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We consider how to tell the time-ordering associated with measurement data from quantum experiments at
two times and any number of qubits. We define an arrow of time inference problem. We consider conditions on
the initial and final states that are symmetric or asymmetric under time reversal. We represent the spatiotemporal
measurement data via the pseudodensity matrix space-time state. There is a forward process which is completely
positive and trace-preserving (CPTP) and a reverse process which is obtained via an alternative recovery map
based on inverting unitary dilations. For asymmetric conditions, the protocol determines whether the data are
consistent with the unitary dilation recovery map or the CPTP map. For symmetric conditions, the recovery map
yields a valid CPTP map and the experiment may take place in either direction. We also discuss adapting the
approach to the Leifer-Spekkens or Process matrix space-time states.

DOI: 10.1103/PhysRevA.109.032219

I. INTRODUCTION

The arrow of time refers to the apparent asymmetry be-
tween time moving forward and backward. One can often tell
if a movie is being played in the correct, forward, direction
or not. Understanding the arrow of time and time-reversal
symmetry is of long-running foundational interest, whether in
cosmology, particle physics, or thermodynamics [1–6].

The recent renewed interest in creating a unified spatiotem-
poral framework for quantum theory [7–15], wherein space
and time are treated on a more equal footing, raises new
questions and challenges concerning the arrow of time. Tem-
poral correlations are being analyzed with tools originally
created for spatial correlations [16–20]. Leggett and Garg
demonstrated that quantum systems display a type of time-
like correlation unexplainable by macroscopic realism [7].
Techniques have been developed to certify quantum tem-
poral correlation in quantum information theory [21–26].
Genuine temporal signals have been utilized to infer the
quantum causal structure [11,27]. It has also been found that
causal structures in quantum theory can be superposed [8–10]
with consequences for information communication capacity
and thermodynamics [28–32]. Of particular interest here is
that, in analyzing temporal correlations with tools for spatial
correlations, an important new feature emerges: the poten-
tial time-asymmetry of temporal correlations [2,33–36]. This
gives rise to the question of how this time asymmetry mani-
fests itself in the spatiotemporal data, and the closely related
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question of how one can determine the temporal ordering
given the data.

In this work, we accordingly give a protocol determining
the arrow of time given quantum spatiotemporal correlations.
We employ the so-called pseudodensity matrix (PDM) for-
malism [11]. The PDM is constructed operationally, from
measurements at several locations and times. There is, as
depicted in Fig. 1, a forward process, which is a completely
positive and trace-preserving (CPTP) map of the system state.
Flipping the time label of the collected data gives rise to an
associated reverse process, a recovery map of independent
interest, that turns out to be equivalent to inverting the unitary
dilation of the forward channel. When the conditions on the
initial and final states are asymmetric, our protocol helps
determine whether the data align with the unitary dilation
recovery map or the CPTP map. In symmetric conditions,
the recovery map produces a valid unitary, indicating that the
experiment could have taken place in either direction. The
main technical contribution is a method for extracting a matrix
representing the dynamics (the Choi Jamiolkowski operator)
given the spatiotemporal data, via a vectorization of the PDM.

II. ARROW OF TIME INFERENCE PROBLEM

We first briefly review the PDM formalism used for formu-
lating the problem. The PDM generalizes the density matrix
by assigning a Hilbert space to each instant in time. In partic-
ular, the two-time PDM R12 ∈ B(H1 ⊗ H2), which aligns with
the arrow of time and will be used in this work, is defined
as [11,27]

(forward) R12 = 1

4n

4n−1∑
i1,i2=0

〈{σi1 , σi2}〉σi1 ⊗ σi2 , (1)
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where σiα ∈ {1, σx, σy, σz}⊗n is an n-qubit Pauli matrix at time
tα . σiα is extended to an observable associated with two times,
σi1 ⊗ σi2 that has expectation value 〈{σi1 , σi2}〉. One measure-
ment scheme for obtaining 〈{σi1 , σi2}〉 is provided in Sec. IV.
We refer to Eq. (1) as the forward PDM. The partial trace of
a PDM still gives a valid PDM [27]. The PDM is Hermitian
with unit trace but may have negative eigenvalues. The nega-
tive eigenvalue is a sufficient but not necessary condition for
quantum temporal correlation, as the density matrix at a single
time cannot explain it.

While negative eigenvalues signify quantum temporal cor-
relation, the arrow of time remains a separate question.
Quantum temporal correlation has a unique feature of being
time asymmetric compared to quantum spatial correlations,
such as quantum entanglement. The negative values in the
PDM can be used to quantify the strength of quantum tempo-
ral correlation [11,27], but they do not carry the information
of the time asymmetry. This motivates the investigation of the
arrow of time in the PDM formalism.

