
HAL Id: hal-04394843
https://hal.science/hal-04394843v1

Submitted on 9 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A knowledge compilation perspective on queries and
transformations for belief tracking

Alexandre Niveau, Héctor Palacios, Sergej Scheck, Bruno Zanuttini

To cite this version:
Alexandre Niveau, Héctor Palacios, Sergej Scheck, Bruno Zanuttini. A knowledge compilation per-
spective on queries and transformations for belief tracking. Annals of Mathematics and Artificial
Intelligence, 2024, �10.1007/s10472-023-09908-4�. �hal-04394843�

https://hal.science/hal-04394843v1
https://hal.archives-ouvertes.fr

Springer Nature 2021 LATEX template

A Knowledge Compilation Perspective on

Queries and Transformations for Belief

Tracking

Alexandre Niveau1, Hector Palacios2, Sergej Scheck1,3

and Bruno Zanuttini1*

1Normandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC;
14 000 Caen, France.

2Work done while at ServiceNow Research, Montréal, QC,
Canada.

3On leave.

*Corresponding author(s). E-mail(s): bruno.zanuttini@unicaen.fr;
Contributing authors: alexandre.niveau@unicaen.fr;
hectorpal@gmail.com; sergej.scheck dd@gmx.de;

Abstract

Nondeterministic planning is the process of computing plans or policies
of actions achieving given goals, when there is nondeterministic uncer-
tainty about the initial state and/or the outcomes of actions. This process
encompasses many precise computational problems, from classical plan-
ning, where there is no uncertainty, to contingent planning, where the
agent has access to observations about the current state. Fundamen-
tal to these problems is belief tracking, that is, obtaining information
about the current state after a history of actions and observations. At an
abstract level, belief tracking can be seen as maintaining and querying the
current belief state, that is, the set of states consistent with the history.
We take a knowledge compilation perspective on these processes, by
defining the queries and transformations which pertain to belief track-
ing. We study them for propositional domains, considering a number of
representations for belief states, actions, observations, and goals. In par-
ticular, for belief states, we consider explicit propositional representations
with and without auxiliary variables, as well as implicit representa-
tions by the history itself; and for actions, we consider propositional
action theories as well as ground PDDL and conditional STRIPS. For

1

Springer Nature 2021 LATEX template

2 A KC Perspective on Belief Tracking

all combinations, we investigate the complexity of relevant queries (for
instance, whether an action is applicable at a belief state) and trans-
formations (for instance, revising a belief state by an observation); we
also discuss the relative succinctness of representations. Though many
results show an expected tradeoff between succinctness and tractabil-
ity, we identify some interesting combinations. We also discuss the
choice of representations by existing planners in light of our study.

Keywords: Knowledge Compilation, Nondeterministic Planning, Action
Languages, Partial Observability

MSC Classification: 68T30 , 68T37

1 Introduction

Nondeterministic planning is the general problem of finding a plan or a policy
of actions, under uncertainty about the initial state and the outcome of actions,
and under a variety of observation capabilities (Geffner and Bonet, 2013).
These include full observability (the problem is then referred to as “FOND
planning”), partial observability (“contingent planning”), and no observabil-
ity at all (“conformant planning”). In the most general setting, when a history
of actions and observations is experienced or simulated, a number of possible
states are consistent with the history, constituting what is called the cur-
rent belief state. Obtaining information about the current belief state (e.g.,
whether an action is guaranteed to be applicable) and maintaining it — typ-
ically, updating it when an observation is received or an action is executed
— can be framed as the general problem of (offline) belief tracking (Bonet
and Geffner, 2014a). In this paper we consider the purely logical setting, in
particular without probabilities, costs, nor durations of actions.

Planners accept problems in a language for expressing the possible initial
states, the goal to be achieved, the actions available for modifying the state,
and the sensing actions that trigger observations. While searching for a plan,
they typically transform these elements into internal representations of belief
states. In this paper we study the properties of languages used by nondeter-
ministic planners, as well as queries and transformations they perform, from
a knowledge compilation perspective (Darwiche and Marquis, 2002).

We focus on languages based on propositional representations, like ground
PDDL for describing actions (McDermott et al., 1998), or CNF for describ-
ing the set of initial states. While most planners accept parametric PDDL
for describing actions, indeed many of them first ground this representation
into a propositional one. Multi-valued variables are also popular as input or
state representations, but we leave their study for future work. Given that
propositional setting, we study a large number of languages:

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 3

• for belief states, explicit representations by propositional formulas (CNF,
binary decision diagrams, etc.), with or without auxiliary variables, and
implicit representations by the history itself, as used by the FF family of
planners (Hoffmann and Nebel, 2001);

• for actions, logical representations by propositional theories (again, in a
number of languages) and standard representations by (ground) PDDL and
conditional STRIPS;

• for observations, representations by propositional formulas;
• for goals, logical representations of both ontic goals (about the state of the
environment) and epistemic goals (about the belief state, that is, about the
information gathered in addition to the state itself).

Overall, we believe that this selection of languages covers most languages
considered in the literature, and additionally covers natural variants thereof.

For these, we study the computational complexity of a number of queries
and transformations, which we motivate by considering a generic algorithm
that covers contingent, conformant, and FOND planning. We focus on pro-
gression, that is, forward search from the initial belief state to the goal, since
regression typically requires to manipulate sets of belief states. Our study how-
ever applies to a more general problem than offline planning: in particular, we
consider observations which can be received independently of actions, as in
generalized belief tracking (Bonet and Geffner, 2014a). The queries which we
consider are whether an action is applicable, whether an observation is possi-
ble, whether a goal is reached, and whether two belief states are equivalent;
the transformations are the progression of a belief state by an action or by an
observation.

Not surprisingly, a number of combinations of languages have already been
studied in the literature, and part of the complexity results of interest were
already derived in isolation, or are consequences of known results, especially
available in the knowledge compilation map by Darwiche and Marquis (2002).
However, our study reviews these results and completes the picture. In par-
ticular, we give conditions as weak as possible for certain problems to be
(in)tractable. We also consider combinations beyond those studied in the litera-
ture; in particular, implicit representations of belief states with action theories,
explicit representations with STRIPS actions, and epistemic goals.

The paper is organized as follows. We first give background about planning
and knowledge compilation (Section 2) and review related work (Section 3).
Then we define and motivate the transformations and queries (Section 4) and
languages (Section 5) that are studied in the paper. The complexity results
about queries and transformations are given in Section 6 for explicit represen-
tations of belief states and in Section 7 for implicit representations; Section 8
covers succinctness results. In Section 9 we review existing planners in light
of our results, and we conclude in Section 10. The results are summarized in
tables throughout the paper.

Springer Nature 2021 LATEX template

4 A KC Perspective on Belief Tracking

2 Background

In this section we give the background about belief tracking, planning, and
knowledge compilation.

2.1 Formal Setting

Given a finite set F of propositional variables called fluents, the finite state
space generated by F is S := 2F . Elements of S are called states, hence a state
s is an assignment to the fluents in F . We view such a state as a subset of F ;
for instance, for F = {x1, x2, x3}, s = {x1, x3} denotes the state in which x1
and x3 are assigned ⊤ and x2 is assigned ⊥.

We also use formulas over propositional variables which do not directly
encode a property of the state. For these we use the same notation, and in
particular, we write s1 ∪ s2 for combining assignments to disjoints sets of
variables, whether fluents or not.

An (ontic) action a on S is a mapping from S to 2S ; this means that when a
is taken in a state s, this state changes nondeterministically to some s′ ∈ a(s).
The image of a at a set of states S ⊆ S, denoted by a(S), is defined to be⋃
s∈S a(s). An observation o on S is a nonempty subset of S: the intuition is

that when an agent observes o ⊆ S, it learns that the current state is one of
the states in o. After actions and observations have taken place, the knowledge
of an agent about the current state thus boils down to a set of possible states.
Accordingly, we call belief state (over S) a set of states B ⊆ S. It is important
to note that the belief state of an agent normally cannot be empty — this
would mean that no state is considered to be possibly the actual current state.

An action a is said to be applicable at a state s if a(s) ̸= ∅ holds, and
applicable at a belief stateB if it is applicable at all states s ∈ B; this intuitively
means that the agent only takes actions which it knows to be applicable. An
observation o is said to be fair at a state s if s ∈ o holds; it is said to be fair at
a belief state B if B ∩ o ̸= ∅ holds (in other words, there is at least one state
s ∈ B at which it is fair). Intuitively, this formalizes reliable observations.1

Note that we adopt a general definition of an observation: they might come
from sensing actions or from external, uncontrolled events. This allows us to
consider belief tracking in a general setting.

Example 1. Consider a robot on a grid. Its location can be specified by two
integer values, x (for the horizontal axis) and y (for the vertical axis). Four
actions can move the robot one step in all directions: right (resp. left) increases
(resp. decreases) the value of x, but can also change the value y, thus making
it move vertically in a nondeterministic fashion. By contrast, up (resp. down)
is deterministic: it increases (resp. decreases) y without affecting x, so the
outcome is always the expected one. However, while right and left are applicable
at all the states, it is not always possible to move vertically: there is a switch

1By definition, at B = ∅, all actions are applicable and no observation is fair, but this will be
of little importance in the rest of the paper.

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 5

that can be on or off, and applying action up or down requires the switch to be
activated — this is called a precondition of these actions. If x or y is at the
maximum/minimum value, executing the corresponding action does not move
the robot. Finally, the robot can only observe the state of the switch if it is in
the leftmost column, i.e., x = 1.

Formally, we model this setting for a 2 × 2 grid using the set of fluents
F := {x1, x2, y1, y2, sw on}. The first four fluents describe the position of the
robot in the grid, e.g., x2 is true if and only if x = 2; the fifth one, sw on, is
true if and only if the switch is activated. The state space S then includes the
following states:

s1 := {x1, y1, sw on} s2 := {x1, y1}
s3 := {x1, y2, sw on} s4 := {x1, y2}
s5 := {x2, y1, sw on} s6 := {x2, y1}
s7 := {x2, y2, sw on} s8 := {x2, y2}

It also contains states such as {x1, x2}, which have no interpretation as valid
configurations of the world. These are harmless as long as they are not reach-
able by any action. Note that for the 2 × 2 grid, two fluents would actually
suffice to describe the position of the robot, but the scheme used here is more
directly generalizable to any grid, which makes for a more illustrative example.

Applying left in the state s1 results in the state s1 or s3. The action up is
not applicable at the belief state {s1, s2} since the precondition that the switch
be on is not (guaranteed to be) satisfied. Applying up in the belief state {s1, s3}
results in the belief state {s3}.

We define the observations that the switch is activated (resp. disabled) as
the set of states on := {s1, s3, s5, s7} (resp. off := {s2, s4, s6, s8}), considering
only valid states — but adding invalid states to on or off would not change
their semantics in practice, so another possibility would be to define them as
{s ∈ S | sw on ∈ s} (resp. sw on /∈ s), which can yield simpler representations.
Observing on is not fair at belief state {s2, s4} (it is not fair at any of its
possible states, so this observation would not be consistent with the robot’s
beliefs), but it is fair at {s1, s2} (and would allow the robot to infer that the
real state is s1).

A history over a set of actions A and a set of observations O is a sequence
h = ⟨ao1, . . . , aon⟩, where for i = 1, . . . , n, aoi is either an action in A or an
observation in O.

Given a belief state B ⊆ S and a history h over A and O, the belief state
induced by h at B, written h(B), is defined inductively as follows:

h(B) =


B for h = ⟨⟩
a(h′(B)) for h = h′ · a with a ∈ A
h′(B) ∩ o for h = h′ · o with o ∈ O

Springer Nature 2021 LATEX template

6 A KC Perspective on Belief Tracking

A history h = ⟨ao1, . . . , aon⟩ is said to be applicable at a belief state B if
for all i = 1, . . . , n such that aoi is an action, this action is applicable at the
belief state induced by ⟨ao1, . . . , aoi−1⟩ at B; and h is said to be fair at B if
for all i = 1, . . . , n such that aoi is an observation, this observation is fair at
the belief state induced by ⟨ao1, . . . , aoi−1⟩ at B.

Example 2 (continued from Example 1). Let us consider the belief state B =
{s1, . . . , s8}. The history ⟨right, up⟩ is not applicable at B: indeed, while right
is always applicable, we have right(B) = {s5, s6, s7, s8}, and the precondition
of up does not hold in s6 and s8, so up is not applicable at right(B) (even
though up(right(B)) ̸= ∅). However, the history h = ⟨right, on, up⟩ is applicable
and fair at B, since (i) on is fair at right(B), and (ii) the belief state induced
by ⟨right, on⟩ at B is {s5, s7}, at which up is (guaranteed to be) applicable.
The belief state induced by h at B is the singleton belief state {s7}. Finally,
the history ⟨right, on, up, off, down⟩ is not fair at B — nor at any other belief
state, since on ∩ off = ∅ and up cannot change the value of sw on — but it is
applicable at B, since down is vacuously applicable at ⟨right, on, up, off⟩.

2.2 Planning Instances

We now introduce planning domains and instances, in which observations are
triggered by sensing actions.

A (nondeterministic planning) domain D is a tuple ⟨F,A,SA⟩, where F is
a set of fluents, A is a set of (ontic) actions, and SA is a set of sensing actions
{sa1, . . . , sam}. In planning, a sensing action is under the control of the agent:
when used, it gives one among a set of observations. Hence a sensing action
can be seen as a set of observations {o1, . . . , ok} satisfying o1∪o2∪· · ·∪ok = S
(recall that we write S := 2F , and that an observation is a subset of S);
this covering requirement means that whatever the current state, a sensing
action yields a fair observation. We write o ∈ sa to mean that o is a possible
observation when sa is taken. Special cases are deterministic sensing actions
for which oi ∩ oj = ∅ holds for i ̸= j, and the void sensing action {S}, which
always yields the same observation.

We do not introduce preconditions for sensing actions, but this is without
loss of generality, since if we want a sensing action {o1, . . . , ok} to be applicable
only if some precondition P is true, we can simply replace it with {S, o1 ∩
P, . . . , ok ∩ P}, so that it boils down to not observing anything meaningful in
case the precondition is not met.

A (nondeterministic) planning instance P is a tuple ⟨D, I, G⃗⟩, where D is

a domain, I ⊆ S is a nonempty set of initial states, and G⃗ ⊆ 2S is a predicate
on belief states. Given a planning instance P, a history h achieves the goal if h
is applicable and fair at the initial state I, and h(I) ∈ G⃗ holds. A specific case
called “statewise goals” is when the goal is specified by a nonempty subset G
of S of goal states, as usual in the planning literature; this implicitly defines
the goal G⃗ := {B ⊆ S | B ⊆ G}, meaning, in words, that all states in the
belief state are indeed goal states. For details we refer the reader to Geffner

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 7

and Bonet (2013). Different kinds of planning problems can be defined on a
planning instance, depending on the form of the solution (plan, policy) and on
specific requirements it must satisfy (such as ensuring that the goal be reached,
or only reaching it for some executions).

2.3 Knowledge Compilation and Complexity

We are interested in the complexity of various queries and transformations
on belief states, and in the relative succinctness of representations. For these
results we will consider concrete representations of belief states and other input
components of the problems: we call language for a class C of objects, a set Λ
of strings called expressions, together with a function σ 7→ ∥σ∥ mapping each
string σ to an object ∥σ∥ ∈ C. A language is said to be complete if ∥ · ∥ is
surjective, i.e., if any object in C can be represented as an expression in Λ. We
denote the number of symbols in the expression σ by |σ|; concrete languages
will be defined in Section 5.

We adopt the definitions standard in the knowledge compilation literature
(Darwiche and Marquis, 2002). We call query a decision problem with input
given by (the representation of) a belief state together with additional com-
ponents. Contrastingly, a transformation is a functional problem, with input
given by a belief state together with additional components, and whose out-
put is a belief state, which we require to be in the same representation as the
input belief state.

Accordingly, for the complexity of queries we will consider complexity
classes of decision problems. We assume familiarity with P, NP, coNP. The
class Σ2P is the class NPNP of decision problems for which there exists a non-
deterministic polynomial-time algorithm using an NP oracle (or, equivalently,
using a coNP-oracle), and Π2P = coNPNP is the class of decision problems
whose complement is in Σ2P. We will also consider a class that is a little less
standard: Θ2P = P∥NP is the class of decision problems for which there exists a
deterministic polynomial-time algorithm using parallel queries to an NP oracle
(Wagner, 1990); that is, the input to one query is not allowed to depend on the
output of another one. Clearly, we have P ⊆ {NP, coNP} ⊆ Θ2P ⊆ {Σ2P,Π2P},
and all inclusions are widely believed to be proper.

For the complexity of transformations, there are in general several possible
output expressions for the same input (intuitively, equivalent expressions —
interpreted as the same belief state); we will call them valid outputs. We will
consider three situations:

• a valid output can be computed in time polynomial in the size of the input
(belief state and other components), and hence, in particular, the output has
size polynomial in the size of the input; we then say that the transformation
is polynomial-time, written FP;

• there is a valid output of polynomial size, but no valid output can be
computed in polynomial time (possibly under some complexity-theoretic

Springer Nature 2021 LATEX template

8 A KC Perspective on Belief Tracking

assumption); we then say that the transformation is polynomial-size but not
polynomial-time;

• there is no valid output of polynomial size (possibly under some assumption);
we then say that the transformation is not polynomial-size.

As concerns the relative succinctness of belief state representations, we will
say that a complete representation language ΛB

1 is at least as succinct as a
complete language ΛB

2 , written ΛB
1 ⪯s ΛB

2 , if there is a polynomial p such that
the following holds: for all families of belief states (Bn)n∈N and all families of
representations (βn2)n∈N of them in ΛB

2 , there exists a family (βn1)n∈N of repre-
sentations of them in ΛB

1 such that for all n, |βn1 | ≤ p(|βn2 |) holds. Accordingly,
ΛB
1 is not at least as succinct as ΛB

2 , written ΛB
1 ̸⪯s ΛB

2 , if there exists a family
in ΛB

2 which has no polynomial-size equivalent in ΛB
1 .

Finally, the class P/poly of nonuniform polynomial-time is the class of
problems which, for all n ∈ N, admit a polynomial-time algorithm for the
restriction of the problem to instances of size n. We will use the widely believed
assumption NP ̸⊆ P/poly.

3 Related Work

Viewing nondeterministic planning as search in the space of belief states dates
back to early work by Bonet and Geffner (2000). It is also a natural approach
to follow in the stochastic setting of planning for partially observable Markov
Decision Processes (Kaelbling et al., 1998). Abstracting away from the mechan-
ics of search, Palacios and Geffner (2009); Albore et al. (2010); Bonet and
Geffner (2014a) put forward the importance of belief tracking in the process
of planning, and consider the complexity of the main related problems; in
particular, they relate it to different notions of width of a planning instance.
Their notions of width, albeit various, all depend on the initial belief state and
the set of actions available; this makes our setting different, as we consider
complexity issues for languages, disregarding the features of precise instances.
Brafman and Shani (2016) later studied that process of belief tracking in an
online setting (as opposed to planning), in which the given history has been
observed rather than explored in a planning process. This somehow makes the
problems easier, as by construction the history is known to be a valid one;
we follow a similar approach when studying implicit representations of belief
states by traces in Section 7.

A number of planners have been proposed for nondeterministic planning,
which use specific representations of the current belief state during the search.
We review such planners in Section 9, linking them to our study. Noticeable
examples are HSCP (Bertoli et al., 2001), which introduced early the use of
ordered binary decision diagrams to manipulate the belief states efficiently;
the FF family of planners (Hoffmann and Nebel, 2001), which use an implicit
representation of the current belief state; and the factored representations
introduced by Palacios and Geffner (2009), in which the representation uses a
set of factors built in terms of the initial belief state, the goal and the actions.

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 9

Beyond the nondeterministic setting, efficient representations of belief states
have also been considered in the stochastic setting, especially with ordered
algebraic decision diagrams (Hoey et al., 1999; Lesner and Zanuttini, 2011),
and in the relational setting (Wang et al., 2008).

