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(Fully) well-balanced entropy stable Godunov numerical schemes for
the shallow water equations.

Ludovic Martaud∗, Christophe Berthon†

Abstract

This work concerns the design of well-balanced entropy stable numerical schemes for the shallow
water equations. The fully discrete entropy inequality is reached by introducing a local entropy
condition incorporated in the scheme design. The source term is discretized to preserve both steady
states and entropy stability. The method yields explicit schemes which is relevantly illustrated with
several tests cases.

1 Introduction

The present work is devoted to the numerical approximation of the weak solutions of the shallow
water equations with the topography source term in one space dimension given by

∂t

(
h
hu

)
+ ∂x

(
hu

hu2 + gh2/2

)
=

(
0

−gh∂xz

)
. (1)

This model governs the water height h ≥ 0 and the velocity u ∈ R of a fluid. In order to deal with dry
areas, the water velocity is defined as follows (see [4, 42] for the details):

u =


(hu)

h
, if h > 0,

0, otherwise,

The gravitation constant is g > 0 and z : R → R is a given time independent smooth topogra-
phy function. The unknown state vector w = (h, hu)T is assumed to be in the convex set Ω ={
(h, hu) ∈ R2 |h ≥ 0, hu ∈ R

}
. The system is endowed with a given initial data w0 : R → Ω at time

t = 0. As a consequence, we consider the following Cauchy problem:{
∂tw + ∂xf(w) = S(w, z), x ∈ R, t > 0,

w(x, t = 0) = w0(x), x ∈ R,
(2)

where we have set

f(w) = (hu, hu2 + gh2/2)T, and S(w, z) = (0,−gh∂xz)
T. (3)

For the sake of clarity in the forthcoming notations, we introduce ŵ = (h, hu, z)T which takes its values
in the convex set Ω̂ defined by

Ω̂ =
{
(h, hu, z) ∈ R3 |h ≥ 0, hu ∈ R, z ∈ R

}
.

In the flat regions (i.e ∂xz = 0), it is well-known [12] that the homogeneous shallow water system
is endowed with the following entropy inequality

∂tη(w) + ∂xG(w) ≤ 0, (4)
∗Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, Nantes Unversité, 2 rue de la Houssinière, BP 92208,

44322 Nantes, France and Univ Rennes, Inria Bretagne Atlantique (MINGuS) Email address: ludovic.martaud@inria.fr.
†Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, Nantes Unversité, 2 rue de la Houssinière, BP 92208,

44322 Nantes, France Email address: christophe.berthon@univ − nantes.fr.

1



with
η(w) = hu2/2 + gh2/2 and G(w) = hu3/2 + gh2u. (5)

A smooth generic function z modifies the above inequality with the term −ghu∂xz in its right hand
side. As a consequence, the entropy inequality associated to shallow water system (1) now reads

∂tη(w) + ∂xG(w) ≤ −ghu∂xz. (6)

According [12] (for instance, see also [21]) and since ∂tz = 0, the inequality (6) reformulates equiv-
alently in a conservative form given by

∂t

(
η(w) + ghz

)
+ ∂x

(
G(w) + g(hu)z

)
≤ 0.

Let us set

η̂(ŵ) =
(hu)2

2h
+

gh2

2
+ ghz, Ĝ(ŵ) =

(hu)3

2h2
+ g(hu)(h+ z), ∀ŵ ∈ Ω̂, (7)

so that the above entropy inequality now reads

∂tη̂(ŵ) + ∂xĜ(ŵ) ≤ 0. (8)

Therefore, the presence of the source term S(w, z) in the system (1) modifies the entropy inequality (4)
into an other conservative entropy equality (8) that includes a contribution of the topography function.

In addition, the presence of the source term S(w, z) involves the existence of non-trivial stationary
solutions that satisfy

hu = cst,
u2

2
+ g (h+ z) = cst. (9)

Among these steady states, a special attention is paid to the lake at rest (for instance, see [11, 23, 35,
38,39,43,46] for a nonhexaustive list) which is given by

u = 0, h+ z = cst. (10)

From a numerical point of view, the solutions of the shallow water system (1) are approximated on
uniform space meshes (xi+ 1

2
)i∈Z in R of constant size ∆x > 0. Thus, we have xi+ 1

2
= xi− 1

2
+∆x for all

i ∈ Z. Uniform meshes in time (tn)n∈N in [0,+∞) of constant size ∆t > 0 are also considered and they
satisfy tn+1 = tn + ∆t for all n in N. At time t0 = 0, the initial condition w0 and the given smooth
function z are discretized by

