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Abstract
Span-based nested named-entity recognition
(NER) has a cubic-time complexity using a
variant of the CYK algorithm. We show that by
adding a supplementary structural constraint on
the search space, nested NER has a quadratic-
time complexity, that is the same asymptotic
complexity than the non-nested case. The pro-
posed algorithm covers a large part of three
standard English benchmarks and delivers com-
parable experimental results.

1 Introduction

Named entity recognition (NER) is a fundamen-
tal problem in information retrieval that aims to
identify mentions of entities and their associated
types in natural language documents. As such, the
problem can be reduced to the identification and
classification of segments of texts. In particular, we
focus on mentions that have the following proper-
ties:

1. continuous, i.e. a mention corresponds to a
contiguous sequence of words;

2. potentially nested, i.e. one mention can be
inside another, but they can never partially
overlap.

Four examples are shown in Figure 1.
In a span-based setting, recognition for nested

NER has a cubic-time complexity (Finkel and Man-
ning, 2009; Fu et al., 2021) using variants of the
Cocke-Younger-Kasami (CYK) algorithm (Kasami,
1965; Younger, 1967; Cocke, 1970). If we re-
strict the search space to non-nested mentions, then
recognition can be realized in quadratic time using
a semi-Markov model (Sarawagi and Cohen, 2004).
An open question is whether it is possible to de-
sign algorithms with better time-complexity/search
space trade-offs.

In this paper, we propose a novel span-based
nested NER algorithm with a quadratic-time com-
plexity, that is with the same time complexity as

the semi-Markov algorithm for the non-nested case.
Our approach is based on the observation that many
mentions only contain at most one nested mention
of length strictly greater than one. As such, we fol-
low a trend in the syntactic parsing literature that
studies search-spaces that allow the development
of more efficient parsing algorithms, both for de-
pendency and constituency structures (Pitler et al.,
2012, 2013; Satta and Kuhlmann, 2013; Gómez-
Rodríguez et al., 2010; Corro, 2020), inter alia.

Our main contributions can be summarized as
follows:

• We present the semi-Markov and CYK-like
models for non-nested and nested NER, re-
spectively — although we do not claim that
these approaches for NER are new, our pre-
sentation of the CYK-like algorithm differs
from previous work as it is tailored to the NER
problem and guarantees uniqueness of deriva-
tions;

• We introduce a novel search space for nested
NER that has no significant loss in coverage
compared to the standard one, see Table 5;

• We propose a novel quadratic-time recogni-
tion algorithm for the aforementioned search
space;

• We experiment our quadratic-time algorithm
on three English datasets (ACE-2004, ACE-
2005 and GENIA) and show that it obtains
comparable results to the cubic-time algo-
rithm.

2 Related work

Span-based methods: Semi-Markov models have
been first proposed in the generative modeling
framework for time-serie analysis and word seg-
mentation (Janssen and Limnios, 1999; Ge, 2002).
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He

1

lost an election to a dead man.

PER PER

PER

This

2

is your second one he has missed.

PER

PER

PER PER

He

3

is retired with the United States army.

PER GPE

ORG

I

4

am Fabian from Bonn, Germany.

PER

PER

GPE

GPE

Figure 1: Sentence examples and their associated analyses from the ACE-2005 dataset.

Sarawagi and Cohen (2004) introduced a discrim-
inative variant for NER. Arora et al. (2019) ex-
tended this approach with a task-tailored structured
SVM loss (Tsochantaridis et al., 2004). Inference
algorithms for semi-Markov models have a O(n2)
time complexity, where n is the length of the in-
put sentence. Unfortunately, semi-Markov models
can only recognize non-nested mentions. Finkel
and Manning (2009) proposed a representation of
nested mentions (together with part-of-speech tags)
as a phrase structure, enabling the use of the CYK
algorithm for MAP inference. Influenced by recent
work in the syntactic parsing literature on span-
based model, i.e. models without an explicit gram-
mar (Hall et al., 2014; Stern et al., 2017), Fu et al.
(2021) proposed to rely on these span-based phrase
structure parsers for nested NER. As structures
considered in NER are not stricto sensu complete
phrase-structures, they use a latent span model. In-
ference in this model has a O(n3) time complexity.
Lou et al. (2022) extended this approach to lexi-
calized structures (i.e. where each mention has an
explicitly identified head), leading to a O(n4) time
complexity for inference due to the richer structure.

