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Large-population limits of non-exchangeable particle systems

Nathalie Ayi∗ Nastassia Pouradier Duteil†

January 15, 2024

Abstract

A particle system is said to be non-exchangeable if two particles cannot be exchanged without
modifying the overall dynamics. Because of this property, the classical mean-field approach fails to
provide a limit equation when the number of particles tends to infinity. In this review, we present
novel approaches for the large-population limit of non-exchangeable particle systems, based on the
idea of keeping track of the identities of the particles. These can be classified in two categories.
The non-exchangeable mean-field limit describes the evolution of the particle density on the product
space of particle positions and labels. Instead, the continuum limit allows to obtain an equation for
the evolution of each particle’s position as a function of its (continuous) label. We expose each of
these approaches in the frameworks of static and adaptive networks.

Contents

1 Introduction 2
1.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Notations and preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Large-population limits of non-exchangeable particle systems on static graphs 7
2.1 Mean-field limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Dense graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Sparse graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Continuum limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Continuum limit on deterministic graphs . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Continuum limit on random graphs . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Links between Continuum limit and Mean-Field limits . . . . . . . . . . . . . . . . . . 16
2.3.1 From continuum limit to non-exchangeable mean-field limit . . . . . . . . . . . 17
2.3.2 From non-exchangeable mean-field limit to continuum limit . . . . . . . . . . . 17
2.3.3 Subordination of the mean-field limit to the continuum limit equation (indis-

tinguishable case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Large-population limits of particle systems on adaptive dynamical networks 19
3.1 Mean-field limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 The non-exchangeable mean-field limit . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 The exchangeable mean-field limit . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Continuum limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Links between Continuum limit and Mean-Field limits for the case of evolving-in-time

weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 From continuum limit to non-exchangeable mean-field limit . . . . . . . . . . . 27
3.3.2 From continuum limit to exchangeable mean-field limits . . . . . . . . . . . . . 28

∗Sorbonne Université, CNRS, Université Paris Cité, Inria, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris,
France
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1 Introduction

1.1 Setting

Interacting particle systems refer to a large class of coupled differential equations modeling popula-
tions of interacting agents (“particles”) susceptible to exhibit global organizational patterns without
any centralized intelligence. They are used by various scientific communities to model many different
phenomena, such as opinion formation [29], organization within animal groups [1, 5, 39], synchro-
nization of coupled oscillators [37] and biological tissue formation [6]. These models have also been
of great interest to the mathematical community. In particular, the study of their long-time behavior
can reveal remarkable global patterns, although the particles interact only locally (see for instance
[12, 14, 27, 28, 32]). Another direction of work consists of studying the control or optimal control of
such systems, to drive the population to a target configuration (see [17] and references within). A
third area of interest concerns their so-called large-population limit, which is the focus of the present
review.

The need for large-population limits of interacting particle systems becomes evident when one
considers the size of some of the populations of interest. For instance, starlings are known to form
flocks of several thousands of individuals [5], and neural networks in mammals contain up to 1011

neurons [30]. In this context, simulating such large populations via a system of N coupled equations
(with up to N2 pairwise interactions) rapidly becomes computationally too expensive as the number
of particles N increases. To resolve this issue, a crucial idea introduced in the pioneering works
[16, 21, 26, 31, 48, 58, 59] consists of focusing on the evolution of the population density, instead of
the individual trajectories.

Mean-field limit of exchangeable particle systems. Consider a system of N interacting
particles characterized by their positions (xNi )i∈{1,··· ,N} ∈ C([0, T ]; (Rd)N ), whose evolution is given
by the general system of coupled differential equations:

d

dt
xNi (t) =

1

N

N∑
j=1

φ(xNi (t), xNj (t)) for all i ∈ {1, · · · , N}, t ∈ [0, T ]

xNi (0) = xN,0i for all i ∈ {1, · · · , N},
(1)

where

• {1, · · · , N} denotes the set of labels of the interacting particles, which represents their individual
identities;

• (xNi )i∈{1,··· ,N} ∈ C([0, T ]; (Rd)N ) denotes the state of the interacting particles, and can for
instance represent positions [22], opinions [29], velocities [19], phases [37], angles [61]. The
dimension d of the state space is then determined by the model;

• φ : Rd×Rd → Rd is the so-called interaction function, encoding the pairwise interaction between
any two positions xi and xj .

As N tends to infinity, one can show that the system (1) is well approximated by its so-called
mean-field limit µ ∈ C([0, T ];P(Rd)) which satisfies the following Vlasov equation:∂tµt(x) +∇x ·

((∫
Rd
φ(x, y)dµt(y)

)
µt(x)

)
= 0,

µt=0 = µ0.
(2)

For reasons that will become clear, in this review we will refer to (2) as the exchangeable mean-
field limit of the particle system. The link between the particle system (1) and its mean-field limit
equation (2) becomes clear when introducing the so-called empirical measure µN constructed from
the solution (xNi )i∈{1,··· ,N} to the microscopic system (1):

µNt :=
1

N

N∑
i=1

δxNi (t), (3)

and which satisfies the mean-field equation (2). Convergence of the solution (xNi )i∈{1,··· ,N} of the
microscopic system (1) towards the solution µ to the mean-field equation (2) can then be obtained
as the result of a stability argument for the solution to (2), of the form:

W1(µt, µ
N
t ) ≤ C(T )W1(µ0, µ

N
0 ),

where W1 is the 1-Wasserstein (also known as Rubinstein-Kantorovich) distance [21].
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Exchangeable vs. non-exchangeable particle systems. Interacting particle systems can
be broadly classified into two categories: exchangeable (or indistinguishable) and non-exchangeable
(or non-indistinguishable). A particle system is said to be exchangeable if any two particles can be
exchanged without modifying the dynamics of the other particles. More precisely,

Definition 1. Let (xi)i∈{1,··· ,N} ∈ C([0, T ]; (Rd)N ) denote the trajectories of N interacting particles
satisfying 

d

dt
xNi (t) = Fi(t, x

N (t)), i ∈ {1, · · · , N}, t ∈ [0, T ],

xNi (0) = xN,0i , i ∈ {1, · · · , N},

and let xNi (t) := Ψt#x
N,0
i denote their push-forward by the flow of F . The particle system is said to be

exchangeable (or, equivalently, indistinguishable) if, for any permutation function σ : {1, · · · , N} →
{1, · · · , N} of the sets of particle labels, it holds

∀i ∈ {1, · · · , N}, yNi (0) = xNσ(i)(0)

⇒ ∀i ∈ {1, · · · , N}, ∀t ∈ [0, T ], (Ψt#y
N,0
i )(t) = (Ψt#x

N,0
σ(i))(t).

In other words, an interacting particle system is exchangeable if one can relabel the particles
without modifying the dynamics. Trivially, the particle system (1) is exchangeable, since the right-
hand side does not depend explicitly on the particle labels.

Exchangeable particle systems provide a good modeling framework for many applications in
which the labels, which represent the identities of the particles, do not influence the dynamics. In
this case, considering all particles to be identical is a good approximation, and has been validated
experimentally [1, 5, 39].

However, in other cases, the particles’ labels play a significant role, which requires the use of
models for non-exchangeable particles. For instance, the Kuramoto model, used to describe the
evolution of coupled oscillators’ phases (xNi )i∈{1,··· ,N} ∈ C([0, T ]; (T1)N ), can be written, for some
k ∈ {1, . . . , N}, as

d

dt
xNi (t) = uNi +

C

N

N∑
j=1

sin(xNj (t)− xNi (t)). (4)

Notice that in (4), the evolution of each oscillator’s phase xNi depends on an intrinsic frequency uNi ,
so this system does not belong to the class of non-exchangeable particle systems.

Why the classical mean-field limit fails for non-exchangeable particle systems.
In this review, we will focus on non-exchangeable particle systems of the form:

d

dt
xNi (t) =

1

N

N∑
j=1

wNijφ(xNi (t), xNj (t)) for all i ∈ {1, · · · , N}, t ∈ [0, T ],

xNi (0) = xN,0i .

(5)

In system (5), the effect of the particles’ labels {1, · · · , N} on the dynamics is decoupled from
that of the particles’ positions (xNi )i∈{1,··· ,N}, as it is introduced as a family of multiplying weights
(wNij )i,j∈{1,··· ,N} ∈ RN . Particle systems of the form (5) can be seen as posed on an underlying
weighted graph, in which the set of nodes corresponds to the set of labels {1, · · · , N} and to each
edge (i, j) is attributed a weight wNij ∈ R.

Finding a good approximation of non-exchangeable particle systems (5) when N is large has been
the subject of many recent works [3, 18, 23, 33, 35, 31, 44, 45, 51]. One main difficulty comes from the
fact that the classical mean-field approach is no longer applicable. Indeed, studying the population
density instead of the individual particles’ trajectories entails an irreversible information loss, as one
loses track of the particles’ labels. In particular, notice that the empirical measure is blind to any
permutation σ : {1, · · · , N} → {1, · · · , N} of the sets of indices, since

µNt :=
1

N

N∑
i=1

δxNi (t) =
1

N

N∑
i=1

δxN
σ(i)

(t).

Due to the definition of non-exchangeable particle systems, one cannot hope to be able to capture
the dynamics of system (5) with a mean-field equation of the type (2).

New results in Limits of Graphs. Non-exchangeable particle systems of the form (5) can
be seen as posed on an underlying graph. For instance, in [62], a modified version of the Kuramoto
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Figure 1: Graph and adjacency matrix associated with System (6), for N = 10 and k = 2.

model is introduced, in which the coupled oscillators are positioned in a one-dimensional ring, so
that each oscillator interacts only with k oscillators on each side (for k < N

2
):

d

dt
xNi (t) = u+

C

N

i+k∑
j=i−k

sin(xNj (t)− xNi (t)). (6)

System (6) can be interpreted as a system of differential equations on the graphGN = 〈V (GN ), E(GN )〉
whose vertex set is V (GN ) = {1, . . . , N} and edge set is

E(GN ) = {(i, j) ∈ {1, . . . , N} : 1 ≤ dist(i, j) ≤ k}where dist(i, j) = min{|i− j|, N − |i− j|}.

The graph G10 and its adjacency matrix (wNij )i,j∈{1,··· ,N} are represented in Figure 1.
Notice that the adjacency matrix of GN belongs to MN (R), whose dimension changes with each

value of N . One can instead introduce the piecewise-constant function wGN : I2 → {0, 1}, where
I := [0, 1], such that

wGN (ξ, ζ) =

{
1 if (ξ, ζ) ∈

[
i−1
N
, i
N

)
×
[
j−1
N
, j
N

)
and (i, j) ∈ E(GN ),

0 otherwise.

The plot of wGN ’s support is nothing else than a pixel representation of the adjacency matrix of GN
(see Figure 2). Moreover, with this new characterization, the space L∞(I2) to which wGN belongs
no longer varies with N , which allows to consider its limit in the same space. In example (6), if k is
proportional to N , one can show that wGN converges as N goes to infinity to a {0, 1}-valued function
denoted w. This function w is called a graphon in Graph Theory. This crucial object appears when
considering limits of dense sequences of convergent graphs (GN )N≥1 (see [41]), that is sequences in
which |E(GN )| = O(|V (GN )|2) as N goes to infinity.

Remark 1.1. Note the graph GN associated with example (6) is an undirected, unweighted graph
(i.e. the associated adjacency matrix contains either zeros or ones). The theory applies similarly to
directed and weighted graphs, for which the adjacency matrix (wNij )i,j∈{1,··· ,N} takes values in R and
is not necessarily symmetric.

The limit of the particle system (5) when N goes to infinity then naturally reveals objects from
Graph Theory, which provides powerful tools to tackle the question of the large population limit (see
[4, 41] for example). For instance, the convergence of a graph sequence is linked to the convergence
of wGN to w in the so-called cut-norm, which is defined, for w ∈ L1(I2), as

‖w‖� := sup
S,T measurable

subsets of I

∣∣∣∣∫
S×T

w(ξ, ζ)dξdζ

∣∣∣∣ (7)

One property of this norm is that
‖w‖� ≤ ‖w‖L1(I2). (8)

Thus, convergence in L1-norm implies convergence of the graph sequence (GN )N≥1. This explains
why the Lp- setting is adopted in many frameworks (as will be seen in Section 2.1.1 and 2.2). One
of the drawbacks of this setting is that it is only valid for dense graphs.

However, recent results in [4] allow to revisit this question in order to address intermediate
densities or sparse graphs. In this article, Backhaus and Szegedy provide a general framework unifying
dense and sparse graph limit theory. Their approach relies on the fact that graphs can actually be
represented as operators called graphops. More precisely, a graphop is a bounded self-adjoint and
positivity preserving operator A : L∞(I) → L1(I). Graphops can be seen as a generalization of
graphons by defining for each graphon w ∈ L∞(I2) an associated graphop

Awf(ζ) :=

∫
I

w(ξ, ζ)f(ζ)dζ.
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Figure 2: Left and center: Pixel matrices of the graphs associated with (4) for N = 10 and N = 50, with
k = N

5 . Right: Plot of the limit graphon w.