(
(w0

i , zi)
)
i∈Z in Ω̂ such that

(w0
i , zi)

T =
1

∆x

∫ x
i+1

2

x
i− 1

2

(w0, z)
T(x) dx, ∀i ∈ Z. (11)

The sequence
(
(w0

i , zi)
T)

i∈Z define a piecewise constant approximation of
(
w(·, t = 0), z

)T. As a
consequence, a numerical approximation of w(·, tn+1) is entirely defined by a numerical scheme that
gives the updated sequence (wn+1

i )i∈Z from the sequences (wn
i )i∈Z and (zi)i∈Z . However, a suitable

updated sequence (wn+1
i )i∈Z has to satisfy some properties. In order to give these properties and for

the sake of clarity, the notation ŵn
i = (wn

i , zi)
T is now considered but we emphasize that zi is a given

quantity.
The sequence (ŵn+1

i )i∈Z has to be well-balanced that means it exactly preserves stationary solutions.
In one hand, the well-balanced property for the lake at rest (10) writes

If ∀i ∈ Z, uni = 0 and hni + zi = cst then ∀i ∈ Z, wn+1
i = wn

i . (12)

Several schemes satisfying this property have been proposed during the two last decades (for instance,
see [11,23,35,38,39,43,46]). In the other hand, the well-balanced property for the moving equilibrium
(9) is given by

If ∀i ∈ Z, (hu)ni = cst and
(uni )

2

2
+ g(hni + zi) = cst then ∀i ∈ Z, wn+1

i = wn
i . (13)
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For instance, such a property is satisfied by the schemes described in [16,26,36,42].
In addition to the well-balanced property, the sequence (ŵn+1

i )i∈Z has to verify a discrete entropy
inequality. Denoting Ĝi+ 1

2
a consistent approximation of Ĝ defined by (7), such an inequality writes

η̂(ŵn+1
i )− η̂(ŵn

i )

∆t
+

Ĝi+ 1
2
− Ĝi− 1

2

∆x
≤ 0, ∀i ∈ Z. (14)

In the flat region, i.e. ∂xz = 0, the system (1) is nothing but a conservative hyperbolic system
and several schemes verifying the discrete entropy inequality (14) have already been introduced (for
a nonhexaustive list, see [24, 25, 29–32, 34]). In the present work, we focus on Godunov-type scheme
based on approximate Riemann solver made of two intermediate constant states (see [29] for details).
Considering the well-known Euler equations, the fully discrete entropy inequality (14) can be established
for the two intermediate state HLLC scheme [45] or equivalently, for the Suliciu relaxation schemes
[6,12,18]. Let us underline that Section b.ii in [29] presents an alternative to derive an entropy satisfying
Godunov-type scheme with two intermediate constant states.

For a generic function z (i.e. ∂xz ̸= 0), the design of a well-balanced scheme that satisfies a discrete
entropy inequality (14) turn out to be more challenging. Both properties are satisfied by some Godunov-
type schemes [1,2,5,17,28,37,47] or a relaxation well-balanced for the lake at rest scheme [12], but all
of theses schemes need to solve a set of non linear equations at each cells of the mesh and for each time
iterations. For instance, in [12], we have to solve a third-order polynomial equation to get an entropy
preserving and well-balanced for the lake at rest scheme. Similarly in [7], a fifth-order polynomial
equation must be solved to obtain a well-balanced scheme for the moving steady states which satisfies
an entropy inequality. Moreover, the fully discrete entropy estimations may contain an error term (for
instance, see [10]) in the form O(∆x2) such that

η̂(ŵn+1
i )− η̂(ŵn

i )

∆t
+

Ĝi+ 1
2
− Ĝi− 1

2

∆x
≤ O(∆x2).

The error term O(∆x2) does not occur in the works of [20,33] but the proposed well-balanced schemes
satisfied a global version of the entropy inequality (14) that writes

∑
i∈Z η̂(ŵ

N
i )∆x ≤ η̂(ŵ0

i )∆x where
tN and t0 denote the final and the initial time of the simulation.