The arrow of time inference problem is formulated in the
PDM formalism as follows. Consider that an n-qubit system
undergoes a CPTP map E : B(H1) → B(H2). To construct
the two-time PDM, an experimenter Alice implements the
observables σi1 at initial time t1 and σi2 at final time t2.
She then collects the data {〈{σi1 , σi2}〉} but forgets to record
the time order of events. This means that, due to the lack of
time information, that data could be used to construct two
possible PDMs, one is the forward PDM listed in Eq. (1) and
the other is in the following:

(backward) R̄12 = 1

4n

4n−1∑
i1,i2=0

〈{σi1 , σi2}〉σi2 ⊗ σi1 . (2)

We refer this to as the backward PDM. Alice wants to know
which one is consistent with the flow of time.

Let us first understand the problem better before we dive
into it. The collected data {〈{σi1 , σi2}〉} includes {〈{σi1 ,1}〉}
and {〈{1, σi2}〉}, i.e., scenarios where Alice does nothing at
one time while measuring n-qubit Pauli matrices at another
time. Attaching those two pieces of data to the corresponding
Pauli matrices and summing up gives two valid density matri-
ces (up to a normalization constant). Denote the two density
matrices by

ρ := 1

2n

4n−1∑
i1=0

〈{σi1 ,1}〉σi1 , γ := 1

2n

4n−1∑
i2=0

〈{1, σi2}〉σi2 .

It can be directly verified that

ρ = Tr2R12 = Tr1R̄12, γ = Tr1R12 = Tr2R̄12. (3)

To put it in other words, the initial and final states in the two
PDMs are swapped. This reveals a useful relation between the
two PDMs

R̄12 = S R12 S†, (4)

where S := ∑2n−1
i, j=0 |i j〉〈 ji| = 1

2n

∑
i σi ⊗ σi denotes the n-

qubit swap operator. The swap operator here can be treated
as a time reversal operation on a PDM. It is natural to call
the PDM R̄ a time-reversed version of R. Therefore, Alice’s

S1 S2

E2E1

ρS1 ⊗ ρE1 ρS2E2

Forward

Backward
t1 t2

U /U†

FIG. 1. The task is to determine whether a forward process gen-
erated the data or whether the time labels of the data have been
switched. Forward process: A crucial initial condition is that the
system S and the environment E start in a product state ρS1 ⊗ ρE1

at time t1. Undergoing a unitary interaction U , the joint system SE
becomes, in general, correlated at time t2. Ignoring E , the dynamics
of the system S are characterized by a CPTP map. Backward process:
At t2, the system S with the environment E starts in a correlated state
ρS2E2 . The joint system SE then undergoes the backward evolution
U †. In this scenario, the dynamics of the system S is given by a
recovery map that is positive but not necessarily CPTP.

task then becomes to distinguish whether her data table corre-
sponds to the actual forwards process R or R̄. The idea of an
arrow of time is associated with there being examples where
R̄ is not realizable but R is, an asymmetry that will next be
associated with the boundary conditions.

III. BOUNDARY CONDITIONS FOR INFERRING ARROW

A common explanation for time asymmetry concerns the
conditions on the initial and final states, i.e., the boundary
conditions [2]. Next, we will discuss inferring the arrow of
time under both symmetric and asymmetric entropic boundary
conditions.

A. Asymmetric boundary conditions

The asymmetry of boundary conditions often refers to the
asymmetry of entropies. In quantum information processing
as illustrated in the forward direction of Fig. 1, the system
of interest S is often assumed to be initially in a product
state with the environment E at initial time t1, i.e., ρS1 ⊗ ρE1 .
System S then interacts with the environment E via the uni-
tary U , arriving at a final state ρS2E2 := U (ρS1 ⊗ ρE1 )U †. Let
ρS2 := TrE ρS2E2 , ρE2 := TrSρS2E2 . The sum of the entropies is
nondecreasing during the process, i.e.,

S(ρS1 ) + S(ρE1 ) � S(ρS2 ) + S(ρE2 ), (5)

where S(ρ) denotes the von Neumann entropy and the sub-
additivity of entropy [20] is used. The consequences of the
inequality can be employed to infer the arrow of time.

For the forward evolution as shown in Fig. 1, by ignoring
the environment E , the open dynamics of the system S can be
characterized by a CPTP map E , its action is given by

E (ρS1 ) := TrE U (ρS1 ⊗ ρE1 )U †. (6)

032219-2
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Let M ∈ B(H1 ⊗ H2) denotes the Choi-Jamiołkowski (CJ)
matrix of E and it is defined as [37,38]

M =
2n−1∑
i, j=0

|i〉〈 j| ⊗ E (| j〉〈i|). (7)

The map E being CPTP is equivalent to its Choi matrix MT1

being positive, where T1 denotes the transpose on B(H1).
As for the backward evolution, the joint state ρS2E2 of

the system-environment is, in general, correlated. The unitary
evolution U † undoes the correlations between S and E . In this
scenario, the local open dynamics Ē of the system S is linear,
but, in general, cannot be characterized by a CP map [39–42],
i.e., its Choi matrix M̄T1 is negative.

