| 2 . Now, by assumption on H, |D x Hpx, Dupt, xqq| ď C 0 p1 `|Dupt, xq|q and therefore, for µ " 2C 0 , ´Bt wpt, xq `Dwpt, xq.D p Hpx, Dupt, xqq ´∆wpt, xq ď C 0 e µt |Dupt, xq| `Df pt, xq.e µt Dupt, xq

	ď	? 2e C 0 T pC 0 `}f ptq} 1 q	ps,yqPr0,T sˆR d sup	a	wps, yq.
	By comparison between w and the obvious super-solution
	pt, xq Þ Ñ	1 2	e 2C 0 T }g} 2 1 `?2e C 0 T	ps,yqPr0,T sˆR d sup	a	wps, yq	ż T

t pC 0 `}f psq} 1 q ds we deduce that, for all pt, xq P r0, T s ˆRd , wpt, xq ď Cp1 `sup ps,yqPr0,T sˆR d a wps, yqq for some C " Cp ż T 0 }f ptq} 1 dt, }g} 1 q ą 0. And therefore, sup pt,xqPr0,T sˆR d |Dwpt, xq| ď C for another constant C " Cp ż T 0

  Cpsup pt,xqPr0,T sˆR d q |Dupt, xq|q ą 0. Above we use the fact that sup xPR d |P t gpxq| ď sup xPR d |gpxq| for a bounded function g and sup xPR d with linear growth. Since u is assumed to satisfy the Lipschitz estimate of the previous lemma A.2, }f ptq} 1 dt, }gptq} 1 q. Now we proceed with higher order derivatives and we argue by induction. Take k ě 2 and assume that we have shown that sup tPr0,T s }uptq} k´1 ď Cp ż T 0 }f ptq} k´1 dt, }gptq} k´1 q. Using the inequality sup xPR d |DP t gpxq| ď C ? t sup xPR d |gpxq| we get |D k upt, xq| ď |P T ´tD k gpxq| But we can find a constant C " Cpsup tPr0,T s }uptq} k´1 q such that sup xPR d |D k´1 Hpx, Dups, xqq| ď Cp1 `sup

					`ż T t	|P s´t D k f psqpxq|ds	`ż T t	|DP s´t D k´1 rHp., Dups, .qqs pxq|ds
	ď }g} k	`ż T t	}f psq} k ds	`C ż T t	sup xPR d |D k´1 rHpx, Dups, xqqs | ? s ´t	ds.
								xPR d	|D k ups, xq|q
	and therefore, by Grönwall's lemma A.1,
			sup				
	pt,xqPr0,T sˆR		
	|upt, xq| ď |P T ´tgpxq|	`ż T t	|P s´t f psqpxq|ds	`ż T t	|P s´t rHp., Dups, .qqs pxq|ds
	ď 2 ?	T }g} 0 p1 `|x|q	`2?	T	ż T t	}f psq} 0 p1 `|x|qds `Cp1 `sup pt,xqPr0,T sˆR d	|Dups, xq|q
	for some C " |Ptgpxq| 1`|x| ď 2 ?	T sup xPR d	|gpxq| 1`|x| for a function g
	it holds that							ż T
					sup tPr0,T s	}uptq} 1 ď Cp	0

d |D k upt, xq| ď Cp}g} k , ż 0 }f ptq} k dt, sup tPr0,T s }uptq} k´1 q

  xq ´Dk upt, xq " P T ´t´h D k gpxq ´PT ´tD k gpxq DP s´t´h D k´1 Hp., Dups, .qqpxqds ´ż T t DP s´t D k´1 Hp., Dups, .qqpxqds" ∆ 1 `∆2 `∆3 .We estimate the three differences as follows:|∆ 1 | " |P T ´t´h D k gpxq ´PT ´tD k gpxq| ď |D k gpxq ´Ph D k gpxq| ď h α{2 ||g|| k`α .Using again Grönwall Lemma A.1, we get, for all t P r0, T s, }upt `hq ´uptq} n ď Cpessup tPr0,T s }uptq} n qph α{2 }g} n`α `ż T

		`ż T t`h	P s´t´h D k f psqpxqds	´ż T t	P s´t D k f psqpxqds
		`ż T t`h		
	Now for the term involving f :
	|∆ 2 | " |	ż T t`h	P s´t´h D k f psqpxqds	´ż T t	P s´t D k f psqpxqds|
		" |	ż T t	´h	P s´t D k f ps `hqpxqds	´ż T t	P s´t D k f psqpxqds|
		" | ď ż T ż T t ´h ´h 0 }f ps `hq ´f psq} k ds P s´t pD k f ps `hq ´Dk f psqqpxqds `C? h sup tPr0,T s	´ż T T ´h P s´t D k f psqpxqds| }f ptq} k´1 .
	Finally for the term involving the Hamiltonian
	|∆ 3 | " |	ż T t`h	DP s´t´h D k´1 Hp., Dups, .qqpxqds	t ´ż T	DP s´t D k´1 Hp., Dups, .qqpxqds|
	" | `Cpessup tPr0,T s }uptq} k q ż T ´h t DP ? s ? h ď Cpessup tPr0,T s }uptq} k qp ? h `ż T ´h t }ups `hq ´upsq} k ´t ? s ´t	dsq.	ds
							0	´h	}f ps `hq ´f psq} n ds
						`?h sup tPr0,T s	}f ptq} n´1 q.