In this work, we propose to design numerical schemes to approximate the weak solutions of the
system (1) which satisfies the discrete entropy inequality (14). These schemes also have to satisfy the
well-balanced property as soon as the topography function z is nonconstant. More precisely, we consider
schemes written under the following from

wn+1
i = wn

i − ∆t

∆x

(
F̂(ŵn

i , ŵ
n
i+1)− F̂(ŵn

i−1, ŵ
n
i )
)
+

∆t

2

(
Ŝn
i+ 1

2

+ Ŝn
i− 1

2

)
, ∀i ∈ Z. (15)

where F̂ : (Ω̂)2 → R2 stands for the numerical flux function and Ŝn
i+ 1

2

denotes a consistent approx-

imation of the source term (0,−gh∂xz)
T at the interface xi+ 1

2
. To address such an issue, the paper

is organized as follows. In Section 2, we adopt Godunov-type schemes to design (15). We give suf-
ficient conditions to obtain the weak consistency, the discrete entropy inequality (14) and the well-
balanced property. The two first sufficient conditions are used in Section 3 to define an approximate
Riemann solver made of two intermediate states. This approximate Riemann solver is governed by
under-determined system that ensures the consistency and the discrete entropy stability (14). In Sec-
tion 4, the proposed scheme derivation is exemplified to obtain consistent, entropy satisfying schemes in
the case of z = cst. Then Sections 5 and 6 propose other closures in order to define consistent, entropy
satisfying, well-balanced schemes for both lake at rest (10) and moving equilibrium (9). In Section 7,
numerical tests are carried out to illustrate our numerical schemes.

2 Godunov-type scheme derivation

In this section, we design the finite volume scheme (15) adopting Godunov-type approaches [29].
To address such a derivation, we introduce a given approximate Riemann solver w̃(xt ; ŵL, ŵR) ∈ Ω,
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with ŵL = (wL, zL)
T and ŵR = (wR, zR)

T in Ω̂, to mimic the behavior of the exact Riemann solution
associated to (2) with an initial data given by w0(x) = wL if x < 0 and w0(x) = wR if x > 0. This
approximate Riemann solver will be enforced to satisfy some consistency conditions given latter on. In
fact, the sequel of the present paper is devoted to suitably design w̃.

Next, equipped with an approximate Riemann solver, we are able to derive the Godunov-type
scheme as follows:

wn+1
i =

1

∆x

∫ ∆x
2

0
w̃(

x

∆t
, ŵn

i−1, ŵ
n
i ) dx+

1

∆x

∫ 0

−∆x
2

w̃(
x

∆t
, ŵn

i , ŵ
n
i+1) dx, ∀i ∈ Z. (16)

We emphasize that the time step ∆t is now assume to be small enough such that two successive
approximate Riemann solver do not interact; namely w̃(ξ, ŵn

i−1, ŵ
n
i ) = w̃(−ξ, ŵn

i , ŵ
n
i+1) with ξ in a

neighborhood of ∆x
2∆t . This time step restriction is nothing but a CFL-like condition.

The following lemma precises the condition to be satisfied by an approximate Riemann solver
w̃ : R× (Ω̂)2 → Ω so that the numerical scheme (15) and the Godunov-type scheme (16) coincide.

Lemma 2.1 (Reformulation of the numerical scheme (15)). Let consider ŵ = (w, z)T in Ω̂, a function
ŝ : (Ω̂)2 → R such that

ŝ(ŵ, ŵ) = −gh, ∀ŵ ∈ Ω̂, (17)

and (Ŝn
i+ 1

2

)i∈Z a sequence of R2 that writes

Ŝn
i+ 1

2

=

(
0

ŝ(ŵn
i , ŵ

n
i+1)

zi+1−zi
∆x

)
, ∀i ∈ Z, (18)

where (zi)i∈Z is defined by (11). Let also consider a Godunov-type scheme (16) defined by an ap-
proximate Riemann solver w̃ : R × (Ω̂)2 → Ω that satisfies w̃(·, ŵ, ŵ) = w and the following integral
consistency condition:

1

∆x

∫ ∆x
2

−∆x
2

w̃
( x

∆t
, ŵn

i , ŵ
n
i+1

)
dx =

wn
i + wn

i+1

2
− ∆t

∆x

(
f(wn

i+1)− f(wn
i )
)
+∆tŜn

i+ 1
2

. (19)

Assume ∆t small enough such that the non-interacting CFL-like condition holds. The Godunov-type
scheme (16) then reformulates as the numerical scheme (15) with the numerical flux function F̂ :
(Ω̂)2 → R2 given by

F̂(ŵn
i , ŵ

n
i+1) =

f(wn
i+1) + f(wn

i )

2
− ∆x

4∆t

(
wn
i+1 − wn

i

)
+

1

2∆t

∫ ∆x
2

0
w̃
( x

∆t
, ŵn

i , ŵ
n
i+1) dx

− 1

2∆t

∫ 0

−∆x
2

w̃(
x

∆t
, ŵn

i , ŵ
n
i+1) dx.