Note that there exists alternative objects more general than graphons but less than graphops such
as digraph measures [35] or extended graphons [30]. We will introduce them when presenting the
associated large population results (Section 2.1.2).

The non-exchangeable mean-field limit and the continuum limit. If the interaction
weights (wNij )i,j∈{1,··· ,N} converge as N tends to infinity to a limit object, which can be either a
graphon w ∈ L∞([0, 1]2) or a more general object (such as an extended graphon, a graphop, or a
digraph measure), then the microscopic system can be shown to converge weakly towards a measure
µ ∈ C([0, T ],P([0, 1]× Rd)), solution to a Vlasov equation of the form:∂tµ

ξ
t (x) +∇x ·

((∫
[0,1]

∫
Rd
w(ξ, ζ)φ(x, y)dµζt (y)dζ

)
µξt (x)

)
= 0,

µt=0 = µ0

(9)

in the graphon case. To differentiate this limit from the classical mean-field limit (2), we will refer
to Equation (9) as the non-exchangeable mean-field limit of System (5). Here, the variable
x ∈ Rd, as in the microscopic model (5), represents the position (or phase, opinion, etc.), and the
newly introduced variable ξ ∈ [0, 1] is a continuous representation of the particles’ labels, or identities.
Notice in particular the asymmetric roles of of the two variables x and ξ. The limit equation is a
transport equation, in which the probability measure µ is transported only in the direction of the
variable x, whereas the variable ξ plays the role of a structure variable. Due to its similarity with
the previously mentioned mean-field limit, we will refer to Equation (9) as the non-exchangeable
mean-field limit of system (5). The non-exchangeable mean-field limit has been derived in various
frameworks in [18, 23, 33, 35, 31, 51], presented in Section 2.1.

As shown in [3, 44, 45, 51], when the interaction weights (wNij )i,j∈{1,··· ,N} converge as N tends
to infinity to a graphon w ∈ L∞([0, 1]2), the microscopic system (5) can also be shown to converge
pointwise towards the solution x ∈ C([0, T ];L∞(Rd)) to an integro-differential Euler-type equation
(also denoted nonlinear heat equation in [44]):∂tx(t, ξ) =

∫
[0,1]

w(ξ, ζ)φ(x(t, ξ), x(t, ζ))dζ

x(0, ·) = x0.

(10)

This approach is referred to as continuum limit or graph limit, and is presented in Section 2.2.
The relations between the two limit equations (9) and (10) are presented in Section 2.3.

Adaptive dynamical networks. Adaptive dynamical networks represent a broad class of in-
terconnected dynamical systems, very useful to cover a wide range of real-life applications. Their
main feature is that the connectivity of the network evolves over time and that this evolution can
depend on the states of the system itself. For instance, in the context of opinion dynamics, nodes
symbolize individual agents, while links mirror the myriad connections that we maintain in our social
spheres, be it with friends, family, or colleagues. In that framework, the adaptive nature is to be
understood as follows: not only are relationships likely to influence our opinions, but our opinions
also exert a reciprocal effect, inducing alterations in the network structure (our relationships). An
illustrative instance is found in the adaptive voter model (see for instance [63]), where agents update
their opinions and connections. With a certain probability, each agent may adopt the viewpoint
of interacting agents or, alternatively, shift their connections towards those who share more similar
opinions. These intricate models offer a nuanced representation of reality, acknowledging that in nu-
merous scenarios, networks are far from static. This not only holds true as mentioned above for social

5



interactions [2, 7, 42, 50, 52, 55, 54], but extends to diverse domains such as neural and neuronal
networks [53, 56], machine learning applications [38, 57], power grid models [49], and beyond. For a
comprehensive exploration of various domains and examples, we direct readers to the review [8].

As in [8], we will say that a network is adaptive if the evolution of the edge (i, j) explicitly depends
on the states of the nodes i and j. A counter-example is the blinking system in [3] for which every
edge of the graph is reset at regular time intervals, independently of the states of the nodes at this
time. To summarize, as mentioned in [8], there are two main classes for adaptive networks:

• event-based adaptation, where the network structure changes at certain discrete points in time
and the triggers for the changes depend on the system itself,

• continuous adaptation.

In this review, we will exclusively focus on the second class. It can be presented in its general form
as 

d

dt
xNi (t) = fi(x

N
i (t), t) +

N∑
j=1

wNij (t)φ
(
xNi (t), xNj (t), t

)
for all i ∈ {1, · · · , N}

d

dt
wNij (t) = hij(w

N (t), xN (t), t)

(11)

where wN := (wNij )i,j∈{1,··· ,N}, with wNij being the (now time-evolving) weight of the connection from
node j to i, and xN = (xN1 , . . . , x

N
N ).

The question of the large population limit, whether through the mean-field approach or the continuum
limit one, is extremely challenging in its generality. Thus, to this date, only two very specific
frameworks have successfully addressed this problem. The first one is the setting of Kuramoto-type
models on N oscillators [24]. The second one can be seen as a variant of the Hegselmann-Krause
dynamics [29] where, additionally to the opinions, we also are interested in the evolving-in-time
weights of agents which represent their charisma, their popularity [2].

We will present mean-field limits for those models in Section 3.1 and continuum limits in Sec-
tion 3.2. As in the static case, we will exhibit the links between the different limit equations in
Section 3.3.

1.2 Notations and preliminary remarks

In the last ten years, the surge of interest in large-population limits for non-exchangeable particle
systems has led to a wealth of publications. Consequently, due to the rapid growth of the field and
to the variety of models considered, no unifying set of notations has emerged within the community.
In this review, we have decided to use the following notations:

• x will denote a particle’s state (which can represent an opinion, position, velocity or phase, as
mentioned above). Note that it is also denoted by x in [2, 30], but it is denoted by ξ in [51],
by u in [3, 18, 23, 33, 44, 45], by φ in [35] and by θ in [9].

• Ω will denote the state space in which the particles evolve. We can distinguish between two
main classes of results. Articles focusing on the Kuramoto model (4) consider that x represents
an oscillator phase, and thus take the state space to be the torus Ω = T := R/(2πZ) [18, 23,
24, 25, 33]. On the other hand, when the state is assumed to be a position, the state space
is assumed to be Ω = Rd, for instance in [2, 30, 51]. For presentation simplicity or technical
reasons, one can also find Ω = R in [3, 44, 45].

• ξ will denote a particle’s label, or identity. It is also denoted by ξ in [30], but is denoted by s
in [2, 11] and by x in [9, 23, 35, 44, 45, 51].

• I will denote the space to which the (continuous) label ξ belongs. Most often, the discrete label
i ∈ {1, · · · , N} will be mapped to the continuous label ξ by the transformation i 7→ i

N
, so that

I = [0, 1] [2, 3, 18, 33, 44, 45]. In other works, the label set is taken to be a more general multi-
dimensional set, denoted X [35] or Ω [23, 51]. To keep the presentation as clear as possible, we
chose to state all results in the framework I = [0, 1], but will mention the possible extensions
to more general sets when applicable.

• φ will denote the interaction function, as in [2, 30]. It is also denoted by g in [35], and by D
in [23, 33, 44, 45]. Note that in many applications (such as the Kuramoto model mentioned
above, see Equation (4)), φ : (x, y) 7→ φ̃(y − x) for some function φ̃.

• (wNij )i,j∈{1,··· ,N} will denote the interaction weights as in [30, 44]. The weight wNij is denoted
by WN,ij in [33], by aij in [35], by Aij in [23], by ξNij in [45].

In order to keep our presentation as clear as possible given the variety of existing frameworks, we
have made the choice to present some results in a simplified formalism. We encourage the reader to
consult the more general statements in the corresponding original articles.
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2 Large-population limits of non-exchangeable particle
systems on static graphs

Let T > 0 and xN,0i ∈ ΩN . Let (xNi )i∈{1,··· ,N} ∈ C([0, T ]; ΩN ) represent a system of non-exchangeable
interacting particles satisfying the system of coupled equations

d

dt
xNi (t) =

1

N

N∑
j=1

wNijφ(xNj (t)− xNi (t)) for all i ∈ {1, · · · , N}, t ∈ [0, T ]

xNi (0) = xN,0i for all i ∈ {1, · · · , N}.
(12)

• The set {1, · · · , N} represents the set of labels of the interacting particles, i.e. their identities.
Two distinct particles cannot have the same label.

• For each t ∈ [0, T ], xNi (t) ∈ Ω represents the state of the particle with label i at time t.
Depending on the model, it might represent an opinion, a position (in which case Ω = Rd), a
phase (Ω = T) etc. For simplicity, from here onwards, we will refer to xNi (t) as the particle’s
position.

• The interaction function φ ∈ Lip(Ω2) models the spatial interaction between any two particles.
It will be considered to be a Lipschitz function.

• (wNij )i,j∈{1,··· ,N} are interactions weights, modeling an underlying interaction network. We
suppose that for every (i, j) ∈ N2, wNij ∈ R. Depending on the framework, it will also sometimes
be assumed that the matrix (wNij )i,j∈{1,··· ,N} is symmetric, corresponding to an undirected
graph, and that wNij ∈ R+. These assumptions will be made clear when necessary.

Under these hypotheses, there exists a unique solution (xNi )i∈{1,··· ,N} ∈ C([0, T ]; ΩN ) to (12) (see
[51] for the proof under more general hypotheses).

2.1 Mean-field limit

The question of the mean-field limit of system (12) has been the focus of several works in the recent
years [18, 33, 34, 30, 51]. The main requirement is that as N tends to infinity, (wNij )i,j∈{1,··· ,N} has a
limit, which can be either a graphon w ∈ L∞(I×I), or a more general object. Then, the microscopic
system can be shown to converge (in a certain sense to be specified) towards a measure µ, solution
to a partial differential equation of the form∂tµξt (x) +∇x ·

((∫
I

∫
Ω

w(ξ, ζ)φ(x, y)dµζt (y)dζ

)
µξt (x)

)
= 0,

µt=0 = µ0,
(13)

in which the variable x ∈ Ω, as in the microscopic model (12), represents the position (or phase, or
opinion), and the newly introduced variable ξ ∈ I is a continuous representation of the particles’
labels, or identities.

Notice in particular the asymmetric roles of of the two variables x and ξ. The limit equation
is a transport equation, in which the probability measure µ is transported only in the direction
of the variable x, whereas the variable ξ plays the role of a structure variable. As announced in
the introduction, we refer to this limit process as the non-exchangeable mean-field limit of
System 12.

The interpretation of µ can be twofold. Let ∆ξ ⊂ I and ∆x ⊂ Rd.
• In the probabilistic setting, µt(∆ξ×∆x) =

∫
∆ξ×∆x

dµξt (x)dξ represent the probability of finding
an agent with label in ∆ξ and position in ∆x at time t.

• In the deterministic setting, µt(∆ξ ×∆x) represents the mass of agents with labels in ∆ξ and
positions in ∆x at time t.

Note that proving existence and uniqueness of the solution to (13) is not always trivial. However,
since it is not the main focus of this review, we do not go into details, and refer the reader to the
cited articles for the proof in each of the frameworks that we mention below.

The first results for non-exchangeable mean-field limit theory appeared in the framework of dense
graphs (Section 2.1.1). These results were then extended to graphs with intermediate or sparse
densities 2.1.2.
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2.1.1 Dense graphs

For N ∈ N, let 〈GN , V (GN ), E(GN )〉 denote a graph of N nodes, whose set of vertices and set of
edges are respectively given by V (GN ) and E(GN ). A sequence of graphs (GN )N∈N is called “dense”
[40, 41] if the number of edges each graph contains is proportional to the maximal number of edges
it can contain, i.e. if

|E(GN )| = O(|V (GN )|2) = O(N2).

The limit of a convergent dense graph sequence is given by a so-called graphon [40, 41]. Although
definitions of graphons vary depending on the context in which they are introduced, in this review
we will use the following notion:

Definition 2. A graphon is a function w ∈ L∞(I2;R).

Lipschitz graphon. In the seminal paper [18], Chiba and Medvedev derive the mean-field limit
of the microscopic system (12) with the following regularity assumption:

Hypothesis 1 (Graphon regularity). The graphon w ∈ Lip(I2;R) is a Lipschitz function.

The proof is provided in the specific case of the Kuramoto model, in which the variables (xi)i∈{1,··· ,N}
represent oscillator phases, and evolve on the torus Ω = T. However, it can easily be extended to
the case of particles in Rd. For each N ∈ N, we introduce a discretization (ξN1 , · · · , ξNN ) ∈ IN of the
unit interval, with the requirement that for all continuous function f ∈ C(I), the Riemann sum of f
evaluated at (ξNi )i∈{1,··· ,N} converge to the integral of f on I, i.e.

lim
N→∞

1

N

N∑
i=1

f(ξNi ) =

∫
I

f(ξ)dξ.