Besides belief states, various representations of actions have been con-
sidered. Nebel (2000) studies to what extent a set of actions formulated in
conditional STRIPS can be translated into another language, differing on the
form of its effects, conditions, and preconditions, while preserving the exis-
tence and size of plans for the problem at hand; his results can be used to
perform a preprocessing of a classical planning instance for obtaining a pure
STRIPS instance. However, such a transformation assumes the state to be
fully observable, while conditional effects allow one to progress a belief state
without assuming that the conditions are satisfied. Thus, the semantics of a
language might be different when progression is defined over single states or
over belief states.

Departing from STRIPS and PDDL, which are standard representations of
actions that specify how the state is transformed, action theories are logical
specifications of actions, more declarative in nature. Herzig et al. (2003) study
such theories and formulate operations on belief states in logical terms, in the
perspective of planning for epistemic goals. To et al. (2015) also consider such
theories, for different representations of belief states; their work is conceptually
very close to ours, but we perform a much more systematic study. Recently,
Scheck et al. (2021) also studied both PDDL-like actions and action theories,
in the spirit of the knowledge compilation map (Darwiche and Marquis, 2002),
but their focus is on queries and transformations related to states instead of
belief states.

Work related to ours also includes studies on the complexity of the planning
problem itself. Bonet (2010) settles the complexity of conformant planning for
a number of restrictions on the languages of actions and observations. Although
he uses a fixed syntax for actions, the variations come from their expressivity;
specifically, he considers conditions on the belief state rather than on states,
and (like us) general epistemic goals. Beyond conformant planning, Rinta-
nen (2004) also studies the complexity of planning under various observation
capabilities.

4 Queries and Transformations

In this section we define the queries and transformations on belief states which
we study in the rest of the paper. We first give a standard generic scheme for
planning by forward search in the space of belief states (Section 4.1), which
allows us to formally define relevant queries and transformations in Section 4.2.

4.1 A Generic Scheme for Nondeterministic Planning

We present a generic scheme for planning algorithms covering (non cyclic)
classical, FOND, conformant, and contingent planning, where the last is the

Springer Nature 2021 LATEX template

10 A KC Perspective on Belief Tracking

most general case. Our algorithm essentially formalizes a forward search in
belief space, and similar, generic formulations can be found, for instance, in
the textbooks by Geffner and Bonet (2013) or Ghallab et al. (2016). We do
not claim that this algorithm is interesting per se, as it is agnostic to search
strategies and heuristics; it is however sufficient to derive the set of interesting
queries and transformations to the belief state.

In the general case when there are sensing actions available, an agent can
act depending on the history of observations received. Hence a policy for a
planning instance ⟨D, I, G⃗⟩, over a domain D = ⟨F,A,SA⟩, is a tree with
(i) action nodes, labelled by an ontic action a ∈ A and having only one child,
and (ii) observation nodes, labelled by a sensing action sa ∈ SA, and having
one child per (fair) observation o ∈ sa. The execution semantics is the obvious

one. Given a belief state I and a goal G⃗, a policy is said to solve the problem
associated to the planning instance if all the induced histories achieve G⃗.

Given that it searches for a policy, the standard scheme for contingent
planning consists of a search in an and-or graph, where or-nodes correspond
to the choice of an action with which to expand the current (implicit) policy,
and and-nodes correspond to the need of successfully expanding the current
policy for all observations which may be received after taking a sensing action.

We depict the decision version of this scheme in Algorithm 1: it returns
“true” if there is a (non-cyclic) policy which solves the problem, and “false”
otherwise — the policy can be recovered by bookkeeping the tree or rooted
DAG of actions and observations chosen by the algorithm. The set B⃗OK keeps
track of belief states from which search has already proven that there is a policy
achieving the goal, and B⃗branch keeps track of the belief states in the current
stack of recursive calls, allowing to detect loops in the search. The fact that the
algorithm is correct is straightforward; note that the belief state considered at
any given recursive call is guaranteed to be nonempty by construction (it is
initially I, and is only progressed by applicable actions and fair observations).

4.2 Definition of Queries and Transformations

The scheme given in Section 4.1 suggests that the queries and transformations
which we are about to introduce in this section are essential to planning.
However, they support some other tasks as well, such as updating a belief
state with observational events not triggered by the agent’s actions, and more
generally, belief tracking.

We consider languages for specific classes C denoted in the following way:
ΛB for belief states, ΛA for actions, ΛO for observations, ΛG for statewise goals,

and ΛG⃗ for (generic) goals.

Queries

We first define relevant queries on belief states. For complexity mat-
ters, all queries depend on the representation languages for their input
(belief state, action, observation, goal). We consider these languages to be
parameters of the queries, not part of the input. We write, for instance,

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 11

Algorithm 1 Standard scheme for Contingent Planning.

Input:
planning domain ⟨F,A,SA⟩, nonempty belief state B (initially I), goal G⃗;

sets of belief states B⃗OK (global), B⃗branch (local), both initially empty

Output: “true” if there is a policy achieving G⃗ from B, “false” otherwise

if B ∈ B⃗OK then // B is already known to have a successful policy
return “true”

else if B ∈ G⃗ then // B satisfies the goal
return “true”

else if B ∈ B⃗branch then // loop detected on the current branch
return “false”

else
for all actions a ∈ A do // trying ontic actions

if a is applicable at B then
B′ ← a(B) // progressing B by a

result← recursive(B ← B′, B⃗branch ← B⃗branch ∪ {B})
if result = “true” then

B⃗OK ← B⃗OK ∪ {B}
return “true”

for all sensing actions sa ∈ SA do // trying sensing actions
result← true
for all observations o ∈ sa do

if o is fair at B then
B′ ← B ∩ o // progressing B by o

result← result ∧ recursive(B ← B′, B⃗branch ← B⃗branch ∪ {B})
if result = “true” then

B⃗OK ← B⃗OK ∪ {B}
return “true”

return “false”

Applic(BS(NNF),PDDLTerms,CNF) for the decision problem corresponding to
the query denoted by Applic, with parameters ΛB = BS(NNF) and ΛA =
PDDLTerms,CNF (these languages will be defined in Section 5).

The queries which we consider are defined in Table 1. They correspond to
deciding whether, at a given belief state, a given action is applicable (Applic),
a given observation is fair (Fair), a given statewise goal is satisfied (SatS),
and a given generic goal is satisfied (Sat); and whether two given belief states
are equivalent (Equiv). Observe that Sat is a more general query than SatS ;
we define them independently because it is natural to use a language for a set
of states, rather than for a set of belief states, for statewise goals. Also observe
that, though equivalence does not appear as such in Algorithm 1, it is indeed
needed for maintaining the sets of belief states B⃗OK and B⃗branch.

Springer Nature 2021 LATEX template

12 A KC Perspective on Belief Tracking

Name Param. Input Question

Applic ΛB; ΛA β ∈ ΛB; α ∈ ΛA is ∥α∥ applicable at ∥β∥?
Fair ΛB; ΛO β ∈ ΛB; ω ∈ ΛO is ∥ω∥ fair at ∥β∥?
SatS ΛB; ΛG β ∈ ΛB; γ ∈ ΛG does ∥β∥ ⊆ ∥γ∥ hold?

Sat ΛB; ΛG⃗ β ∈ ΛB; γ⃗ ∈ ΛG⃗ does ∥β∥ ∈ ∥γ⃗∥ hold?
Equiv ΛB β1, β2 ∈ ΛB does ∥β1∥ = ∥β2∥ hold?

Table 1: Definition of queries.

Name Param. Input Output

Proga ΛB; ΛA β ∈ ΛB s.t. ∥β∥ ̸= ∅
and α ∈ ΛA applicable at ∥β∥

β′ ∈ ΛB with ∥β′∥ = ∥β∥ ⊕ ∥α∥

Progo ΛB; ΛO β ∈ ΛB s.t. ∥β∥ ̸= ∅
and ω ∈ ΛO fair at ∥β∥

β′ ∈ ΛB with ∥β′∥ = ∥β∥ ⊕ ∥ω∥

Table 2: Definition of transformations.

Transformations

We now turn to two transformations parameterized by languages. They receive
as input a belief state and either an action or an observation, and produce a
belief state in the same language; we require this because the transformations
are used to maintain a belief state, as illustrated by Algorithm 1. Indeed, the
transformations which we study, formally defined in Table 2, implement the
following two progression operations, by an action (Proga) or by an observa-
tion (Progo), computing the belief state after an event took place. Note that
other schemes for planning proceed by regression, but we leave the study of
the corresponding transformations for future work, as in general they produce
a set of belief states rather than a single one.

Definition 3 (progression by an action). The progression of a nonempty belief
state B by an action a is the (nonempty) belief state B ⊕ a := a(B) if a is
applicable at B; it is undefined otherwise.

Definition 4 (progression by an observation). The progression of a nonempty
belief state B by an observation o is the (nonempty) belief state B⊕o := B∩o
if o is fair at B; it is undefined otherwise.

We emphasize that consistently with Algorithm 1, we assume that the
transformations “make sense”, that is, that the input belief state is nonempty
and that the action (resp. observation) is applicable (resp. fair).

5 Languages

We now define the languages which we consider for all components of a plan-
ning problem, except belief states, for which they will be defined in Sections 6

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 13

and 7. Since the motivation of our study is belief tracking and planning,
the representations we consider are the main ones used in the literature by
various algorithms and concrete planners — Section 9 will summarize some
combinations of languages used by known planners.

5.1 Propositional Languages

A number of components in the definition of a planning problem can be asso-
ciated to a set of propositional assignments to the set of fluents F : initial belief
state, observations, and statewise goals, as well as conditions and precondi-
tions of actions. Hence we study the same, standard, representations for all of
them.

The representations defined in this section are propositional formulas (con-
cretely represented by circuits, see Section 5.4). For such a formula φ, we
denote by V(φ) the set of variables occuring in φ. Given a propositional for-
mula φ and a set of variables X ⊇ V(φ), we write ∥φ∥X for the set of all
assignments to X which satisfy φ under the standard semantics of proposi-
tional logic. Depending on the context we will either say that a state s is in
∥φ∥X or that s satisfies φ, and accordingly write either s ∈ ∥φ∥X or s |= φ.
Moreover, whenever the set X is clear from the context, we write ∥φ∥ instead
of ∥φ∥X .

Finally, we write ⊤ (resp. ⊥) for the propositional formula which is true
(resp. false) under all assignments, and we recall that a literal λ (over X) is
an expression of the form x or ¬x, for some variable x ∈ X.

Definition 5 (NNF). The language NNF over a set of variables X is the set
of all expressions φ generated by the grammar φ ::= λ | φ ∨ φ | φ ∧ φ, with λ
ranging over the literals over X.

Definition 6 (CNF). The language CNF over a set of variables X is the set
of all expressions φ of the form φ :=

∧
i∈I γi, where I is a finite set of indices

and each γi is a disjunction of literals over X (called a clause over X).

Definition 7 (DNF). The language DNF over a set of variables X is the set
of all expressions φ of the form φ :=

∨
i∈I τi, where I is a finite set of indices

and each τi is a consistent conjunction of literals over X (called a term over
X).

For the next definition, we use ite(x, φ1, φ2) as a shorthand for the formula
(x ∧ φ1) ∨ (¬x ∧ φ2).

Definition 8 (OBDD). Let < be a total ordering over a set of variables X.
The language OBDD< over X is the set of all expressions φ generated by the
grammar φ ::= ⊤ | ⊥ | ite(x, φ, φ), with x ranging over X and the restriction
that for all expressions of the form ite(x, φ1, φ2), x < y holds for all y ∈
V(φ1) ∪V(φ2).

Springer Nature 2021 LATEX template

14 A KC Perspective on Belief Tracking

Definition 9 (terms). The language Terms over a set of variables X is the
set of all consistent conjunctions of literals over X.

The language Terms is incomplete, because not all sets of assignments can
be represented with terms. However, it is a standard language in the planning
literature, especially for initial belief states, for preconditions of actions, and
for statewise goals.

Example 10 (continued from Example 2). We still consider a robot on a 2×2
grid, with fluents F := {x1, x2, y1, y2, sw on}. The initial belief state with all 8
valid states can be expressed in NNF as ϕ := (x1 ↔ ¬x2) ∧ (y1 ↔ ¬y2), using
symbols →,↔,⊥,⊤ to enhance readability (we will do so in later examples
too).

The observation on as we defined it in Example 1 can be expressed in NNF
as sw on∧ϕ, but it is not representable in Terms. However, since adding invalid
states to on is harmless, we can change our definition of on and use the simpler
formula sw on, which is equivalent in practice — and is a Terms expression.
The NNF belief state x2 ↔ ¬sw on can be expressed in OBDD<, with x1 <
x2 < y1 < y2 < sw on, as ite(x2, ite(sw on,⊥,⊤), ite(sw on,⊤,⊥)). The goal of
being at x = 2, y = 2 can be represented as x2 ∧ y2. Note that, like on, the sets
of states expressed by the last two formulas contain invalid states, but this is
harmless. We simply ignore them from now on.

It can be seen that any term is a CNF (with only unit clauses), a DNF (with
only one term), and — exact syntax left apart — an OBDD: for instance, the
term x1∧¬x2∧x3 can be seen as the OBDD ite(x1, ite(x2,⊥, ite(x3,⊤,⊥)),⊥).
Moreover, by definition, any CNF, DNF, or OBDD is an NNF formula as well.
Hence, slightly abusing the definitions, we will repeatedly use the inclusions
Terms ⊆ {CNF,DNF,OBDD<} ⊆ NNF.

5.2 Goal Languages

By definition, statewise goals are specified by a subset G of the state space S.
Consequently, for these we will consider the propositional languages defined in
Section 5.1.

Such a statewise goal defined by G ⊆ S can also be seen as the goal of
knowing that the current state is one in G, which is usually written KG, or
□G (Bonet, 2010). This generalizes naturally with goals of the form ¬KG,
and Boolean combinations of such atoms. We capture this generalization by
the logic of knowledge S5.2

Definition 11 (S5). Let X be a set of variables, and let Λ+,Λ− be two
propositional languages over X. The S5 language induced by Λ+,Λ−, written
S5Λ+,Λ− , is the set of all expressions γ⃗ generated by the grammar γ⃗ ::= κ+ |

2The use of two different propositional languages for positive and negative knowledge atoms is
motivated by algorithmic efficiency, following Bienvenu et al. (2010).

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 15

κ− | γ⃗ ∨ γ⃗ | γ⃗ ∧ γ⃗, with κ+ ranging over all expressions of the form Kφ with
φ ∈ Λ+, and κ− ranging over all expressions of the form ¬Kφ with φ ∈ Λ−.

The semantics of an S5 expression is a set of belief states, so that a belief
state B satisfies a goal expressed by such an expression γ⃗ if B ∈ ∥γ⃗∥ holds.

Definition 12 (S5 semantics). Let X be a set of variables, let Λ+,Λ− be two
propositional languages, and let γ⃗ be a formula in S5Λ+,Λ− . The semantics ∥γ⃗∥
of γ⃗ is inductively defined by

∥Kφ∥ := {B ⊆ 2X | ∀s ∈ B : s |= φ}
∥¬Kφ∥ := {B ⊆ 2X | ∃s ∈ B : s ̸|= φ}
∥γ⃗1 ∨ γ⃗2∥ := ∥γ⃗1∥ ∪ ∥γ⃗2∥
∥γ⃗1 ∧ γ⃗2∥ := ∥γ⃗1∥ ∩ ∥γ⃗2∥

Example 13 (continued from Example 10). The goal of being at x = x2 but
not knowing the position along the y axis can be expressed in S5Terms,Terms as
Kx2 ∧ ¬Ky1 ∧ ¬K¬y1, since in this domain, not knowing the value of the
variable y1 implies not knowing the value of the variable y2. This formula is
satisfied by the belief state B represented by the NNF formula x2, since B
contains states where y1 is false (so B is not in ∥Ky1∥), but also states where
it is true (so B is not in ∥K¬y1∥). In contrast, the goal Kx2 ∧ ¬Ky1, while
also satisfied by B, is satisfied by belief states in which the agent knows its
position, such as the one expressed as x2 ∧ ¬y1.

While negative epistemic goals might seem useless at first sight, they can
be used to model goals like “I want to check our common bank account without
learning how much my partner spent on my Christmas present”. They can
also be used to model weak planning objectives, as reaching ¬K¬φ amounts
to reaching a situation in which the goal specified by φ is possibly achieved.

5.3 Action Languages

An action language is a language for representing a class of ontic actions. Hence
their semantics is a mapping from states to sets of states.

PDDL and STRIPS

The first action language which we consider is a nondeterministic version of
(ground) PDDL. Observe that we take the STRIPS-like semantics, in which if
+p and −p are both effects of an action in a state, then the semantics is like
if +p alone was the effect.

Definition 14 (PDDL). Let ΛP,ΛC be two propositional languages over a set
of fluents F . The action language PDDLΛP,ΛC is the set of all expressions of

Springer Nature 2021 LATEX template

16 A KC Perspective on Belief Tracking

the form α = ⟨π, η⟩, with π ∈ ΛP and η generated from the grammar

η ::= +x | −x | η ∪ η | η& η | χ▷ η

with x ∈ F and χ ∈ ΛC. The expression π is called the precondition of α, the
expression η is called its effect, and each expression χ in the effect is called a
condition.

The semantics is given by the following definition.

Definition 15 (PDDL semantics). Let ΛP,ΛC be two propositional languages
over a set of fluents F , and let α := ⟨π, η⟩ be an expression in PDDLΛP,ΛC . The
semantics of α is defined by ∥α∥(s) := ∅ if s does not satisfy π, and otherwise
by ∥α∥(s) := {(s \ E−) ∪ E+ | (E+, E−) ∈ E(η, s)}, with

E(+x, s) := {({x}, ∅)}
E(−x, s) := {(∅, {x})}

E(η1 ∪ η2, s) := E(η1, s) ∪ E(η2, s)

E(η1 & η2, s) := {(E+
1 ∪ E

+
2 , E

−
1 ∪ E

−
2) | (E+

i , E
−
i) ∈ E(ηi, s) for i = 1, 2}

E(χ▷ η, s) := E(η, s) if s satisfies χ, otherwise {(∅, ∅)}

Observe that η1∪η2, η1 & η2, χ▷η are just synonyms for the constructions
(oneof η1 η2), (and η1 η2), (when χ η) of usual PDDL (McDermott et al., 1998).

Since PDDL allows arbitrary nesting of the constructs, we also consider a
widely used syntactic restriction.

Definition 16 (conditional STRIPS). Let ΛP,ΛC be two propositional lan-
guages over a set of fluents F . The action language CSTRIPSΛP,ΛC is the
restriction of PDDLΛP,ΛC to expressions ⟨π, η⟩ with η of the form

&
i∈I

(
χi ▷

⋃
j∈Ji

(±x1i,j & · · ·&±x
ki,j
i,j)

)
where I and all the Ji are finite sets of indices and for all i, j, k, ±xki,j is either
+x or −x for some x ∈ F .

Example 17 (continued from Example 13). The action down can be written
in PDDLTerms,Terms as ⟨π, η⟩, with π = sw on and η = −y2 &+y1. The action
right can be written in CSTRIPSTerms,Terms as ⟨π, η⟩, with π = ⊤ and

η =
(
⊤▷

(
(+y1 &−y2) ∪ (−y1 &+y2)

))
&
(
x1 ▷ (+x2 &−x1)

)
For both PDDLΛP,ΛC and CSTRIPSΛP,ΛC , we will sometimes consider the

restriction that there is no precondition (equivalently, that the precondition is

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 17

tautological), and/or that there is no construct χ▷η (equivalently, that all such
constructs are of the form ⊤▷ η). We will then write ⊤ in place of ΛP and/or
ΛC; for instance, CSTRIPS⊤,ΛC denotes the CSTRIPS language restricted to
tautological preconditions and to conditions in ΛC.

Deterministic Restrictions

When considering actions, a very natural and common restriction is determin-
ism. Deterministic actions map each state which satisfies their precondition to
a single successor.

Definition 18 (deterministic PDDL, STRIPS). Let ΛP,ΛC be two
propositional languages over a set of fluents F . The action language
PDDL-DetΛP,ΛC (resp. CSTRIPS-DetΛP,ΛC) is the restriction of PDDLΛP,ΛC

(resp. CSTRIPSΛP,ΛC) to expressions in which the choice operator ∪ does not
occur.