(20)

Proof. Since the non-interacting CFL-like condition holds, the Godunov-type scheme (16) can be rewrit-
ten as follows:

wn+1
i =

1

2∆x

∫ 0

−∆x
2

w̃
( x

∆t
, wn

i , w
n
i+1

)
dx+

1

2∆x

∫ ∆x
2

0
w̃
( x

∆t
, wn

i−1, w
n
i

)
dx

+
1

2∆x

∫ ∆x
2

−∆x
2

w̃
( x

∆t
, wn

i−1, w
n
i

)
dx+

1

2∆x

∫ ∆x
2

−∆x
2

w̃
( x

∆t
, wn

i , w
n
i+1

)
dx

− 1

2∆x

∫ 0

−∆x
2

w̃
( x

∆t
, wn

i−1, w
n
i

)
dx− 1

2∆x

∫ ∆x
2

0
w̃
( x

∆t
, wn

i , w
n
i+1

)
dx.
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Using the integral consistency relation (19), the above equality rewrites

wn+1
i =

1

2∆x

∫ 0

−∆x
2

w̃
( x

∆t
, wn

i , w
n
i+1

)
dx+

1

2∆x

∫ ∆x
2

0
w̃
( x

∆t
, wn

i−1, w
n
i

)
dx

+
1

2

(wn
i−1 + wn

i

2
− ∆t

∆x

(
f(wn

i )− f(wn
i−1)

)
+∆tŜi− 1

2

)
+

1

2

(wn
i + wn

i+1

2
− ∆t

∆x

(
f(wn

i+1)− f(wn
i )
)
+∆tŜi+ 1

2

)
− 1

2∆x

∫ 0

−∆x
2

w̃
( x

∆t
, wn

i−1, w
n
i

)
dx− 1

2∆x

∫ ∆x
2

0
w̃
( x

∆t
, wn

i , w
n
i+1

)
dx.

We then easily recover the finite volume scheme (15) where the numerical flux function F̂ is given by
(20) and the source term (Ŝn

i+ 1
2

)i∈Z by (17)-(18). The proof is thus completed.

Now, we state the main conditions to be satisfied by the approximate Riemann solver and the source
term approximation in order to get the required entropy stability and the well-balanced property. To
address such an issue, we first give the adopted discretization of the steady solutions and the properties
to be satisfied by a well-balanced scheme.

Definition 2.1 (Local equilibrium and well-balanced scheme for the shallow water equations (1)).
Consider the shallow water equations (1) endowed with the notation

B̂(ŵ) =
u2

2
+ g(h+ z), ∀ŵ ∈ Ω̂. (21)

At time tn, let also consider ŵn
i and ŵn

i+1 two states in Ω̂ respectively on the left and on the right of
the interface xi+ 1

2
.

(i) The two states ŵn
i and ŵn

i+1 define a local lake at rest equilibrium at the interface xi+ 1
2

if

uni = uni+1 = 0, hni + zi = hni+1 + zi+1. (22)

(ii) The two states ŵn
i and ŵn

i+1 define a local moving equilibrium at the interface xi+ 1
2

if

hni u
n
i = hni+1u

n
i+1, B̂(ŵn

i ) = B̂(ŵn
i+1). (23)

(iii) A numerical scheme is well-balanced for the lake at rest (10) if wn+1
i = wn

i for all i ∈ Z as soon
as we have ∀i ∈ Z

uni = uni+1 = 0 and hni + zi = hni+1 + zi+1.

(iv) A numerical scheme is well-balanced for the moving equilibrium (9) if wn+1
i = wn

i for all i ∈ Z as
soon as we have ∀i ∈ Z

hni u
n
i = hni+1u

n
i+1 and B̂(ŵn

i ) = B̂(ŵn
i+1).