Given such a discretizations, each discrete weights wNij is defined by evaluating the continuous graphon
w at the corresponding discretization points:

wNij := w(ξNi , ξ
N
j ). (14)

Then, the empirical measure associated with a solution (xNi )i∈{1,··· ,N} to the microscopic system
(12) with such interaction weights is defined for all t ∈ [0, T ] by

µNt (ξ, x) :=
1

N

N∑
i=1

δxNi (t)(x)δξNi
(ξ). (15)

Importantly, probability measures in P(I×Ω) are compared via the Bounded Lipschitz distance dBL

on the product space I × Ω , defined for all µ0, ν0 ∈ P(I × Ω) by

dBL(µ0, ν0) := sup

{∫
I×Ω

f(ξ, x)d(µ0(ξ, x)− ν0(ξ, x)) | f ∈ Lip(I × Ω), ‖f‖Lip ≤ 1, ‖f‖L∞ ≤ 1

}
.

One can show that given Hyp. 1 for any T ∈ R+, there exists a unique weak solution µ ∈
C([0, T ],P(I × Ω)) to the mean-field equation (13). The proof relies on the theory of Neunzert
developed for the Vlasov equation [46, 47], consisting in writing µt as the push-forward of µ0 via the
flow of the vector field Ṽ [µt](ξ, x) := (V [µt](ξ, x), 0), where

V [µt](ξ, x) :=

∫
I

∫
Rd
w(ξ, ζ)φ(x, y)dµζt (y)dζ, (16)

and in showing the existence and uniqueness of the solution to the associated fixed-point equation.
Moreover, one can show continuity of the solution to (13) with respect to the initial data in the
Bounded Lipschitz distance. This implies the following convergence result:

dBL(µN0 , µ0) −−−−→
N→∞

0 ⇒ dBL(µNt , µt) −−−−→
N→∞

0,

where µt is the solution to∂tµξt (x) +∇x ·
((∫

I

∫
Ω

w(ξ, ζ)φ(x, y)dµζt (y)dζ

)
µξt (x)

)
= 0,

µt=0 = µ0.

8



Non-Lipschitz graphon. In [33], Kaliuzhnyi-Verbovetsky and Medvedev extend the previous
result to non-Lipschitz graphons. The main idea for this improvement is to exploit the fundamental
asymmmetry in the roles played by the variables x and ξ. More specifically, if µ0 is absolutely
continuous with respect to the variable ξ, one can show that the measure µt remains absolutely
continuous with respect to ξ for all time (as shown in [18]). This allows to rewrite dµ0(ξ, x) =
dµξ0(x)dξ, where for all ξ ∈ [0, 1], µξ0 ∈ P(Ω). In this way, we consider the set of P(Ω)-valued
functions M̄ := {µ : I → P(Ω)} equiped with the L1-Bounded-Lipschitz distance

d̄(µ0, ν0) =

∫
I

dBL(µξ0, ν
ξ
0)dξ,

which is a complete metric space. The Lipschitz assumption on the graphon w can then be relaxed
to the much weaker condition

Hypothesis 2 (Graphon regularity). The graphon w ∈ L∞(I2) satisfies

lim
δ→0

∫
I

|w(ξ + δ, ζ)− w(ξ, ζ)|dζ = 0.

With this assumption, one can show that the vector field V defined by (16) is Lipschitz continuous
in x, continuous in ξ, and Lipschitz continuous with respect to µt. This implies that the equation
of characteristics ẋ(t) = V [µt](ξ, x(t)) is well-posed, and so that it generates a flow Ψt,0 defined for
almost all ξ ∈ I by Ψξ

t,0[w, µ]u(0) = x(t). Then, it can be shown that the fixed point equation µt =
Ψ0,t[w, µ]#µ0 has a unique solution µ ∈ C([0, T ],M̄), which in turn implies existence and uniqueness
of the solution to the mean-field equation (13). Moreover, the solution to (13) is continuous with
respect to its initial data in the L1 − BL distance d̄, and is continuous with respect to the graphon
w in the L1-norm.

The link between the microscopic system (31) and the mean-field equation (13) is done via the
empirical measure νn,m ∈ C([0, T ], M̄), defined for all N := nm, for all ξ ∈ [ i−1

n
, i
n

), for all t ∈ [0, T ]
by

νξn,m,t(x) :=
1

m

m∑
j=1

δxN
(i−1)m+j

(t)(x), (17)

where (xNi )i∈{1,··· ,N} is the solution to system (12) in which the discrete weights (wNij )i,j∈{1,··· ,N}
are given by an L1-approximation of the graphon w:

wNij := N2

∫ i
N

i−1
N

∫ j
N

j−1
N

w(ξ, ζ)dξdζ. (18)

Then, the empirical measure νn,m,t can be shown to converge towards the solution µt to the mean-
field equation (13), in the L1-Bounded-Lipschitz distance.

General interaction function. In [51], Paul and Trélat provide a general result for particle
systems of the form

d

dt
xNi (t) =

1

N

N∑
j=1

G(t,
i

N
,
j

N
, xNi (t), xNj (t)) for all i ∈ {1, · · · , N}, t ∈ [0, T ]

xNi (0) = xN,0i for all i ∈ {1, · · · , N},
(19)

in which the effect of the particles’ labels is no longer decoupled from that of the particles’ positions.
The function

G : R× I × I × Rd × Rd → Rd
(t, ξ, ζ, x, y) 7→ G(t, ξ, ζ, x, y)

is assumed to be locally Lipschitz with respect to (x, y) uniformly with respect to (t, ξ, ζ) on any
compact subset of R× I × I. Convergence can be proven to the following Vlasov equation:∂tµ

ξ
t (x) +∇x ·

((∫
I×Rd

G(t, ξ, ζ, x, y)dµζt (y)dζ

)
µξt (x)

)
= 0,

µt=0 = µ0.

(20)

Existence and uniqueness of the weak solution µ ∈ C([0, T ];Pc(I × Rd)) to (20) is proven for all
compactly supported initial data µ0 ∈ Pc(I × Rd). Moreover, the link between the discrete and the
continuous system is provided by introducing an empirical measure

µξ,Nt (x) :=
1

N

N∑
i=1

δ i
N

(ξ)δxi(t)(x). (21)
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Then, denoting by Wp the p-Wasserstein distance on the product space I×Rd, one has the following
result for all p ≥ 1:

Wp(µ0, µ
N
0 )

N→∞−−−−→ 0 ⇒ Wp(µt, µ
N
t )

N→∞−−−−→ 0

on all compact time interval [0, T ].
Moreover, if G is assumed to be locally Lipschitz with respect to all four arguments (ξ, ζ, x, y), a

stability estimate for (20) allows to write

∀t ∈ [0, T ], Wp(µt, µ
N
t ) ≤ Cµ,µN (t)Wp(µ0, µ

N
0 ),

where the constant Cµ,µN (t) depends on the Lipschitz norm of G with respect to x and y on the

supports of µt and µNt .
Note that if the system is posed on a graph, i.e. G(t, ξ, ζ, x, y) := w(ξ, ζ)φ(x, y), this strong

Lipschitz condition on G implies that the graphon w is Lipschitz, as in [18].

Remark 2.1. In its full generality, the result from [51] is stated for a general n-dimensional set I,
and the Lebesgue measure dξ in (20) can be replaced by a more general measure dν(ζ). The final
time of existence T is not necessarily finite.

A priori unknown graphon. The previous three results [18, 33, 51] are all based on a same
general idea: a limit graphon w is given, and used to build a converging graph sequence by discretizing
it in an appropriate way (see for instance (14) or (18)). The convergence of the microscopic system
(12) towards the limit Vlasov equation is obtained as a consequence of this discretization procedure.
This “top-down” process can be argued to be somewhat artificial, since the graph sequence is built
using the a priori knowledge of the limit graphon.

In [9], Bet, Coppini and Nardi propose a different approach, with no a priori knowledge of the
limit object, for the random system on a graph GNdX

i,N
t =

1

N

N∑
i=1

wNijφ(Xi,N
t , Xj,N

t )dt+ dBit

Xi,N
0 = Xi

0,

(22)

where (Bi)i∈{1,··· ,N} is a sequence of independent and identically distributed (i.i.d.) Brownian mo-
tions on Ω := T, the initial conditions (Xi

0)i∈{1,··· ,N} are i.i.d. sampled from some probability
distribution µ̄0, and the weights (wNij ) are the edge weights of the graph GN .

The main tool of this approach is the cut-norm ‖ · ‖� (see Equation (7)), well-known to the
Graph Theory community [40, 41]. To prove convergence of the microscopic system with noise (22),
one needs to consider the cut-distance between two graphons, taking into consideration all possible
relabelings, defined by

δ�(w, w̃) = min
ϕ∈SI

‖w − w̃ϕ‖�,

where SI denotes the space of invertible measure-preserving maps ϕ from I to I, and where w̃ϕ :
(ξ, ζ) 7→ w̃(ϕ(ξ), ϕ(ζ)). Importantly, in this setting, the cut-distance between two graphons w and
w̃ can be zero for two different graphons. The important point is that the graphons be equal up to
relabeling.

In this framework, the microscopic system is linked to its mean-field limit by the traditional
empirical measure µNt ∈ P(Ω) defined as in (3) by

µNt :=
1

N

N∑
i=1

δxNi (t). (23)

One also needs to define the non-linear processXt = X0 +

∫ t

0

∫
I

∫
Ω

w(U, ζ)φ(Xs, y)dµζs(y)dζds+Bt

µyt = L(Xt|U = ζ) for ζ ∈ I, t ∈ [0, T ],
(24)

where L(X0) = µ̄0, and Bt is a Brownian motion.
The main result can then be stated as follows. Assume that φ ∈ C1+ε(Ω) for some ε > 0.

Consider a sequence of graphs GN , whose associated graphons wGN defined by

wGN : (ξ, ζ) 7→
N∑
i=1

N∑
j=1

wNij1[ i−1
N

, i
N

)
(ξ)1

[ j−1
N

, j
N

)
(ζ)

converges in cut-norm to an a priori unknown limit graphon in probability, in the sense that

lim
N→+∞

E[δ�(wGN , w)] = 0.
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Note that the limit graphon w is not unique, since any relabeling of w would also be a limit of
wGN in the cut-distance. For this reason, w is refered to as an unlabeled graphon in [9]. Then, the
empirical measures µN converge to a limit measure µ̄ ∈ P(C([0, T ],Ω)), which is the weak solution
to the non-linear Fokker-Plank equation∂tµ̄t(x) +∇x ·

(∫
I

(∫
I

∫
Ω

w(ξ, ζ)φ(x, y)dµζt (y)dζ

)
µξt (x)dξ

)
=

1

2
∆xµ̄t(x),

µ̄t=0 = µ̄0,
(25)

in which the measure µξt is defined by the non-linear process (24).
We refer the reader to [9, 10, 20] for more details on such probabilistic approaches.

2.1.2 Sparse graphs

As seen in the Introduction, the graph sequence corresponding to Example (6) admits a graphon
limit when k increases proportionally to N as N tends to infinity. What can be said when k is not
proportional to N?

Recent results in Graph Theory have provided multiple ways of defining the limit of a graph
sequence which is not dense. These new limit objects include Lp-graphons, graphops, graphings, and
measures [4, 13, 36]. We refer to [30] for an illustration of the relationships between the various limit
objects.

Graphop. The result of [33] is further extended by Gkogkas and Kuehn in [23] to a class of
sparse graphs defined using so-called “graphops” (graph operators). Graphops were introduced in [4]
by Backhausz and Szegedy in the aim of providing a general framework unifying dense and sparse
graph theories. The main idea consists of moving away from the object of graphons (i.e. functions
w ∈ L∞(I2)) and of considering instead the action of graphs as operators from L∞(I) to L1(I).

Definition 3. A graphop is a linear operator A : L∞(I) → L1(I) which has finite operator norm
‖A‖∞→1, is positivity-preserving, and is self-adjoint.

Importantly, there exists a family (νξA)ξ∈I of finite fiber measures so that the action of the graphop
A on a function f ∈ L∞(I) is given by:

Af : ξ 7→
∫
I

f(ζ)dνξA(ζ).

This object generalizes the concept of symmetric graphons in the following way: for every symmetric
graphon w ∈ L∞(I2), one can define a graphop Aw : L∞(I)→ L1(I) such that for all f ∈ L∞(I),

Awf : ξ 7→
∫
I

w(ξ, ζ)f(ζ)dζ.

Consider then a sequence of graphons (wK)K∈N such that their associated graphops (AwK )K∈N
converge as K goes to infinity to a limit graphop A, in the sense that for almost all ξ ∈ I, νξAK ⇀

νξA. As shown in [23], one can derive the mean-field limit of the solution xN,K of the microscopic
system (12) in which the weights wN,Kij are given by an L1 approximation of wK as in (18), given
the necessary regularity condition:

Hypothesis 3 (Graphop regularity). For all ξ, ξ0 ∈ I, if ξ → ξ0, then νξA ⇀ νξ0A .

The empirical measure νn,m,K,t defined as in (17) from xN,K can then be shown to converge
towards µξt , defined for all S ∈ B(R) by µξt (S) :=

∫
S
ρ(t, ξ, x)dx, where ρ is the solution to the

mean-field equation

∂tρ(t, ξ, x) +∇x ·
(
ρ(t, ξ, x)

(∫
Ω

φ(x, y)(Aρ)(t, ξ, y)dy

))
= 0,

in the L1-Bounded-Lipschitz distance.