Tagging-based methods: NER can be reduced
to a sentence tagging problem using BIO and
BILOU schemes (Ratinov and Roth, 2009) to by-
pass the quadratic-time complexity of semi-Markov
models. MAP Inference (resp. marginal inference)
is then a linear-time problem using the Viterbi algo-
rithm (resp. forward-backward algorithm).1 How-
ever, this approach cannot incorporate span fea-
tures neither be used for nested entities. Alex et al.
(2007) and Ju et al. (2018) proposed to rely on
several tagging layers to predict nested entities.
Shibuya and Hovy (2020) introduced an extension

1It is quadratic in the number of tags, but we assume the
input of the algorithm is the sentence only.

of the Viterbi algorithm that allows to rely on BIO
tagging for nested NER by considering second-best
paths. To leverage the influence of outer entities,
Wang et al. (2021) rely on different potential func-
tions for inner entities. Note that algorithms for the
second-best paths method have a O(n2) time com-
plexity, that is similar to the span-based alogithm
we propose.

Hypergraph-based methods: Lu and Roth
(2015) proposed an hypergraph-based method for
nested NER. Although this approach is appealing
for its O(n) (approximate) inference algorithms,
it suffers from two major issues: (1) the marginal
inference algorithm overestimate the partition func-
tion; (2) the representation is ambiguous, that is
a single path in the hypergraph may represent dif-
ferent analysis of the same sentence. Muis and Lu
(2017) proposed a different hypergraph withO(n2)
inference algorithms that solves issue (1) but still
exhibits issue (2). Katiyar and Cardie (2018) ex-
tended hypergraph methods to rely on neural net-
work scoring. Wang and Lu (2018) proposed a
novel hypergraph method that fixes issues (1) and
(2) but their approach does not forbid partially over-
lapping mentions.

Unstructured methods: Several authors pro-
posed to predict the presence of a mention on each
span independently, sometimes with specialized
neural architectures (Xu et al., 2017; Sohrab and
Miwa, 2018; Zheng et al., 2019; Xia et al., 2019;
Wang et al., 2020; Tan et al., 2020; Zaratiana et al.,
2022), inter alia. Note that these approaches clas-
sify O(n2) spans of text independently, hence the
time-complexity is similar to the approach pro-
posed in this paper but they cannot guarantee well-
formedness of the prediction.
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3 Nested named-entity recognition

In this section, we introduce the nested NER prob-
lem and the vocabulary we use through the paper.

3.1 Notations and vocabulary

Let s = s1...sn be a sentence of n words. With-
out loss of generality, we assume that all sen-
tences are of the same size. We use interstice
(or fencepost) notation to refer to spans of s, i.e.
si:j = si+1...sj if 0 ≤ i < j ≤ n, the empty
sequence if 0 ≤ i = j ≤ n and undefined other-
wise. We denote M the set of possible mentions
in a sentence and T the set of mention types, e.g.
T = {PER, ORG, GPE, ...}. Without loss of gen-
erality, we assume that T ∩ {→,↔, 7→,← [} = ∅.
A mention is denoted ⟨t, i, j⟩ ∈M s.t. t ∈ T, 0 ≤
i < j ≤ n, where i (resp. j) is called the left
border (resp. right border). An analysis of sen-
tence s is denoted y ∈ {0, 1}M where ym = 1
(resp. ym = 0) indicates that mention m ∈ M is
included in the analysis (resp. is not included). For
example, the analysis of sentence 1 in Figure 1 is
represented by a vector y where y⟨PER,0,1⟩ = 1,
y⟨PER,5,8⟩ = 1 and all other elements are equal to
zero. A mention ⟨t, i, j⟩ is said to be inside an-
other mention ⟨t′, i′, j′⟩ iff i′ < i < j ≤ j′ or
i′ ≤ i < j < j′.