The conditions to be imposed on the approximate Riemann solver w̃ to get both expected discrete
entropy inequality and well-balanced property are now stated. From now on, we underline that the well-
balanced conditions are now well-known (for instance, see [7,9,41,42]) and they are here recalled for the
sake of completeness. Moreover, although the function w → η(w), given by (5), is a convex function, it
is worth noticing that the entropy function ŵ → η̂(ŵ) is not a convex function. As a consequence, the
well-known integral entropy consistency introduce by Harten, Lax and van Leer in [29], cannot be here
applied. The main originality in the present work is the introduction of an adapted integral entropy
consistency based on the convex function w → η(w). In the following statement, this new integral
entropy consistency is presented and shown to give the expected discrete entropy inequality (14).
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Lemma 2.2 (Consistent, well-balanced, entropy stable Godunov-type scheme for the shallow water
equations (1)). Consider the functions η,G : Ω → R defined by (5). Let also consider (Ŝn

i+ 1
2

)i∈Z, which

satisfies the consistency definitions (17)-(18), and an approximate Riemann solver w̃ : R × (Ω̂)2 → Ω
verifying the integral consistency relation (19). Let denote Fh

i+ 1
2

the numerical flux of the variable h

given by the first component of F̂(ŵn
i , ŵ

n
i+1) defined by (20). Assume that the CFL condition of non

interaction holds.

(i) The Godunov-type scheme (16), or equivalently the scheme (15)-(18)-(20), is consistent with the
shallow water system (1).

(ii) If the approximate Riemann solver satisfies the inequality

1

∆x

∫ ∆x
2

−∆x
2

η
(
w̃(

x

∆t
, ŵn

i , ŵ
n
i+1)

)
dx ≤

η(wn
i ) + η(wn

i+1)

2
− ∆t

∆x

(
G(wn

i+1)−G(wn
i )
)
− g

∆t

∆x
(zi+1 − zi)Fh

i+ 1
2

, ∀i ∈ Z, (24)

then the Godunov-type scheme (16), or equivalently the scheme (15)-(18)-(20), verifies a discrete
entropy inequality (14) where

Ĝi+ 1
2
=
G(wn

i+1) +G(wn
i )

2
+ gFh

i+ 1
2

zi+1 + zi
2

− ∆x

4∆t

(
η(wn

i+1)− η(wn
i )
)

+
1

2∆t

∫ ∆x
2

0
η
(
w̃(

x

∆t
, ŵn

i , ŵ
n
i+1)

)
dx− 1

2∆t

∫ 0

−∆x
2

η
(
w̃(

x

∆t
, ŵn

i , ŵ
n
i+1)

)
dx.

(25)

(iii) If the approximate Riemann solver satisfies

w̃(
x

∆t
, ŵn

i , ŵ
n
i+1) =

{
wn
i if x < 0,

wn
i+1 otherwise,

∀i ∈ Z, (26)

as soon as the sequence (ŵn
i )i∈Z verifies, at each interface of the mesh, a local moving equilibrium

(23) (resp. a local lake at rest equilibrium (22)) then the Godunov-type scheme (16), or equivalently
the scheme (15)-(18)-(20), is well-balanced for the moving equilibrium (resp. for the lake at rest).

Proof. Concerning the first statement (i), according to the definition of Ŝn
i+ 1

2

given by (17)-(18) and

since the function z is smooth enough, Ŝn
i+ 1

2

is immediately consistent with (0,−gh∂xz)
T. As a conse-

quence, after [29] (see also [22]), an approximate Riemann solver that verifies the consistency integral
relation (19) defines a consistent scheme. The statement (i) is then proved.

Concerning the discrete entropy inequality given by (ii), let us consider the convex function w 7→
η(w) defined by (5). Hence, the Jensen inequality applied to the Godunov-type scheme (16) gives

η(wn+1
i ) ≤

1

2∆x

∫ 0

−∆x
2

η
(
w̃(

x

∆t
, ŵn

i , ŵ
n
i+1)

)
dx+

1

2∆x

∫ ∆x
2

0
η
(
w̃(

x

∆t
, ŵn

i−1, ŵ
n
i )
)
dx

+
1

2∆x

∫ ∆x
2

−∆x
2

η
(
w̃(

x

∆t
, ŵn

i−1, ŵ
n
i )
)
dx+

1

2∆x

∫ ∆x
2

−∆x
2

η
(
w̃(

x

∆t
, ŵn

i , ŵ
n
i+1)