Remark 2.2. In [23], the proof is done on Ω = T for the Kuramoto model, but can be easily extended
to R. Moreover, the space of nodes can be extended from (I, dξ) with I = [0, 1] as exposed here, to a
more general (Ĩ , dm(ξ)), with Ĩ ⊂ Rn.

Remark 2.3. As explained above, this approach requires the converging sequence of graphons to be
symmetric (i.e. the corresponding graphs to be undirected).
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Digraph measures. In [35], Kuehn and Xu further generalize the result of [23] to sparse directed
graphs (also called “digraphs”), using the framework of digraph measures. Denoting by M+ the set
of finite Borel positive measures, one can define digraph measures as everywhere-defined in the first
variable, bounded measures in the second variable:

Definition 4. Any measure-valued function η ∈ B(I,M+(I)) is a digraph measure.

Convergence is shown in the uniform bounded Lipschitz metric d∞, defined for all µ1, µ2 ∈
B(I,M+(Rd)) by

d∞(µ1, µ2) := sup
ξ∈I

dBL(µξ1, µ
ξ
2).

As in the works [33] and [23], a continuity assumption with respect to the first variable is required
of the limit object (in this case, a digraph measure) to which the sequence of graphs converge:

Hypothesis 4. η ∈ C(I,M+(I))

Using this framework, a graphon can be viewed as the digraph limit of a sequence of dense graphs,
and a graphop is a symmetric digraph measure.

The results presented in [35] apply to general compact label sets I (not necessarily [0, 1]), with a
reference measure that can differ from the usual Lebesgue one, and in particular that can be discrete
or singular. However, in order to be consistent with what has been presented above, we present the
mean-field limit equation that is obtained in this simplified framework, which can be written as

∂tρ(t, ξ, x) +∇x ·
(
ρ(t, ξ, x)

(∫
I

∫
Rd
φ(x, y)ρ(t, ζ, y)dydηξ(ζ)

))
= 0.

Extended graphon. The approach proposed by Jabin, Poyato and Soler in [30] differs from the
approaches in [33], [23] and [35], in that it requires no continuity of the limit object (in this new
framework, called extended graphon), which is defined by

Definition 5. An extended graphon is a measure w ∈ L∞ξ Mζ ∩ L∞ζ Mξ.

Importantly, similarly to the last paragraph of Section 2.1.1, this limit procedure requires no a
priori knowledge of the limit of the discrete coupling weights (wNij )i,j∈{1,··· ,N}. Consequently, instead
of making assumptions on the limit extended graphon, assumptions are made on the discrete weights:

Hypothesis 5. The discrete weights (wNij )i,j∈{1,··· ,N} satisfy:

• max
1≤i≤N

N∑
j=1

|wNij | = O(1) and max
1≤j≤N

N∑
i=1

|wNij | = O(1)

• max
1≤i,j≤N

|wNij | = o(1).

Given such discrete weights, the microscopic system (12) is shown to converge to a limit function
µ ∈ L∞([0, T ]× I,W 1,1 ∩W 1,∞(Ω)) for any T > 0, solution to

∂tµ
ξ
t (x) +∇x ·

((∫
I

w(ξ, dζ)

∫
Ω

φ(x, y)µζt (dy)

)
µξt (x)

)
= 0,

where w ∈ L∞ξ Mζ ∩ L∞ζ Mξ is an extended graphon. More precisely, convergence is obtained in the
following sense: up to the extraction of a subsequence,

lim
N→∞

sup
0≤t≤T

EW1

(∫
I

µξt (·)dξ, µ
N
t

)
= 0,

where W1 is the 1-Wasserstein distance on Ω and the empirical measures µNt are defined from the
solution xN to the discrete system (12) by

µNt (x) :=
1

N

N∑
i=1

δxNi (t)(x). (26)

Notice that symmetry is required neither of the discrete weights (wNij )i,j∈{1,··· ,N} nor of the ex-
tended graphon w, unlike in the graphop approach [23]. However, contrarily to the digraph mea-
sure framework, a symmetric role is given to ξ and ζ in the definition of the extended graphon
w ∈ L∞ξ Mζ ∩ L∞ζ Mξ.
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2.2 Continuum limit

The mean-field limit presented in Section 2.1 provides weak convergence of the microscopic system
(12) towards the solution to a transport equation (33). Another approach, denoted continuum
limit or graph limit, provides a pointwise convergence of the solution to (12) towards the solution
x ∈ C([0, T ];L∞(Rd)) to an integro-differential Euler-type equation:∂tx(t, ξ) =

∫
I

w(ξ, ζ)φ(x(t, ξ), x(t, ζ))dζ

x(0, ·) = x0,
(27)

also denoted by nonlinear heat equation in [44].
In the case of the mean-field limit, the link between the solution xN to the microscopic system

(12) and the solution µ to the limit equation (33) is done via a so-called empirical measure (given
for example in equations (15), (17), (26)). In the continuum limit framework, the link between
the solution xN to (12) and the solution x to (27) is provided by constructing a piecewise-constant
function xN ∈ C([0, T ];L∞(Rd)) from xN :

∀ξ ∈ I, xN (t, ξ) :=

N∑
i=1

xNi (t)1
[ i−1
N

, i
N

)
(ξ). (28)

The crucial point consists of noticing that xN is solution to (27) if and only if xN is solution to the
microscopic equation (12) with the graphon wN given by

∀(i, j) ∈ {1, · · · , N}2, wNij :=

∫ i
N

i−1
N

∫ j
N

j−1
N

w(ξ, ζ)dζdξ. (29)

Another key difference with the mean-field limit approach is that all results currently published
are in the context of dense graphs, i.e. graphs whose limits are graphons w ∈ L∞(I2) (see Definition 2
in Section 2.1.1). The available results can be divided into results for deterministic graphs and results
for random graphs.

2.2.1 Continuum limit on deterministic graphs

A seminal paper providing the first proof of convergence of the solution to the microscopic equa-
tion (12) towards its continuum limit (27) was published in 2014 by Medvedev [44]. The main result
can be stated as follows. Let x ∈ C([0, T ];L∞(Rd)) denote the solution to the integro-differential
equation (27) on a given graphon w ∈ L∞(I2) and with an initial condition x0 ∈ L∞(I). For each
N ∈ N, consider the solution xN to the microscopic system (12) on the underlying graph whose
adjacency matrix wN is given by (29) and the initial condition by

∀i ∈ {1, · · · , N}, xN,0i :=

∫ i
N

i−1
N

x0(ξ)dξ.

Let xN ∈ C([0, T ];L∞(Rd)) denote the piecewise-constant function built from the vector xN by (28).
Then, xN converges to x in L2−norm, satisfying

lim
N→∞

sup
t∈[0,T ]

‖x(t, ·)− xN (t, ·)‖L2(I) = 0.

A more detailed explanation of this limit process is presented in Section 3.2, in the case of a particle
system with time-evolving weights.

Remarkably, this result requires no continuity of the graphon w. However, as shown in [51] (The-
orem 4), if both the initial data and the graphon are regular enough, one can obtain a quantitative
convergence result. More precisely, let α ∈ (0, 1] such that x0 ∈ C0,α(I;Rd). Let G : [0, T ]×I2×(Rd)2

be locally Lipschitz with respect to its last two arguments uniformly with respect to the first three,
and suppose in addition that G is locally α-Hölder with respect to its last four arguments. Then,
the solution x to the integro-differential equation∂tx(t, ξ) =

∫
I

G(t, ξ, ζ, x(t, ξ), x(t, ζ))dζ

x(0, ·) = x0,

satisfies x(t, ·) ∈ C0,α(I;Rd) for all t ∈ [0, T ]. Moreover, let xN denote the solution to the particle
system 

d

dt
xNi (t) =

1

N

N∑
i=1

G(t,
i

N
,
j

N
, xNi (t), xNj (t)) for all i ∈ {1, · · · , N}

xNi (0) = x0(
i

N
).
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Then, for every N ∈ N, it holds

max
i∈{1,··· ,N}

|x(t,
i

N
)− xNi (t)| ≤ 1

Nα
(1 + Holα(x0))e2tLNx (t),

where Holα(x0) denotes the Hölder constant of x0 and LNx (t) depends on the Hölder constant of
G(τ, ·, ·, ·, ·) and on the Lipschitz constant of G(τ, ξ, ζ, ·, ·) for all τ ∈ [0, t].

Moreover, letting xN be the piecewise-constant function defined by (28) from the solution xN to
the microscopic system, it holds

‖x(t, ·)− xN (t, ·)‖L∞(I) ≤
2

Nα
(1 + Holα(x0))e2tLNx (t).

Remark 2.4. In order to insist on the role of the regularity, we stated the result from Theorem 4
in [51] in a simplified form. The full result, as stated in its most general form, only requires I to be
a general compact smooth n-dimensional manifold, and the final time T ∈ R+ ∪ {+∞} corresponds
to the uniform maximal time until which the solution to the microscopic system is well-defined. We
encourage the reader to consult [51] for a complete statement.

2.2.2 Continuum limit on random graphs

Random unweighted graphs. In [40, 41], Lovasz and Szegedy introduce a method to construct
random graphs from a graphon w. Such random graphs, named w-random graphs, are unweighted,
meaning that each edge is either present or absent, and consequently, the corresponding adjacency
matrix (wij)i,j∈{1,··· ,N} contains values in {0, 1}. Given a graphon w ∈ L∞(I2; [0, 1]), a w-random
graph can be defined in two different ways, as proposed in [45]: either from a sequence of i.i.d. random
variables, or from a sequence of deterministic evenly-spaced variables. Although these differences
may seem subtle, they are indeed fundamental and the type of convergence one may hope to obtain
depends on the degree of randomness (“random-random” or “random-deterministic”) introduced in
the graph construction.

Definition 6. Let w ∈ L∞(I2; [0, 1]). A w-random graph can be constructed either from a sequence
of random variables (r-r) or from a sequence of deterministic variables (r-d):

(r-r) Let Z = (Zi)i∈N be a sequence of i.i.d. random variables, uniformly distributed in I = [0, 1]. Let
N ∈ N. A random (unweighted) graph GN generated by the random sequence Z is constructed
by inserting each edge (i, j) with probability w(Zi, Zj):

P[(i, j) ∈ E(GN )] = w(Zi, Zj).

The corresponding adjacency matrix is given by (wij)i,j∈{1,··· ,N} with

wij =

{
1 if (i, j) ∈ E(GN )

0 otherwise.

(r-d) Let N ∈ N. Let Z̃ = (Z̃Ni )i∈{1,··· ,N} be a determistic sequence satisfying Z̃Ni ∈ [ i−1
N
, i
N

) for all

i ∈ {1, · · · , N}. A random (unweighted) graph G̃N generated by the deterministic sequence Z̃
is constructed by inserting each edge (i, j) with probability w(Z̃Ni , Z̃

N
j ):

P[(i, j) ∈ E(G̃N )] = w(Z̃Ni , Z̃
N
j ).

The corresponding adjacency matrix is given by (wij)i,j∈{1,··· ,N} with

wij =

{
1 if (i, j) ∈ E(G̃N )

0 otherwise.

Two convergence results can then be given, one in each of the settings (r-r) and (r-d).
Firstly, in [45], Medvedev proves that given a symmetric graphon w ∈ L∞(I2, [0, 1]), a Lipschitz

function φ : R → R and x0 ∈ L∞(I), if the solution x ∈ C([0, T ];L∞(I)) to (27) satisfies the
inequality

sup
t∈[0,T ]

∫
I

(∫
I

w(ξ, ζ)φ(x(t, ξ), x(t, ζ))2dζ −
(∫

I

w(x, y)φ(x(t, ξ), x(t, ζ))dζ

)2
)
dξ ≥ C1

for some constant C1 > 0, then the solution xN to the microscopic system (12) posed on the w-random
graph generated by a random sequence (r-r) constructed as in Definition 6 converges towards x. The
convergence is obtained in the following sense: for some C > 0,

lim
N→+∞

P

[
sup
t∈[0,T ]

‖xN (t)−PZNx(t, ·)‖2,N ≤ C

]
= 1,
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where for all a ∈ RN , ‖a‖2,N := 1
N

∑N
i=1 ai, and PZNx(t, ·) := (x(t, Z1), · · · , x(t, ZN )) denotes the

evaluation of the function x(t, ·) ∈ L∞(I) at the discretization points (Z1, · · · , ZN ).
On the other hand, the convergence of the microscopic system on a w-random graph generated by

a deterministic sequence (r-d) requires more regularity from the graphon w. More specifically, in [45],
Medvedev proves that given a symmetric graphon w ∈ L∞(I2; [0, 1]) almost everywhere continuous,
a Lipschitz function φ : R→ R and x0 ∈ L∞(I), if the solution x ∈ C([0, T ];L∞(I)) to (27) satisfies
the inequality

sup
t∈[0,T ]

∫ 2

I

w(ξ, ζ)(1− w(ξ, ζ))φ(x(t, ξ)− x(t, ζ))dξdζ > 0

for some T > 0, then defining xN from the solution xN to the microscopic system (12) on the
w-random graph (r-d) as by the relation (28), it holds

‖xN − x‖C([0,T ];L2(I))
P−−−−−→

N→+∞
0,

where the convergence is in probability.
The proofs of both results reliy on several applications of the Central Limit Theorem, and, in

the case (r-d), on the introduction of an intermediate deterministic system, known to converge due
to results in [44] (See Section 2.2.1).