Let y be the analysis of a sentence. We call
first level mentions all mentions in y that are not
inside another mention of the analysis. We call
nested mentions all mentions that are not first
level mentions. For example, the first level men-
tions of the analysis of sentence 2 in Figure 1 are
⟨PER, 0, 1⟩ “this” and ⟨PER, 2, 8⟩ “your second
one he has missed”. We call children of men-
tion m ∈ M the set C ⊆ M of mentions that
are inside m but not inside another mention that
is inside m. Conversely, m is said to be the par-
ent of each mention in C. For example, in sen-
tence 2 in Figure 1, the mention ⟨PER, 2, 8⟩ “your
second one he has missed” has two children,
⟨PER, 2, 3⟩ “your” and ⟨PER, 5, 6⟩ “he”. In sen-
tence 4 in Figure 1, ⟨GEP, 5, 6⟩ “Germany” is a
child of ⟨GEP, 4, 6⟩ “Bonn, Germany” but it is
not a child of ⟨PER, 2, 6⟩“Fabian from Bonn,
Germany”. The left neighborhood (resp. right
neighborhood) of a nested mention is the span
between the left border of its parent and its left
border (resp. between its right border and the right
border of its parent). For example, in sentence
2 in Figure 1, mention ⟨PER, 5, 6⟩ “he” has left

neighborhood s2:5 “your second one” and right
neighborhood s6,8 “has missed”.

The set of possible analyses is denoted Y . We
will consider three different definitions of Y :

1. the set of analyses where no disjoint mention
spans overlap, corresponding to non-nested
NER;

2. the set of analyses where one mention span
can be inside another one but cannot partially
overlap, corresponding to nested NER;

3. the set 2 with additional constraint that a men-
tion must contain at most one child with a
span length strictly greater to one.

3.2 Inference problems
The weight of an analysis y ∈ Y is defined as the
sum of included mention weights. Let w ∈ RM be
a vector of mention weights. The probability of an
analysis is defined via the Boltzmann or “softmax”
distributions:

p(y|w) =
exp(w⊤y)

Z(w)
,

where Z(w) =
∑

y′∈Y exp(w⊤y′) is the partition
function. Note that, in general, the set Y is of expo-
nential size but Z(w) can nonetheless be efficiently
computed via dynamic programming.

The training problem aims to minimize a loss
function over the training data. We focus on the
negative log-likelihood loss function defined as:

ℓ(w,y) = −w⊤y + logZ(w).

Note that this loss function is convex in w. This
differentiates us from previous work that had to
rely on non-convex losses (Fu et al., 2021; Lou
et al., 2022). Moreover, note that the loss function
used by Fu et al. (2021) and Lou et al. (2022) re-
quires to compute the log-partition twice, one time
with “normal” weights and one time with masked
weights. The difference lays in the fact that we will
use algorithms that are tailored for the considered
search space Y whereas Fu et al. (2021) and Lou
et al. (2022) introduced latent variables in order to
be able to rely on algorithms designed for a differ-
ent problem, namely syntactic constituency parsing.
Note that the partial derivatives of logZ(w) are
the marginal distributions of mentions (Wainwright
et al., 2008). Hence, we will refer to computing
logZ(w) and its derivatives as marginal inference,
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a required step for gradient based optimization at
training time.

At test time, we aim to compute the highest scor-
ing structure given weights w:

y∗ = argmax
y∈Y

p(y|w) = argmax
y∈Y

w⊤y

We call this problem MAP inference.
For many problems in natural language process-

ing, marginal inference and MAP inference can be
computed via dynamic programming over different
semirings (Goodman, 1999) or dynamic program-
ming with smoothed max operators (Mensch and
Blondel, 2018). However, we need to ensure the
uniqueness of derivations property so that a single
analysis y ∈ Y has exactly one possible derivation
under the algorithm. Otherwise, the same analysis
would be counted several times when computing
the partition function, leading to an overestimation
of its value.

4 Related algorithms

In this section, we present semi-Markov and
CYK-like algorithms for non-nested and nested
NER, respectively. Our presentation is based on
the weighted logic programming formalism, also
known as parsing-as-deduction (Pereira and War-
ren, 1983). We refer the reader to Kallmeyer (2010,
Chapter 3) for an introduction to this formalism.
The space and time complexities can be directly
inferred by counting the maximum number of free
variables in items and deduction rules, respectively.
To the best of our knowledge, the presentation of
the CYK-like algorithm is novel as previous work
relied on the “actual” CYK algorithm (Finkel and
Manning, 2009) or its variant for span-based syn-
tactic parsing (Lou et al., 2022; Fu et al., 2021).