Based on the analysis above, the positivity of Choi ma-
trices MT1 and M̄T1 can be utilized to infer the arrow of
time. If M is positive semi-definite and M̄ is negative, then
the PDM R is the one consistent with the arrow of time.
However, in situations when both M and M̄ are positive semi-
definite, we need more information to determine the arrow
of time.

B. Symmetric boundary conditions

The entropic boundary conditions are symmetric when
S(ρS1 ) + S(ρE1 ) = S(ρS2 ) + S(ρE2 ). One particular scenario
is that the system undergoes a unitary evolution Ũ . The
forward dynamics of system S is then given by E with its
action E (ρS1 ) := ŨρS1Ũ

†, where Ũ is part of U which acts
on the system alone. Naturally, the backward dynamics of S
is given by Ē with the action Ē (ρS2 ) := Ũ †ρS2Ũ . Therefore,
both the forward and backward maps are CPTP. Moreover,
there are also interesting cases in quantum thermodynamics
in which the backward map is also CPTP [43]. Let γ denote
the Gibbs state. When the system S and the environment
E are fully thermalized, i,e., U (γS1 ⊗ γE1 )U † = γS2 ⊗ γE2 ,
the backward local dynamics Ē on S, which is given by its
action

Ē (γS2 ) = TrE (U †γS2 ⊗ γE2U ),

is a CPTP map. We thus need more information to infer the
arrow of time, which we will discuss more on this point in
Sec. V.

IV. EXTRACTING DYNAMICS FROM SPATIOTEMPORAL
CORRELATIONS

In this section, we show how to extract information about
processes from the forward and backward PDMs.

Let us first introduce a closed-form of the PDM consist-
ing of multiple qubits across two times [27]. To obtain a
closed-form for the forward PDM, the measurement scheme
for determining the expectation values 〈{σi1 , σi2}〉 is crucial.
If the measurement scheme for the observable σi at each time
is set to be the projectors that project the state onto the ±1
eigenspaces of σi, i.e.,

{
�i

+ = 1 + σi

2
,�i

− = 1 − σi

2

}
,

the expectation value 〈{σi1 , σi2}〉 of the product of σi1 made at
t1 and σi2 made at t2 is read as

〈{σi1 , σi2}〉 = 〈{�i1+,�
i2+}〉 + 〈{�i1−,�

i2−}〉
− (〈{�i1−,�

i2+}〉 + 〈{�i1+,�
i2−}〉).

Given this measurement scheme {�i
+,�i

−}, the corre-
sponding closed-form of a two-time PDM is expressed by [27]

R = 1
2 [(ρ ⊗ 12) M + M (ρ ⊗ 12)]. (8)

This closed-form expression has been taken as a definition
for a quantum spatiotemporal framework, called symmetric
bloom [44–46]. Similarly, given the coarse-grained measure-
ment scheme, we define that the closed form of the backward
PDM is given by

R̄ = 1
2 [(γ ⊗ 11) M̄ + M̄ (γ ⊗ 11)], (9)

where M̄ denotes the CJ matrix of the backward process Ē .
A key justification for defining Eq. (9) is the case of unitary
evolutions, as will be described around Eq. (14) below.

The map Ē , which is of independent interest, can be defined
as follows.

Definition 1 (Unitary dilation recovery map). Consider a
CPTP map E with input space S1 and output space S2 and a
unitary dilation acting on SE to give the output state ρS2E2 (we
again denote the output ρS2 as γ ). For a given valid unitary
dilation U and initial state ρS1 ⊗ ρE1 , we can define a unique
recovery map Ē as the map corresponding to a CJ matrix M̄
which respects

TrE1E2 R̄S1E1S2E2 := 1
2 [(γ ⊗ 11) M̄ + M̄ (γ ⊗ 11)], (10)

where R̄S1E1S2E2 is the inverse PDM of the process, associated
with taking ρS2E2 as the initial state and then applying the
inverse global evolution U †. We will show in Sec. IV B how
M̄ can be extracted from Eq. (10).

The map Ē defined by Eq. (10) is in the form of its CJ
representation M̄, i.e.,

M̄ =
2n−1∑
i, j=0

|i〉〈 j| ⊗ Ē (| j〉〈i|). (11)

Therefore, given the input state ρS1E1 and the unitary evolution
U , the operation Ē can be solved from Eq. (10). Moreover, the
output of the map Ē for any input ρ can be calculated in the
CJ representation via

Ē (ρ) = Tr1(ρ ⊗ 12)M̄. (12)

The operation Ē on the system S is linear but may not be a
CP map. However, we note that if the final state ρS2E2 is in a
product state, then M̄ must represent a CP map.