)
dx

− 1

2∆x

∫ 0

−∆x
2

η
(
w̃(

x

∆t
, ŵn

i−1, ŵ
n
i )
)
dx− 1

2∆x

∫ ∆x
2

0
η
(
w̃(

x

∆t
, ŵn

i , ŵ
n
i+1)

)
dx.
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Using the inequality (24) in the above estimation, we have

η(wn+1
i ) ≤

1

2∆x

∫ 0

−∆x
2

η
(
w̃(

x

∆t
, ŵn

i , ŵ
n
i+1)

)
dx+

1

2∆x

∫ ∆x
2

0
η
(
w̃(

x

∆t
, ŵn

i−1, ŵ
n
i )
)
dx

+
1

2

(η(wn
i−1) + η(wn

i )

2
− ∆t

∆x

(
G(wn

i )−G(wn
i−1)

)
− ∆t

∆x
g(zi − zi−1)Fh

i− 1
2

)
+
1

2

(η(wn
i ) + η(wn

i+1)

2
− ∆t

∆x

(
G(wn

i+1)−G(wn
i )
)
− ∆t

∆x
g(zi+1 − zi)Fh

i+ 1
2

)
− 1

2∆x

∫ 0

−∆x
2

η
(
w̃(

x

∆t
, ŵn

i−1, ŵ
n
i )
)
dx− 1

2∆x

∫ ∆x
2

0
η
(
w̃(

x

∆t
, ŵn

i , ŵ
n
i+1)

)
dx.

(27)

Now, since there is no contribution of the source therm S(w, z) in the first equation of the shallow
water system (1), the numerical scheme for the variable h writes

hn+1
i = hni − ∆t

∆x

(
Fh
i+ 1

2

−Fh
i− 1

2

)
, ∀i ∈ Z. (28)

Multiplying the above equation (28) by gzi and adding to the inequality (27), we then obtain an
inequality in the form

η(wn+1
i ) + ghn+1

i zi ≤ η(wn
i ) + ghni zi −

∆t

∆x

(
Ĝi+ 1

2
− Ĝi− 1

2

)
, ∀i ∈ Z,

with Ĝi+ 1
2

given by (25).
Since we have η̂(ŵ) = η(w) + ghz and since the function z does not depend on the time, this last

inequality rewrites under the expected form of (14). Before to conclude the proof of the statement (ii),
we have to show that the entropy numerical flux Ĝi+ 1

2
given by (25) is consistent with the entropy flux

function Ĝ defined by (7).
For a given constant state w ∈ Ω, we set ŵ = (w, z)T. Next, considering the consistency equality

w̃(·, ŵ, ŵ) = w and the consistency of the water height numerical flux Fh
i+ 1

2

, we get

Ĝ(ŵ, ŵ) =
G(w) +G(w)

2
+ gFh(w,w)z − ∆x

4∆t
(η(w)− η(w))

+
1

2∆t

∫ ∆x
2

0
η
(
w̃(

x

∆t
, ŵ, ŵ)

)
dx− 1

2∆t

∫ 0

−∆x
2

η
(
w̃(

x

∆t
, ŵ, ŵ)

)
dx,

= G(w) + g(hu)z +
1

2∆t

∫ ∆x
2

0
η(w) dx− 1

2∆t

∫ 0

−∆x
2

η(w) dx,

= G(w) + g(hu)z.

Since Ĝ(ŵ) = G(w) + g(hu)z, the above equality achieves to show the statement (ii).
Finally, concerning the statement (iii), let us assume that the sequence (ŵn

i )i∈Z is such that a
local equilibrium is satisfied at each interface of the mesh. In this case, using the condition (26) in a
Godunov-type scheme (16), we have

wn+1
i =

1

∆x

∫ ∆x
2

0
w̃(

x

∆t
, ŵn

i−1, ŵ
n
i ) dx+

1

∆x

∫ 0

−∆x
2

w̃(
x

∆t
, ŵn

i , ŵ
n
i+1) dx,

=
1

∆x

∫ ∆x
2

0
wn
i dx+

1

∆x

∫ 0

−∆x
2

wn
i dx,

= wn
i .