4.1 Non-nested named-entity recognition
The semi-Markov algorithm recognizes a sentence
from left to right. Items are of the following forms:

• [t, i, j] s.t. t ∈ T and 0 ≤ i < j ≤ n: repre-
sent the mention ⟨t, i, j⟩;

• [→, i] s.t. 0 ≤ i ≤ n: represent a partial
analysis of the sentence covering words s0:i.

Axioms are items of the form [→, 0] and [t, i, j].
The first axiom form represents an empty partial
analysis and the second set of axioms represent
all possible mentions in the sentence. We assign
weight w⟨t,i,j⟩ to axiom [t, i, j], for all t ∈ T, i, j ∈

N s.t. 0 ≤ i < j ≤ n. The goal of the algorithm is
the item [→, n].

Deduction rules are defined as follows:
[→, i] [t, i, j]

(a)
[→, j]

[→, i− 1]
(b)

[→, i]
Rule (a) appends a mention spanning words si:j to
a partial analysis, whereas rule (b) advances one
position by assuming word si:i+1 is not covered by
a mention.

A trace example of the algorithm is given in
Table 1. Soundness, completeness and uniqueness
of derivations can be directly induced from the
deduction system. The time and space complexities
are both O(n2|T |).

4.2 Nested named-entity recognition
We present a CYK-like algorithm for nested named
entity recognition. Contrary to algorithms pro-
posed by Finkel and Manning (2009) and Fu et al.
(2021), inter alia, our algorithm directly recognizes
the nested mentions and does not require any “trick”
to take into account non-binary structures, words
that are not covered by any mention or the fact that
a word in a mention may not be covered by any of
its children. As such, we present an algorithm that
is tailored for NER instead of the usual “hijacking”
of constituency parsing algorithms. This particular
presentation of the algorithm will allow us to sim-
plify the presentation of our novel contribution in
Section 5.

Items are of the following forms:

• [t, i, j] as defined previously;

• [→, i] as defined previously;

• [7→, i, j] with 0 ≤ i < j ≤ n: represent the
partial analysis of a mention and its nested
structure starting at position i.

• [↔, i, j] with 0 ≤ i < j ≤ n: represent the
full analysis of a mention spanning si:j , in-
cluding its internal structure (i.e. full analysis
of its children).

Axioms and goals are the same as the ones of the
semi-Markov algorithm presented in Section 4.1,
with supplementary set of items of form [7→, i, i]
that are used to start recognizing the internal struc-
ture of a mention starting at position i.

The algorithm consists of two steps. First, the
internal structure of mentions are constructed in a
bottom-up fashion. Second, first level mentions
(and their internal structures) are recognized in a
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Items Rules Comments

1. [→, 0] Axiom Recognize mention
2. [PER, 0, 1] Axiom “He”
3. [→, 1] (a) with 1 and 2

4. [→, 2] (b) with 3 Recognize empty
5. [→, 3] (b) with 4 space between
6. [→, 4] (b) with 5 the two mentions
7. [→, 5] (b) with 6

8. [PER, 5, 8] Axiom Recognize mention
9. [→, 8] (a) with 7 and 8 “a dead man”

Table 1: Example of recognition trace with the semi-
Markov algorithm on sentence 1.

Items Rules O(n3) O(n2) Comments

1. [7→, 0, 0] Axiom // Recognize
2. [7→, 0, 1] (d) with 1 // mention
3. [PER, 0, 1] Axiom // “This”
4. [↔, 0, 1] (g) with 2 & 3 //

5. [7→, 2, 2] Axiom // Recognize
6. [7→, 2, 3] (d) with 5 // mention
7. [PER, 2, 3] Axiom // “your”
8. [↔, 2, 3] (g) with 7 //

9. [7→, 0, 5] Axiom // Recognize
10. [7→, 0, 6] (d) with 9 // mention
11. [PER, 5, 6] Axiom // “he”
12. [↔, 5, 6] (g) with 11 //