The justification for the closed form of the backward
PDM R̄ and the unitary dilation recovery map Ē , for the
case of unitary evolution E (·) = Ũ (·)Ũ †, is below. Recall
the relation between the forward and backward PDMs in
Eq. (4), direct calculation, and some manipulation show
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that

R̄ = S R S† = 1

2

∑
i, j

E (|i〉〈 j|) ⊗ (ρ| j〉〈i| + | j〉〈i|ρ)

= 1

2

∑
i, j

E (ρ| j〉〈i| + | j〉〈i|ρ) ⊗ |i〉〈 j|, (13)

where the linearity of the forward map E is used. Given
that E (·) = Ũ (·)Ũ †, then E (ρ|i〉〈 j|) = E (ρ)E (|i〉〈 j|). The re-
versed PDM R̄ can be written as

R̄ = 1

2

∑
i, j

{ E (ρ)E (| j〉〈i|) + E[| j〉〈i|)E (ρ)] ⊗ |i〉〈 j|}

= 1

2

∑
i, j

(
E (ρ)| j〉〈i| + | j〉〈i|E (ρ)) ⊗ E†(|i〉〈 j|))

= 1
2 [M̄ E (ρ) + E (ρ) M̄], (14)

where E† is the Hilbert-Schmidt adjoint of E and
∑

i j |i〉〈 j| ⊗
E (| j〉〈i|) = ∑

i j E†(|i〉〈 j|) ⊗ | j〉〈i| is used in the second
equality. Therefore, M̄ = ∑

i, j |i〉〈 j| ⊗ Ũ †(| j〉〈i|)Ũ . In this
case, the Choi matrices MT1 , M̄T1 are positive.

From the closed-form expressions in Eqs. (8) and (9), one
can directly observe that the information about the processes,
namely, the CJ matrices M and M̄, is encoded in R and R̄,
respectively. Next, we demonstrate how to extract M and M̄
from the forward and backward PDMs, respectively.

A. Forward process

Let R : B(H1 ⊗ H2) → B(H1 ⊗ H2) be the linear operator,
defined by

Rρ (M ) = 1
2 (ρ M + M ρ). (15)

Then, the extraction of M can be treated as finding the in-
verse map of Rρ . Note that, for the sake of simplicity in
notation, the identity operator 12 ∈ B(H2) is omitted. In the
following, one should tensor product identity operators in
suitable bounded operator spaces when there is a mismatch
in dimensionality.

As the standard treatment in quantum information, our
method for finding the inverse map utilizes the vectoriza-
tion of operators. Given a generic quantum operator O =∑

i j Oi j |i〉 〈 j| ∈ B(H ), its vectorization is expressed by

|O〉〉 =
∑

i j

Oi j |i〉 ⊗ | j〉 ∈ H ⊗ H.

The vectorization of Rρ (M )(= R) is then given by

|Rρ (M )〉〉 = 1
2 |ρ M + M ρ〉〉

= 1
2 (ρ ⊗ 1 + 1 ⊗ ρT )|M〉〉

=: A|M〉〉, (16)

where |BCD〉〉 = D ⊗ BT |C〉〉 with B,C, D ∈ B(H1 ⊗ H2) is
used in the second equality [47] and 1 denotes the identity
operator in B(H1 ⊗ H2). Therefore, the invertibility of Rρ

resorts to the invertibility of the operator A, and thus the
invertibility of ρ.

If ρ is full rank, then the operator A and the map Rρ are
invertible. The inverse map R−1

ρ can be defined via
∣∣R−1

ρ (O)
〉〉 = A−1|O〉〉, (17)

where O ∈ B(H1 ⊗ H2). Therefore, one has∣∣R−1
ρ (R)

〉〉 = A−1A|M〉〉 = |M〉〉, (18)

where Eq. (16) is used in the first equality. Thus, one has
obtained the full information of CJ matrix M of the forward
process. Alternatively, one can also employ the following
lemma to get the analytic expression of M.

Lemma 1. Let A and B be operators whose spectra are con-
tained in the open right half-plane and the open left half-plane,
respectively. Then the solution of the operator equation

AX − XB = Y, (19)

can be expressed as [48]

X =
∫ ∞

0
e−tA Y etBdt . (20)

The closed-form of PDM is of the form of Eq. (19). Given
that ρ is full rank, according to Lemma 1, the expression for
M is given by

M = 2
∫ ∞

0
e−tρ R e−tρdt . (21)

It is worth noting that the Choi matrix MT1 is positive semi-
definite since the forward process E is CPTP.