s´t D k´1 rHp., Dups `h, .q ´Hp., Dups, .qqs pxqds ´ż T T ´h DP s´t D k´1 rHp., Dups, .qqs pxqds| ď Cpessup tPr0,T s }uptq} k q ż T ´h t sup xPR d |D k ups `h, xq ´Dk ups, xq|
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We will need the following stability result. Proposition 5.1. Assume that pν m q mě1 P L 8 pr0, T sq converges in M `pr0, T sq toward ν. Let u m P Cpr0, T s, E n q be the solution to the HJB equation [START_REF] Leonori | The boundary behavior of blow-up solutions related to a stochastic control problem with state constraint[END_REF] with data pν m , ψ 1 , ϕ 1 , ψ 2 q with ψ 1 , ϕ 1 P Cpr0, T s, E n q and ψ 2 P E n`α . Then, for all pt, xq P r0, T s ˆRd such that νpttuq " 0, it holds: where u is the only element in its equivalence class of L 8 pr0, T s, E n q satisfying (31) for all pt, xq P r0, T s ˆRd .

Proof. For all m ě 1, we define z m according to [START_REF] Mészáros | On The Variational Formulation Of Some Stationary Second-Order Mean Field Games Systems[END_REF] with ν replaced my ν m and we let as well v m :" u m ´zm . On the one hand, for all m, v m satisfies

and therefore, by classical estimates for the heat equation, for all α P p0, 1{2q,

for some C 1 ą 0 and some C " Cpsup tPr0,T s }u m ptq} 2`α q ą 0. Using Theorem 5.1, we find that the sequence pv m q mě1 is bounded in C 1`α 2 ,1`α . Therefore we can find ṽ P C 

for all pt, xq P r0, T s ˆRd such that νpttuq " 0. Since νpttuq ‰ 0 for at most a countable number of times t P r0, T s, we can use Lebesgue dominated convergence theorem and pass to the limit, as m Ñ `8 in the expression v m pt, xq " ´ż T t P s´t rHp., Dv m ps, .q `Dz m ps, .qqs pxqds.

We conclude that, for all pt, xq P r0, T s ˆRd ṽpt, xq " ´ż T t P s´t rHp., Dṽps, .q `Dzps, .qqs pxqds.

If we let ũ :" ṽ `z, we have that ũ solves the HJB equation ( 30) and, by uniqueness, ũ " u in L 8 pr0, T s, E n q. Therefore vpt, xq " ṽpt, xq for all pt, xq P r0, T s ˆRd and we conclude that v m | r0,T sˆBp0,Rq converges to v| r0,T sˆBp0,Rq in C 1`β 2 ,1`β pr0, T s ˆBp0, Rqq for all R ą 0, for some β P p0, αq. Together with [START_REF] Pfeiffer | Optimality conditions in variational form for non-linear constrained stochastic control problems[END_REF], this is enough to conclude the proof of the proposition.

Optimality conditions in the general case

We first prove a lemma similar to Lemma 3.2.

Lemma 5.1. Let p m, ωq be a relaxed solution, in the sense of [START_REF] Dawson | Large deviations from the mckean-vlasov limit for weakly interacting diffusions[END_REF], to the constrained Problem (P). Then there exist ν P M `pr0, T sq and η P R `satisfying Ψp mptqq " 0, ν ´ae (36) ηΨp mpT qq " 0, (37) and such that p m, ωq minimizes J l pω, mq :"

over the pairs pm, ωq satisfying (17) and where we set, J l pm, ωq " `8 if ω is not absolutely continuous with respect to dt b mptq.

Proof. We take ǫ, δ ą 0 and pm ǫ,δ , ω ǫ,δ q solutions to the penalized problems P ǫ,δ . As ǫ, δ Ñ 0, pm ǫ,δ , ω ǫ,δ q converges, up to taking a sub-sequence, in Cpr0, T s, P r pR d qq ˆMpr0, T s ˆRd , ˆRd q for r P p1, 2q to a solution to the constrained problem that we can assume, without loss of generality, to be p m, ωq. Now pm ǫ,δ , ω ǫ,δ q is also a solution to the linearized problems of Lemma 3.2 for some λ ǫ,δ , β ǫ,δ P L 8 pr0, T sq ˆR`s atisfying the exclusion conditions

pT qq ă 0 P r0, 1s if Ψpm ǫ,δ pT qq " 0 " 1 if Ψpm ǫ,δ pT qq ą 0. Using the controllability lemma 4.1 and arguing as in Lemma 4.2 we can infer that λ ǫ,δ ǫ is bounded in L 1 pr0, T sq independently from ǫ, δ ą 0 and β ǫ,δ δ is also bounded in R `. Let us take ν P M `pr0, T sq to be a limit point of λ ǫ,δ ǫ and η a limit point of β ǫ,δ δ . It is plain to check that Ψp mptqq " 0 for ν-almost all t P r0, T s and ηΨp mpT qq " 0. Now we can argue as in the proof of Lemma 3.2, passing to the limit in the linearized problems to conclude that p m, ωq is indeed a minimum of [START_REF] Trevisan | Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients[END_REF].

We now take u P L 8 pr0, T s, E n q to be the solution, in the sense of Definition (5.