Observe that we define determinism syntactically, so that an expression in
which the choice operator does occur, but which in effect is deterministic (like
α := +x∪+x) does not fall in the scope of Definition 18. The reason is that we
want languages to be defined syntactically, and determining whether a given
PDDL or STRIPS action is “semantically” deterministic is hard in general
(this involves checking the satisfiability of conditions, among others).

Also observe that CSTRIPS-DetTerms,⊤ is essentially the historical (deter-
ministic, unconditional) STRIPS language. The representation of action down
in Example 17 is an example of an expression in this language.

Action Theories

We will finally consider a number of action languages built on top of proposi-
tional languages as follows. Given a set of fluents F , we write F ′ for the set of
variables (assumed to be fresh) {x′ | x ∈ F}. Given an assignment s to F , we
write s′ — or (s)′ in case of ambiguity — for the assignment to F ′ defined by
∀x′ ∈ F ′ : s′(x′) := s(x). The variables in F ′ are used to express the values of
the fluents after the action took place.

Definition 19 (action theories). Let F be a set of fluents, and let Λ be a
propositional language. The action language of action theories over Λ and F ,
written AT(Λ), is the set of all expressions α of Λ satisfying V(α) ⊆ F ∪ F ′.
The semantics ∥α∥ of α ∈ AT(Λ) is defined by ∀s1 ∈ 2F : ∥α∥(s1) = {s2 ∈
2F | s1 ∪ s′2 |= α}.

For conciseness, we write NNFAT (resp. CNFAT, DNFAT, OBDDAT<)
instead of AT(NNF) (resp. AT(CNF), AT(DNF), AT(OBDD<)).

Example 20 (continued from Example 17). Still assuming that the initial
belief state only contains valid states, the action down in Example 17 can be

Springer Nature 2021 LATEX template

18 A KC Perspective on Belief Tracking

expressed in NNFAT as

sw on ∧ (y′1 ∧ ¬y′2) ∧ (x′1 ↔ x1) ∧ (x′2 ↔ x2) ∧ (sw on′ ↔ sw on)

Notice that the first conjunct implements the precondition, the second conjunct
implements fluent changes, and the last three make sure that the other fluents
keep their value.

Observe that in action theories, we need to specify explicitly the persistency
of fluents. For instance, if we remove the subexpression (sw on′ ↔ sw on) from
the expression in Example 20, we get an action after which the value of sw on
is arbitrary.

For the action language OBDDAT<, since the binary decision diagrams
involve variables both in F and in F ′, an important question is how variables in
F are ordered by < with respect to variables in F ′. As we will see, this indeed
affects the complexity of some queries and transformations. First, throughout
the paper we assume that < is such that variables are ordered the same in F
and in F ′, in the sense that for all x1, x2 ∈ F , x1 < x2 holds if and only if
x′1 < x′2 holds. For the interleaving of variables in F and in F ′, we consider
three situations:

• all variables in F are ordered before all variables in F ′, written F < F ′;
• all variables in F are ordered after all variables in F ′, written F ′ < F ;
• for each variable x ∈ F , x is ordered just before x′; precisely, if F :=
{x1, . . . , xn} is ordered by xi1 < xi2 < · · · < xin , then F ∪ F ′ is ordered by
xi1 < x′i1 < xi2 < x′i2 < · · · < xin < x′in ; this situation we write F ∥< F ′.3

Admittedly, these situations do not cover all possible orderings of F ∪F ′; they
however cover the natural cases where F and F ′ have the same ordering, so
that the order of the fluents does not depend on the timestep (before or after
the action took place).

Finally, note that we do not consider the deterministic versions of action
theories, as there is no obvious syntactic criterion ensuring the determinism of
an action theory and, like for PDDL, determining whether an action theory is
“semantically” deterministic is typically hard.

5.4 Size of Expressions

For complexity analyses, it is crucial to define the size of expressions. As is
standard in the knowledge compilation literature, we will assume that for all
propositional languages, any subformula of a propositional formula φ which
occurs several times in φ is represented only once (and pointed to as much
as necessary). While this does not change (up to a polynomial) the size of
CNFs, DNFs, and terms, this is crucial for the complexity of queries and
transformations on OBDD<, and this a priori matters for NNF.

3The complexity results would be exactly the same for x′
i1
< xi1

< x′
i2
< xi2

< · · · < x′
in

<

xin instead.

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 19

Hence we define the size |φ| of an expression φ in any propositional lan-
guage to be the number of symbols in this representation, and we extend this
definition to action theories in AT(Λ) and to general goals in S5Λ+,Λ− for all
propositional languages Λ,Λ+,Λ−.

For PDDLΛP,ΛC and CSTRIPSΛP,ΛC , we also assume this representation for
preconditions π ∈ ΛP and conditions χ ∈ ΛC. On the other hand, we assume
that the rest of the structure in a PDDL expression is represented by a tree,
because we leave the complexity of some problems open with the circuit rep-
resentation. We define the size |α| of an action expression α in PDDLΛP,ΛC

accordingly, counting each occurrence of each expression; we will however point
out where the results depend on this choice. Observe that this assumption
does not matter for CSTRIPSΛP,ΛC (up to a polynomial), since the expressions
there have bounded nesting.

6 Representations of Belief States by
Propositional Formulas

In this section we give the complexity results about queries and transforma-
tions, for belief states represented in a propositional language. We study two
variants of such representations, depending on whether we allow auxiliary
variables in the expressions. A number of these results follow from previous
studies on knowledge compilation, especially from the results by Darwiche and
Marquis (2002), but others are new since they concern the interplay between
different propositional languages, or because they concern non-logical action
languages (PDDL and CSTRIPS).

6.1 Belief State Propositional Languages

Since, by definition, a belief state on a set of fluents F is a subset of 2F , it
is natural to represent a belief state B by a propositional expression β, for
instance in NNF, with V(β) ⊆ F . This is what we call a plain propositional
representation of B.

However, in the context of planning, it is also natural to consider represen-
tations in which auxiliary variables are allowed, so that a belief state B ⊆ 2F

is represented by a propositional expression β with V(β) ⊆ F ∪ Y , for some
set of auxiliary variables Y . Then the semantics is that β represents the belief
state ∃Y · ∥β∥F∪Y , where for a set of assignments S ⊆ 2F∪Y , ∃Y · S denotes
the set of assignments obtained by projecting out the variables in Y , an oper-
ation also known as eliminating or ∃-forgetting Y . Formally, ∃Y ·B is defined
to be {s ∈ 2F | ∃sY ∈ 2Y : s ∪ sY ∈ B}.

A typical use of such auxiliary variables in planning is for progressing
a belief state by an action. Suppose for instance that we are progressing a
belief state B represented by β := (x1 ∨ x2) by an action a represented by
α := (x′1 ↔ ¬x1)∧ (x′2 ↔ x2). The action α switches the value of x1 but leaves
x2 unchanged. Then computing a plain representation of B ⊕ a amounts to
computing β ∧ α, then projecting out the variables x1, x2 but not x′1, x

′
2, and

Springer Nature 2021 LATEX template

20 A KC Perspective on Belief Tracking

finally renaming x′1, x
′
2 to x1, x2. This indeed yields (¬x1 ∨ x2), as desired.

However, since existential forgetting is typically a costly operation, incuring
a possible blowup in size, it can be better to represent B ⊕ a by β′ := (x−1 ∨
x−2) ∧ (x1 ↔ ¬x−1) ∧ (x2 ↔ x−2). Such a representation uses only conjunction
and renaming, and it is easy to see that the semantics ∥β′∥ = ∃{x−1 , x

−
2 } ·

∥β′∥{x−
1 ,x

−
2 ,x1,x2} is the same as ∥¬x1 ∨ x2∥.

This precise use of auxiliary variables amounts to keeping track of the
history which yielded the represented belief state; it can be seen as projecting
out in a lazy fashion. Beyond this, we consider general representations, using
an arbitrary set of auxiliary variables, which we call existential propositional
representations.

All in all, for each propositional language Λ, we define two belief state
languages.

Definition 21 (plain belief state language). Let F be a set of fluents, and
let Λ be a propositional language. The plain belief state (propositional) lan-
guage induced by Λ, written BS(Λ), is defined to be the set of propositional
expressions β ∈ Λ with V(β) ⊆ F , with the semantics defined by ∥β∥ := ∥β∥F .

Definition 22 (existential belief state language). Let F be a set of fluents, and
let Λ be a propositional language. The existential belief state (propositional)
language induced by Λ, written BS∃(Λ), is defined to be the set of propositional
expressions β ∈ Λ with V(β) ⊆ F ∪Y for some set of variables Y disjoint from
F . The semantics of such an expression is defined by ∥β∥ := ∃Y · ∥β∥F∪Y .

For the language BS∃(OBDD<), we will sometimes need to distinguish two
situations, depending on whether the ordering < orders the variables in Y after
or before the variables in F , denoted by F < Y and Y < F , respectively. This
does not cover all possible orderings of F ∪ Y , but it covers the most natural
situations, and additionally abstracts away from the identity of the variables
in F or in Y .

6.2 Complexity of Queries

We start by studying the complexity of queries. The results are summarized
in Tables 3–7; the numbers there point to the propositions where the result is
proved, with “h” standing for “(proof of) hardness” and “m” for “(proof of)
membership”.

In the tables, we tacitly use a number of reductions between problems,
which can be easily derived from the inclusion relations between languages.
Common to all queries is a belief state language ΛB as a parameter. Then if
ΛB
1 ,Λ

B
2 are two belief state languages with ΛB

1 ⊆ ΛB
2 , then for all action lan-

guages ΛA, the problem Applic(ΛB
1 ,Λ

A) is trivially polynomial-time reducible
to the problem Applic(ΛB

2 ,Λ
A), and similarly for queries Fair, SatS , Sat,

and Equiv. We will also tacitly use similar reductions derived from inclusion

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 21

relations between the other languages (ΛA, ΛO, etc.). In tables, results derived
from such relations are written without any reference to a proposition.

Recall from Section 5.1 the inclusions Terms ⊆ {CNF,DNF,OBDD<} ⊆
NNF. We will also use the obvious inclusion BS(Λ) ⊆ BS∃(Λ) (for all propo-
sitional languages Λ). Moreover, we will use the polynomial-time reductions
induced by the following translations.

Lemma 23. Let Λ be either DNF, or OBDD< with F < Y . Then given an
expression β in BS∃(Λ), one can compute in polynomial-time an expression β′

in BS(Λ) with ∥β′∥ = ∥β∥.

Proof This follows from the fact that ∃-forgetting can be done in polynomial time
for both languages. This is shown by Darwiche and Marquis (2002, Table 7) for DNF.
For OBDD< with F < Y , we can compute β′ as follows: given β ∈ OBDD<, replace
bottom-up each subexpression ite(y, φ1, φ2), for y ∈ Y , by ⊤ (resp. ⊥) if φ1 = ⊤ or
φ2 = ⊤ holds (resp. if both φ1 = ⊥ and φ2 = ⊥ hold). It is easy to see that β′ can
be built in polynomial time, satisfies V(β′) = F , and satisfies ∥β′∥ = ∥β∥. □

Finally, recall that we define the queries to take as input a nonempty belief
state. The following lemma will allow us to ignore this when giving reductions
to queries (except for Sat).

Lemma 24. For all belief state languages ΛB of the form BS(Λ) or BS∃(Λ)
with Λ ∈ {NNF,CNF,DNF,OBDD<,Terms}, there is a polynomial-time reduc-
tion from the problem with possibly empty belief states as input, to the
problem with nonempty belief states, for Applic(ΛB,ΛA), Fair(ΛB,ΛO),
SatS(Λ

B,ΛG), and Equiv(ΛB), for all languages ΛA,ΛO,ΛG considered in this
paper.

Proof First observe that the result holds vacuously for Λ = Terms, since we define
terms to be consistent.

For the other languages, let x /∈ F be a fresh variable. First, it is easy to see
that given an expression β ∈ ΛB, an expression β′ in ΛB with ∥β′∥ = ∥β ∨ x∥ can be
computed in polynomial time, and ∥β ∨ x∥ is nonempty. Now it can be seen that:

• for any ω in any observation language considered, ∥ω∥ is fair at ∥β∥ if and only if
∥ω∧¬x∥ is fair at ∥β′∥; moreover, all observation languages allow the computation
of an expression for ω ∧ ¬x in polynomial time;

• for any γ in any ΛG ∈ {NNF,CNF,DNF,OBDD<}, ∥β∥ ⊆ ∥γ∥ if and only if
∥β′∥ ⊆ ∥γ ∨ x∥, and all these languages allow the computation of an expression
for γ ∨ x in polynomial time;

• for any γ in ΛG = Terms, ∥β∥ ⊆ ∥γ∥ if and only if ∥β∨γ∥ ⊆ ∥γ∥, β∨γ is consistent
because γ is in Terms, and all languages Λ ∈ {NNF,CNF,DNF,OBDD<} allow one
to compute an expression for β ∨ γ in polynomial time;

• a similar reasoning as for SatS shows the result for applicability.

Finally, for equivalence, it is again easy to see that ∥β1∥ = ∥β2∥ holds if and only if
∥β1 ∨ x∥ = ∥β2 ∨ x∥ holds. □

Springer Nature 2021 LATEX template

22 A KC Perspective on Belief Tracking

ΛB

=
ΛA =

NNFAT
or CNFAT

DNFAT OBDDAT< P/C(-Det)ΛP,ΛC

BS∃(Λ) or BS(Λ),
Λ ∈ {NNF,CNF}

Π2P-c
(m: 26)

coNP-c
(m: 26)

coNP-c
(m: 26)

P for ΛP = ⊤
(obvious);
coNP-c for
ΛP ⊇ Terms
(m: 26, h: 28)

BS∃(Λ) or BS(Λ),
Λ ∈ {DNF,OBDD<,Terms}

Π2P-c
(h: 27)

coNP-c
(h: 28 + 25)

coNP-c for
F ′ < F
or F ∥< F ′

(h: 29);
P for F < F ′

(m: 30)

coNP-c for
ΛP ⊇ DNF (h: 28);
P for ΛP ⊆ CNF
or ΛP ⊆ OBDD<

(m: 31)

Table 3: Complexity of Applic(ΛB,ΛA) for representations of belief states by
propositional formulas.
P/C(-Det)ΛP,ΛC stands for PDDLΛP,ΛC , CSTRIPSΛP,ΛC , PDDL-DetΛP,ΛC , or
CSTRIPS-DetΛP,ΛC . “h” stands for “(proof of) hardness” and “m” for “(proof
of) membership”.

Applicability

For Applic, the results are summarized in Table 3. Let us emphasize that,
as the notation suggests, when considering the belief state language OBDD<
and the action language OBDDAT<, we assume that the ordering on F ∪ F ′

(for actions) extends that on F (for belief states). This is not a real restriction
since, in a typical implementation, one uses the same ordering for all decision
diagrams so as to maximize the benefits of memory sharing and caching.

As a complement to the results given in Table 3, note that deciding
applicability of an action expression in PDDLΛP,ΛC amounts to checking the
satisfaction of the precondition expression, in ΛP. It follows that these results
can be complemented by the results about goal satisfaction. For instance, using
Table 6 one can derive what would be the complexity of checking applicability
of a PDDL expression with an epistemic precondition in S5Λ+,Λ− .

We now turn to the results; we will use the following lemma.

Lemma 25. For all belief state languages ΛB and all propositional languages
ΛP,ΛC, the problem Applic(ΛB,PDDLΛP,ΛC) is polynomial-time reducible to
the problem Applic(ΛB,AT(ΛP)).

Proof An action α = ⟨π, η⟩ ∈ PDDLΛP,ΛC is applicable at a belief state B if and only

if all states s ∈ B satisfy π. Now π is in ΛP by definition, so it is a special case of
an expression in AT(ΛP) (one not mentioning any primed variable), and as such it is
applicable at B if and only if all states s ∈ B satisfy π. □

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 23

Proposition 26. The problem Applic(BS∃(NNF),NNFAT) is in Π2P, and the
problems Applic(BS∃(NNF),DNFAT), Applic(BS∃(NNF),OBDDAT<), and
Applic(BS∃(NNF),PDDLNNF,NNF) are in coNP.

Proof Given β ∈ BS∃(NNF) with V(β) ⊆ F ∪ Y and α an expression in any action
language, the problem amounts to deciding the validity of

∀s ∈ 2F : ∀sY ∈ 2Y : s ∪ sY |= β =⇒ (∃s′ ∈ 2F : s′ ∈ ∥α∥(s))

Deciding s ∪ sY |= β is in P. For α ∈ NNFAT, deciding ∃s′ ∈ 2F : s′ ∈ ∥α∥(s)
is in NP, hence the problem is in Π2P. Now for DNFAT and OBDDAT<, deciding
∃s′ ∈ 2F : s′ ∈ ∥α∥(s) amounts to deciding whether α is satisfiable after conditioning
by s, which is in P; for PDDLNNF,NNF, it amounts to deciding whether s satisfies
the precondition of the action, again a question in P. Hence in all these cases, the
problem is in coNP. □

Proposition 27. The problem Applic(BS(Terms),CNFAT) is Π2P-hard.

Proof Let ∀V1 : ∃V2 : φ be a QBF formula with φ in CNF. Let F := V1 ∪ V2, and
define αφ to be the action expression in CNFAT obtained from φ by renaming each
x ∈ V2 to x′. Then it is easy to see that the QBF is valid if and only if αφ is applicable
at the complete belief state 2F , which has a polynomial-size expression as the empty
term. This gives a polynomial-time reduction from the problem of deciding whether
a ∀∃-QBF is valid, which is Π2P-hard (as a corollary of Th. 17.10 of Papadimitriou,
1994, p. 428). □

Proposition 28. The problems Applic(BS(CNF),CSTRIPS-DetTerms,⊤) and
Applic(BS(Terms),CSTRIPS-DetDNF,⊤) are coNP-hard.

Proof Deciding applicability of α = ⟨π, η⟩ at a belief state β amounts to deciding
whether β entails π, which is coNP-hard in both cases. Indeed, deciding whether
a CNF γ1 ∧ · · · ∧ γn is inconsistent is equivalent to introducing a fresh variable x
and deciding whether the consistent CNF (γ1 ∨ x) ∧ · · · ∧ (γn ∨ x) entails x, which
is a consistent term; and deciding whether a DNF is valid is equivalent to deciding
whether it is entailed by ⊤ (the empty term). Note that η does not matter in the
proof, so assuming it is deterministic yields a stronger statement at no cost. □

Proposition 29. Assume F ′ < F or F ∥< F ′. Then the problem
Applic(BS(Terms),OBDDAT<) is coNP-hard.

Proof We adapt a construction by Darwiche and Marquis (2002, proof of Prop. 5.1,
p. 258) to give a reduction from the problem of deciding whether a given DNF formula
is tautological. Let φ :=

∧m
i=1 τi be a DNF formula over a set of variables V(φ) :=

{x1, . . . , xn}. We define the set of fluents F to be {x1, . . . , xn, xn+1, . . . , xn+m}, and
the ordering < on F ∪ F ′ to extend xn+1 < xn+2 < · · · < xn+m < x1 < x2 < · · · <
xn; clearly, this is possible while respecting either F ′ < F or F ∥< F ′.

Springer Nature 2021 LATEX template

24 A KC Perspective on Belief Tracking

Now we define the propositional expression α by α := α1, with αm+1 := ⊥ and
for i = 1, . . . ,m, αi := ite(x′n+i, τi, αi+1) (where, abusing notation, we identify τi
with an expression in OBDDAT<). Clearly, this expression is in OBDDAT< (whatever
the assumed ordering <), and it can be constructed in polynomial time.

We claim that ∥α∥ is applicable at the belief state represented by ⊤ (empty term)
if and only if φ is tautological. Assume first that ∥α∥ is applicable at ∥⊤∥ = 2F ;
then by definition of applicability, for all assignments s ∈ 2F , there is an assignment

s′ ∈ 2F
′
such that s ∪ s′ |= α; then it follows from the construction of α that for all

assignments s ∈ 2F , there is an i such that s satisfies τi, and hence s satisfies φ; so
φ is tautological. Conversely, if ∥α∥ is not applicable at some s ∈ 2F , then for all

assignments s′ ∈ 2F
′
we have s ∪ s′ ̸|= α; hence for all i = 1, . . . ,m, this holds in

particular for any assignment s′i which makes x′n+i true, and x
′
n+j false for all j ̸= i;

it is easily seen that this implies s ̸|= τi for all i, and thus in the end s ̸|= φ, so that
φ is not tautological. □

Proposition 30. Assume F < F ′. Then the problem
Applic(BS∃(Λ),OBDDAT<) is in P for Λ ∈ {DNF,OBDD<}.