If ρ is rank deficient, A is also rank deficient therefore
Rρ is not invertible. However, some information about the
quantum process M, i.e., the action of the process on the par-
ticular subspace, can still be obtained. For all |M〉〉 ∈ Ker(A),
Rρ (M ) = A|M〉〉 = 0. In other words, the process information
in Ker(A) is inaccessible to us. Fortunately, one can extract the
process information on Supp(A) := Ker(A)⊥ via the Moore-
Penrose pseudoinverse

A‡ : Ran(A) → Supp(A). (22)

The operator A‡A =: P projects states onto Supp(A). Simi-
larly, one can define the pseudoinverse map R‡

ρ via

|R‡
ρ (O)〉〉 = A‡|O〉〉. (23)

The projection of |M〉〉 to Supp(A) can be recovered through

|R‡
ρ (R)〉〉 = A‡A|M〉〉 = P|M〉〉. (24)

The partially recovered map in general is not completely pos-
itive, however, it contains all the process information on the
support of ρ.

B. Backward process

The backward process M̄ can be extracted from R̄ similarly.
Following the same procedure in the previous subsection, we
first vectorize the backward PDM R̄ [= Rγ (M̄ )] in Eq. (9) and
obtain

|Rγ (M̄ )〉〉 = 1
2 (γ ⊗ 1 + 1 ⊗ γ T )|M̄〉〉 =: Ā|M̄〉〉. (25)
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If γ is full rank, there exists a well-defined inverse map R−1
γ

and thus M̄ can be extracted via∣∣R−1
γ (R̄)

〉〉 = Ā−1|R̄〉〉 = |M̄〉〉.
If γ is rank deficient, then we can extract the process informa-
tion on the support of Ā via

|R‡
γ (R̄)〉〉 = Ā‡|R̄〉〉 = P̄|M̄〉〉,

where P̄ = Ā‡Ā.
By utilizing Eq. (4), a relation between M and M̄ can be

found. Vectorizing both sides of Eq. (4), we have

Ā |M̄〉〉 =|SRS†〉〉 = S ⊗ S∗|R〉〉 = (S ⊗ S∗)A|M〉〉. (26)

V. PROTOCOL FOR INFERRING ARROW

Our method for answering Alice’s question of inferring the
arrow of time in the PDM formalism can be summarized as
the following theorem.

Theorem 1. If ρ and γ are full rank and the extracted M
and M̄ satisfy MT1 � 0, M̄T1 < 0, then R is the one consistent
with the forwards time flow. For other situations, we may need
more information to determine the time direction.

Let us illustrate Theorem 1 by the following example.
Consider a quantum state ρA = (1 − a)|0〉〈0| + a|+〉〈+|(0 <

a < 1) that undergoes a decohering channel E described by
the set of Kraus operators {|0〉〈0|, |1〉〈1|}. The final state is
then given by γB = (1 − a

2 )|0〉〈0| + a
2 |1〉〈1|. Both ρA and γB

are full rank, allowing for the extraction of complete informa-
tion of M and M̄ from both R and R̄, respectively. Recalling
Eqs. (7) and (8), the CJ matrix M and the PDM R are given by

M =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠, R = 1

4

⎛
⎜⎜⎝

4 − 2a 0 a 0
0 0 0 a
a 0 0 0
0 a 0 2a

⎞
⎟⎟⎠.

Clearly, MT1 � 0. Next, according to R̄ = S R S† and the vec-
torization technique proposed above, we arrive at

R̄ = 1

4

⎛
⎜⎜⎝

4 − 2a a 0 0
a 0 0 0
0 0 0 a
0 0 a 2a

⎞
⎟⎟⎠,

M̄ =

⎛
⎜⎜⎝

1 a
4−2a 0 0

a
4−2a 0 0 0

0 0 0 1
2

0 0 1
2 1

⎞
⎟⎟⎠.

It is straightforward to see that M̄T1 < 0 since here M̄ = M̄T1

and M̄ has two negative eigenvalues 1−√
2

2 , 1
2 −

√
a2+(2−a)2

2(2−a) .

Therefore, we conclude that the time direction is A → B and
R is the one consistent with the forwards time flow.

There are two scenarios where additional information is
needed to infer the direction of time. First, in situations when
both ρ and γ are full rank and the two extracted Choi matrices,
MT1 � 0 and M̄T1 � 0, due to symmetric boundary conditions,
the corresponding PDM is consistent with either direction.
Second, in cases where either ρ or γ is rank deficient, only
partial information about the process can be obtained from

|0 0|

A B

σzσx

FIG. 2. A simple example of measurements whose statistics are
sufficient to determine the direction of time. In the actual process
the pure state |0〉 undergoes a σx measurement at time A, an identity
channel, and finally a σz measurement at time B. If one is given a
table of the measured expectation values where the time order is
flipped so that B is before A, one can tell this is not a realizable
process.

the corresponding PDM. Consequently, access to MT1 or M̄T1

is restricted, making it challenging for us to infer the arrow of
time. The additional information that may be required to infer
the arrow of time is the more fine-grained temporal probabili-
ties when the positivity of the extracted Choi matrices cannot
provide an answer. We illustrate this point with the following
example, where the boundary condition is symmetric, and the
quantum states ρ, γ are rank deficient.