Random weighted graphs. A generalization of this convergence result to general directed
weighted random graphs is provided in [3]. In that aim, the concept of w-random graphs is generalized
to that of q-weighted random graphs as follows:

Definition 7. Let q : I2 → P(R+). A q-weighted random graph can be constructed either from a
sequence of random variables (r-r) or from a sequence of deterministic variables (r-d).

(r-r) Let Z = (Zi)i∈N be a sequence of i.i.d. random variables, uniformly distributed in I = [0, 1].
Let N ∈ N. A q-weighted random graph generated by the random sequence Z is constructed by
randomly attributing to each edge (i, j) a weight wij ∈ R+ with law q(Zi, Zj , ·).

(r-d) Let N ∈ N. Let Z̃ = (Z̃Ni )i∈{1,··· ,N} be a determistic sequence satisfying Z̃Ni ∈ [ i−1
N
, i
N

) for

all i ∈ {1, · · · , N}. A q-weighted random graph generated by the deterministic sequence Z̃ is
constructed by randomly attributing to each edge (i, j) a weight wij ∈ R+ with law q(Z̃i, Z̃j , ·).

Again, the convergence results depend heavily on the degree of randomness ((r-r) or (r-d)) of the
q-weighted random graph.

In the case of a q-weighted random graph generated by a random sequence, given a Lipschitz
function φ : R → R and an initial condition x0 ∈ L∞(I;R), the solution xN to the discrete system
posed on the q-weighted random graph converges to the solution x to the continuous equation (27),
where the limit graphon is the first moment of the weighted random graph law q:

∀(ξ, ζ) ∈ I2, w(ξ, ζ) =

∫
R+

q(ξ, ζ; du). (30)

The convergence is obtained quantitatively in the following sense:

P

[
sup
t∈[0,T ]

‖xN (t)−PZNx(t, ·)‖2,N ≥
C1(T )√
N

]
≤ C̃1

N

for some constants C1(T ) and C̃1.
In the case of a q-weighted random graph generated by a deterministic sequence, more regularity

is required both of the initial data and of the first moment of q, the weighted random graph law.

More specifically, if x0 ∈ C0, 1
2 (I) and (ξ, ζ) 7→ wq(ξ, ζ; dw) is 1

2
−Hölder on I2, then the solution

xN to the microscopic system (12) posed on the q-weighted random graph converges to the solution
x to the continuous equation (27), where the limit graphon is the first moment of the weighted
random graph law q, as given by equation (30). Denoting by xN the projection of the vector xN

onto C([0, T ];L∞(I)) given by (28), it holds

P
[
‖xN − x‖C([0,T ];L2(I)) ≥

C2(T )√
N

]
≤ C̃2

N

for some constants C2(T ) and C̃2.
Both proofs of convergence rely on the Bienaymé-Chebyshev inequality, and in the case (r-d),

on the convergence of an intermediate deterministic system given by Theorem 4 in [51] (see Section
2.2.1).
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The system of ODEs

d

dt
xNi (t) =

1

N

N∑
j=1

φ(
i

N
,
j

N
, xNi (t), xNj (t))

The continuum limit equation

∂tx(t, ξ) =

∫
I

φ(ξ, ζ, x(t, ξ), x(t, ζ))dζ

The non-exchangeable mean-field limit equation

∂tµ
ξ
t (x) +∇x ·

((∫
I×Rd

φ(ξ, ζ, x, y)dµζt (y)dζ

)
µξt (x)

)
= 0

The exchangeable mean-field limit equation

∂tµt(x) +∇ ·
((∫

Rd
φ(x, y)dµ(y)

)
µt(x)

)
= 0

N →∞

N →∞
N →∞

2
1

3

4

Figure 3: Links between the different equations. The red arrows show the large-population limits de-
scribed in Sections 2.1 and 2.2. The dashed arrows 1, 2 and 3 are explained in Sections 2.3.1, 2.3.2 and
2.3.3. Arrow 4 corresponds to Remark 2.6.

2.3 Links between Continuum limit and Mean-Field limits

Let N ∈ N. Denoting by xNi (t) ∈ Rd the position of particle i at time t, a general particle system
can be described by (xNi )i∈{1,··· ,N} ∈ C([0, T ],Rd)N , whose evolution is given by:

d

dt
xNi =

1

N

N∑
i=1

φ(
i

N
,
j

N
, xNi , x

N
j ) for all i ∈ {1, · · · , N}

xNi (0) = xN,0i .

(31)

As seen in Section 2.2, its limit as N goes to infinity can be written as the solution x ∈
C([0, T ], L2(I;Rd)) to the following integro-differential equation, provided that xN,0i converges to
x0 in a suitable sense: ∂tx(t, ξ) =

∫
I

φ(ξ, ζ, x(t, ξ), x(t, ζ))dζ

x(0, ·) = x0.
(32)

We refer to x as the continuum limit of xN . Within this framework, the infinitely numerous
agents are assumed to be labeled by the variable ξ, which spans the set I = [0, 1]. Thus, x(t, ξ)
denotes the position of agent with label ξ at time t.

Secondly, as seen in Section 2.1, taking the non-exchangeable mean-field limit of the micro-
scopic system (31) yields the following equation on the probability density µ ∈ C([0, T ],P(I ×Rd)):∂tµ

ξ
t (x) +∇x ·

((∫
I×Rd

φ(ξ, ζ, x, y)dµζt (y)dζ

)
µξt (x)

)
= 0

µt=0 = µ0.

(33)

Thirdly, if the agents are indistinguishable, i.e. if φ(ξ, ζ, x(t, ξ), x(t, ζ)) = φ(x(t, ξ), x(t, ζ)), we
can derive the classical exchangeable mean-field limit giving the evolution of the probability
measure µ ∈ C([0, T ],P(Rd)):∂tµt(x) +∇x ·

((∫
Rd
φ(x, y)dµt(y)

)
µt(x)

)
= 0

µt=0 = µ0.
(34)

Here, µ(Ω) denotes the mass of agents in the space region Ω.
All three equations (32), (33) and (34) are obtained as the limit of (31) as N goes to infinity,

as shown in Sections 2.1 and 2.2. Here, we explain briefly and formally how these descriptions are
related to one another (see Figure 3 for a visual summary). A complete and detailed overview of
how all models are related can be found in [51].
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2.3.1 From continuum limit to non-exchangeable mean-field limit

Let x(t, ξ) denote the solution to (32), and let µ̃t denote an empirical measure defined by

µ̃t(ξ, x) =

∫
I

δx(t,ζ)(x)δζ(ξ)dζ.

For all test functions f ∈ C∞(I × Rd), it holds

d

dt

∫
I×Rd

f(ξ, x)dµ̃ξt (x
N )dξ =

d

dt

∫
I

f(ξ, x(t, ξ))dξ

=

∫
I

∇xf(ξ, x(t, ξ)) ·
(∫

I

φ(ξ, ζ, x(t, ξ), x(t, ζ))dζ

)
dξ

=

∫
I×Rd

∇xf(ξ, x) ·
(∫

I×Rd
φ(ξ, ζ, x, y)dµ̃ζt (y)dζ

)
dµ̃ξt (x)dξ,

which shows that the continuous empirical measure µ̃ built from the solution x to (32) is itself a
solution to (33). This computation corresponds to the arrow 1 in Figure 3.

Note that the set of measures µt ∈ P(I × Rd) that can be written as a continuous empirical
measure µ̃t are the measures supported on curves ξ 7→ x(t, ξ).

2.3.2 From non-exchangeable mean-field limit to continuum limit

As shown in [51], a solution to (32) can be recovered from a solution to the non-exchangeable mean-
field limit equation (33) by taking its first moment with respect to the space variable.

In this aim, we suppose that the marginal of µ0 with respect to its first variable is the Lebesgue
measure, i.e. that

πI#µ0 = dξ.

As observed in [51] (Remark 1), the marginal of µt with respect to its first variable is constant in
time, since the transport term acts only on the space variable. It then holds πI#µt = dξ for all
t ∈ [0, T ]. Let us then write the disintegration of µt with respect to its marginal dξ as

µt =

∫
I

µξt dξ,

and further assume the following

Hypothesis 6.
∫
Rd dµ

ξ
t (x) = 1 for almost all ξ ∈ I.

We then define the first moment of µt with respect to the space variable as

x̄(t, ξ) :=

∫
Rd
x dµξt (x).

Decomposing x̄ on its coordinates using an orthonormal basis (ek)k∈{1,··· ,d} of Rd, it then holds for
all k ∈ {1, · · · , d}

d

dt
x̄(t, ξ) · ek =

d

dt

∫
Rd

(x · ek) dµξt (x) =

∫
Rd
∇x(x · ek) ·

(∫
I×Rd

φ(ξ, ζ, x, y)dµζt (y)dζ

)
dµξt (x)

=

∫
Rd
ek ·

(∫
I×Rd

φ(ξ, ζ, x, y)dµζt (y)dζ

)
dµξt (x).

At this point, we are led to make a strong assumption on the form of the interaction function φ.

Hypothesis 7. We suppose that (ξ, ζ, x, y) 7→ φ(ξ, ζ, x, y) can be written as the product of a function
of ξ, ζ and of a linear function of x, y, i.e.

φ(ξ, ζ, x, y) = w(ξ, ζ)(λ1x+ λ2y),

with w : I2 7→ R and (λ1, λ2) ∈ R2.

This form is actually common in models for opinion dynamics with linear interaction of the type
Hegselmann-Krause (see [29]), for which the interation is given by w(ξ, ζ)(y − x). We obtain

d

dt
x̄(t, ξ) =

∫
Rd

(∫
I×Rd

w(ξ, ζ)(λ1x+ λ2y)dµζt (y)dζ

)
dµξt (x)

=

∫
I

w(ξ, ζ)

(
λ1

∫
Rd
xdµξt (x) + λ2

∫
Rd
ydµζt (y)

)
dζ =

∫
I

w(ξ, ζ) (λ1x̄(t, ξ) + λ2x̄(t, ζ)) dζ
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which is the continuum limit equation (32) for this specific choice of φ. This computation corresponds
to the arrow 3 in Figure 3.

The fact that one can recover a closed equation on the first moment of µt with respect to the space
variable is remarkable, and can be intuitively explained as follows. In the general case, the evolution
of x̄(t, ξ) depends on all remaining particles labeled by all ζ ∈ I and located at all y ∈ Rd. The linear
condition on φ implies that the combined effect of all the particles with label ζ is equivalent to that
of their first moment x̄(t, ξ). The problem of obtaining a closed equation in the general (nonlinear)
case is still open, and we refer the reader to [51] (Section 3.1.2.) for further comments on this issue.

Remark 2.5. The assumption on the marginal of µ0 with respect to its first variable can be lifted
without loss of generality. If πI#µ0 := ν for a general ν ∈ P(I), one can recover the general
graph-limit equation

∂tx(t, ξ) =

∫
I

φ(ξ, ζ, x(t, ξ), x(t, ζ))dν(ζ).

2.3.3 Subordination of the mean-field limit to the continuum limit equation
(indistinguishable case)

In the case in which the particles are indistinguishable, i.e. φ(ξ, ζ, x, y) = φ(x, y), one can derive the
classical mean-field limit equation (34) as the limit as N tends to infinity of the particle system (31).
As shown in [11], Equation (34) can also be obtained directly from the continuum limit (32) using
the “continuous” empirical measure

µ̄t(x) =

∫
I

δx(t,ξ)(x)dξ

where x(t, ξ) is a solution to (32). Indeed, for all test functions f ∈ C∞(Rd), it holds

d

dt

∫
Rd
f(x)dµ̄t(x) =

d

dt

∫
I

f(x(t, ξ))dξ =

∫
I

∇xf(x(t, ξ)) ·
(∫

I

φ(x(t, ξ), x(t, ζ))dζ

)
dξ

=

∫
Rd
∇xf(x) ·

(∫
Rd
φ(x, y)dµ̄t(y)

)
dµ̄t(x),

which is the weak formultion of (34). This computation corresponds to the arrow 2 in Figure 3.
Thus, deriving the continuum limit of (31) as N goes to infinity and doing the transformation

above is an alternative way of obtaining the classical mean-field limit equation (34).
Two important remarks need to be made.
Firstly, all initial measures µ0 ∈ P(Rd) can be approximated by empirical measures of the form

µ̄t(x) =
∫
I
δx(t,ξ)(x)dξ, as shown in the following proposition.

Proposition 1. The set of measures{∫
I

δx0(ξ)(x)dξ | x0 : I → Rd measurable

}
is dense in P(Rd) for the weak topology.
Moreover, for if d = 1, for any µ0 ∈ P(R), there exists a measurable function x0 : I → R such that∫
I
δx0(ξ)(x)dξ.