13. [7→, 2, 4] (f) with 8 // Recognize
14. [7→, 2, 5] (d) with 13 // mention
15. [7→, 2, 6] (c) with 14 & 12 (j) “your second
16. [7→, 2, 7] (d) with 15 // one he has
17. [7→, 2, 8] (d) with 16 // missed”
18. [PER, 2, 8] Axiom //
19. [↔, 2, 8] (g) with 17 & 18 //

20. [→, 0] Axiom // Combine all
21. [→, 1] (h) with 20 & 4 // first-level
22. [→, 2] (i) with 21 // mentions
23. [→, 8] (h) with 22 & 19 //

Table 2: Example of recognition trace with the CYK-
like and the proposed O(n2) algorithm on sentence 2.
There is only one rule that differs, but they both share
the same antecedents.

Items Rules Comments

1. [7→, 0, 0] Axiom Recognize
2. [7→, 0, 1] (d) with 1 mention
3. [PER, 0, 1] Axiom “He”
4. [↔, 0, 1] (g) with 2 and 3

5. [7→, 5, 5] Axiom Recognize
6. [7→, 5, 6] (d) with 5 mention
7. [7→, 5, 7] (d) with 6 “United states”
8. [GPE, 5, 7] Axiom
9. [↔, 5, 7] (a) with 1 and 2

10. [← [, 4, 7] (m) with 9 Recognize
11. [7→, 4, 7] (p) with 10 mention
11. [7→, 4, 8] (d) with 11 “the United
12. [ORG, 4, 8] Axiom States army”
13. [↔, 4, 8] (g) with 11 and 12

14. [→, 0] Axiom Combine all
15. [→, 1] (h) with 14 and 4 first-level
16. [→, 2] (i) with 15 mentions
17. [→, 3] (i) with 16
18. [→, 4] (i) with 17
19. [→, 8] (h) with 18 & 13

Table 3: Example of recognition trace of the proposed
algorithm on sentence 3.

Items Rules Comments

1. [ 7→, 0, 0] Axiom Recognize
2. [ 7→, 0, 1] (d) with 1 mention
3. [PER, 0, 1] Axiom “I”
4. [↔, 0, 1] (g) with 2 & 3

5. [ 7→, 5, 5] Axiom Recognize
6. [ 7→, 5, 6] (d) with 5 mention
7. [GPE, 5, 6] Axiom “Germany”
8. [↔, 5, 6] (g) with 6 & 7

9. [ 7→, 4, 4] Axiom Recognize
10. [ 7→, 4, 5] (d) with 9 mention
11. [ 7→, 4, 6] (j) with 10 & 8 “Bonn, Germany”
12. [GPE, 4, 6] Axiom
13. [↔, 4, 6] (g) with 11 & 12

14. [← [, 3, 6] (m) with 13 Recognize
15. [← [, 2, 6] (n) with 14 mention
16. [ 7→, 2, 6] (p) with 15 ‘Fabian from
17. [PER, 2, 6] Axiom Bonn, Germany”
18. [↔, 2, 6] (g) with 16 & 17

19. [→, 0] Axiom Combine all
20. [→, 1] (h) with 19 & 4 first-level
21. [→, 2] (i) with 10 mentions
22. [→, 6] (h) with 21 & 18

Table 4: Example of recognition trace of the proposed
algorithm on sentence 4.
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similar fashion to the semi-Markov model. The
deduction rules for bottom-up construction are
defined as follows:

[ 7→, i, k] [↔, k, j]
(c) i < k

[7→, i, j]

[7→, i, j − 1]
(d)

[7→, i, j]

[↔, i, k] [↔, k, j]
(e)

[7→, i, j]

[↔, i, j − 1]
(f)

[ 7→, i, j]

[7→, i, j] [t, i, j]
(g) i < j

[↔, i, j]

Rule (c) concatenates an analyzed mention to a
partial analysis of another mention — note that
the constraint forbids that right antecedent shares
its left border with its parent. Rule (d) advances
of one position in the partial structure, assuming
the analyzed mention starting at i does not have a
child mention covering sj−1:j . Rules (e) and (f)
are used to recognize the internal structure of a
mention that has a child sharing the same left bor-
der. Although the latter two deduction rules may
seem far-fetched, they cannot be simplified without
breaking the uniqueness of derivations property or
breaking the prohibition of self loop construction
of↔ items. Finally, rule (g) finishes the analysis
of a mention and its internal structure.