Proof Using the same construction as in Lemma 23, given α ∈ OBDDAT< with F <
F ′, we can compute in polynomial time an expression π ∈ OBDDAT< with V(π) ⊆ F
and ∥π∥ = ∃F ′ · ∥α∥, that is, π represents the (implicit) precondition of α. It remains
to decide whether β entails π, a polynomial-time problem for β ∈ BS∃(Λ) with
Λ ∈ {OBDD<,DNF}: indeed, deciding whether an OBDD entails another OBDD
with the same ordering is polynomial-time (Darwiche and Marquis, 2002, “sentential
entailment” query), and for DNF we can decide whether each term in β (which we see
as an OBDD) entails π; and for coping with auxiliary variables, we simply observe
that ∃Y · β entails π if and only if β entails π, since we have V(π) ∩ Y = ∅. □

Proposition 31. The problem Applic(BS∃(Λ),PDDLΛP,NNF) is in P for Λ ∈
{DNF,OBDD<} and ΛP ∈ {CNF,OBDD<}.

Proof This follows directly from the fact that deciding whether a formula in Λ entails
a formula in ΛP is in P for all four combinations. Indeed, we just saw the two cases
when ΛP = OBDD< (in the proof of Prop. 30); moreover, deciding whether a formula
ϕ entails a formula ψ in CNF is equivalent to deciding whether ϕ entails each clause
of ψ, which is polynomial-time if ϕ is in DNF or OBDD< (Darwiche and Marquis,
2002, “clausal entailment” query)). □

Fairness

For fairness, the results are summarized in Table 4.

Proposition 32. The problem Fair(BS∃(NNF),NNF) is in NP.

Proof Define a witness to be an assignment to all variables in the belief state expres-
sion (including the auxiliary variables) and the observation expression, which satisfies

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 25

ΛB

=
ΛO = NNF/CNF DNF OBDD< Terms

BS∃(Λ) or BS(Λ),
Λ ∈ {NNF,CNF}

NP-c (m: 32) NP-c NP-c NP-c (h: 33)

BS∃(Λ) or BS(Λ),
Λ ∈ {DNF,OBDD<,Terms}

NP-c (h: 33) P (m: 34) P (m: 34) P

Table 4: Complexity of Fair(ΛB,ΛO) for representations of belief states by
propositional formulas.

both. Such a witness is clearly of polynomial size, and can be verified in polynomial
time. □

Proposition 33. The problems Fair(BS(CNF),Terms) and
Fair(BS(Terms),CNF) are NP-hard.

Proof Deciding whether a CNF formula φ is satisfiable can be reduced to deciding
whether the observation ω := ⊤ is fair to the belief state β := φ, or, symmetrically,
to deciding whether ω := φ is fair to β := ⊤. □

Proposition 34. The problem Fair(BS∃(Λ),Λ
O) is in P for Λ,ΛO ∈

{DNF,OBDD<}.

Proof Deciding whether ω is fair to β amounts to deciding whether β∧ω is satisfiable;
note that this holds even with auxiliary variables in β, since for all formulas φ, ∃Y : φ
is satisfiable if and only if φ is satisfiable. For ΛB = ΛO = DNF, this can be decided
by distributing ∧ to obtain a DNF (of quadratic size), the satisfiability of which can
be decided in linear time. For ΛB = ΛO = OBDD<, again an OBDD for β ∧ ω can
be computed in quadratic time, and its satisfiability decided in linear time. Finally,
assume by symmetry ΛB = DNF and ΛO = OBDD<. Then β ∧ ω is satisfiable if and
only if there is a term τ in β such that τ ∧ω is satisfiable, which again can be decided
in polynomial time. □

Statewise Goal Satisfaction

For clarity, we give the results in Table 5, but all of them can be read from
Table 3 in virtue of the following lemma.

Lemma 35. For all belief state languages ΛB considered, and for all proposi-
tional languages ΛG, the problems SatS(Λ

B,ΛG) and Applic(ΛB,PDDLΛG,⊤)
are polynomial-time reducible to each other.

Proof By definition of SatS , a belief state expression β ∈ ΛB satisfies a statewise
goal γ ∈ ΛG over F if and only if for all assignments s ∈ ∥β∥, s satisfies γ. By
definition of Applic, this is equivalent to the action expression ⟨γ, η⟩ ∈ PDDLΛG,⊤
being applicable at β for an arbitrary effect η. □

Springer Nature 2021 LATEX template

26 A KC Perspective on Belief Tracking

ΛB

=
ΛG = NNF/DNF CNF OBDD< Terms

BS∃(Λ) or BS(Λ),
Λ ∈ {NNF,CNF}

coNP-c coNP-c coNP-c coNP-c

BS∃(Λ) or BS(Λ),
Λ ∈ {DNF,OBDD<,Terms}

coNP-c P P P

Table 5: Complexity of SatS(Λ
B,ΛG) for representations of belief states by

propositional formulas. The results follow from Table 3 and Lemma 35.

Λ+ = NNF/DNF C/O/T NNF/DNF C/O/T
ΛB = Λ−= NNF/DNF NNF/DNF C/O/T C/O/T

BS∃(Λ) or BS(Λ),
Λ ∈ {NNF,CNF}

Θ2P-c (m: 36) Θ2P-c Θ2P-c Θ2P-c (h: 37)

BS∃(Λ) or BS(Λ),
Λ ∈ {DNF,OBDD<,Terms}

Θ2P-c (h: 37) NP-c
(m, h: 38)

coNP-c
(m, h: 38)

P (m: 39)

Table 6: Complexity of Sat(ΛB,S5Λ+,Λ−) for representations of belief states
by propositional formulas.
A column header means that the results in the column hold for any combina-
tion of one of the positive languages with one of the negative languages. C/O/T
stands for CNF/OBDD</Terms. The (epistemic) goal language S5Λ+,Λ− can
also be used as a precondition language ΛP for Applic of PDDLΛP,ΛC ,
complementing the results in Table 3 for epistemic preconditions.

General Goal Satisfaction

For general goal satisfaction, the results are summarized in Table 6.

Proposition 36. The problem Sat(BS∃(NNF),S5NNF,NNF) is in Θ2P.

Proof Deciding whether β satisfies G⃗ can be done by deciding independently, for each
positive atom Kφ whether β entails φ, and for each negative atom ¬Kφ whether
β ∧ ¬φ is satisfiable, then combining the results following the structure of G⃗. Since
the evaluation of each atom can be done with one call to an NP-oracle, we get the
result. □

Proposition 37. The problems Sat(BS(CNF),S5Terms,Terms) and
Sat(BS(Terms),S5DNF,DNF) are Θ2P-hard.

Proof We start with Sat(BS(CNF), S5Terms,Terms). We give a reduction from the prob-
lem of deciding, given k propositional formulas ψ1, . . . , ψk satisfying ψi |= ψi+1 for
i = 1, . . . , k− 1, whether the smallest i such that ψi is satisfiable is even. This prob-
lem is Θ2P-complete (Wagner, 1990). Without loss of generality we assume that k is
even (otherwise we add φk+1 := ⊤).

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 27

So let ψ1, . . . , ψ2ℓ be propositional formulas as above.
First observe that it is NP-complete to decide whether φ ∧ x is satisfiable for a

given satisfiable CNF formula φ and a given variable x; indeed, given an arbitrary
CNF formula φ0 :=

∧
C, φ0 is satisfiable if and only if φ ∧ x is satisfiable, where x

is a fresh variable and φ is the satisfiable CNF
∧
C∈φ0

(C ∨ ¬x). For i = 1, . . . , 2ℓ,
we write ⟨φi, xi⟩ for the image of ψi under this reduction, that is, ψi is satisfiable if
and only if φi ∧ xi is satisfiable; moreover, by renaming the variables as necessary,
we assume (V(φi) ∪ {xi}) ∩ (V(φi′) ∪ {xi′}) = ∅ for i ̸= i′.

Now we claim that the smallest i such that ψi is satisfiable is even, if and only
if the belief state expression β :=

∧2ℓ
i=1 φi satisfies the goal γ⃗ :=

∨ℓ
j=1(K¬x2j−1 ∧

¬K¬x2j). Observe that ∥β∥ is nonempty, since each φi is satisfiable and all are on
disjoint sets of variables.

Indeed, by definition of satisfaction we have that β satisfies γ⃗ if and only if there is
a j such that β satisfies (K¬x2j−1∧¬K¬x2j). Now β satisfies (K¬x2j−1∧¬K¬x2j)
if and only if β entails ¬x2j−1 and β does not entail ¬x2j . This holds if and only

if β ∧ x2j−1 is unsatisfiable, and β ∧ x2j is satisfiable. Now because β is
∧2ℓ
i=1 φi,

the sets of variables occuring in xi and in φi′ are disjoint for i ̸= i′, and each φi is
satisfiable, we have that for i = 1, . . . , 2ℓ, β ∧ xi is satisfiable if and only if φi ∧ xi is
satisfiable. This is by construction if and only if ψi is satisfiable.

In the end, we get that β satisfies γ⃗ if and only if there is a j such that ψ2j−1 is
unsatisfiable and ψ2j is satisfiable. Since by assumption ψi |= ψi+1 for all i, hence
no ψj′ , j

′ < 2j − 1, can be satisfiable, this is if and only if there is j satisfying that
2j is the smallest i such that ψi is satisfiable, as desired.

The proof for Sat(BS(Terms), S5DNF,DNF) is similar: since it is coNP-complete
to decide whether a variable x entails a DNF formula φ, we use a polynomial-time
reduction from the problem of deciding the unsatisfiability of a CNF to associate a
pair ⟨xi, φi⟩ to each ψi, such that xi entails φi if and only if ψi is unsatisfiable (with

disjoint sets of variables for i ̸= i′). Then we define β to be the term
∧2ℓ
i=1 xi and γ⃗

to be
∨ℓ
j=1(Kφ2j−1 ∧ ¬Kφ2j). We conclude by observing that β satisfies γ⃗ if and

only if there is a j such that x2j−1 entails φ2j−1 and x2j does not entail φ2j , which
by construction holds if and only if there is a j such that ψ2j−1 is unsatisfiable and
ψ2j is satisfiable, as desired. □

Proposition 38. The problem Sat(BS∃(Λ),S5Λ+,Λ−) is NP-complete for Λ ∈
{DNF,OBDD<,Terms}, Λ+ ∈ {CNF,OBDD<,Terms}, and Λ− ∈ {NNF,DNF}.
It is coNP-complete for Λ ∈ {DNF,OBDD<,Terms}, Λ+ ∈ {NNF,DNF}, and
Λ− ∈ {CNF,OBDD<,Terms}. The same results hold for BS(Λ) instead of
BS∃(Λ).

Proof We start by showing membership for the NP-complete cases. For all combi-
nations of languages, with or without auxiliary variables, the problem of deciding
whether β ∈ Λ entails φ ∈ Λ+ is in P (see proof of Prop. 31), hence deciding
whether β satisfies Kφ is in P; moreover, deciding whether β ∈ Λ entails φ ∈ Λ− is
coNP-complete, hence deciding whether β satisfies ¬Kφ is NP-complete. It follows
that deciding whether β ∈ BS∃(Λ) satisfies γ⃗ can be done by guessing a subset of
the negative atoms ¬Kφ occurring in γ⃗, together with a witness of β |= ¬Kφ for
each of them, which amounts to guessing a polynomial-size witness. Verifying such
a witness can be done by deciding which positive atoms Kφ are satisfied by β (in

Springer Nature 2021 LATEX template

28 A KC Perspective on Belief Tracking

ΛB complexity

BS∃(NNF) Π2P-c (m: 40)
BS(NNF) coNP-c (m: 43)
BS∃(CNF) Π2P-c (h: 41)
BS(CNF) coNP-c (h: 43)
BS∃(DNF) or BS(DNF) coNP-c (m: 40, h: 43)

BS∃(OBDD<) coNP-c for Y1 ∪ Y2 < F (m: 40, h: 42);
P for F < Y1 ∪ Y2 (m: 43 + 23)

BS(OBDD<) P (m: 43)
BS∃(Terms) or BS(Terms) P (m: 44)

Table 7: Complexity of Equiv(ΛB) for representations of belief states by
propositional expressions.

polynomial time), verifying the witnesses for negative atoms ¬Kφ (in polynomial
time again), and finally verifying that the satisfied (positive and negative) atoms
make the Boolean combination γ⃗ evaluate to true, again in polynomial time. Hence
the problem is in NP.

Now hardness for the NP-complete cases follows from the fact that it is already
NP-hard to decide whether ∥β∥ satisfies a general goal γ⃗ reduced to a single negative
atom ¬Kφ, as observed above; this holds also without auxiliary variables, and under
the restriction that ∥β∥ is a nonempty belief state, because β does not entail φ if and
only if (β ∨ x) does not entail (φ∨ x), where x is a fresh variable, and the languages
ΛB and Λ− under consideration support polynomial-time disjunction with x.

For the coNP-complete cases, we simply observe that ∥β∥ does not satisfy γ⃗ ∈
S5Λ+,Λ− if and only if it satisfies the negation of γ⃗, which by De Morgan’s laws can
be read as a formula in S5Λ−,Λ+ . Hence the problem Sat(BS(Λ), S5Λ+,Λ−) and the
complement of Sat(BS(Λ),S5Λ−,Λ+) are polynomial-time reducible to each other,
and the result follows from the first part of the statement.

The same results holds for BS∃(Λ) and BS(Λ) because we have shown membership
for the former and hardness for the latter. □

Proposition 39. The problem Sat(BS∃(Λ),S5Λ+,Λ−) is in P for Λ ∈
{DNF,OBDD<} and Λ+,Λ− ∈ {CNF,OBDD<}.

Proof It suffices to observe that for all the combinations of Λ,Λ+ in the statement,
it is polynomial-time to decide whether β entails φ for β ∈ BS∃(Λ) and φ ∈ Λ+, and
for all the combinations of Λ,Λ−, it is polynomial-time to decide whether β ∧ ¬φ is
satisfiable for β ∈ BS∃(Λ) and φ ∈ Λ−. Hence whether β satisfies γ⃗ can be decided
by evaluating satisfaction of each atom in γ⃗ in polynomial time, then combining the
results following the structure of γ⃗. □

Equivalence

For equivalence, the results are summarized in Table 7. For a set of fluents F
and a belief state expression βi in BS∃(Λ) (for some propositional language
Λ), we write Yi for the set of auxiliary variables used in βi.

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 29

Proposition 40. The problem Equiv(BS∃(NNF)) is in Π2P, and the problems
Equiv(BS∃(DNF)) and Equiv(BS∃(OBDD<)) are in coNP.

Proof For NNF, we have ∥β0∥ ≠ ∥β1∥ if and only if there is an assignment s ∈ 2F ,
an index i ∈ {0, 1}, and an assignment sYi

∈ 2Yi such that (i) s∪ sYi
satisfies βi and

(ii) for all assignments sY1−i
∈ 2Y1−i , s∪sY1−i

does not satisfy β1−i. The statements
s∪ sYi

|= βi and s∪ sY1−i
̸|= β1−i can be checked in polynomial time, so given s and

sYi
, the first condition is in P and the second in coNP. This proves that checking

non-equivalence is in Σ2P, hence the result.
For DNF and OBDD<, the reasoning is the same but given s ∈ 2F , i ∈ {0, 1},

and sYi
∈ 2Yi , the second condition amounts to deciding whether β1−i conditioned

by s is unsatisfiable, which can be decided in polynomial time. □

Proposition 41. The problem Equiv(BS∃(CNF)) is Π2P-hard.

Proof Consider a QBF of the form ∀F∃Y1 : φ, where φ is a CNF formula, and define
β1 := φ ∈ BS∃(CNF) and β2 := ⊤ ∈ BS∃(CNF) (empty CNF formula) over the set of
fluents F . Then since all states in 2F satisfy β2, ∥β1∥ = ∥β2∥ holds if and only if all
states in 2F satisfy β1, that is, by definition of BS∃(CNF), if and only if ∀F∃Y1 : φ
is valid. This gives a reduction from the problem of deciding whether a ∀∃-QBF is
valid. □

For binary decision diagrams, since in general there is no bijection between
F and the auxiliary variables involved in an existential representation of a
belief state, we only consider the situations F < Y1 ∪ Y2 and Y1 ∪ Y2 < F .

Proposition 42. Let < be an ordering over F ∪Y1∪Y2 satisfying Y1∪Y2 < F .
Then the problem Equiv(BS∃(OBDD<)) is coNP-hard.

Proof As shown in the proof of Proposition 29, it is coNP-hard to decide whether an
expression β1 ∈ BS∃(OBDD<) with V(β1) ⊆ F∪Y1 and Y1 < F , satisfies ∃Y1 ·∥β1∥ =
2F . Since this is the same as deciding whether β1 is equivalent to the belief state
expression β2 := ⊤ ∈ BS∃(OBDD<), we have the result. □

The next result follows directly from well-known facts about propositional
logic (Darwiche and Marquis, 2002).

Proposition 43. The problem Equiv(BS(Λ)) is coNP-complete for Λ ∈
{NNF,DNF,CNF}. The problem Equiv(BS(OBDD<)) is in P.

Proposition 44. The problem Equiv(BS∃(Terms)) is in P.

Proof Recall first that we define terms in the language Terms to be consistent. Given
a term τ with V(τ) ⊆ F ∪ Y , one can compute in polynomial time a term τ ′ over
F satisfying ∥τ ′∥ = ∃Y · ∥τ∥ by simply removing all literals over a variable in Y .

Springer Nature 2021 LATEX template

30 A KC Perspective on Belief Tracking

Then deciding equivalence of τ1, τ2 ∈ BS∃(Terms) can be done by computing τ ′1 and
τ ′2 and comparing them for equality. □

6.3 Complexity of Transformations

We now study the complexity of transformations.
Importantly, contrary to queries, in general we cannot derive a result for

a belief state language ΛB
1 from a result for a belief state language ΛB

2 ⊇ ΛB
1

(nor vice-versa). This is because the belief state language defines a class of
inputs, but also puts a restriction on the output, since we always require the
output belief state to be in the same language as the input belief state. For
that reason, we also ignore BS∃(Terms) and BS(Terms) as representations of
belief states, since they are not complete languages and hence, in general they
cannot express the result of an operation (even when the input is also a term).

On the other hand, we will tacitly use the reductions induced by the inclu-
sion between the other languages (ΛA and ΛO), since they do not constrain
the output of the transformations.

Also note that we restrict our study to “one-shot” transformations, in the
sense that we define a transformation to be polynomial-time if applying it
once is polynomial-time, without considering whether it is polynomial-time
to perform a sequence of instances of that transformation; in the terms of
the knowledge compilation map (Darwiche and Marquis, 2002), we only con-
sider bounded transformations. However, whether each transformation can be
applied efficiently in sequence can be read easily from the proofs.

Progression by an Action

For progression by an action, the results are summarized in Table 8.
If φ is a propositional formula, we write φ[F ′/F/F−] for the expression

obtained from φ by renaming simultaneously each variable x ∈ F to a fresh
variable x−, and each variable x′ ∈ F ′, to x; variables from F− := {x− |
x ∈ F} will typically become auxiliary variables in the set Y for existential
representations. Moreover, if φ does not contain any primed variable, we write
φ[F/F ′] for the expression obtained from φ by renaming simultaneously each
variable x ∈ F to x′.

We will use the following lemma, which follows directly from the definitions.

Lemma 45. Let Λ,ΛA be two propositional languages, and α ∈ AT(ΛA) be an
action theory. Then

• for β in BS∃(Λ), β
′ := (β ∧ α)[F ′/F/F−] satisfies ∥β′∥ = ∥β∥ ⊕ ∥α∥;4

• for β in BS(Λ), an expression β′ satisfies ∥β′∥ = ∥β∥ ⊕ ∥α∥ if and only if
∥β′∥ = ∥β′′[F ′/F/F−]∥ for some expression β′′ satisfying ∥β′′∥ = ∃F · ∥β ∧
α∥.