Proof. It is well known that the set of measures that can be written as finite sums of Dirac masses
is dense in P(Rd). We claim that for any µ̄n0 :=

∑n
i=1 aiδxi where ai ∈ [0, 1] for all i ∈ {1, · · · , n}

and
∑n
i=1 ai = 1, there exists a function x0 : I → Rd such that

µ̄n0 (x) =

∫
I

δx0(ξ)(x)dξ.

We prove this claim constructively. Let x0 be defined by the piecewise-constant function

∀i ∈ {1, · · · , n}, ∀ξ ∈ [bi, bi+1), x0(ξ) = xi

where bi :=
∑i−1
k=1 ak. Then∫

I

δx0(ξ)(x)dξ =

n∑
i=0

∫ bi+ai

bi

δxi(x)dξ =

n∑
i=1

aiδxi .

Secondly, the choice of x0 is in general not unique. Any measure-preserving rearrangement of x0

gives the same mesure µ̄0. This implies that in passing from the solution x(t, ξ) to the continuum
limit equation to the solution µt(x) to the mean-field equation, there is an irreversible information
loss. In this indistinguishable case, the agents can be relabeled without impacting the dynamics.

Remark 2.6. In the indistinguishable case, the exchangeable mean-field equation (34) can be recov-
ered from the non-exchangeable mean-field equation (33) by integrating the solution µξt in ξ.
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3 Large-population limits of particle systems on adap-
tive dynamical networks

As mentioned in the introduction, the setting of adaptive dynamical networks is of great interest since
it allows to build more realistic models. Indeed, in many real-life situations, the graph involved is not
static and its evolution can depend on the states of the system itself. The natural question is to see
if and how the large-population limit considered above, i.e. the non-exchangeable and exchangeable
mean-field limits and the continuum limit can be extended to this setting. Actually, it is a challenging
problem in its generality, and up to recently, two specific frameworks have successfully addressed it.

The first one is the setting of Kuramoto-type models on N oscillators [24]. It can be written in
the following form

d

dt
xNi = ωNi (xNi , t) +

1

N

N∑
j=1

wNijφ
(
xNi , x

N
j

)
for all i ∈ {1, · · · , N}

d

dt
wNij = −ε

(
wNij +H(xNi , x

N
j )
) (35)

where xNi = xNi (t) ∈ T = R/(2πZ) represents the phase of the i-th oscillator for i ∈ {1, . . . , N},
ωNi : T×R→ R is the vector field describing the intrinsic frequency, φ : T2 → R is a coupling function,
wN (t) = (wNij (t))1≤i,j≤N is the time-evolving weight matrix of the network of oscillators, which takes
into account the local information of two interacting oscillators via the function H : T2 → R and
ε > 0 is a parameter which controls the time scale between the dynamics on the network of the
phases and the dynamics of the network weights.

The second one can be seen as a variant of the Hegselmann-Krause dynamics [29] where, addi-
tionally to the opinions, we also are interested in the time-evolving weights of agents which represent
their charisma [2]. This model can also be viewed as a system of ODEs on a evolving-weighted
(on-symmetric) graph (see Figure 4). It can be written in the following way

d

dt
xNi (t) =

1

N

N∑
j=1

mN
j (t)φ(xNj (t)− xNi (t))

d

dt
mN
i (t) = ψ

(N)
i (xN (t),mN (t))

(36)

where xN = (xN1 , . . . , x
N
N ) : [0, T ] → (Rd)N represent the opinions of N agents, and mN =

(mN
1 , . . . ,m

N
N ) : [0, T ] → RN represent their individual weights of influence. Each opinion’s time-

evolution is affected by the opinion of each neighboring agent via the interaction function φ, propor-
tionally to the neighboring agent’s weight of influence. Moreover, the agents’ weights are assumed to
evolve in time and their dynamics may depend on the opinions and weights of all the other agents,
via functions ψ

(N)
i : (Rd)N × RN → R.

Figure 4: Evolving-weighted graph associated to (36) in the case of three agents.

More recently, in [60], inspired by the approach developed for the particular model of evolving-
in-time weights in [2], some results have been obtained for a more general Kuramoto-type model of
the form 

d

dt
xNi = ωNi (xN , t) +

1

N

N∑
j=1

wNijφ
(
xNi , x

N
j

)
for all i ∈ {1, · · · , N}

d

dt
wNij = ψ

(N)
ij (xN (t), wN (t))

(37)

As in the static case, when considering large population limit, several approaches are possible:
mean-field and continuum limits. We start with the mean-field one.
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3.1 Mean-field limits

3.1.1 The non-exchangeable mean-field limit

Let us start by recalling that the question of the derivation of a non-exchangeable mean-field limit
is very difficult if we want to deal with general adaptive networks. So far, there exists only partial
results on very specific cases.

The Kuramoto-type model. In [25], Gkogkas, Kuehn and Xu are interested in a particular
form of (35) that we write below

d

dt
xNi = ωNi +

1

N

N∑
j=1

wNijϕ
(
xNj − xNj

)
for all i ∈ {1, · · · , N}

d

dt
wNij = −ε

(
wNij + h(xNj − xNi )

)
.

(38)

Note that the authors explain that their result can actually extend to the more general form (35)
easily. Let us go back to the framework of digraph measures defined in subsection 2.1.2 that we
recall are measure-valued function η ∈ B(I,M+(I)). We introduce the following generalized adaptive
Kuramoto network 

∂tx(t, ξ) = ω(t, ξ) +

∫
I

∫
T
ϕ(y − x(t, ξ))dνζt (y)dηξt (ζ),

∂tη
ξ
t (·) = −εηξt (·)− ε

∫
T
h(y − x(t, ξ))dν·t(y)λ(·)

(39)

which is interpreted in a weaker sense in integral form. The equation on ηξ is to be understood in
the weak sense, meaning that for any bounded continuous test function f ∈ Cb(I), ηξt satisfies∫

I

f(ζ)dηξt (ζ) =

∫
I

f(ζ)dηξ0(ζ)− ε
∫ t

t0

(∫
I

f(ζ)dηξτ (ζ)

)
dτ

− ε
∫ t

t0

∫
I

(
f(ζ)

∫
T
h(y − x(τ, ξ))dνζτ (y)dζ

)
dτ. (40)

The key idea of the article is that, thanks to a variation of constants formula for η, one can prove
that being a solution to (39) in its integral form is equivalent to being a solution to

x(t, ξ) = x0(ξ) +

∫ t

to

(
ω(s, ξ) + e−ε(s−t0)

∫
I

∫
T
ϕ(y − x(s, ξ))dνζs (y)dηξ0(ζ) ,

− ε
∫ s

t0

e−ε(t−τ)

∫
I

(∫
T
ϕ(y − x(s, ξ))dνζs (y)

·
∫
T
h(y − x(τ, ξ))dνζτ (y)

)
dζ

)
ηξt (·) = e−ε(t−t0)ηξ0(·)−

(
ε

∫ t

t0

e−ε(t−s)
∫
T
h(y − x(s, ξ))dν·s(y)ds

)
λ(·)

(41)

Under this form, the dynamics of the oscillators are decoupled from the dynamics of the digraph
measures. One can then reduce the hybrid system to a one-dimensional integral equation indexed
by the vertex variable coupled on the prescribed initial graph measures as well as prescribed time-
dependent measure valued functions. The mean-field limit equation is a generalized Vlasov equation:

∂tρ(t, ξ, x) + ∂x

(
ρ(t, ξ, x)

(
ω(t, ξ) + e−ε(t−t0)

∫
I

∫
T
ϕ(y − x)ρ(t, ζ, y)dydηξ0(ζ)

+

∫
I

∫
T
ϕ(y − x)ρ(t, ζ, y)dy

(
ε

∫ t

t0

e−ε(t−s)
∫
T
h(z − x)ρ(s, ζ, z)dzds

)
dζ

))
= 0 (42)

Their result consist in establishing approximations of the solution to the mean-field limit (42) by
empirical distributions generated by a sequence of ODEs like (38) thanks to stability estimates and
discretization of a given initial digraph measure and of the initial condition of the generalized Vlasov
equation.

The evolving-in-time weight model. So far, there is no result of non-exchangeable mean-
field limit for the general system (36). However, for weight dynamics of the form

ψi(x
N ,mN ) =

∫
{1,...,N}×Rd×R

S̃(i, xNi ,m
N
i , k, y, n)dµ̃Nt (k, y, n) (43)
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where S̃ is locally Lipschitz in (xNi ,m
N
i , y, n) uniformly in (i, k) and

µ̃Nt (k, x,m) =
1

N

N∑
i=1

δ(x− xNi (t))δ(m−mN
i (t))δ(k − i),

the convergence to the following equation on the probability density µ ∈ C([0, T ],P(I × Rd × R))

∂tµ
ξ
t (x,m) +∇x ·

((∫
I×Rd×R

nφ(x, y)dµζt (y, n)dζ

)
µξt (x,m)

)
+ ∂m

((∫
I×Rd×R

S̃(ξ, x,m, ζ, y, n)dµζt (y, n)dζ

)
µξt (x,m)

)
= 0 (44)

can be established applying the result proved in [51]. Indeed, in that case, by setting Xi = (xi,mi),
we can rewrite the system as

d

dt
XN
i =

1

N

N∑
i=1

Φ(
i

N
,
j

N
,XN

i , X
N
j ) for all i ∈ {1, · · · , N}

Xi(0) = XN,0
i

(45)

where Φ satisfy the necessary regularity assumptions.

3.1.2 The exchangeable mean-field limit

In this subsection, we will only focus on the evolving-in-time weight model. It was first introduced
in [42], with a focus on its long-time behavior for specific choices of weight dynamics. The first
considerations regarding the large-population limit have been addressed in [52] for a more general
model, and rigorously proven in [2, 55].

In this review, we denote by exchangeable mean-field limit the classical mean-field limit, which
initially appeared in the context of gas dynamics (see [15] for instance), and which only applies to
systems that preserve indistinguishibility (or exchangeability, see Def. 1). Recall that for classical
particle systems, the empirical measure νNt ∈ P(Rd) is defined by

νNt (x) :=
1

N

N∑
i=1

δ(x− xNi (t)).

Importantly, νNt stays unchanged for any relabeling of the particles, which justifies that it can be
used as a link between a particle system and a Vlasov-type equation only if the particle system
preserves exchangeability.

In the case of System (36), due to the specific role played by the weights, it has been chosen to
work with a modified empirical measure µ̂Nt ∈ P(Rd), defined by

µ̂Nt (x) :=
1

N

N∑
i=1

mN
i (t)δ(x− xNi (t)). (46)

Notice that in addition to being blind to any relabeling of the agents, this new empirical measure
stays unchanged if the weights of agents at the same location x are redistributed between them.
Thus, the notion of indistinguishibility in that case needs to include the preservation of “grouping of
the agents”: the dynamics must not be influenced by redistribution of the weights of grouped agents.

For this reason, the mean-field limit has been proved for the particular class of weight dynamics
which preserves this new notion of indistinguishability, given by

ψ
(N)
i (xN ,mN ) = mN

i (t)
1

Nk

N∑
j1=1

· · ·
N∑

jk=1

mN
j1(t) · · ·mN

jk (t)S(xNi (t), xNj1(t), · · ·xNjk (t)), (47)

where k ∈ N and S : (Rd)k+1 → R is globally bounded and Lipschitz. Another assumption is that

the total weight of the system is conserved, i.e.
∑
i ψ

(N)
i = 0, in order for µ̂Nt to be a probability

measure for all t ≥ 0.

Remark 3.1. This last assumption is formulated as a skew-symmetry property on S in [2, 55],
which indeed leads to the conservation of the total weight.
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Thus, for this special class of weights, it can be proved that the empirical measure converges to
a measure µt ∈ P(Rd) solution to the following transport equation with source:

∂tµt(x) +∇ · (V [µt](x)µt(x)) = h[µt](x) (48)

with the non-local vector-field given by

∀µ ∈ P(Rd), ∀x ∈ Rd, V [µ](x) =

∫
Rd
φ(y − x)dµ(y),

the non-local source term given by

∀µ ∈ P(Rd), ∀x ∈ Rd, h[µ](x) =

(∫
(Rd)k

S(x, y1, · · · , yk)dµ(y1) · · · dµ(yk)

)
µ(x).

Regular interaction function. For φ ∈ Lip(Rd;R), this result is actually proven by two
different approaches. In [55], the proof consists of noticing that the empirical measure is already a
solution to (48) and in establishing continuity with respect to the initial data, implying that

dBL(µ̂N0 , µ0) −−−−→
N→∞

0 ⇒ dBL(µ̂Nt , µt) −−−−→
N→∞

0,

where µt is the solution to (48) with initial data µ0. The other proof, in [2], is actually based on
exploiting the continuum limit (see section 3.3).