Suppose a pure state |0〉 undergoes the identity channel.
ρ, γ = |0〉 〈0| and thus are rank deficient. To construct the
corresponding two-time PDM, Pauli operators are measured
at times tA, tB. The constructed forward and backward PDMs
are the same, i.e.,

RAB =

⎛
⎜⎜⎝

1 0 0 0
0 0 1/2 0
0 1/2 0 0
0 0 0 0

⎞
⎟⎟⎠ = R̄AB. (27)

Distinguishing the arrow of time would be an impossible
mission if we were only given the two PDMs, RAB and R̄AB.

Fortunately, there exists a simple way to tell the direction
of time. As illustrated in Fig. 2, suppose that σx is measured
at tA and σz is measured at tB. Denote the expectation of σz

conditioning on σx and the expectation of σx conditioning
on σz by 〈σ B

z 〉σ A
x and 〈σ A

x 〉σ B
z , respectively. When the time

direction is A → B, we have

〈
σ B

z

〉σ A
x = 0 = 〈

σ A
x

〉σ B
z . (28)

When the time direction is B → A, we have

〈
σ B

z

〉σ A
x = 1,

〈
σ A

x

〉σ B
z = 0. (29)

In other words, the conditional expectation values aligned
with the respective arrows of time differ. This difference gives
us the ability to tell the arrow of time.

Let us go back and examine why the PDM formalism
cannot distinguish the arrow of time in some scenarios. To
infer the arrow of time, sometimes the fine-grained probabili-
ties, P(�i1±|�i2 ) and P(�i2±|�i1 ), are needed, as demonstrated
above. However, we only have access to the coarse-grained
probabilities, P(�i1�i2 = 1) and P(�i1�i2 = −1), from the
correlator 〈{σi1 , σi2}〉 that constructed the PDMs in Eq. (1) via

P(�i1�i2 = 1) − P(�i1�i2 = −1) = 〈{σi1 , σi2}〉,
P(�i1�i2 = 1) + P(�i1�i2 = −1) = 1, (30)
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where P(�i1�i2 = 1) := P(�i1+,�
i2+) + P(�i1−,�

i2−) and
P(�i1�i2 = −1) is defined similarly. While the PDM also
contains marginal data 〈{σi1 ,1}〉 and 〈{1, σi2}〉 (σi1 �= 1 �=
σi2 ), the marginal data are not sufficient to determine a joint
fine-grained distribution P(�i1 ,�i2 ). Such data would be
associated with a different experiment than the type used to
build a PDM obeying Eqs. (1) and (8).

VI. ARROW OF TIME IN OTHER QUANTUM
SPATIOTEMPORAL FORMALISMS

We now briefly discuss the applicability of our approach to
infer the arrow of time to two closely related formalisms: the
Leifer-Spekkens framework [12,49,50] and the process matrix
formalism [10,51].

The Leifer-Spekkens framework results from reframing
quantum theory as a theory of Bayesian inference and centers
around a space-time state defined as

L = √
ρ ⊗ 12 M

√
ρ ⊗ 12, (31)

where M denotes the CJ matrix of a CPTP map E . Let γ =
E (ρ). The time reversal of L12 is naturally given by

L̄ = SLS† = √
γ ⊗ 11 M̄

√
γ ⊗ 11, (32)

where M̄ denotes the CJ matrix of the time-reversal of E
in the Leifer-Spekkens framework. We are unclear on the
operational meaning of L and accordingly how it relates to the
setup in FIG 1. The CJ matrices can, however, be extracted
via the same vectorization approach proposed in Sec. IV. It
turns out that M̄ corresponds not to the CJ matrix of our
unitary dilation map, but to the CJ matrix of the Petz recovery
map [52,53]. As a result, the partial transpose M̄T1 is also
positive. Consequently, there cannot be a statement that is very
similar to Theorem 1 for this space-time state.

The process matrix formalism is an operational framework
building on the assumption that causal order is not a funda-
mental ingredient of nature [10,51]. Given our focus on the
arrow of time, we examine the most general bipartite scenario
of a definite causal order described by the process matrix
formalism. That is a quantum channel with memory, i.e., Alice
operates on one part of a correlated state, and her output, along
with the other part, is sent to Bob through a channel. This is
described by the process matrix of the form

W A1A2B1B2 = W A1A2B1 ⊗ 1B2 , (33)

where A1 and A2 denote Alice’s input and output Hilbert
spaces, respectively, and similarly for B1, B2. The correspond-
ing reverse process matrix has the form

W̄ = 1A1 ⊗ W̄ A2B1B2 . (34)

Then, for many cases, the arrow of time can be immediately
identified from the process matrix because the output of the
later-time party is always the identity operator 1 in the forward
direction. We leave the analysis of what the precise form of
W̄ A1A2B1B2 should be for future studies.