4Since β′ here is in BS∃(Λ), ∥β′∥ is by definition ∃Y ∪ F− · ∥β′∥F∪Y ∪F− , where Y is the set
of auxiliary variables in β.

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 31

ΛB

=
ΛA = N/C-AT DNFAT OBDDAT< P/CΛP,ΛC P/C-DetΛP,ΛC

BS∃(NNF) FP (46) FP FP FP (51) FP

BS(NNF) •* (56) polysize
but /∈ FP*
(53)

•* for
F ∥< F ′ (59);
otherwise open

•* •* (62)

BS∃(CNF) FP (48) FP FP FP (51) FP

BS(CNF) •* (56) • (55) • (55) •* •* (62)

BS∃(DNF)
or BS(DNF)

• FP (46) • (57) •* (63) FP for
ΛC = ⊤ (52);
• for
ΛC ⊇ Terms
(61)

BS∃(OBDD<) • (57) FP for Y < F
(50);
• for F < Y
(55)

FP (46) FP for
ΛC = ⊤ (52);
• for
ΛC ⊇ Terms

FP for
ΛC = ⊤;
• for
ΛC ⊇ Terms
(61)

BS(OBDD<) • (57) • (55) • for F < F ′,
F ∥< F ′ (60);
FP for F ′ < F
(46 + 23)

• • (62)

Table 8: Complexity of Proga(Λ
B,ΛA) for representations of belief states by

propositional formulas.
By • we denote the fact that the problem is not polynomial-size; •*, /∈
FP* indicate that the result is conditional on some complexity-theoretic
assumption. N/C-AT stands for NNFAT or CNFAT; P/CΛP,ΛC stands for
PDDLΛP,ΛC or CSTRIPSΛP,ΛC ; and P/C-DetΛP,ΛC stands for PDDL-DetΛP,ΛC or
CSTRIPS-DetΛP,ΛC .

As a consequence, for existential propositional representations of belief
states, using positive results from Darwiche and Marquis (2002) about
conjunction, we get the following result.

Proposition 46. The problems Proga(BS∃(NNF),NNFAT),
Proga(BS∃(DNF),DNFAT) and Proga(BS∃(OBDD<),OBDDAT<) are in FP.

For CNF, we will use the following lemma, which can be shown using the
Tseitin transform of an NNF formula (Tseitin, 1983).

Lemma 47. Given a formula φ ∈ NNF over a set of variables F , one can
compute in polynomial time a CNF formula φ′ over F ∪ Y , for some set of
fresh variables Y , such that ∃Y · ∥φ′∥F∪Y = ∥φ∥F holds.

Springer Nature 2021 LATEX template

32 A KC Perspective on Belief Tracking

Proposition 48. The problem Proga(BS∃(CNF),NNFAT) is in FP.

Proof Given β ∈ BS∃(CNF) with V(β) ⊆ F ∪ Y and α ∈ NNFAT, we can use
Lemma 47 to compute in polynomial time an action expression α′ ∈ CNFAT satisfying
V(α′) ⊆ F∪F ′∪Yα (for some set Yα of fresh variables) and ∃Yα ·∥α′∥F∪F ′∪Yα

= ∥α∥.
Then by construction, for the CNF β′ := (β ∧ α′)[F ′/F/F−] we have the desired
property ∃Y ∪ Yα ∪ F− · ∥β′∥ = ∥β∥ ⊕ ∥α∥, and β′ can be computed in polynomial
time. □

For DNF action theories, we will use the following lemma.

Lemma 49. Let F be a set of fluents, β ∈ BS∃(NNF) be the representation
of a belief state, and let α :=

∨
i∈I τi be an action theory in DNFAT. Then the

expression β′ ∈ DNF defined as follows satisfies ∥β′∥ = ∥β∥ ⊕ ∥α∥:

β′ :=
(∨
{∃F · τi | i ∈ I, β ∧ τi is satisfiable}

)
[F ′/F/F−]

where ∃F · τi :=
∧
{λ ∈ τi | V(λ) ⊆ F ′} denotes the restriction of τi to the

variables in F ′.

Proof Let s be a state in ∥β∥ ⊕ ∥α∥, and Y be the set of auxiliary variables used
in β. Then by definition of progression, there are s− ∈ 2F and sY ∈ 2Y such that
s−∪sY satisfies β and s−∪ (s)′ satisfies α, hence s−∪ (s)′ satisfies τi for some i ∈ I.
It follows that s− ∪ sY ∪ (s)′ satisfies β ∧ τi, which is thus satisfiable, and that (s)′

satisfies ∃F · τi.
Conversely, let s ∈ 2F be a state such that (s)′ satisfies ∃F · τi for some i ∈ I

such that β ∧ τi is satisfied by some state s− ∪ sY ∪ s′0. Then since β ∧ τi is logically
equivalent to β ∧ (∃F ′ · τi) ∧ (∃F · τi), and the two first conjuncts of this expression
are over F ∪Y , we get that s− ∪ sY satisfies β and s− ∪ sY ∪ (s)′ satisfies β ∧ τi and
hence, β ∧ α; hence s is in ∥β∥ ⊕ ∥α∥. □

Proposition 50. The problem Proga(BS∃(OBDD<),DNFAT) is in FP for
Y < F .

Proof Using Lemma 49, one can get a DNF expression β′ for ∥β∥⊕∥α∥ by considering
each term of α in turn, since deciding whether a term is consistent with an OBDD
is in P. Then we can use the construction by Darwiche and Marquis (2002, Proof of
Prop. 5.1, p. 258) already described in the proof of Prop. 29 to compute in polynomial
time an expression in BS∃(OBDD<) which represents β′. □

For PDDL languages, despite the fact that expressions are not action the-
ories, we can introduce a set of auxiliary variables Y , and translate them
into propositional formulas over F ∪ F ′ ∪ Y . This is enough for obtaining the
following positive result about existential representations.

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 33

Proposition 51. The problems Proga(BS∃(NNF),PDDLNNF,NNF) and
Proga(BS∃(CNF),PDDLNNF,NNF) are in FP.5

Proof Recall first from the definition of Proga that in an input ⟨β, α⟩, the action
∥α∥ is assumed to be applicable at the belief state ∥β∥, so that we can ignore the
precondition of the action.

Given an action expression α := ⟨π, η⟩ in PDDLNNF,NNF, we define an NNF
formula φ(η) which uses a set Yα of polynomially many auxiliary variables, can be

computed in polynomial time, and is such that two states s ∈ 2F , s′ ∈ 2F
′
verify

s′ ∈ α(s) if and only if there is an assignment sYα
∈ 2Yα with s ∪ s′ ∪ sYα

|= φ(η).
It will follow from Lemma 45 that (β ∧ φ(η))[F ′/F/F−] is a representation in

BS∃(NNF) of ∥β∥ ⊕ ∥α∥; for BS∃(CNF), Lemma 47 will allow us to conclude.
Intuitively, the construction of φ(η) emulates the step-by-step transformation of

s into s′ by η, by keeping track of the changes in the values of the variables at each
timestep, using additional variables. We first compute the set of necessary timesteps
as follows. First, going bottom-up in the expression η, we define theminimum number
of timesteps T#(η0) required by each subexpression η0 of η by defining T#(+x) :=
T#(−x) := 1, T#(η1 ∪ η2) := max(T#(η1),T

#(η2)), T#(η1 & η2) := T#(η1) +
T#(η2), and T#(χ ▷ η1) := T#(η1). Then, going top-down in the expression η, we
define the set of timesteps T(η) to be [1..T#(η)], and for subexpressions η0 of η
we compute the set of timesteps for the children of η0 as follows, where we write
T(η0) := [b(η0).. e(η0)] :

for η0 = η1 ∪ η2 : T(η1) := T(η2) := T(η0)

for η0 = η1 & η2 :

T(η1) := [b(η0)..(b(η0) + T#(η1)− 1)]

T(η2) := [(b(η0) + T#(η1)).. e(η0)]

for η0 = χ▷ η1 : T(η1) := T(η0)

By construction, for all subexpressions η0 of η, T(η0) is a set of at least T#(η0)
contiguous integers of the form [b(η0).. e(η0)] , and there is a polynomial number of
timesteps introduced.

We now define an intermediate NNF formula ψ(η0) by induction as follows, where
for all x ∈ F and all relevant timesteps t, 1tx, 0

t
x denote fresh variables introduced in

5The proof of this statement relies on the fact that for PDDL expressions, we measure the size
of a tree representation (except for propositional preconditions and conditions).

Springer Nature 2021 LATEX template

34 A KC Perspective on Belief Tracking

Yα (to be read “x is set to ⊤—resp. to ⊥—at timestep t):6

ψ(η0) :=



for η0 = +x :

 1
b(η0)
x ∧ ¬0b(η0)x ∧

∧e(η0)
t=b(η0)+1

(¬1tx ∧ ¬0tx)

∧
∧e(η0)
t=b(η0)

∧
x0∈F,x0 ̸=x(¬1

t
x0

∧ ¬0tx0
)



for η0 = −x :

 ¬1b(η0)x ∧ 0
b(η0)
x ∧

∧e(η0)
t=b(η0)+1

(¬1tx ∧ ¬0tx)

∧
∧e(η0)
t=b(η0)

∧
x0∈F,x0 ̸=x(¬1

t
x0

∧ ¬0tx0
)


for η0 = η1 ∪ η2 :

(
ψ(η1) ∨ ψ(η2)

)
for η0 = η1 & η2 :

(
ψ(η1) ∧ ψ(η2)

)
for η0 = χ▷ η1 :

 (
χ→ ψ(η1)

)
∧

(
¬χ→

∧e(η0)
t=b(η0)

∧
x∈F (¬1

t
x ∧ ¬0tx)

)


Clearly, ψ(η0) can be computed in polynomial time. Now it is easy to show by
induction that the following hold. First, for all assignments sψ to V(ψ(η0)) which

satisfy ψ(η0), for all x ∈ F and t ∈ [b(η0).. e(η0)], it is not the case that both 1tx and
0tx are in sψ. Second, for all states s ∈ 2F , the effect ⟨E+, E−⟩ is in E(η0, s) if and
only if there is an assignment sψ to V(ψ(η0)) which satisfies ψ(η0) and verifies for
all x ∈ F :

x ∈ E+ ⇐⇒ ∃t : b(η0) ≤ t ≤ e(η0) and 1tx ∈ sψ (1)

x ∈ E− ⇐⇒ ∃t : b(η0) ≤ t ≤ e(η0) and 0tx ∈ sψ (2)

Now to complete the construction, we define φ(η) as follows:

φ(η) := ψ(η) ∧
∧
x∈F


((∧

t=1,...,T#(η)(¬1
t
x ∧ ¬0tx)

)
→ (x′ ↔ x)

))
∧

((∨
t=1,...,T#(η) 1

t
x) → x′

))
∧

((
(
∨
t=1,...,T#(η) 0

t
x) ∧ (

∧
t=1,...,T#(η) ¬1

t
x)
)
→ ¬x′

)


As can be seen, this construction sets the values of the variables in F ′ depending on
the values of the variables in F and the values of the auxiliary variables in ψ(η0), and

it follows from the properties of ψ(η) that for all states s ∈ 2F , s′ ∈ 2F
′
, s′ ∈ ∥α∥(s)

holds if and only if there is an assignment sYα
∈ 2Yα such that s ∪ s′ ∪ sYα

satisfies
φ(η), as desired. □

Proposition 52. The problems Proga(BS(DNF),PDDL-DetNNF,⊤) and
Proga(BS∃(OBDD<),PDDL-DetNNF,⊤) are in FP.

Proof Recall that we assume the actions to be applicable, so we can ignore the
precondition and work with the effect expression η. Since there are no conditions
and no nondeterministic choices, η can be transformed to an expression of the form

&x∈V ±x. Hence applying it to a belief state expression amounts to forgetting the

6We use the connective → for readability, with φ → ψ being a shorthand for the NNF formula
¬φ∨ψ; the shorthand x ↔ y, for variables x, y, for the NNF formula (¬x∨ y)∧ (x∨¬y); and for
an NNF formula φ, we use ¬φ for the NNF obtained from negating φ using De Morgan’s laws.

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 35

variables in V , then conjoining the literals corresponding to the ±x’s. This concludes
the proof since forgetting and conjunction with terms are in FP for DNF and for
OBDD< with auxiliary variables (for the latter, first rename the variables to be
forgotten, then conjoin the term). □

The following can be seen as a mixed positive/negative result.

Proposition 53. The problem Proga(BS(NNF),DNFAT) is polynomial-size
but, assuming P ̸= NP, not polynomial-time.

Proof The fact that the problem is polysize follows directly from the construction of
Lemma 49. Now let ψ be an NNF formula over a set of variables F , and let x be a fresh
variable. Define β := ψ∨x ∈ BS(NNF) and α := (¬x∧x′)∨ (¬x′) ∈ DNFAT; observe
that ∥β∥ is nonempty and that α is applicable at all states. Then by Lemma 49
again, the progression β ⊕ α is equivalent to ⊤ if ψ is satisfiable, and to ¬x′ if it is
not. As a consequence, if a representation of β ⊕ α in BS(NNF) can be computed in
polynomial time, then one can check whether an arbitrary assignment s to 2F (say
the assignment of all variables to ⊤) is such that (s)′ ∪{x′} satisfies it, and conclude
whether ψ is satisfiable, contradicting P ̸= NP. □

We now turn to negative results, starting with progression by action the-
ories. First, using the following result together with the results by Darwiche
and Marquis (2002, Table 3) sets a number of cases.

Lemma 54. Let Λ,ΛA be two propositional languages such that Λ has a
polynomial-size representation of ⊤ (in the number of variables in F). If Λ is
not at least as succinct as ΛA, then the problem Proga(BS(Λ),AT(ΛA)) is not
polynomial size.

Proof Given a formula ψ ∈ ΛA, write F for V(ψ). Then the formula α := ψ[F/F ′]
is an action expression in AT(ΛA) (which does not mention any unprimed variable).
Then by Lemma 45, β = ⊤ is such that the progression of β by α is an expression in
Λ which is logically equivalent to ψ; moreover, ∥β∥ is nonempty and α is applicable
at β, hence the result. □

Corollary 55. The problems Proga(BS(CNF),DNFAT),
Proga(BS(CNF),OBDDAT<), Proga(BS(OBDD<),DNFAT), and
Proga(BS∃(OBDD<),DNFAT) for F < Y , are not polynomial size.

Proof The results follow directly from Lemma 54 together with the results by Dar-
wiche and Marquis (2002, Table 3), together with Lemma 23 for BS∃(OBDD<).

□

Proposition 56. Assume NP ̸⊆ P/poly, and let Λ be NNF or CNF. Then the
problem Proga(BS(Λ),CNFAT) is not polynomial-size.

Springer Nature 2021 LATEX template

36 A KC Perspective on Belief Tracking

Proof Consider β = ⊤. Then by Lemma 45, computing the progression of β by an
expression α in a plain representation, amounts to compute the existential forgetting
of F in α (and renaming the variables).

For all n ∈ N, let Vn be the set of fluents {x1, . . . , xn}, and Cn be the set of fluents
{c1, . . . , c8(n3)}, with the intended meaning that ci encodes whether the ith clause of

length 3 over Vn (which we denote by γn,i) is present in a given CNF formula (for
some arbitrary, fixed enumeration of these clauses). Finally, write Fn := Vn ∪ Cn.
We consider the following action theory in CNFAT:

αn :=

8(n3)∧
i=1

(¬c′i ∨
∨

λ∈γn,i

λ) ∧
n∧
i=1

x′i

It is easy to see that given a CNF formula ψ over Vn, ψ is satisfiable if and only if for
the assignment s′ := {c′i | γn,i ∈ ψ} ∪ V ′

n, there is an assignment s ∈ 2Fn such that
s ∪ s′ satisfies αn, that is, if and only if s′ satisfies ⊤ ⊕ αn. Since s

′ |= ⊤ ⊕ αn can
be verified in polynomial time for BS(Λ), if there was a polynomial-size expression
for ⊤ ⊕ αn, this expression would define a polynomial-time algorithm for verifying
the satisfiability of a 3CNF formula over n variables, implying NP ⊆ P/poly. Since
β := ⊤ is a nonempty belief state, with a polynomial size representation in NNF and
CNF, and αn is applicable at all states (for all s, s ∪ {x′i | xi ∈ Vn} satisfies αn), we
get the result. □

Proposition 57. Let ΛA be one of CNFAT,OBDDAT<. Then the prob-
lem Proga(BS(DNF),Λ

A) is not polynomial-size. Additionally, the prob-
lems Proga(BS(OBDD<),CNFAT) and Proga(BS∃(OBDD<),CNFAT) are
not polynomial-size.

Proof We start with BS(DNF) and CNFAT. Without loss of generality, let F =
{x1, x2, . . . , x2ℓ} be a set of fluents (if there are an odd number of fluents, we can
simply leave one out of the construction). Let β ∈ BS(DNF) be the DNF formula ⊤
(reduced to an empty term). Finally, let α be the expression defined by

α :=
ℓ∧
j=1

(
(x′j ∨ x

′
j+ℓ)) ∧ (¬x′j ∨ ¬x′j+ℓ))

)
It is easy to see that ∥β∥ ⊕ ∥α∥ is {s ∈ 2F | for j = 1, . . . , ℓ : xj ∈ s ⇔ xj+ℓ /∈ s},
which we claim has no polynomial-size representation in BS(DNF).

Indeed, let β′ ∈ BS(DNF) be a representation, and let τ be a consistent term
in it. Assume towards contradiction that τ does not have a literal over xi for some
i ∈ {1, . . . , 2ℓ}; then for any model of τ , the same model with the value of xi changed
must also be a model of τ , hence also of β′; this is a contradiction because no two
assignments in ∥β∥ ⊕ ∥α∥ differ over the value of exactly one xi. Hence in the end,
each term in β′ must have one literal over each xi, and hence covers only one element
in ∥β∥⊕∥α∥. Since there are an exponential number of these elements, β′ must have
exponentially many terms.

For OBDDAT<, assume without loss of generality that < orders F ′ by x′1 <
x′1+ℓ < x′2 < x′2+ℓ < · · · < x′ℓ < x′2ℓ (otherwise we simply reindex them). Then it is
easy to see that α above has the same semantics as α := α1, with αℓ+1 := ⊤ and,
for j = 1, . . . , ℓ:

αj := ite(x′j , ite(x
′
j+ℓ,⊥, αj+1), ite(x

′
j+ℓ, αj+1,⊥))

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 37

Finally, for BS(OBDD<)/BS∃(OBDD<) and CNFAT, assume without loss of gen-
erality that < orders F by x1 < x2 < · · · < x2ℓ. Let β := ⊤, and consider again
the expression α ∈ CNFAT defined above. Then the progression of β by α is again
equivalent to

∧ℓ
j=1(xj ̸= xj+ℓ), which is well-known to have only exponential repre-

sentations in OBDD< (there cannot be fewer than 2ℓ nodes at the xℓ+1 level, since
each assignment to the x1, . . . , xℓ induces a distinct model set over xℓ+1, . . . , x2ℓ —
see e.g. Bryant (1986)), and clearly in BS∃(OBDD<) as well (using the same argu-
ment, and noticing that if two model sets over xℓ+1, . . . , x2ℓ are distinct, adding
auxiliary variables cannot make them equal).

To conclude, observe that β := ⊤ is nonempty, and that α is applicable at all
states. □

For the next results, we first show the following lemma, which is a stronger
version of a result from Darwiche and Marquis (2002) (they show that the
problem is not polynomial-time assuming P ̸= NP).

Lemma 58. Assuming NP ̸⊆ P/poly, existential forgetting is not polynomial-
size in NNF nor in CNF.

Proof We use essentially the same construction as in Proposition 56: if the variables
in Vn could be forgotten in polynomial-size from the expression

φn :=

8(n3)∧
i=1

(¬ci ∨
∨

λ∈γn,i

λ)

then the resulting family of NNF formulas would give a non-uniform polynomial-time
algorithm for deciding the satisfiability of a 3CNF, implying NP ⊆ P/poly. Since φn
is in CNF, we get the result for both NNF and CNF. □

Proposition 59. Assume NP ̸⊆ P/poly. Then for F ∥< F ′, the problem
Proga(BS(NNF),OBDDAT<) is not polynomial-size.