Singular interaction function. In [7], the authors are concerned with analyzing the mean-field
limit for (36) in the particular case of the attractive 1D Coulomb interaction where φ(x) = V ′(x)
with V (x) = |x|, i.e. φ(x) = sgn(x) with the convention sgn(0) = 0. More precisely, they study the
following system 

d

dt
xNi =

1

N

N∑
j=1

mN
j sgn(xNj − xNi )

d

dt
mN
i (t) =

1

N
mN
i

N∑
j=1

mN
j S(xNj − xNi )

(49)

where S ∈ C∞0 (R) is assumed to be odd.
The mean-field equation for this ODE system is then the following

∂tµt(x)− ∂x
((∫ x

−∞
µt(dy)−

∫ +∞

x

µt(dy)

)
µt(x)

)
= µt(x)(S ? µt)(x).

We start by noticing that the odd character of S implies that µt stays a probability density for all
times. Thus, the above equation can be rewritten as

∂tµt(x)− ∂x
((

2

∫ x

−∞
µt(dy)− 1

)
µt(x)

)
= µt(x)(S ? µt)(x). (50)

The main idea developed in [7] is to shift the focus and instead of studying (50), to analyze the
equation for the primitive of µt. Let us set

F (t, x) := −1

2
+

∫ x

−∞
µt(dy),

then integrating (50) yields the following non-local Burgers-type equation for F

∂tF + ∂x(A(F )) = S[F ](t, x) (51)

where A(F ) = −F 2 and

S[F ](t, x) := F (t, x)(ϕ ? F )(t, x)−
∫ x

−∞
F (t, z)(∂zϕ ? F )(t, z)dz

with ϕ := ∂xS.
One of the advantages of this new formulation is that the flux term in the new Burgers equation

is local. The strategy is to consider a primitive of the empirical measure associated to (49)

FN (t, x) := −1

2
+

1

N

N∑
j=1

mj(t)H(x− xj(t))
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where H is the Heaviside function. One can then establish that FN is an entropy solution to

∂tFN + ∂x(AN (t, FN )) = S[FN ](t, x) (52)

where AN is a time-dependent approximation of the time-independent flux A. This proof relies on
classical arguments like the use of Rankine-Hugoniot and Oleink conditions adapted to this setting
(see [7, Appendix A] for more details). Thee mean-field limit is proven by extracting a converging
subsequence and establishing some stability estimates. More precisely, provided that F 0

N converges to
F 0 in L1(R), FN can be proven to converge to F in C([0, T ], L1(R)) where FN and F are respectively
the solutions to (52) and (51) associated with the respective initial data F 0

N and F 0.

3.2 Continuum limit

As mentioned in the static case, the study of continuum limits is of great interest. For instance, in
[43], the analysis of the steady states on small world graphs was carried out by using those continuum
limits. Thus, because of the relevance of adaptive dynamical networks from a modeling point of view,
it seems natural to extend those limits to that setting.

Regular weight dynamics. The first result of this type was established in [2], where the
following limit equation  ∂tx(t, ξ) =

∫
I

m(t, ζ)φ(x(t, ζ)− x(t, ξ))dζ

∂tm(t, ξ) = ψ(ξ, x(t, ·),m(t, ·)),
(53)

was obtained as the continuum limit of the particle system with time-varying weights (36). Here, ξ
represents the continuous index variable taking values in I := [0, 1], as introduced in the previous
sections. The proof requires some regularity assumptions and some bounds.

Hypothesis 8. The function ψ : I × L∞(I;Rd) × L∞(I;R) is assumed to satisfy the following
Lipschitz properties: there exists Lψ > 0 such that for all (x1, x2,m1,m2) ∈ L2(I)4,{

‖ψ(·, x1,m1)− ψ(·, x2,m1)‖L2(I) ≤ Lψ‖x1 − x2‖L2(I)

‖ψ(·, x1,m1)− ψ(·, x1,m2)‖L2(I) ≤ Lψ‖m1 −m2‖L2(I).
(54)

Assume also that there exists Cψ > 0 such that for all (x,m) ∈ L∞(I,Rd × R), for all ξ ∈ I,

|ψ(ξ, x,m)| ≤ Cψ(1 + ‖m‖L∞(I)). (55)

while φ ∈ Lip(Rd;R).
The sublinear growth assumption (55) may seem restrictive, it is actually necessary in order to
prevent the blow-up in finite-time of the weight function m. Moreover, it provides a framework
which is coherent with the one developed in [44] on graphs with L∞ weights. Indeed, one can view
system (53) as the evolution of the opinions x on a time dependent weighted non-symmetric graph
with weights w(t, ξ, ζ) = m(t, ζ).

The result follows the same path as in the static case. Let us define
xN (t, ξ) :=

N∑
i=1

xNi (t)1
[ i−1
N

, i
N

)
(ξ)

mN (t, ξ) :=

N∑
i=1

mN
i (t)1

[ i−1
N

, i
N

)
(ξ).

(56)

Consider the weight dynamics (36) with ψi defined using the functional ψ appearing in (53) as
follows:

∀i ∈ {1, · · · , N}, ψ
(N)
i (xN (t),mN (t)) = N

∫ i
N

i−1
N

ψ(ξ, xN (t, ξ),mN (t, ξ))dξ. (57)

The main observation relies on the fact that there is an equivalence between being a solution to
(36) and the fact that the associated xN and mN defined in (56) satisfy the following system of
integro-differential equations

∂txN (t, ξ) =

∫
I

mN (t, ζ)φ(xN (t, ζ)− xN (t, ξ)) dζ

∂tmN (t, ξ) = N

∫ 1
N

(bξNc+1)

1
N
bξNc

ψ(ζ, xN (t, ·),mN (t, ·)) dζ.
(58)
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Through some fixed-point argument, one can prove that there exists a unique solution (xN ,mN ) to
(36) and (x,m) to (53) that respectively belong to C([0, T ];RdN×RN ) and C([0, T ];L∞(I;RdN×RN )).
Then, as in [44], the proof relies on some L2-estimates of xN −x and mN −m. More precisely, using
the regularity assumptions, some bounds, Cauchy-Schwarz and Gronwall inequalities, it holds

sup
t∈[0,T ]

(
‖(xN − x)(t)‖L2(I) + ‖(mN −m)(t)‖L2(I)

)
≤
(
‖(xN − x)(0)‖L2(I) + ‖(mN −m)(0)‖L2(I) +

∫ T

0

‖gN (τ)‖L2(I)dτ

)
eKT (59)

for some K > 0 with

gN : (t, ξ) 7→ N

∫ 1
N

(bξNc+1)

1
N
bξNc

ψ(ζ, x(t),m(t)) dζ − ψ(ξ, x(t),m(t)).

Thus, defining the initial conditions for the microscopic dynamics as
x0,N :=

(
N

∫ i
N

i−1
N

x0(s)ds

)
i∈{1,...,N}

∈ (Rd)N

m0,N :=

(
N

∫ i
N

i−1
N

m0(s)ds

)
i∈{1,...,N}

∈ (R)N ,

(60)

the result is obtained using Lebesgue’s differentiaton theorem and the dominated convergence theo-
rem for the term containing gN . Indeed, it implies the convergence in respectively C([0, T ];L2(I;RdN ))
and C([0, T ];L2(I;RN )) of xN and mN to x and m, solutions to (53) with initial data x(0, ·) = x0

and m(0, ·) = m0.

Regular edge dynamics. The second result of this type was established in [24] for a particular
adaptive Kuramoto-type model (35). Although the result is only valid for dense graphs and therefore
involves working with the graphon framework just as in [2, 44], it is stated in a slightly more general
framework which, if the theory allowed, would make it possible to deal with a more general class of
graphs.

We start by recalling some concepts of Graph Theory mentioned in Sections 1 and 2.1.2. As
seen previously, a graphop is a bounded self-adjoint and positivity-preserving operator A : L∞(I)→
L1(I). It can be viewed as a generalized concept for the adjacency matrix. Importantly, the Riesz
representation theorem allows to define graphops using a family of finite measures (ηξ)ξ∈I called
fiber measures as follows: In the case where ηξ has a density w as

dηξ(ζ) = w(ξ, ζ)dζ,

then w plays the role of the usual graphon (see Def. 2 and section 2.1.1). In [24], the continuum
limit of the adaptive Kuramoto-type model (35) is proven to be ∂tx(t, ξ) = ω(ξ, x(t, ξ), t) +

∫
I

φ(x(t, ξ), x(t, ζ))dηξt (ζ),

∂tη
ξ
t (ζ) = −εηξt (ζ) + εH(x(t, ξ), x(t, ζ))λ(y)

(61)

where λ is the Lebesgue measure. Equation (61) is to be interpreted in the integral form and the
equation on ηξ in the weak sense, meaning that for any bounded continuous test-function f ∈ Cb(I),∫

I

f(ζ)dηξt (ζ) =

∫
I

f(ζ)dηξ0(ζ)− ε
∫ t

t0

(∫
I

f(ζ)dηξτ (ζ)

)
dτ

− ε
∫ t

t0

(∫
I

f(ζ)H(x(τ, ξ), x(τ, ζ))dζ

)
dτ. (62)

As in the previous case, the proof heavily relies on the regularity assumptions. The functions φ,H :
T2 → R are Lipschitz continuous and ω : I × T×R→ R is continuous in t and Lipschitz continuous
in x and ξ. Provided some additional continuity and absolute continuity hypotheses on (x0, η0) (see
[24, Assumptions (A5)-(A6)]), one can prove the convergence in C([t0, t0 +T ], L∞(I;T))×C([t0, t0 +
T ],B(I,M(I))) of the piecewise-constant functions (xN , ηN ) defined as

xN (t, ξ) :=
N∑
i=1

xNi (t)1
[ i−1
N

, i
N

)
(ξ)

wN (t, ξ, ζ) :=

N∑
i=1

wNij (t)1
[ i−1
N

, i
N

)
(ξ)1

[ j−1
N

, j
N

)
(ζ)

d(ηN )ξt (ζ) := wN (t, ξ, ζ)dζ

(63)
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to (x, ηt) solution to (61) for the appropriate initial data (they are build similarly as for the previous
proof) with B(I,M(I)) being the space of bounded measurable functions from I to M(I). As
before, the existence and uniqueness of solutions relies on the use of a fixed-point theorem while
the convergence uses, among other things, the continuous dependence on the initial data and on the
function ω that is established through some stability estimates.

More recently, in the graphon framework, following the spirit of the proofs in [3, 44], the conver-
gence of (37) to the continuum limit equation ∂tx(t, ξ) = ω(t, ξ, x(t, ·)) +

∫
I

m(t, ζ)φ(t, x(t, ξ), x(t, ζ))dζ

∂tw(t, ξ, ζ) = ψ(ξ, ζ, x(t, ·), w(t, ·, ·)),
(64)

was established under some regularity assumptions and some bounds similar to those of Hypothesis
(8).

Singular weight dynamics. In [54], the authors proposes to deal with the model (36) in the
case where the weight dynamics contain a singularity. This approach is motivated by the “pairwise
competition” model introduced in [42], which can be written as

d

dt
xNi =

1

N

N∑
j=1

mN
j φ(xNj − xNi )

d

dt
mN
i =

1

2N2
mN
i

N∑
k,j=1

mN
k m

N
j

(
φ(xNk − xNi ) + φ(xNk − xNj )

)
s(xNi − xNj ).

(65)

The aim of [54] is to extend the result established in [2] to the case where s presents a jump
discontinuity at the origin. More precisely, one considers the following one-dimensional setting:

Hypothesis 9. The restriction s|(0,∞) and s|(−∞,0) are Lipschitz continuous and s is odd and
bounded.

Under these assumptions, convergence is obtained to the following system of equations
∂tx(t, ξ) =

∫
I

m(t, ζ)φ(x(t, ζ)− x(t, ξ))dζ

∂tm(t, ξ) = m(ξ)

∫ ∫
I2
m(ζ)m(ζ∗) (φ(x(ζ∗)− x(ξ)) + φ(x(ξ)− x(ζ∗))) s(x(ξ)− x(ζ))dζdζ∗.

(66)
An important necessary condition for the well-posedness of the microscopic dynamics is the fact that
the opinions remain separated for all times provided that they are separated initially. Similarly, the
solution to the continuum limit equation is expected to satisfy an analogue property: in dimension
1, this is contained in the assumption that x0 is one-to-one. Then, a pointwise evaluation of x0 is
needed and therefore, unlike the previous frameworks, a more natural assumption is x0 ∈ C(I) rather
than x0 ∈ L∞(I).

The proofs for the existence and uniqueness of solutions to (66) and of the convergence to the
continuum limit equation of (65) are quite similar to those in [2], the main difference being of course in
the handling of the equation for the weight dynamics. Because of the singularity in 0, one introduces
the sets

AN (t, ξ) := {ζ ∈ I | xN (t, ζ)− xN (ξ, t) > 0}, BN (t, ξ) := AcN (t, ξ)

and
A(t, ξ) := {ζ ∈ I | x(t, ζ)− x(ξ, t) > 0}, B(t, ξ) := Ac(t, ξ)

and uses them to split the integrals appearing in the computations into several terms. One can
then conclude using the convergence of 1AN (0,ξ)(ζ) to 1A(0,ξ)(ζ) and of 1BN (0,ξ)(ζ) to 1B(0,ξ)(ζ) as
N →∞.