VII. SUMMARY AND OUTLOOK

We explored how to establish the time-ordering of mea-
surement data obtained from quantum experiments involving

two times and any number of qubits. We formulated the
arrow of time inference problem. We examined conditions
on the initial and final states that were symmetric or asym-
metric under time reversal. The spatiotemporal measurement
data were then represented using a pseudodensity matrix.
There was a forward process that was CPTP and a reverse
process that was obtained via an alternative recovery map
based on inverting unitary dilations. In cases of asymmet-
ric conditions, the protocol determined whether the data
were consistent with the unitary dilation recovery map or
the CPTP map. Meanwhile, for symmetric conditions, the
recovery map yielded a valid unitary and the experiment
may have taken place in either direction. More data were
needed for solving the arrow inference problem in the uni-
tary case as well as in the case of states that are not
full rank. We also considered the applicability of this ap-
proach to the Leifer-Spekkens or Process matrix space-time
states.

Apart from the relation to other space-time states discussed
above, another question that emerges is the following: Can
the positive unitary dilation recovery map that appeared nat-
urally in this setup perform better than the Petz recovery
map in quantum information tasks such as Bayesian quantum
parameter estimation? Additionally, the calculations revealed
an unexpected consequence that, while the normal quantum
density matrix can be fully characterized by coarse-grained
measurements giving correlations between Pauli matrices,
such coarse-grained data concerning temporally separated
events cannot be used to fully determine the probability
distributions over the temporally separated outcome in an
analogous manner, suggesting a further distinction between
the spatial and temporal directions which deserves investiga-
tion. Also, it would be interesting to quantify the arrow of
time in the PDM R, and one possible approach is through the
following measure

A(R) = F
(
M̄T1

R̄

) − F
(
MT1

R

)
, (35)

where F (O) := Tr(
√

OO† − O). Under this measure, A(R) >

0 means that R is the forward PDM; A(R) < 0 means that R̄
is the forward PDM whereas A(R) = 0 means that the arrow
of time could be in either direction. General properties of the
measure A or other possible measures of the arrow of time
should be investigated further. For example, A(R) or a variant
thereof may constitute a natural measure of thermodynamical
irreversibility.
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Walther, Quantum discord as resource for remote state prepara-
tion, Nat. Phys. 8, 666 (2012).

[19] L. d. Rio, J. Åberg, R. Renner, O. Dahlsten, and V. Vedral, The
thermodynamic meaning of negative entropy, Nature (London)
474, 61 (2011).

[20] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, England, 2010).

[21] H. Shrotriya, L.-C. Kwek, and K. Bharti, Certifying temporal
correlations, arXiv:2206.06092.

[22] S.-L. Chen and J. Eisert, (semi-)-device independently charac-
terizing quantum temporal correlations, arXiv:2305.19548.

[23] G. Chiribella, F. Meng, R. Renner, and M.-H. Yung, The
nonequilibrium cost of accurate information processing, Nat.
Commun. 13, 7155 (2022).

[24] C. Brukner, S. Taylor, S. Cheung, and V. Vedral, Quantum
entanglement in time, arxiv:quant-ph/0402127.

[25] H.-Y. Ku, S.-L. Chen, N. Lambert, Y.-N. Chen, and F. Nori,
Hierarchy in temporal quantum correlations, Phys. Rev. A 98,
022104 (2018).

[26] G. Vitagliano and C. Budroni, Leggett-Garg macrorealism and
temporal correlations, Phys. Rev. A 107, 040101 (2023).

[27] X. Liu, Y. Qiu, O. Dahlsten, and V. Vedral, Quantum causal
inference with extremely light touch, arXiv:2303.10544.

[28] D. Ebler, S. Salek, and G. Chiribella, Enhanced communication
with the assistance of indefinite causal order, Phys. Rev. Lett.
120, 120502 (2018).

[29] X. Nie, X. Zhu, K. Huang, K. Tang, X. Long, Z. Lin, Y. Tian,
C. Qiu, C. Xi, X. Yang, J. Li, Y. Dong, T. Xin, and D. Lu,
Experimental realization of a quantum refrigerator driven by
indefinite causal orders, Phys. Rev. Lett. 129, 100603 (2022).

[30] D. Felce and V. Vedral, Quantum refrigeration with indefinite
causal order, Phys. Rev. Lett. 125, 070603 (2020).

[31] H. Cao, N.-N. Wang, Z. Jia, C. Zhang, Y. Guo, B.-H. Liu,
Y.-F. Huang, C.-F. Li, and G.-C. Guo, Quantum simulation of
indefinite causal order induced quantum refrigeration, Phys.
Rev. Res. 4, L032029 (2022).

[32] X. Liu, D. Ebler, and O. Dahlsten, Thermodynamics of quantum
switch information capacity activation, Phys. Rev. Lett. 129,
230604 (2022).

[33] A. Di Biagio, P. Donà, and C. Rovelli, The arrow of time in
operational formulations of quantum theory, Quantum 5, 520
(2021).