Proof Let ψ be an NNF formula, and let V be a subset of V(ψ). Let x be a fresh
variable. Define V := V(ψ), β := ψ∨¬x, and α to be an expression in OBDDAT< for
the action which sets all variables in V to ⊤ and leaves all other variables unchanged;
clearly, such an action has a polynomial size expression in OBDDAT< for F ∥< F ′.
Moreover, observe that ∥β∥ is nonempty and that α is applicable at all states. Now
clearly, for β′ := β⊕α, the expression β′|V ∪{x}=⊤ (β′ conditioned by the assignment

of all fluents in V ∪ {x} to ⊤) is equivalent to the forgetting of V in ψ. Since
conditioning is polynomial-time in NNF, but forgetting is not polysize (Lemma 58),
we get the result. □

Proposition 60. Assume F < F ′ or F ∥< F ′. Then the problem
Proga(BS(OBDD<),OBDDAT<) is not polynomial-size.

Proof We use the fact that forgetting is not polynomial-size for OBDDs even under
the restriction that the forgotten variables occur first in the ordering (Darwiche

Springer Nature 2021 LATEX template

38 A KC Perspective on Belief Tracking

and Marquis, 2002, Table 7 and proof of Prop. 5.1, p. 258). Given an expression
ψ ∈ OBDD< and a set of variables V (with the aim of forgetting V in ψ), we define
F to be V(ψ), and the action theory α to be obtained from ψ by renaming each
variable x ∈ V(ψ) \ V to x′ ∈ F ′. Since by assumption the variables V occur first
in the ordering, α is in OBDDAT< for some ordering < with F < F ′; it is also in
OBDDAT< for F ∥< F ′ since for no variable x do both x and x′ occur. We finally
define β := ⊤ ∈ BS(OBDD<), and with Lemma 45 we conclude that β⊕α should be
an expression for the result of forgetting V in ψ (modulo a renaming of the variables),
and hence it is not polynomial-size.

Observe that in the construction above, β is nonempty but α is not necessarily
applicable at all states, as is required by the definition of the progression transfor-
mation. However, one can compute β⊕α by computing first β⊕

(
(α∧¬x′)∨ x′

)
for

some fresh variable x, then conditioning the result on x = ⊥. Since an OBDD for
(α ∧ ¬x′) ∨ x′, and the conditioning of an OBDD, can be computed in polynomial
time, and the action (α∧¬x′)∨x′ is applicable at all states, we get the result. □

We finally turn to negative results for PDDL and STRIPS.

Proposition 61. The problems Proga(BS∃(OBDD<),CSTRIPS-Det⊤,Terms)
and Proga(BS(DNF),CSTRIPS-Det⊤,Terms) are not polynomial-size.

Proof We start with OBDD<. We use a similar construction as in the proof of Propo-
sition 57. Assume without loss of generality that < orders F by x1 < x2 < · · · < x2ℓ.
Let β := ⊤, and define α to be ⟨⊤, η⟩, with

η :=
(ℓ

&
j=1

(xj ▷−xj+ℓ)
)
&
(ℓ

&
j=1

(¬xj ▷+xj+ℓ)
)

Observe that ∥β∥ is nonempty and that α is applicable at all states. Then we
have B′ := ∥β∥ ⊕ ∥α∥ = {s ∈ 2F | for j = 1, . . . , ℓ : xj ∈ s ⇔ xj+ℓ /∈ s}, and we
use the standard argument for binary decision diagrams: the projection of ∥B′∥ onto
{xℓ+1, . . . , x2ℓ} is a different set of assignments for each assignment to {x1, . . . , xℓ},
hence from x1, . . . , xℓ < xℓ+1, . . . , x2ℓ it follows that there must be an exponential
number of nodes in β′.

For DNF, the proof is exactly the same, with the fact that a DNF for B′ has
exponential size being proved in Proposition 57. □

Proposition 62. Let Λ be one of NNF, CNF, OBDD<. Then the prob-
lem Proga(BS(Λ),CSTRIPS-Det⊤,⊤) is not polynomial-size, assuming NP ̸⊆
P/poly for NNF,CNF.

Proof The construction is similar to that in the proof of Proposition 59. Let ψ be an
expression in Λ, and let V be a subset of V(ψ). Let x be a fresh variable. Define F :=

V(ψ), β := ψ ∨ ¬x, and α := ⟨⊤, η⟩ ∈ CSTRIPS-Det⊤,⊤, with η := ⊤▷&xi∈V +xi;
observe that ∥β∥ is nonempty and that α is applicable at all states. Now clearly,
for β′ := β ⊕ α, the expression β′|V ∪{x}=⊤ (β′ conditioned by the assignment of all

fluents in V ∪ {x} to ⊤) is equivalent to the forgetting of V in ψ. Since conditioning
is polynomial-time in NNF,CNF,OBDD<, but forgetting is not polysize (Darwiche

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 39

ΛB

=
ΛO = NNF CNF DNF OBDD< Terms

BS∃(NNF)
or BS(NNF)

FP (64) FP FP FP FP

BS∃(CNF) FP (65) FP (64) FP FP FP

BS(CNF) • FP (64) • (66) • (66) FP

BS∃(DNF)
or BS(DNF)

• • (66) FP (64) • (66) FP

BS∃(OBDD<) • • (67) • for F < Y (66 + 23);
FP for Y < F (68)

FP (64) FP

BS(OBDD<) • • (66) • (66) FP (64) FP

Table 9: Complexity of Progo(Λ
B,ΛO) for representations of belief states

by propositional formulas. By • we denote the fact that the problem is not
polynomial-size.

and Marquis (2002, Table 7) for OBDD<, and Lemma 58 for NNF,CNF), we get the
result. □

Proposition 63. Assuming NP ̸⊆ P/poly, the problem
Proga(BS(DNF),CSTRIPS⊤,⊤) is not polynomial-size.

Proof The proof is similar to that of Proposition 56, and we use the same notation.
For n ∈ N, consider the set of fluents Cn, and the action description αn := ⟨⊤, ηn⟩ ∈
CSTRIPS⊤,⊤ defined by:

ηn :=
n

&
i=1

(
⊤▷

⋃
⟨γi1,n,γi2,n,γi3,n⟩∈choose(xi)∪choose(¬xi)

(+ci1 &+ci2 &+ci3)
)

where for a literal λ over Fn, choose(λ) denotes the set of all triples (possibly with
repetition) of clauses of length 3 over Vn which contain λ. Let β be such that ∥βn∥ =
{∅} holds, that is, βn represents the belief state containing only the assignment of all
fluents to ⊥. Observe that ∥βn∥ is nonempty and that αn is applicable at all states.

It is easily seen that ∥βn∥⊕∥αn∥ contains all states of the form sI := {ci | i ∈ I}
such that

∧
i∈I γi,n is a satisfiable 3CNF formula over n variables with at most 3

occurrences of each variable, and contains no encoding of an unsatisfiable formula at
all; the fact that the formula is satisfiable is ensured by the fact that for i = 1, . . . , n,
the action must choose λi := xi or λi := ¬xi, and add only clauses which are satisfied
by λi.

Hence a polynomial representation of ∥βn∥ ⊕ ∥αn∥ in BS(DNF) would give a
polynomial time algorithm for deciding whether a 3CNF formula over n variables,
with at most 3 occurrences of each literal, is satisfiable, implying NP ⊆ P/poly. □

Progression by an Observation

For progression by an observation, the results are summarized in Table 9.

Springer Nature 2021 LATEX template

40 A KC Perspective on Belief Tracking

Since B⊕o is by definition B∩o, a number of positive results follow directly
from known results about the complexity of (bounded) conjunction.

Proposition 64. Let Λ be one of NNF, CNF, DNF, OBDD<. Then the
problems Progo(BS∃(Λ),Λ) and Progo(BS(Λ),Λ) are in FP.

For existential representations in CNF, we can use Lemma 47 to get an
expression for β ∧ ω:

Proposition 65. The problem Progo(BS∃(CNF),NNF) is in FP.

As for negative results, we can infer a number of results from the relative
succinctness of languages.

Proposition 66. Let Λ,ΛO be two propositional languages. If there is a
polynomial-size representation of ⊤ and a constant-size representation of ⊥ in
Λ (in the number of variables in F), and Λ is not at least as succinct as ΛO,
then the problem Progo(BS(Λ),Λ

O) is not polynomial-size.

Proof First observe that Λ is not at least as succinct as ΛO even when restricting to
satisfiable formulas, since ⊥ has a constant-size representation in Λ and hence, Λ is
at least as succinct for unsatisfiable formulas.

Now consider β := ⊤ and an expression ω ∈ ΛO which is satisfiable (hence fair
to β). Then the progression of ∥β∥ by ∥ω∥ is an expression β′ ∈ Λ with ∥β′∥ = ∥ω∥,
hence it is a representation of ω in Λ, from what the result follows. □

Finally, for binary decision diagrams, we have the following.

Proposition 67. The problem Progo(BS∃(OBDD<),CNF) is not polynomial-
size.

Proof The idea is similar to that in the proof of Proposition 61. Assume without loss
of generality F = {x1, x2, . . . , x2ℓ} (otherwise, if it has an odd number of elements, we
simply leave one out of the construction), and that < orders F as x1 < x2 < · · · < x2ℓ
(otherwise we simply reindex the fluents).

We define the expression ω ∈ CNF by ω :=
∧ℓ
j=1

(
(xj ∨ xj+ℓ) ∧ (¬xj ∨ ¬xj+ℓ)

)
.

Then for β := ⊤, we have ∥β∥∩∥ω∥ = {s ∈ 2F | for j = 1, . . . , ℓ : xj ∈ s⇔ xj+ℓ /∈ s}
(in particular, ω is fair to β), and we conclude as in the proof of Proposition 61. □

Proposition 68. The problem Progo(BS∃(OBDD<),DNF) is in FP for Y <
F .

Proof Given β ∈ BS∃(OBDD<) with V(β) ⊆ F ∪ Y and ω :=
∨m
i=1 τi ∈ DNF, where

each τi is a term, we first compute, for i = 1, . . . ,m, an expression β′i ∈ OBDD<
which is logically equivalent to β∧τi; since this is a binary conjunction of two binary

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 41

decision diagrams (viewing τi as one), this can be done in polynomial time. By
definition of progression by an observation and the fact that existential quantification
distributes over disjunction, it is easy to see that

⋃m
i=1 ∥β

′
i∥ = ∥β∥ ∩ ∥ω∥ holds.

Then we can use the same construction as in the proof of Proposition 29 to get an
expression for

⋃m
i=1 ∥β

′
i∥ in BS∃(OBDD<). □

7 Implicit Representation by Traces

We now investigate implicit representations of belief states. These differ from
the representations of Section 6 because they do not use a representation by
a propositional formula.

Implicit representations by traces were introduced by the Conformant-FF
planner (Hoffmann and Brafman, 2006). A trace simply consists of an initial
belief state and a history of actions and observations; such a trace is taken
to represent the belief state resulting from the progression of the initial belief
state by the history.

Definition 69 (trace language). Let ΛI,ΛO be propositional languages and
ΛA be an action language. The trace language induced by ΛI,ΛO,ΛA,
written TracesΛI,ΛA,ΛO , is the set of all expressions of the form β :=
⟨ι, αω1, αω2, . . . , αωk⟩, where ι ∈ ΛI is an expression for a nonempty
initial belief state; for i = 1, . . . , k, αωi is either an action expres-
sion in ΛA or an observation expression in ΛO; and the history h(β) :=
⟨∥αω1∥, ∥αω2∥, . . . , ∥αωk∥⟩ is applicable and fair at ∥ι∥. The semantics of such
an expression is given by ∥β∥ := h(β)(∥ι∥).

We emphasize that the history of a trace is assumed to be applicable and
fair at ∥ι∥. Though this cannot be decided efficiently in general, it is indeed
how planners typically use them (Hoffmann and Nebel, 2001). This is moreover
motivated by online belief tracking as defined by Brafman and Shani (2016).

Example 70 (continued from Examples 2, 10, 17). The belief state induced by
history ⟨right, on⟩ at B, in the context of Example 2, can be represented in the
language TracesNNF,CSTRIPSTerms,Terms,Terms as the expression β := ⟨ι, αω1, αω2⟩,
where

• ι is the initial belief state expression (x1 ↔ ¬x2) ∧ (y1 ↔ ¬y2)
• αω1 is the action expression ⟨π, η⟩, with π = ⊤ and

η =
(
⊤▷

(
(+y1 &−y2) ∪ (−y1 &+y2)

))
&
(
x1 ▷ (+x2 &−x1)

)
• αω2 is the observation expression sw on.

The action αω1 is applicable at (the belief state represented by) trace ⟨ι⟩ since
its precondition is always satisfied. The observation αω2 is fair at (the belief
state represented by) trace ⟨ι, αω1⟩, since sw on is consistent with the resulting
belief state.

Springer Nature 2021 LATEX template

42 A KC Perspective on Belief Tracking

Throughout this section, for a sequence of states t := ⟨s0, s1, . . . , sk⟩ (also
called a trajectory) and a trace β := ⟨ι, αω1, αω2, . . . , αωk⟩, we say that t
satisfies β, and write t |= β, if (i) s0 satisfies ι, (ii) for i = 1, . . . , k, if αωi is
an action expression, then si ∈ ∥αωi∥(si−1) holds, and (iii) for i = 1, . . . , k, if
αωi is an observation expression, then si = si−1 and si ∈ ∥αωi∥ holds.

Complexity Results

As we shall see, most complexity results can be easily inferred from the com-
plexity for propositional languages. The results are summarized in Table 10.

Note that the progression of a trace by an action or an observation (assum-
ing that it is in the language of the trace) is trivial, since it amounts to
inserting the action or observation at the end of the trace. Hence we focus on
the complexity of queries.

Similarly to Section 6, we will tacitly use the fact that for all languages
ΛI
1,Λ

I
2,Λ

O,ΛA, if ΛI
1 ⊆ ΛI

2 holds then TracesΛI
1,Λ

A,ΛO ⊆ TracesΛI
2,Λ

A,ΛO holds,

and similarly for ΛO
1 ⊆ ΛO

2 or ΛA
1 ⊆ ΛA

2 .
We start with upper bounds; for these we will use the following lemma.

Lemma 71. For all propositional languages ΛI,ΛO, and for all action lan-
guages ΛA with ΛA ⊆ NNFAT or ΛA ⊆ PDDLNNF,NNF, the problem of deciding
s ∈ ∥β∥ for given s ∈ 2F and β ∈ TracesΛI,ΛA,ΛO , is in NP.

Proof First observe that for all action languages ΛA as in the statement, deciding
whether for a given expression α ∈ ΛA and given states s1, s2 ∈ 2F , s2 ∈ ∥α∥(s1)
holds, is a problem in NP. Indeed, it is clearly in P for action theories, since decid-
ing s2 ∈ ∥α∥(s1) amounts to deciding s1 ∪ (s2)

′ |= α. Now for PDDLNNF,NNF, this
amounts to guessing a child for each ∪-node, then simulating the resulting determin-
istic action on s1 (in polynomial time), and finally deciding whether the resulting
state is s2. Now for all propositional initial state languages ΛI (resp. for all propo-
sitional observation languages ΛO), deciding whether a given state s is in ∥ι∥ for a
given expression ι ∈ ΛI (resp. in ∥ω∥ for a given ω ∈ ΛO) is clearly in P. Hence we
can decide s ∈ ∥β∥ by guessing a trajectory t and the witnesses of s2 ∈ ∥α∥(s1) all
along t, and verifying that t satisfies β with these witnesses. □

In the rest of this section, to avoid ambiguity we use notation ΛA
q ,Λ

O
q for

languages of the queries, as opposed to those used in the traces.

Proposition 72. For all propositional languages ΛI,ΛO,ΛO
q ,Λ

G,Λ+,Λ− and

all action languages ΛA,ΛA
q with ΛA ⊆ NNFAT or ΛA ⊆ PDDLNNF,NNF and

ΛA
q ⊆ NNFAT or ΛA

q ⊆ PDDLNNF,NNF, the following holds:

1. the problem Applic(TracesΛI,ΛA,ΛO ,ΛA
q) is in Π2P;

2. if in addition ΛA
q ∈ {DNFAT,OBDDAT<,PDDLNNF,NNF} holds, then the

problem Applic(TracesΛI,ΛA,ΛO ,ΛA
q) is in coNP;

3. the problem Fair(TracesΛI,ΛA,ΛO ,ΛO
q) is in NP;

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 43

powerful
(Def. 73)

ΛI = DNF/OBDD<

ΛA = DNFAT
ΛO = Terms

ΛI = DNF or
OBDD< or Terms;
arbitrary ΛA, ΛO

Applic (NNFAT/CNFAT) Π2P-c Π2P-c Π2P-c

Applic (DNFAT) coNP-c coNP-c coNP-c

Applic(ΛA) for
ΛA = OBDDAT<

or P/CΛP,ΛC

or P/C-DetΛP,ΛC

coNP-c,
except PDDL⊤,NNF:
P (obvious)

see Tab. 3 open

Fair (NNF/CNF) NP-c NP-c NP-c

Fair (D/O/T) NP-c P open

SatS (NNF/DNF) coNP-c coNP-c coNP-c

SatS (C/O/T) coNP-c P open

Sat Θ2P-c see Tab. 6 open

Equiv Π2P-c coNP-c open

Proga(ΛA), Progo(ΛO) trivial trivial trivial

Table 10: Complexity results for queries and transformations with
ΛB = TracesΛI,ΛA,ΛO .
C/O/T stands for CNF/OBDD</Terms; D/O/T stands for
DNF/OBDD</Terms; P/CΛP,ΛC stands for PDDLΛP,ΛC or CSTRIPSΛP,ΛC ; and
P/C-DetΛP,ΛC stands for PDDL-DetΛP,ΛC or CSTRIPS-DetΛP,ΛC . The line about
progression assumes that the action or observation progressed by is in the
language used by the trace.
The results for the first column follow from Proposition 72 for membership,
and Corollary 75 for hardness; for the second column, from Propositions 76/77
and the results in Section 6; and for the third column, from Proposition 78
and the results in Section 6.
In the cells marked “open”, the complexity of some, but not all, subcases, can
be derived from the results in this section and in Section 6.

4. the problem SatS(TracesΛI,ΛA,ΛO ,ΛG) is in coNP;
5. the problem Sat(TracesΛI,ΛA,ΛO ,S5Λ+,,Λ−) is in Θ2P;
6. the problem Equiv(TracesΛI,ΛA,ΛO) is in Π2P.

Proof We show each item in turn.

1. Given β ∈ TracesΛI,ΛA,ΛO of length k and α ∈ ΛA
q , ∥α∥ is not applicable at

∥β∥ if and only if there is a trajectory t = ⟨s0, s1, . . . , sk⟩ which satisfies β,
and is such that ∥α∥ is not applicable at sk. Since deciding t |= β is in NP
by Lemma 71, the latter assertion holds if and only if there is a trajectory
t = ⟨s0, s1, . . . , sk⟩ and a polynomial-size witness, such that (i) this is indeed

Springer Nature 2021 LATEX template

44 A KC Perspective on Belief Tracking

a witness of t |= β, and (ii) ∥α∥ is not applicable at sk. Condition (i) can be
verified in polynomial time, and Condition (ii) can be verified using a coNP-
oracle for verifying that for no s′ ∈ 2F

′
does s′ ∈ ∥α∥(s) hold (for PDDL,

a polynomial-time check that sk does not satisfy the precondition suffices).
Hence the complement of the problem is in NPcoNP = NPNP = Σ2P, so that
the problem is in Π2P.

2. For all the given action languages ΛA
q , the problem of deciding whether

α ∈ ΛA
q is applicable at s ∈ 2F , is in P. Hence using the same reasoning as

for Item 1, we conclude that the problem is in coNP.
3. Given β ∈ TracesΛI,ΛA,ΛO of length k and ω ∈ ΛO

q , ∥ω∥ is fair at ∥β∥ if and
only if there exists a trajectory t = ⟨s0, s1, . . . , sk⟩ which satisfies β, and
is such that sk satisfies ω; since deciding sk |= ω is in P for all considered
observation languages, reasoning like for Item 1 we get that the problem is
in NP.