Remark 3.2. This result is also also extended to any dimension d > 1 with ξ varying in the d-
dimensional unit cube Id but we will not expand on this point and refer the reader to [54, Section 5]
for more details.

3.3 Links between Continuum limit and Mean-Field limits for the
case of evolving-in-time weights

This section is devoted to bridging all the different limit equations obtained for the opinion model
with time-evolving weights. As previously, for N ∈ N, we denote xNi (t) ∈ Rd the opinion of agent i
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at time t and mN
i (t) ∈ R its weight (representing its charisma). We are interested in the system

d

dt
xNi (t) =

1

N

N∑
j=1

mN
j (t)φ(xNi (t), xNj (t))

d

dt
mN
i (t) = ψ

(N)
i (xN (t),mN (t)).

(67)

For initial data such that m0 is strictly positive, one can actually prove that mN (t) remains positive
for all t ∈ [0, T ]. Thus, from here onwards, the weights are assumed to belong to R∗+. Taking the
continuum limit leads to the convergence in C([0, T ];L2(I;RdN ))× C([0, T ];L2(I; (R∗+)N )) to (x,m)
which is a solution to the integro-differential equation ∂tx(t, ξ) =

∫
I

m(t, ζ)φ(x(t, ξ), x(t, ζ))dζ

∂tm(t, ξ) = ψ(ξ, x(t, ·),m(t, ·)),
(68)

provided that the initial data converges in a suitable sense.

The non exchangeable mean-field limit. As mentioned in Subsection 3.1.1, for weight
dynamics of the form

ψi(x
N ,mN ) =

∫
{1,...,N}×Rd×R∗+

S̃i(x
N
i ,m

N
i , k, y, n)dµ̃Nt (k, y, n)

with the appropriate regularity assumptions, the non-exchangeable mean-field limit satisfied by the
limit probability density µ ∈ C([0, T ],P(I × Rd × R∗+)) is

∂tµ
ξ
t (x,m) +∇x ·

((∫
I×Rd×R∗+

nφ(x, y)dµζt (y, n)dζ

)
µξt (x,m)

)

+ ∂m

((∫
I×Rd×R∗+

S̃(ξ, x,m, ζ, y, n)dµζt (y, n)dζ

)
µξt (x,m)

)
= 0 (69)

The exchangeable mean-field limits. In the case where the agents are indistinguishable,
in the sense mentioned in Section 3.1, we can be interested in two different probability densities:
the one for weights and opinions belonging to C([0, T ],P(Rd × R∗+)) and the one only for opinions
belonging to C([0, T ],P(Rd)). In both cases, the mean-field limit can actually be obtained for a class,
slightly different from the one presented previously, with a straightforward adaptation of the proof.

1. For weight dynamics of the form

ψ(ξ, x(t, ·),m(t, ·)) =

∫
Rd×R∗+

S(x(t, ξ),m(t, ξ), y, n)dµt(y, n) (70)

with

µt(x,m) =

∫
I

δ(x− x(t, ξ))δ(m−m(t, ξ))dξ, (71)

the classical mean-field equation can be derived for the probability measure µ ∈ C([0, T ],P(Rd×
R∗+)), obtaining a transport equation in the variables x and m:

∂tµt(x,m) +∇x ·

((∫
Rd×R∗+

nφ(x, y)dµt(y, n)

)
µt(x,m)

)

+ ∂m

((∫
Rd×R∗+

S(x,m, y, n)dµt(y, n)

)
µt(x,m)

)
= 0 (72)

2. As discussed in Section 3.1, for the general class of weight dynamics

ψ(ξ, x(t, ·),m(t, ·)) = m(t, ξ)

∫
Rd
Ŝ(x(t, ξ), y)dµ̂t(y) (73)

with

µ̂t(x) =

∫
I

m(t, ξ)δ(x− x(t, ξ))dξ, (74)

the probability measure µ ∈ C([0, T ],P(Rd)) obtained in the limit satisfies the following trans-
port equation with source:

∂tµt(x) +∇x ·
(∫

Rd
φ(x, y)dµ(y)µt(x)

)
= µt(x)

∫
Rd
Ŝ(x, y)dµ̂t(y). (75)
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The system of ODEs
d

dt
xNi (t) =

1

N

N∑
j=1

mN
j (t)φ(xNi (t), xNj (t))

d

dt
mN
i (t) = ψ

(N)
i (xN (t),mN (t))

The continuum limit equation ∂tx(t, ξ) =

∫
I

m(t, ζ)φ(x(t, ξ), x(t, ζ))dζ

∂tm(t, ξ) = ψ(ξ, x(t, ·),m(t, ·))

The non-exchangeable mean-field limit equation

∂tµ
ξ
t (x,m)+∇x·

((∫
I×Rd×R∗+

nφ(x, y)dµζt (y, n)dζ

)
µξt (x,m)

)

+∂m

((∫
I×Rd×R∗+

S̃(ξ, x,m, ζ, y, n)dµζt (y, n)dζ

)
µξt (x,m)

)
= 0

The exchangeable mean-field limit
equation for opinions and weights

∂tµt(x,m)+∇x ·

((∫
Rd×R∗+

nφ(x, y)dµt(y, n)

)
µt(x,m)

)

+ ∂m

((∫
Rd×R∗+

S(x,m, y, n)dµt(y, n)

)
µt(x,m)

)
= 0

The exchangeable mean-field
limit equation for opinions

∂tµt(x) +∇ · (
∫
Rd
φ(x, y)dµ(y)µt(x))

= µt(x)

∫
Rd
Ŝ(x, y)dµ̂t(y)

N →∞

N →∞
N →∞
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Figure 5: Links between the different equations. The arrow 1 corresponds to the weight dynamics

ψ1(ξ, x(t, ·),m(t, ·)) =

∫
I×Rd×R∗+

S̃(ξ, x(t, ξ),m(t, ξ), ζ, y, n)dµ̃ζt (y, n)dζ, the arrow 2 to the weight dynam-

ics ψ2(ξ, x(t, ·),m(t, ·)) =

∫
Rd×R∗+

S(x(t, ξ),m(t, ξ), y, n)dµt(y, n) and the arrow 3 to the weight dynamics

ψ3(ξ, x(t, ·),m(t, ·)) = m(t, ξ)

∫
Rd
Ŝ(x(t, ξ), y)dµ̂t(y). The arrows 4 and 5 correspond to Remark 3.3.

Thus, (68), (69), (72), (75) can be obtained as the limit of (67) as N goes to infinity. The
derivations of (68) and (75) have been done rigorously in [2]. The derivation of (44) can be obtained
thanks to the results in [51]. We will say a word about the derivation of (72) in the following. As in
section 2.3, let us try to clarify how all theses different descriptions relate to each other (see Figure
5 for a visual summary).

3.3.1 From continuum limit to non-exchangeable mean-field limit

We denote µ̃ξt the following continuous empirical measure

µ̃ξt (x,m) =

∫
I

δ(x− x(t, ζ))δ(m−m(t, ζ))δ(ξ − ζ)dζ. (76)

where (x(t, ξ),m(t, ξ)) is a solution to (68) for the weight dynamics

ψ(ξ, x(t, ·),m(t, ·)) =

∫
I×Rd×R∗+

S̃(ξ, x(t, ξ),m(t, ξ), ζ, y, n)dµ̃ζt (y, n)dζ. (77)
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For all test functions f ∈ C∞(I × Rd × R∗+), it holds

d

dt

∫
I×Rd×R∗+

f(ξ, x,m)dµ̃ξt (x,m)dξ =
d

dt

∫
I

f(ξ, x(t, ξ),m(t, ξ))dξ

=

∫
I

∇xf(ξ, x(t, ξ),m(t, ξ)) ·
(∫

I

m((t, ζ)φ(x(t, ξ), x(t, ζ))dζ

)
dξ

+

∫
I

∂mf(ξ, x(t, ξ),m(t, ξ))

(∫
I×Rd×R∗+

S̃(ξ, x(t, ξ),m(t, ξ), ζ, y, n)dµ̃ζt (y, n)dζ

)
dξ

=

∫
I×Rd×R∗+

∇xf(ξ, x,m) ·

(∫
I×Rd×R∗+

nφ(x, y)dµ̃ζt (y, n)dζ

)
dµ̃ξt (x,m)dξ

+

∫
I×Rd×R∗+

∂mf(ξ, x,m)

(∫
I×Rd×R∗+

S̃(ξ, x,m, ζ, y, n)dµ̃ζt (y, n)dζ

)
dµ̃ξt (x,m)dξ

Thus, the continuous empirical measure µ̃ξt built from the solution to (68) for the weight dynam-
ics (77) is a solution to the non-exchangeable mean-field limit equation (44). This computation
corresponds to the arrow 1 in Figure 5.

3.3.2 From continuum limit to exchangeable mean-field limits

For weight dynamics of the form (70), similar computations against test functions f ∈ C∞(Rd×R∗+)
show that the continuous empirical measure µt(x,m) defined in (71) satisfies the exchangeable mean-
field equation for opinions and weights (72). Indeed, we get, for all test functions f ∈ C∞(Rd×R∗+),

d

dt

∫
Rd×R∗+

f(x,m)dµt(x,m)dξ =
d

dt

∫
I

f(x(t, ξ),m(t, ξ))dξ

=

∫
I

∇xf(x(t, ξ),m(t, ξ)) ·
(∫

I

m((t, ζ)φ(x(t, ξ), x(t, ζ))dζ

)
dξ

+

∫
I

∂mf(x(t, ξ),m(t, ξ))

(∫
Rd×R∗+

S(x(t, ξ),m(t, ξ), y, n)dµt(y, n)

)
dξ

=

∫
Rd×R∗+

∇xf(x,m) ·

(∫
Rd×R∗+

nφ(x, y)dµt(y, n)

)
dµ(x,m)

+

∫
Rd×R∗+

∂mf(x,m)

(∫
Rd×R∗+

S(x,m, y, n)dµt(y, n)

)
dµt(x,m).

This computation corresponds to the arrow 2 in Figure 5.
Lastly, similarly to [2], for weight dynamics of the form (73), the continuous empirical measure

µ̂t(x) defined in (74) satisfies the exchangeable mean-field equation for opinions (75). Indeed, for all
test functions f ∈ C∞(Rd),

d

dt

∫
Rd
f(x)dµ̂t(x)dξ =

d

dt

∫
I

m(t, ξ)f(x(t, ξ))dξ

=

∫
I

m(t, ξ)∇xf(x(t, ξ)) ·
(∫

I

m((t, ζ)φ(x(t, ξ), x(t, ζ))dζ

)
dξ

+

∫
I

m(t, ξ)f(x(t, ξ))

(∫
Rd
Ŝ(x(t, ξ), y)dµ̂t(y)

)
dξ

=

∫
Rd
∇xf(x) ·

(∫
Rd
φ(x, y)dµ̂t(y)

)
dµ̂(x)

+

∫
Rd
f(x)

(∫
Rd
Ŝ(x, y)dµ̂t(y)

)
dµ̂t(x).

This computation corresponds to the arrow 3 in Figure 5.

Remark 3.3. We notice that

µt(x,m) =

∫
I

µ̃ξ(x,m)dξ

and

µ̂t(x) =

∫
R
mµt(x, dm).

Thus, for the appropriate choice for the weight dynamics, this gives the path to obtain (72) from (44)
and (75) from (72) and corresponds to the arrows 4 and 5 in Figure 5.
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Remark 3.4. Because of the presence of nonlinearity, we cannot adapt the argument developed in
Section 2.3.2 and we cannot exhibit a path to get the continuum limit (68) from the non-exchangeable
mean-field limit (44).

The continuum limit can actually provide a tool for an alternative proof for the exchangeable
mean-field limit. Indeed, noticing that we can rewrite µ̂Nt defined in (46) as

µ̂Nt =

∫
I

mN (t, ξ)δ(x− xN (t, ξ))

with (xN ,mN ) defined in (56), we can easily show that W1(µ̂Nt , µ̂t) −−−−−→
N→+∞

0 for all t ∈ [0, T ]

provided the appropriate choice for the initial data using the convergence of (xN ,mN ) to (x,m) with
W1 being the 1-Wasserstein distance. Moreover, we just showed that µ̂t happens to be a solution to
(75), hence the conclusion.

All the results mentioned in that section require some regularity assumptions on both the inter-
action function and the weight dynamics. However, in [54], by similar computations, they are able
to obtain the derivation of the exchangeable mean-field limit for the probability density of opinions
associated to their singular weight dynamics. It is worth noticing that the continuum limit turns out
to be a powerful tool since, in that case, there is no alternative proof through the classical approach.
Indeed, all the classical approaches use some regularity of the source term which is no longer true
for singular weight dynamics.

Finally, noticing that can rewrite µNt defined in (71) as

µNt =

∫
I

δ(x− xN (t, ξ))δ(m−mN (t, ξ)),

we can similarly prove that W1(µNt , µt) −−−−−→
N→+∞

0 for all t ∈ [0, T ] provided the appropriate choice

for the initial data. Thus, this provides the derivation of (72) from (67) as N goes to infinity.
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