[34] X. Liu, Z. Jia, Y. Qiu, F. Li, and O. Dahlsten, Unification of
spatiotemporal quantum formalisms: mapping between process
and pseudo-density matrices via multiple-time states, New J.
Phys. 26, 033008 (2024).

[35] C. Marletto, V. Vedral, S. Virzì, E. Rebufello, A. Avella, F.
Piacentini, M. Gramegna, I. P. Degiovanni, and M. Genovese,
Theoretical description and experimental simulation of quan-
tum entanglement near open time-like curves via pseudo-
density operators, Nat. Commun. 10, 182 (2019).

[36] G. Bai, Y.-D. Wu, Y. Zhu, M. Hayashi, and G. Chiribella,
Quantum causal unravelling, npj Quantum Inf. 8, 69 (2022).

[37] M.-D. Choi, Completely positive linear maps on complex ma-
trices, Linear Algebra Appl. 10, 285 (1975).

[38] A. Jamiołkowski, Linear transformations which preserve trace
and positive semidefiniteness of operators, Rep. Math. Phys. 3,
275 (1972).

[39] N. Cao, M. Fitzsimmons, Z. Mann, R. Pereira, and
R. Laflamme, Quantum maps between CPTP and HPTP,
arXiv:2308.01894.

[40] Á. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-
Markovianity: characterization, quantification and detection,
Rep. Prog. Phys. 77, 094001 (2014).

[41] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Collo-
quium: Non-Markovian dynamics in open quantum systems,
Rev. Mod. Phys. 88, 021002 (2016).

[42] F. Wei, Z. Liu, G. Liu, Z. Han, X. Ma, D.-L. Deng, and Z. Liu,
Realizing non-physical actions through hermitian-preserving
map exponentiation, arXiv:2308.07956.

[43] G. E. Crooks, Quantum operation time reversal, Phys. Rev. A
77, 034101 (2008).

[44] J. Fullwood and A. J. Parzygnat, On quantum states over time,
Proc. R. Soc. A 478, 20220104 (2022).

032219-7

https://doi.org/10.1103/PhysRevD.32.2489
https://doi.org/10.1126/science.201.4358.777
https://doi.org/10.1038/s41567-020-1018-2
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1088/1751-8113/40/12/S12
https://doi.org/10.1103/PhysRevA.80.022339
https://doi.org/10.1038/ncomms2076
https://doi.org/10.1038/srep18281
https://doi.org/10.1016/j.aop.2007.10.001
https://arxiv.org/abs/2305.15649
https://arxiv.org/abs/2211.13396
https://arxiv.org/abs/2306.09336
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1038/nphys2377
https://doi.org/10.1038/nature10123
https://arxiv.org/abs/2206.06092
https://arxiv.org/abs/2305.19548
https://doi.org/10.1038/s41467-022-34541-w
https://arxiv.org/abs/quant-ph/0402127
https://doi.org/10.1103/PhysRevA.98.022104
https://doi.org/10.1103/PhysRevA.107.040101
https://arxiv.org/abs/2303.10544
https://doi.org/10.1103/PhysRevLett.120.120502
https://doi.org/10.1103/PhysRevLett.129.100603
https://doi.org/10.1103/PhysRevLett.125.070603
https://doi.org/10.1103/PhysRevResearch.4.L032029
https://doi.org/10.1103/PhysRevLett.129.230604
https://doi.org/10.22331/q-2021-08-09-520
https://doi.org/10.1088/1367-2630/ad264c
https://doi.org/10.1038/s41467-018-08100-1
https://doi.org/10.1038/s41534-022-00578-4
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://arxiv.org/abs/2308.01894
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/RevModPhys.88.021002
https://arxiv.org/abs/2308.07956
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1098/rspa.2022.0104


LIU, CHEN, AND DAHLSTEN PHYSICAL REVIEW A 109, 032219 (2024)

[45] A. J. Parzygnat and J. Fullwood, From time-reversal symmetry
to quantum Bayes’ rules, PRX Quantum 4, 020334 (2023).

[46] J. Fullwood, Quantum dynamics as a pseudo-density matrix,
arXiv:2304.03954.

[47] C. J. Wood, J. D. Biamonte, and D. G. Cory, Tensor networks
and graphical calculus for open quantum systems, Quant. Inf.
Comp. 15, 0579 (2015).

[48] R. Bhatia and P. Rosenthal, How and why to solve the operator
equation AX- XB= Y, Bull. London Math. Soc. 29, 1 (1997).

[49] M. S. Leifer, Quantum dynamics as an analog of conditional
probability, Phys. Rev. A 74, 042310 (2006).

[50] M. S. Leifer and R. W. Spekkens, Towards a formulation of
quantum theory as a causally neutral theory of bayesian infer-
ence, Phys. Rev. A 88, 052130 (2013).

[51] M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, and
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