4. Given β ∈ TracesΛI,ΛA,ΛO of length k and γ ∈ ΛG, ∥β∥ does not satisfy γ
if and only if there exists a trajectory t = ⟨s0, s1, . . . , sk⟩ which satisfies
β, and is such that sk does not satisfy γ; since deciding sk |= γ is in P
for all considered goal languages, reasoning as for Item 1 we get that the
complement of the problem is in NP, hence the problem is in coNP.

5. Given β ∈ TracesΛI,ΛA,ΛO and γ⃗ ∈ S5Λ+,,Λ− , we can evaluate whether β
satisfies κ for each atom in γ⃗ using an NP-oracle: indeed, for κ = Kφ we
decide whether β entails φ, and for κ = ¬Kφ we decide whether β ∧ ¬φ
is satisfiable. This constitutes a polynomial number of independent calls to
an NP-oracle. Then deciding whether β satisfies γ⃗ amounts to combining
the answers to these calls following the structure of γ⃗, in polynomial-time,
hence the problem is in P∥NP = Θ2P.

6. Given β1, β2 ∈ TracesΛI,ΛA,ΛO , deciding whether ∥β1∥ = ∥β2∥ does not hold
can be done by deciding whether there exists a trajectory t1 which satisfies
β1, and is such that there does not exist a trajectory t2 which satisfies β2
and in which the last state is the same as in t (or vice-versa, swapping
the roles of β1 and β2). Hence we can show that ∥β1∥ = ∥β2∥ does not
hold by guessing t1 and a witness that it satisfies β1, and verifying that
for all trajectories t2 and all candidate witnesses that t2 would satisfy β2,
(i) the witness for t1 is indeed a witness, and (ii) the witness for t2 is not
a witness, or the last states of t1 and t2 are not the same. Since checking
Conditions (i) and (ii) can be done in polynomial time (Lemma 71), we get
that the complement of the problem is in Σ2P, and hence the problem is in
Π2P.

□

For the next results, we will use the following definition, which is motivated
by the lemma that follows.

Definition 73 (powerful trace language). Let F be a set of fluents, ΛI,ΛO

be propositional languages, and ΛA be an action language. The trace language
TracesΛI,ΛA,ΛO is said to be powerful if one of the following holds:

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 45

• ΛI ⊇ BS(CNF) and ΛA ⊇ CSTRIPS-Det⊤,⊤ (and ΛO is arbitrary, possibly
empty); or

• there is a polynomial-size representation (in the number of fluents) of ⊤ in
ΛI; ΛO ⊇ Terms holds; and ΛA is a superset of CNFAT, OBDDAT< with
F ∥< F ′, or CSTRIPS-Det⊤,Terms.

We now show a technical lemma, which essentially says that traces in a
powerful language can efficiently represent existential CNF belief states. For a
fluent x, we write a⊤x for the action which sets x to ⊤ and leaves the value of
all other fluents unchanged.

Lemma 74. Let TracesΛI,ΛA,ΛO be a powerful trace language. Then for all
sets of variables V, Y , and all satisfiable propositional CNF formulas ψ over
V ∪ Y , there are a set of variables Y ′ and an expression β in TracesΛI,ΛA,ΛO

over F := V ∪ Y ∪ Y ′, such that ∥β∥ = ∥(∃Y · ψ) ∧
∧
x∈Y ∪Y ′ x∥ holds, and

Y ′, β can be computed in polynomial time.

Proof For the whole proof, write Y := {x1, . . . , xk}. Observe that for all action
languages under consideration, and for all variables x, there is a polynomial-size
expression α⊤

x for the action a⊤x ; for instance, α
⊤
x := x′∧

∧
y ̸=x

(
(¬y∨y′)∧ (y∨¬y′)

)
is suitable for CNFAT, and α⊤

x := +x is suitable for CSTRIPS-Det⊤,⊤. Also observe
that these actions are applicable at all states.

For ΛI ⊇ BS(CNF) and ΛA ⊇ CSTRIPS-Det⊤,⊤, we define Y ′ := ∅ and β :=
⟨ψ,+x1, . . . ,+xk⟩. Clearly, the result holds.

Now for ΛA ⊇ CNFAT, write ψ :=
∧m
i=1 γi, and define Y ′ to be the set of fluents

Y ′ := {ci | i = 1, . . . ,m}, where the ci’s are fresh variables (to be read “the ith
clause of ψ is satisfied”). For i = 1, . . . ,m, let αi ∈ CNFAT be defined by (using ↔
for readability)

αi :=
(
γi ∨ ¬c′i

)
∧
(∧
λ∈γi

(¬λ ∨ c′i)
)
∧
(∧
x∈V ∪Y

(x↔ x′)
)
∧
(∧
j∈{1,...,m}\{i}

(cj ↔ c′j)
)

By definition, αi does not modify the value of the fluents x ∈ V ∪ Y , and sets ci
according to whether γi is satisfied; moreover, it is applicable at all states. Hence

after progressing ι := ⊤ by α1, . . . , αm, we get the belief state {s ∈ 2V ∪Y ∪Y ′
| s |=

ψ, s |=
∧m
i=1 ci} ∪ {s ∈ 2V ∪Y ∪Y ′

| s ̸|= ψ, s ̸|=
∧m
i=1 ci}. Now define the observation

ω := (
∧k
i=1 ci) ∈ ΛO, and the trace β := ⟨⊤, α1, α2, . . . , αm, ω, α

⊤
x1
, . . . , α⊤

xk
⟩. Since

ψ is satisfiable, ∥ω∥ is indeed fair to the beginning of the trace, and we have ∥β∥ =

{s ∈ 2V ∪Y ∪Y ′
| s |= (∃Y · ψ) ∧

∧k
i=1 xi ∧

∧m
i=1 ci}, as desired.

Finally, for ΛA ⊇ OBDDAT< with F ∥< F ′ and for ΛA ⊇ CSTRIPS-Det⊤,Terms,
we simply observe that the action ∥αi∥ also has a polynomial-size representation,
and reason as for ΛA ⊇ CNFAT. □

Corollary 75. Let ΛB = TracesΛI,ΛA,ΛO be a powerful trace language. Then
the following hold:

1. for ΛA
q ∈ {NNFAT,CNFAT}, the problem Applic(ΛB,ΛA

q) is Π2P-hard;

Springer Nature 2021 LATEX template

46 A KC Perspective on Belief Tracking

2. for ΛA
q ∈ {DNFAT,OBDDAT<,CSTRIPS-DetTerms,⊤}, the problem

Applic(ΛB,ΛA
q) is coNP-hard;

3. the problem Fair(ΛB,Terms) is NP-hard;
4. the problem SatS(Λ

B,Terms) is coNP-hard;
5. the problem Sat(ΛB,S5Terms,,Terms) is Θ2P-hard;
6. the problem Equiv(ΛB) is Π2P-hard.

Proof Observe first that for all cases, by the results in Section 6 the corresponding
problem is hard for the belief state language is BS∃(CNF) instead of ΛB. Hence for
each problem, it is enough to give a polynomial-time reduction from the problem
with a belief state in BS∃(CNF).

For this, let F be a set of fluents, Y be a set of auxiliary variables, and let β0 be
an expression in BS∃(CNF) (hence with ∥β0∥ = ∃Y · ∥β0∥F∪Y). Using Lemma 74,
we compute in polynomial time a set of variables Y ′ and an expression β ∈ ΛB, such
that ∥β∥ = ∥(∃Y · β0) ∧

∧
x∈Y ∪Y ′ x∥ holds.

Let 1Y ∪Y ′ ∈ 2Y ∪Y ′
be the assignment of ⊤ to all variables in Y ∪ Y ′.

1. For applicability, we have that ∃s′ ∈ 2F : s′ ∈ ∥α∥(s) is equivalent to ∃s′ ∈
2F∪Y ∪Y ′

: s′ ∈ ∥α∥F∪Y ∪Y ′(s ∪ 1Y ∪Y ′), since in NNFAT and in CNFAT the
fluents not mentioned in α can take any value. It follows that α is applicable
at ∥β0∥ if and only if it is applicable at {s∪ 1Y ∪Y ′ | s ∈ ∥β0∥} = ∥β∥. This
gives the desired reduction.

2. Idem.
3. For fairness, we have that s ∈ ∥ω∥ is equivalent to s∪1Y ∪Y ′ ∈ ∥ω∥F∪Y ∪Y ′ ,

since ω does not mention any variable in Y ∪ Y ′; hence again this gives the
desired reduction.

4. For statewise goals, we reason as for applicability.
5. For S5 goals, we reason as for applicability for positive atoms Kφ, and as

for fairness for negative atoms ¬Kφ.
6. For equivalence, given β0

1 over F ∪ Y1 and β0
2 over F ∪ Y2, with ∥β0

1∥ =
∃Y1 · ∥β0

1∥F∪Y1
and ∥β0

2∥ = ∃Y2 · ∥β0
2∥F∪Y2

, using Lemma 74 we compute in
polynomial time Y ′

1 , Y
′
2 , β1, β2 such that ∥β1∥ = ∥(∃Y1 · β0

1) ∧
∧
x∈Y1∪Y ′

1
x∥

and ∥β2∥ = ∥(∃Y2 · β0
2) ∧

∧
x∈Y2∪Y ′

2
x∥ hold. We moreover ensure that

Y1, Y
′
1 , Y2, Y

′
2 are pairwise disjoint, by renaming variables as necessary. Now

let β′
1 (resp. β′

2) be the trace obtained from β1 (resp. β2) by appending
action expressions for a⊤x for all x ∈ Y ′

2 (resp. for all x ∈ Y ′
1). Then we get

∥β′
1∥ = ∥(∃Y1 ·β0

1)∧
∧
x∈Y ∪Y ′

1∪Y ′
2
x∥ and ∥β2∥ = ∥(∃Y2 ·β0

2)∧
∧
x∈Y ∪Y ′

1∪Y ′
2
x∥.

Hence we have ∃Y1 ·∥β0
1∥ = ∃Y2 ·∥β0

2∥ if and only if β′
1 and β

′
2 are equivalent,

which gives the desired reduction.
□

Proposition 76. For all decision problems, the restriction to input belief
states in DNF and the restriction to input belief states in TracesDNF,DNFAT,Terms

are polynomial-time reducible to each other.

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 47

Proof An input β in DNF can be emulated by the trace ⟨β⟩, that is, the trace reduced
to the initial belief state β. Conversely, given a trace β := ⟨ι, ao1, ao2, . . . , aok⟩ in
TracesDNF,DNFAT,Terms, we can progress ι iteratively using Lemma 49 for actions and
conditioning and conjunction for observations. By construction, this yields a belief
state β′ ∈ DNF with ∥β′∥ = ∥β∥, and it is easy to see that the iterated progression
can be performed in polynomial time (in particular, the size of the belief state does
not blow up with k, as it remains less than the size of the last action theory progressed
with). □

Proposition 77. For all decision problems, the restriction to input belief
states in DNF and the restriction to input belief states represented by traces
in TracesOBDD<,DNFAT,Terms containing at least one action, are polynomial-time
reducible to each other.

Proof An input β in DNF can be emulated by the trace ⟨⊤, β[F/F ′]⟩, that is, the
trace reduced to the initial belief state ⊤ followed by an action producting exactly
β. Conversely, given a trace β := ⟨ι, ao1, ao2, . . . , aok⟩ in TracesOBDD<,DNFAT,Terms

containing at least one action, we can progress ι iteratively using Lemma 49 for
actions and conditioning and conjunction for observations. We conclude as in the
proof of Proposition 76 (the important point is that we progress an OBDD by a DNF
action theory into a DNF belief state). □

Using Propositions 76 and 77 allows the transfer to traces of a number of
results from Section 6, which we report in Table 10; for ΛI = OBDD<, to cope
with traces containing no action (and hence, in which iterated progression
gives a binary decision diagram again), we use the fact that, as it turns out,
the complexity of queries is the same for DNF and OBDD< (except for Equiv,
but it suffices to observe that the problem is already coNP-complete for DNF).

Finally, considering the empty trace, we immediately have the following,
which settles further cases, precisely those for which the complexity is already
the hardest for ΛI. We leave the remaining cases open for future work.

Proposition 78. Let ΛB := TracesΛI,ΛA,ΛO be a trace language. Then for all
decision problems, there is a polynomial-time reduction from the restriction of
the problem to input belief states in ΛI to the restriction of the problem to input
belief states in ΛB.

8 Succinctness

In this section we discuss the relative succinctness of languages for repre-
senting belief states. We focus on the relative succinctness of trace languages
vs propositional representations, since the relationships between propositional
representations are mostly directly derivable from the results by Darwiche and
Marquis (2002). Note that existential representations are not studied there,
however, we know that

Springer Nature 2021 LATEX template

48 A KC Perspective on Belief Tracking

• BS∃(Λ) is at least as succinct as BS(Λ), for all complete propositional
languages Λ;

• BS∃(CNF) is at least as succinct as all other complete — plain or existential
— propositional representations (Lemma 47), and hence so is BS∃(NNF);

• BS∃(DNF) is equally succinct as BS(DNF) (essentially because forgetting one
variable can be done in linear time), and BS∃(OBDD<) is equally succinct
as BS(OBDD<) for F < Y (Lemma 23);

• if existential forgetting is not polynomial-size for a propositional language
Λ, then BS(Λ) is not at least as succinct as BS∃(Λ).

Of course, this does not cover all pairs of languages (especially when
BS∃(OBDD<) is involved with Y < F), but a complete picture is out of the
scope of this paper.

We now give a number of results relating traces with propositional
representations in terms of succinctness. The first of these is obvious.

Proposition 79. Let ΛI,ΛA,Λ
O be complete propositional languages; we have

TracesΛI,AT(ΛA),ΛO ⪯s BS(ΛI). Moreover, if ⊤ has a polynomial-size represen-

tation (in the number of variables in F) in ΛI, then the following hold:
TracesΛI,AT(ΛA),ΛO ⪯s BS(ΛA), TracesΛI,AT(ΛA),ΛO ⪯s BS(ΛO).

The next two results allow the derivation of results about relative succinct-
ness from results about the complexity of transformations. Recall that for a
set of fluents F and x ∈ F , we write ax for the action which sets x to ⊤ and
leaves the value of all other fluents unchanged.

Proposition 80. Let ΛI,ΛO be propositional languages, and let ΛA be an
action language in which there is a polynomial-size representation (in the num-
ber of fluents) of ax, for all x. If existential forgetting is not polynomial size
in ΛI, then BS(ΛI) ̸⪯s TracesΛI,ΛA,ΛO holds.

Proof To every expression β ∈ BS(ΛI) and set of variables V := {x1, . . . , xk} ⊆ V(β),
we associate the trace β′ := ⟨β, αx1 , αx2 , . . . , αxk ⟩ ∈ TracesΛI,ΛA,ΛO , where αxi is a

representation of axi in ΛA. Let ϕ be a ΛI expression representing β′. By construction
of β′, the semantics of ϕ is ∥(∃V ·β)∧

∧
x∈V x∥, and hence the expression ϕ′ := ϕ|V=⊤

satisfies ∥ϕ′∥ = ∃V ·∥β∥. Since conditioning is polynomial in propositional languages,
we get that ϕ cannot be of polynomial size. □

A consequence of Proposition 80 is that BS(OBDD<) is not at least as
succinct as TracesOBDD<,CSTRIPS-DetTerms,⊤,ΛO , or, said otherwise, that it is not
always worth explicitly progressing a belief state as an OBDD (by classical
STRIPS actions) as compared to storing the history, as far as succinctness is
concerned.

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 49

Proposition 81. Let ΛI,ΛO be propositional languages, and let ΛA be an
action language. Then BS(ΛI)⪯sTracesΛI,ΛA,ΛO holds if and only if iterated pro-
gression of expressions in BS(ΛI) by action expressions in ΛA and observation
expressions in ΛO is a polynomial-size transformation.

Proof Assume first BS(ΛI) ⪯s TracesΛI,ΛA,ΛO . Then for all families of expressions

β ∈ ΛI and histories ⟨αω1, . . . , αωk⟩, with αωi ∈ ΛA ∪ ΛO for i = 1, . . . , k, the
expression β′ := ⟨β, αω1, αω2, . . . , αωk⟩ is a trace in TracesΛI,ΛA,ΛO and hence, by
the assumption, for all families of such expressions, there is an equivalent family of
polynomial size expressions in BS(ΛI). The result follows from the fact that ∥β′∥ is
exactly the iterated progression of β by αω1, . . . , αωk.

The converse is shown similarly. □

From Proposition 81, and from the results in Section 6, we can conclude
that BS(DNF) is at least as succinct as TracesDNF,DNFAT,Terms, that is, in this
case it is worth maintaining the explicit belief state.

To conclude this section, we observe that planners which use traces typi-
cally have a fixed initial belief state (the one of the planning problem at hand)
and a fixed set of actions and observations (the available ones). Hence it seems
interesting to study the relative succinctness of traces in that precise setting.
However, it is easy to see that in general, traces cannot be succinct represen-
tations of belief states in that setting, due to the fact that there are planning
problems which require exponentially long plans (in the classical setting) or
doubly exponentially long plans (in the conformant setting). As a simple exam-
ple, consider an initial (singleton) belief state where all variables are assigned
to ⊥, and a set of deterministic actions allowing to transform the current state
into the subsequent one in a lexicographic order. Then the smallest represen-
tation of the (singleton) belief state β, where all variables are assigned to ⊤,
by a trace, is exponentially long, while β itself has linear size.

Still, if plan length is bounded (like in SatPlan), it may be worth studying
the succinctness of traces relative to explicit belief states. We leave this as an
interesting direction for future work.

9 Nondeterministic Planners

In this section, we review existing planners from the literature, in terms of
the languages, queries, and transformations that they use. Taking advantage
of our results to improve some of them with more tractable languages for their
internal representations, or to generalize them to more general input languages
while retaining the complexity of operations, is indeed a promising matter of
future work.

Most planners under incomplete information use variations of the PDDL
syntax as input (McDermott et al., 1998). However, in practice, they do not
efficiently support general PDDL as we define it, as they translate PDDL into
Conditional STRIPS. For many planners, the initial belief state is expected

Springer Nature 2021 LATEX template

50 A KC Perspective on Belief Tracking

to be in CNF. In many benchmarks, that initial belief state contains exclu-
sive disjunctions (oneof), that some planners exploit for further efficiency.
Finally, most contingent planners that accept Conditional STRIPS actions,
accept sensing actions of the form ⟨π, ω⟩, where π is a precondition and ω or
¬ω are the possible observations.

9.1 Search in Belief State Space

We first consider planners that rely on forward search from the initial belief
state as illustrated in Algorithm 1.

GPT introduced heuristic search in belief state space (Bonet and Geffner,
2005). It accepts planning problems in a language close to Functional STRIPS,
featuring numerical variables and probabilities (Geffner, 2000), supporting
nondeterminism and sensing actions. GPT represents beliefs states as a list
of possible states, equivalent to the propositional language MODS (Darwiche
and Marquis, 2002).

Planners using OBDDs to represent belief states include HSCP (Bertoli
et al., 2001), KACMBP (Bertoli and Cimatti, 2002), and POND (Bryce et al.,
2006). All of them support nondeterministic actions. HSCP and KACMBP
accept problems in a language of action theories used in model checking
(NuSMV, Cimatti et al. (2000)). In contrast, POND receives PDDL with
nondeterministic effects.

Some planners also use DNF or CNF to represent belief states. To et al.
(2009, 2010) propose conformant planners, while To et al. (2011) propose a
contingent planner. They all receive deterministic Conditional STRIPS. The
algorithms aim to reduce the size of the belief state by continuous simplifica-
tion. They rely on the initial belief state being in CNF. Most deterministic
conformant and contingent benchmarks are in prime implicate form, enabling
more efficient updates of CNF belief states. It is worth noting that in practice,
benchmarks with initial belief states using exclusive disjunctions are already
in prime implicate form (Palacios and Geffner, 2009).

Finally, the implicit representation of belief states by traces was introduced
with Conformant-FF (Hoffmann and Brafman, 2006), which accepts determin-
istic Conditional PDDL. Albore et al. (2011) also propose a planner that uses
traces and accepts deterministic Conditional PDDL.