Note that this construction is highly similar to
the dotted rule construction in the Earley algorithm
(Earley, 1970). Moreover, contrary to Stern et al.
(2017), we do not introduce null labels for implicit
binarization. The benefit of our approach is that
there is no spurious ambiguity in the algorithm, i.e.
we guaranty uniqueness of derivations. Therefore,
we can use the same deduction rules to compute the
log-partition function of the negative log-likelihood
loss. This is not the case of the approach of Stern
et al. (2017), which forces them to rely on a struc-
tured hinge loss.

Deduction rules for the sec-
ond step are defined as follows:

[→, i] [↔, i, j]
(h)

[→, j]

[→, i− 1]
(i)

[→, i]
They have similar interpretation to the rules of the
semi-Markov model where we replaced mentions
by possibly nested structures.

A trace example of the algorithm is given in Ta-
ble 2. Although the algorithm is more involved than
usual presentations, our approach directly maps a
derivation to nested mentions and guarantee unique-
ness of derivations. The space and time complexi-
ties are O(n2|T |) and O(n3|T |), respectively.

5 O(n2) nested named-entity recognition

In this section, we describe our novel algorithm
for quadratic-time nested named entity recognition.
Our algorithm limits its search space to mentions
that contain at most one child of length strictly
greater to one.

Items are of the following forms:

• [t, i, j] as defined previously;

• [→, i] as defined previously;

• [7→, i, j] as defined previously;

• [↔, i, j] as defined previously;

• [← [, i, j] with 0 ≤ i < j ≤ 0: represents a
partial analysis of a mention and its internal
structure, where its content will be recognized
by appending content on the left instead of the
right.

Axioms and goals are the same than the one of
the CYK-like algorithm presented in Section 4.2
— importantly, there is no extra axiom for items of
the form [← [, i, j].

For the moment, assume we restrict nested men-
tions that have a length strictly greater to the ones
that share their left boundaries with their parent.
We can re-use rules (d), (f), (g), (h) and (i) together
with the following two deduction rules:

[7→, i, j − 1] [↔, j − 1, j]
(j) i < j − 1

[7→, i, j]

[↔, i, j − 1] [↔, j − 1, j]
(k)

[7→, i, j]

More precisely, we removed the two rules inducing
a cubic-time complexity in the CYK-like algorithm
and replaced them with quadratic-time rules. This
transformation is possible because our search space
forces the rightmost antecedents of these two rules
to cover a single word, hence we do not need to
introduce an extra free variable. However, in this
form, the algorithm only allows the child mention
of length strictly greater to one to share its left
boundary with its parent.

We now extend the algorithm to the full targeted
search space. The intuition is as follows: for a
given mention, if it has a child mention of length
strictly greater than one that does not share its left
border with its parent, we first start recognizing
this child mention and its left neighborhood and
then move to right neighborhood using previously
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defined rules. We start the recognition of the left
neighborhood using the two following rules:

[↔, i, i+ 1] [↔, i+ 1, j]
(l) i+ 2 < j

[←[, i, j]

[↔, i+ 1, j]
(m) i+ 2 < j

[←[, i, j]
where the constraints ensure antecedents
[↔, i + 1, j] are non-unary (otherwise we
will break the uniqueness of derivations con-
straint). Rule (l) (resp. (m)) recognizes the
case where span si:i+1 contains (resp. does not
contain) a mention. The following rules are
analogous to rules (d) and (j) but for visiting
the left neighborhood instead of the right one:

[←[, i+ 1, j]
(n)

[←[, i, j]
[↔, i, i+ 1] [←[, i+ 1, j]

(o)
[←[, i, j]

Finally, once the left neighborhood has been
recognized, we move to the right one using the
following rule:

[←[, i, j]
(p)

[ 7→, i, j]

Using the aforementioned rules, our algorithm
has time and space complexities of O(n2|T |). We
illustrate the difference with the CYK-like algo-
rithm with a trace example in Table 2: in this spe-
cific example, the two analyses differ only by the
application of a single rule. Table 3 contains a trace
example where all nested mentions have a size one,
so the parent mention is visited from left to right.
Table 4 contains a trace example where we need to
construct one internal structure by visiting the left
neighborhood of the non-unary child mention from
right to left.

Soundness and completeness can be proved by
observing that, for a given mention, any children
composition can be parsed with deduction rules
as long as there is at most one child with a span
strictly greater to one. Moreover, these are the
only children composition that can be recognized.
Finally, uniqueness of derivations can be proved as
there is a single construction order of the internal
structure of a mention.

Infinite recursion. An important property of our
algorithm is that it does not bound the number of
allowed recursively nested mentions. For example,
consider the phrase “[Chair of [the Committee of
[Ministers of [the Council of [Europe]]]]]”. Not
only can this nested mention structure be recog-
nized by our algorithm, but any supplementary “of”
precision would also be recognized.

ACE-2004 ACE-2005 GENIA

Non-nested O(n2) 78.19 80.89 91.21
Nested O(n3) 99.97 99.96 99.95
Nested O(n2) 98.92 99.31 99.83

Table 5: Maximum recall that can be achieved on the
full datasets (train, dev and test) for the three algorithms.
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Figure 2: MAP decoding time (dynamic program-
ming algorithm only) in seconds on an Intel Core
i5 (2.4 GHz) processor for sentences of lengths 1
to 300. (dashed) quadratic-time semi-markov algo-
rithm. (solid) CYK-like cubic-time algorithm. (dot-
ted) quadratic-time algorithm proposed in this paper.

Possible extension. Note that we could extend
the algorithm so that we allow each mention to
have at most one child of length strictly greater to
a predefined constant c, and other children should
have a length less or equal to c. However, as fixing
c = 1 results in a good cover of datasets we use,
we do not consider this extension in this work.

6 Experimental results

Data. We evaluate our algorithms on the ACE-
2004 (Doddington et al., 2004), ACE-2005
(Walker et al., 2006) and GENIA (Kim et al., 2003)
datasets. We split and pre-process the data using
the tools distributed by Shibuya and Hovy (2020).

Data coverage. As our parsing algorithm consid-
ers a restricted search space, an important question
is whether it has a good coverage of NER datasets.
Table 5 shows the maximum recall we can achieve
with the algorithms presented in this paper. Note
that no algorithm achieve a coverage of 100% as
there is a small set of mentions with exactly the
same span2 and mentions that overlap partially. We
observe that the loss of coverage for our quadratic-

2This can be easily fixed by collpasing theses mentions, a
standard trick used in the constituency parsing literature, see
(Stern et al., 2017)

10718



Dataset

ACE-2004 ACE-2005 GENIA
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Comparable models based on BERT

Shibuya and Hovy (2020) 85.23 84.72 84.97 83.30 84.69 83.99 77.46 76.65 77.05
Wang et al. (2020) 86.08 86.48 86.28 83.95 85.39 84.66 79.45 78.94 79.19
Wang et al. (2021, max) 86.27 85.09 85.68 85.28 84.15 84.71 79.20 78.16 78.67
Fu et al. (2021)† 87.62 87.57 87.60 83.34 85.67 84.49 79.10 76.53 77.80
Tan et al. (2021)† 87.05 86.26 86.65 83.92 84.75 84.33 78.33 76.66 77.48
Shen et al. (2021)† 87.27 86.61 86.94 86.02 85.62 85.82 76.80 79.02 77.89
Yan et al. (2021) 87.27 86.41 86.84 83.16 86.38 84.74 78.57 79.30 78.93

Model based on BERT with lexicalization

Lou et al. (2022) 87.39 88.40 87.90 85.97 87.87 86.91 78.39 78.50 78.44

This work

Semi-Markov algorithm, O(n2) 89.06 68.63 77.52 84.39 68.51 75.63 80.87 71.37 75.82
CYK-like algorithm, O(n3) 87.18 86.06 86.62 84.20 85.84 85.01 79.20 77.31 78.24
Proposed algorithm, O(n2) 87.37 85.04 86.19 84.42 85.28 84.85 79.28 77.25 78.25

Table 6: Precision, recall and F1-measure results. We compare ourselves to other BERT-based models — some of
the cited papers includes richer models that we omit for brievity as our goal is only to asses the performance of our
algorithm compared to the CYK-like one. Results marked with † are the reproduction of Lou et al. (2022) as the
original papers experimented on different data splits.

time algorithm is negligible compared to the cubic-
time algorithm for all datasets.