9.2 Action Theories and Logical Approaches

We now consider planners which do not rely directly on and-or search.
Some planners build formulas describing the transition function using vari-

ations of the action language NNFAT, while others use formulas related to the
formulation used by SatPlan (Kautz et al., 2006). Rintanen (1999) describes
QBFPlan, which builds QBF formulas for solving conformant and contingent
planning with nondeterministic actions. The QBF problems are solved using
a standalone theorem prover.

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 51

Cimatti et al. (2004) describe CMBP, which simultaneously expands all the
actions using a representation in OBDDAT<. They propose an algorithm oper-
ating by progression (Proga) and another operating by regression. Additional
heuristics are implemented as logical operations on OBDDs.

The approach by Palacios et al. (2005) creates a formula similar to that of
SatPlan for solving conformant problems with a given makespan, for problems
expressed in Conditional STRIPS. The formula is compiled into d-DNNF, a
language related to OBDD< (Darwiche and Marquis, 2002). Since the formula
encodes all plans for all the possible initial states, they rely on search in the
space of possible plans using model counting operations to prune nodes. Pala-
cios and Geffner (2006) use the same d-DNNF formulation, but create a new
NNF built as the logical conjunction of the subcircuits expressing the plans for
each initial state. The NNF is translated into CNF using auxiliary variables,
and a single call to a SAT solver yields a conformant plan, if any, for the given
makespan. The formulas proposed by Palacios and Geffner (2006) can also be
used to create a QBF formula whose models are conformant plans (Palacios,
2007).

9.3 Other Approaches

We finally review some approaches which do not directly fit our framework,
but are still related to it.

Palacios and Geffner (2009) present a representation for conformant plan-
ning, later extended to contingent planning (Albore et al., 2010). Both receive
problems in deterministic Conditional STRIPS, accepting an initial belief state
in CNF. The idea is to track the relationship between literals in the current
belief state and terms in the initial belief state using atoms of the form kλ/χ
in a language which we here denote by KΛI,ΛC . Informally, if the atom kλ/χ is
in the representation of a belief state B, this means that if χ was satisfied by
the actual (unknown) initial state, then λ must be true in B. In particular, if
λ is true for a set of χi such that

∨
i χi is entailed by the initial belief state,

then λ must be true in the current belief state.
Palacios and Geffner (2009) hence introduce the Kk translation of an

instance. This translation is an instance of KΛI,ΛC , with ΛC corresponding to
consistent terms spanning k clauses in the initial belief state expression ι, so
that the disjunction of those χi’s is entailed by ι. Verifying the consistency of
χi amounts to checking whether ι ∧ χi is satisfiable, a problem in NP for ι in
CNF. Palacios and Geffner (2009) assume that ι is in prime implicate form, so
the consistency check becomes polynomial (Darwiche and Marquis, 2002).

More recently, Grastien and Scala (2020); Scala and Grastien (2021) tackle
conformant planning by attempting to get a plan for a subset of the initial belief
state, using the same language as Palacios and Geffner (2009). A SAT solver
is used to verify if a candidate plan is conformant; if the answer is negative,
the model encodes an initial state where the conformant planner fails. If a
conformant plan was obtained for a subset of initial states, those initial states
are called a basis. In turn, a basis can be mapped into a set conditions {χi}

Springer Nature 2021 LATEX template

52 A KC Perspective on Belief Tracking

so that the initial belief state ι entails
∨
i=1,...,k χi, enabling efficient planners

that incrementally build a complete and possibly compact translation.
Finally, Bonet and Geffner (2014a) present algorithms for belief tracking

for both conformant and contingent planning with nondeterministic actions
and multi-valued variables. Bonet and Geffner (2014b) present a planner which
combines ideas of previous effective belief tracking techniques, focusing on
efficiency. Brafman and Shani (2012a,b) rely on state sampling, leading to
an unsound but effective algorithm based on replanning (Yoon et al., 2007),
in contrast with Albore et al. (2011), who use an unsound translation but
represent belief states as traces. All these works exploit properties at the level
of domains and problems, which is out of the scope of the present paper but
opens interesting perspectives.

10 Conclusion

We have studied the complexity of queries and transformations pertaining to
belief tracking and to planning by forward search in the space of belief states,
for a number of representations of belief states, actions, observations, and
goals, as well as the relative succinctness of these languages. Our study cov-
ers both explicit and implicit representations of belief states, and both logical
and imperative (PDDL-like) representations of actions. Beyond the planning
problem, our queries and transformations cover belief tracking with observa-
tions not triggered by the agent’s actions, but by external events. This can be
useful for applications where we need to monitor a situation, not necessarily
for planning.

Overall, we give an almost complete picture of complexity and succinct-
ness. This picture allows one to consider the most adequate combination of
languages for designing an algorithm or an implementation which uses our
queries and transformations. For instance, planners representing belief states
in DNF or OBDD< might be extended to epistemic goals expressed in S5,
with polynomial precondition and goal checking in some non-trivial cases (see
Table 6). On the other hand, such extensions seem less promissing for planners
using NNF or CNF representations. Further investigation on prime implicate
forms and on d-DNNF might reveal some more tractable cases. The complex-
ity results in fairness, and progression of actions and observations, are also
interesting for reusing the representations that planners use for monitoring,
execution, and dealing with external events and actions beyond the intent of
the agent (Muise et al., 2011). This might lead to highest forms of robustness
beyond the initial uncertainty and the actions the agent can perform. Finally,
it can be seen from our results that BS∃(OBDD<), with Y < F , has interest-
ing computational properties; it might be worth investigating its practical use
in planners.

We have considered planning by progression; it would naturally be useful to
complete the picture by queries and transformations pertaining to planning by
regression, that is, by backwards search in the space of belief states. The main

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 53

difference with our study is that regression in general produces several belief
states instead of a single one. Backwards search for planning typically filters
the regression to include only the actions that modified the states, so study-
ing regression might need to consider multiple variants of the transformation.
More generally, an important perspective of this work is to study representa-
tions of sets of belief states rather than belief states in isolation. Apart from
regression, this would be useful to planning by progression, for considering
approaches which progress a frontier of reachable belief states, like SatPlan
(Kautz et al., 2006) and generalizations to conformant problems (Bertoli and
Cimatti, 2002; Palacios and Geffner, 2006). For such representations, natural
languages, beyond mere lists of belief states, are representations tailored to
the logic of knowledge S5, in particular S5-DNF (Bienvenu et al., 2010) and
epistemic splitting diagrams (Niveau and Zanuttini, 2016).

Generalizing our study to sets of belief states would also be of particular
interest for encompassing planning with PDDL at the relational level and lifted
planning, in which a plan is searched for a class of instances of a planning
problem, rather than for a single ground instance (Corrêa et al., 2020; Lauer
et al., 2021). Similarly, sets of belief states are also useful when considering
generalized planning, which aims to obtain a single policy for a set of problems
from the same lifted problem (Mart́ın and Geffner, 2004; Segovia et al., 2016;
Segovia-Aguas et al., 2017).

Finally, an interesting perspective is to consider approaches where the
choice of a representation language can be “problem aware”, that is, dependent
on the initial state, on the available actions, and on the goal of the prob-
lem. Such a setting indeed allows one to consider representations which take
advantage of a small width of the problem at hand, like the approaches by
Palacios and Geffner (2009); Albore et al. (2010); Bonet and Geffner (2014a)
for conformant and contingent planning, and for belief tracking as discussed in
Section 9.3. While the worst-case complexity of such approaches matches the
known complexities of the problems, situations are characterized where plan-
ning and belief tracking are provably more tractable. Hence considering these
approaches from a knowledge compilation perspective would open interesting
research avenues.

Acknowledgements

This work has been supported by the French National Research Agency (ANR)
through project PING/ACK (ANR-18-CE40-0011).

Conflict of Interest

The authors declare that they have no conflict of interest.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.

Springer Nature 2021 LATEX template

54 A KC Perspective on Belief Tracking

References

Albore, A., Palacios, H., and Geffner, H. (2010). Compiling uncertainty away
in non-deterministic conformant planning. In Coelho, H., Studer, R., and
Wooldridge, M., editors, Proceedings of the 19th European Conference on
Artificial Intelligence (ECAI 2010), pages 465–470. IOS Press.

Albore, A., Ramirez, M., and Geffner, H. (2011). Effective heuristics and belief
tracking for planning with incomplete information. In Bacchus et al. (2011).

Bacchus, F., Domshlak, C., Edelkamp, S., and Helmert, M., editors (2011).
Proceedings of the 21st International Conference on Automated Planning
and Scheduling (ICAPS 2011). AAAI Press.

Bertoli, P. and Cimatti, A. (2002). Improving heuristics for planning as search
in belief space. In Ghallab, M., Hertzberg, J., and Traverso, P., editors,
Proceedings of the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS 2002). AAAI Press.

Bertoli, P., Cimatti, A., and Roveri, M. (2001). Heuristic search + symbolic
model checking = efficient conformant planning. In Nebel, B., editor, Pro-
ceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI 2001), pages 467–472. Morgan Kaufmann.

Bienvenu, M., Fargier, H., and Marquis, P. (2010). Knowledge compilation
in the modal logic S5. In Proceedings of the 25th Conference on Artificial
Intelligence (AAAI 2010), pages 261–266.

Bonet, B. (2010). Conformant plans and beyond: Principles and complexity.
Artificial Intelligence, 174(3-4):245–269.

Bonet, B. and Geffner, H. (2000). Planning with incomplete information
as heuristic search in belief space. In Chien, S., Kambhampati, S., and
Knoblock, C. A., editors, Proceedings of the 5th International Conference on
Artificial Intelligence Planning and Scheduling (AIPS 2000), pages 52–61.
AAAI Press.

Bonet, B. and Geffner, H. (2005). mGPT: A probabilistic planner based on
heuristic search. Journal of Artificial Intelligence Research, 24:933–944.

Bonet, B. and Geffner, H. (2014a). Belief tracking for planning with sensing:
Width, complexity and approximations. Journal of Artificial Intelligence
Research, 50:923–970.

Bonet, B. and Geffner, H. (2014b). Flexible and scalable partially observable
planning with linear translations. In Chien, S., Fern, A., Ruml, W., and Do,
M., editors, Proceedings of the 24th International Conference on Automated
Planning and Scheduling (ICAPS 2014). AAAI Press.

Brafman, R. I. and Shani, G. (2012a). A multi-path compilation approach to
contingent planning. In Hoffmann, J. and Selman, B., editors, Proceedings
of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012), pages
1868–1874. AAAI Press.

Brafman, R. I. and Shani, G. (2012b). Replanning in domains with partial
information and sensing actions. Journal of Artificial Intelligence Research,
45:565–600.

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 55

Brafman, R. I. and Shani, G. (2016). Online belief tracking using regression
for contingent planning. Artificial Intelligence, 241:131–152.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipu-
lation. IEEE Transactions on Computers, 35(8):677–691.

Bryce, D., Kambhampati, S., and Smith, D. E. (2006). Planning graph heuris-
tics for belief space search. Journal of Artificial Intelligence Research,
26:35–99.

Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M. (2000). NuSMV:
A new symbolic model checker. International Journal on Software Tools for
Technology Transfer, 2:410–425.

Cimatti, A., Roveri, M., and Bertoli, P. (2004). Conformant planning via
symbolic model checking and heuristic search. Artificial Intelligence, 159(1-
2):127–206.

Corrêa, A. B., Pommerening, F., Helmert, M., and Francès, G. (2020). Lifted
successor generation using query optimization techniques. In Beck, J. C.,
Karpas, E., and Sohrabi, S., editors, Proceedings of the 30th International
Conference on Automated Planning and Scheduling (ICAPS 2020), pages
80–89. AAAI Press.

Darwiche, A. and Marquis, P. (2002). A knowledge compilation map. Journal
of Artificial Intelligence Research, 17:229–264.

Geffner, H. (2000). Functional Strips: A more flexible language for planning
and problem solving. In Minker, J., editor, Logic-Based Artificial Intel-
ligence, volume 597 of Kluwer International Series In Engineering And
Computer Science, chapter 9, pages 187–209. Kluwer, Dordrecht.

Geffner, H. and Bonet, B. (2013). A concise introduction to models and meth-
ods for automated planning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 8(1):1–141.

Ghallab, M., Nau, D. S., and Traverso, P. (2016). Automated planning and
acting. Cambridge University Press.

Goldman, R. P., Biundo, S., and Katz, M., editors (2021). Proceedings of
the 31st International Conference on Automated Planning and Scheduling
(ICAPS 2021). AAAI Press.

Grastien, A. and Scala, E. (2020). CPCES: A planning framework to solve
conformant planning problems through a counterexample guided refinement.
Artificial Intelligence, 284:103271.

Herzig, A., Lang, J., and Marquis, P. (2003). Action representation and
partially observable planning using epistemic logic. In Gottlob, G. and
Walsh, T., editors, Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI 2003), pages 1067–1072. Morgan Kaufmann.

Hoey, J., St-Aubin, R., Hu, A., and Boutilier, C. (1999). SPUDD: Stochastic
planning using decision diagrams. In Proceedings of the 15th Conference on
Uncertainty in Artificial Intelligence (UAI 1999), pages 279–288.

Hoffmann, J. and Brafman, R. I. (2006). Conformant planning via heuristic
forward search: A new approach. Artificial Intelligence, 170(6-7):507–541.

Springer Nature 2021 LATEX template

56 A KC Perspective on Belief Tracking

Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fast plan gen-
eration through heuristic search. Journal of Artificial Intelligence Research,
14:253–302.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and
acting in partially observable stochastic domains. Artificial Intelligence,
101(1):99–134.

Kautz, H., Selman, B., and Hoffmann, J. (2006). SatPlan: Planning as sat-
isfiability. In 5th International Planning Competition (IPC-5): Planner
Abstracts.

Lauer, P., Torralba, Á., Fǐser, D., Höller, D., Wichlacz, J., and Hoffmann,
J. (2021). Polynomial-time in PDDL input size: Making the delete relax-
ation feasible for lifted planning. In Zhou, Z.-H., editor, Proceedings of the
30th International Joint Conference on Artificial Intelligence (IJCAI 2021).
IJCAI.

Lesner, B. and Zanuttini, B. (2011). Efficient policy construction for MDPs
represented in probabilistic PDDL. In Bacchus et al. (2011).

Mart́ın, M. and Geffner, H. (2004). Learning generalized policies from planning
examples using concept languages. Applied Intelligence, 20(1):9–19.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M.,
Weld, D., and Wilkins, D. (1998). PDDL – The Planning Domain Definition
Language – Version 1.2. Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control, Yale University.

Muise, C., McIlraith, S. A., and Beck, J. C. (2011). Monitoring the execution
of partial-order plans via regression. In Walsh, T., editor, Proceedings of
the 22nd International Joint Conference on Artificial Intelligence (IJCAI
2011). AAAI Press.

Nebel, B. (2000). On the compilability and expressive power of propositional
planning formalisms. Journal of Artificial Intelligence Research, 12:271–315.

Niveau, A. and Zanuttini, B. (2016). Efficient representations for the modal
logic S5. In Proceedings of the 25th International Joint Conference on
Artificial Intelligence (IJCAI 2016).

Palacios, H. (2007). The quantified boolean formulas satisfiability library.
Conformant family problems. http://www.qbflib.org/family detail.php?
idFamily=707. Accessed: 2023-02-02.

Palacios, H., Bonet, B., Darwiche, A., and Geffner, H. (2005). Pruning con-
formant plans by counting models on compiled d-DNNF representations. In
Biundo, S., Myers, K., and Rajan, K., editors, Proceedings of the Fifteenth
International Conference on Automated Planning and Scheduling (ICAPS
2005). AAAI Press.

Palacios, H. and Geffner, H. (2006). Mapping conformant planning into SAT
through compilation and projection. In Proceedings of the 11th Conference
of the Spanish Association for Artificial Intelligence (CAEPIA 2005), pages
311–320. Springer.

Palacios, H. and Geffner, H. (2009). Compiling uncertainty away in conformant
planning problems with bounded width. Journal of Artificial Intelligence

http://www.qbflib.org/family_detail.php?idFamily=707
http://www.qbflib.org/family_detail.php?idFamily=707

Springer Nature 2021 LATEX template

A KC Perspective on Belief Tracking 57

Research, 35:623–675.
Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.
Rintanen, J. (1999). Constructing conditional plans by a theorem-prover.
Journal of Artificial Intelligence Research, 10:323–352.

Rintanen, J. (2004). Complexity of planning with partial observability. In
Zilberstein, S., Koehler, J., and Koenig, S., editors, Proceedings of the 14th
International Conference on Automated Planning and Scheduling (ICAPS
2004), pages 345–354. AAAI Press.

Scala, E. and Grastien, A. (2021). Non-deterministic conformant plan-
ning using a counterexample-guided incremental compilation to classical
planning. In Goldman et al. (2021).

Scheck, S., Niveau, A., and Zanuttini, B. (2021). Knowledge compilation for
nondeterministic action languages. In Goldman et al. (2021), pages 308–316.

Segovia, J., Jiménez, S., and Jonsson, A. (2016). Generalized planning with
procedural domain control knowledge. In Coles, A., Coles, A., Edelkamp, S.,
Magazzeni, D., and Sanner, S., editors, Proceedings of the 26th International
Conference on Automated Planning and Scheduling (ICAPS 2016), pages
285–293. AAAI Press.

Segovia-Aguas, J., Jiménez, S., and Jonsson, A. (2017). Generating context-
free grammars using classical planning. In Sierra, C., editor, Proceedings
of the 26th International Joint Conference on Artificial Intelligence (IJCAI
2017), pages 4391–4397. IJCAI.

To, S., Pontelli, E., and Son, T. (2009). A conformant planner with explicit dis-
junctive representation of belief states. In Gerevini, A., Howe, A., Cesta, A.,
and Refanidis, I., editors, Proceedings of the 19th International Conference
on Automated Planning and Scheduling (ICAPS 2009). AAAI Press.

To, S. T., Son, T. C., and Pontelli, E. (2010). A new approach to conformant
planning using CNF. In Brafman, R., Geffner, H., Hoffmann, J., and Kautz,
H., editors, Proceedings of the 20th International Conference on Automated
Planning and Scheduling (ICAPS 2010). AAAI Press.

To, S. T., Son, T. C., and Pontelli, E. (2011). Contingent planning as and/or
forward search with disjunctive representation. In Bacchus et al. (2011).

To, S. T., Son, T. C., and Pontelli, E. (2015). A generic approach to plan-
ning in the presence of incomplete information: Theory and implementation.
Artificial Intelligence, 227:1–51.

Tseitin, G. S. (1983). On the complexity of derivation in propositional calculus.
Automation of reasoning: 2: Classical papers on computational logic 1967–
1970, pages 466–483.

Wagner, K. W. (1990). Bounded query classes. SIAM Journal on Computing,
19(5):833–846.

Wang, C., Joshi, S., and Khardon, R. (2008). First order decision diagrams for
relational MDPs. Journal of Artificial Intelligence Research, 31:432–472.

Yoon, S., Fern, A., and Givan, R. (2007). FF-Replan: A baseline for probabilis-
tic planning. In Boddy, M., Fox, M., and Thiébaux, S., editors, Proceedings
of the 17th International Conference on Automated Planning and Scheduling

Springer Nature 2021 LATEX template

58 A KC Perspective on Belief Tracking

(ICAPS 2007), pages 352–360. AAAI Press.

	Introduction
	Background
	Formal Setting
	Planning Instances
	Knowledge Compilation and Complexity

	Related Work
	Queries and Transformations
	A Generic Scheme for Nondeterministic Planning
	Definition of Queries and Transformations
	Queries
	Transformations

	Languages
	Propositional Languages
	Goal Languages
	Action Languages
	PDDL and STRIPS
	Deterministic Restrictions
	Action Theories

	Size of Expressions

	Representations of Belief States by Propositional Formulas
	Belief State Propositional Languages
	Complexity of Queries
	Applicability
	Fairness
	Statewise Goal Satisfaction
	General Goal Satisfaction
	Equivalence

	Complexity of Transformations
	Progression by an Action
	Progression by an Observation

	Implicit Representation by Traces
	Complexity Results

	Succinctness
	Nondeterministic Planners
	Search in Belief State Space
	Action Theories and Logical Approaches
	Other Approaches

	Conclusion