Timing. We implemented the three algorithms
in C++ and compare their running time for MAP
inference in Figure 2. The proposed algorithm is
way faster than the CYK-like. If we would parse
only sentences of 300 words and we only consider
the time spend in the decoding algorithm (i.e. ig-
noring the forward pass in the neural network), the
CYK-like algorithm couldn’t even decode 50 sen-
tences in a second whereas our algorithm could
decode more than 1500 sentences on an Intel Core
i5 (2.4 GHz) processor. As such, we hope that our
algorithm will allow future work to consider NER
on longer spans of text.

Neural architecture and hyperparameters.
Our neural network is composed of a finetuned
BERT model3 (Devlin et al., 2019) followed by 3
bidirectional LSTM layers (Hochreiter and Schmid-
huber, 1997) with a hidden size of 400. When the
BERT tokenizer splits a word, we use the output
embedding of the the first token. Mention weights
(i.e. values in vector w) are computed using two
biaffine layers (Dozat and Manning, 2017), one
labeled and one unlabeled, with independent left
and right projections of dimension 500 and RELU

activation functions.

3bert-base-uncased as distributed at https:
//huggingface.co/bert-base-uncased

We use a negative log-liklihood loss (i.e. CRF

loss) with 0.1-label smoothing (Szegedy et al.,
2016). The learning rate is 1 × 10−5 for BERT

parameters and 1× 10−3 for other parameters. We
use an exponential decay scheduler for learning
rates (decay rate of 0.75 every 5000 steps). We ap-
ply dropout with probability of 0.1 at the output of
BERT, LSTM layers and projection layers. We keep
the parameters that obtains the best F1-measure on
development data after 20 epochs.

Results. We report experimental results in Ta-
ble 6. Note that our goal is not to establish a
novel SOTA for the task but to assess whether
our quadratic-time algorithm is well-suited for the
nested NER problem, therefore we only compare
our models with recent work using the same datas-
plit and comparable neural architectures (i.e. BERT-
based and without lexicalization). Any method
that modifies the cubic-time parser to improve
results can be similarly introduced in our parser.
Our implementation of the CYK-like cubic-time
parser obtains results close to comparable work in
the literature. Importantly, we observe that, with
the proposed quadratic-time algorithm, F1-measure
results are (almost) the same on GENIA and the the
degradation is negligible on ACE-2004 and ACE-
2005 (the F1-measure decreases by less than 0.5).
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7 Conclusion

In this work, we proposed a novel quadratic-time
parsing algorithm for nested NER, an asymptotic
improvement of one order of magnitude over previ-
ously proposed span-based algorithms. We showed
that the novel search-space has a good coverage of
English datasets for nested NER. Despite having
the same time-complexity than semi-Markov mod-
els, our approach achieves comparable experimen-
tal results to the cubic-time CYK-like algorithm.

As such, we hope that our algorithm will be used
as a drop-in fast replacement for future work in
nested NER, where the cubic-time algorithm has
often been qualified of slow. Future work could
consider the extension to lexicalized mentions.

Limitations

An obvious limitation of our work is the consid-
ered search space. Although we showed that it
is well suited for the data used in practice by the
NLP community, this may not hold in more general
settings.

Moreover, we only experiment in English.
We suspect that similar results would hold for
morphologically-rich languages as we expect, in
the latter case, that constituents are shorter (i.e.
morphologically-rich languages heavily rely on
morphological inflection, so we expect more men-
tions spanning a single word), see (Haspelmath and
Sims, 2013, Section 1.2 and Table 1.1). However,
this is not guaranteed and future work needs to
explore the multilingual setting.

Finally, in this work we do not consider discon-
tinuous mentions, which is an important setting in
real world scenario.
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