According to Definition 2.1-(iii) or (iv), this last equality gives the required well-balanced property
that concludes the proof.
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3 Consistent, entropy stable two states approximate Riemann solver
for the shallow water equations

It is now clear that the complete characterization of the Godunov-type scheme (16), or equivalently
(15) where the numerical flux function is given by (20) and the source term approximation by (17)-
(18), is obtained as soon as a suitable definition of both approximate Riemann solver w̃(ξ, ŵL, ŵR) and
source term approximation ŝ(ŵL, ŵR) are designed. Of course w̃ and ŝ must satisfy the conditions stated
Lemma 2.2 in order to get an entropy stable and well-balanced scheme. At this level, we reformulate
these conditions as a system to be solved by the intermediate states when adopting an approximate
Riemann solver made of two intermediate states as follows:

w̃(x/∆t, ŵL, ŵR) =



wL, if
x

∆t
≤ −λ,

w⋆
L, if − λ <

x

∆t
≤ 0,

w⋆
R, if 0 <

x

∆t
≤ λ,

wR, if λ <
x

∆t
.

(29)

For the sake of simplicity in the forthcoming derivations, we focus on an interface separating (wn
i , zi) =

(wL, zL) = ŵL and (wn
i+1, zi+1) = (wR, zR) = ŵR. Moreover, on this interface we set ŝLR = ŝ(ŵL, ŵR)

consistent with −gh.
Because of this particular choice of approximate Riemann solver, let us underline that the non-

interacting CFL-like condition is satisfied as soon as

λ ≥ max
α∈{L,R}

|uα ±
√

ghα| and
λ∆t

∆x
≤ 1

2
. (30)

Now, we give sufficient relations to be satisfied by w⋆
L and w⋆

R so that the resulting approximate
Riemann solver yields to a consistent and entropy preserving Godunov-type scheme. At this level, it is
essential to notice that the required discrete entropy inequality comes from the estimation (24) which
also holds if the equality is imposed. The main idea here is to consider an equality in (24) to get an
additional nonlinear equation.

In order to exhibit these equations to be satisfied by w⋆
L and w⋆

R, some notations are introduced.
Indeed, for the sake of clarity, we set

wHLL = (hHLL, (hu)HLL)T =
wR + wL

2
− f(wR)− f(wL)

2λ
∈ R2, (31a)

hHLLûHLL = (hu)HLL +
ŝLR(zR − zL)

2λ
∈ R, (31b)

ŵHLL =
(
hHLL, hHLLûHLL,

zL + zR
2

)T ∈ R3, (31c)

ηHLL =
η(wR) + η(wL)

2
− G(wR)−G(wL)

2λ
∈ R, (31d)

η̂HLL =
η̂(ŵR) + η̂(ŵL)

2
− Ĝ(ŵR)− Ĝ(ŵL)

2λ
∈ R. (31e)

Lemma 3.1. Consider ŵL and ŵR two states with hL > 0 and hR > 0, ŝLR a consistent discretization
of −gh according to (17) and w̃(·, ŵL, ŵR) : R → R2 an approximate Riemann solver in the form (29).
Let also consider the couples (η,G) and (η̂, Ĝ) given by (5) and (7). Assume that the CFL condition (30)
holds. The integral consistency condition (19) completed with the following integral entropy consistency
condition:

1

∆x

∫ ∆x
2

−∆x
2

η
(
w̃(

x

∆t
, ŵL, ŵR)

)
dx =

η(wL) + η(wR)

2
− ∆t

∆x
(G(wR)−G(wL))− g

∆t

∆x
(zR − zL)Fh

LR,

(32)
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reformulates

h⋆L + h⋆R
2

= hHLL,

h⋆Lu
⋆
L + h⋆Ru

⋆
R

2
= hHLLûHLL,

h⋆Lh
⋆
R

8hHLL (u
⋆
R − u⋆L)

2 +
g

8
(h⋆R − h⋆L + zR − zL)

2 = η̂HLL − η̂(ŵHLL) +
g

8
(zR − zL)

2.

(33a)

(33b)

(33c)

Before to prove the above statement, we empathize the quantity hHLLûHLL given by (31b) depends
on the free parameter ŝLR. This parameter has to satisfy the consistency condition described in (17)
and some admissible choices will be given in the next sections devoted to the well-balanced property.
Lemma 3.1 is now established.

Proof. First, we show that the system made of (19) and (32) coincides with the system (33). Since w̃
is given by (29), the left hand side of the equation (19) writes

1

∆x

∫ ∆x
2

−∆x
2

w̃
( x

∆t
, ŵL, ŵR

)
dx

=
1

∆x

∫ −λ∆t

−∆x
2

wL dx+
1

∆x

∫ 0

−λ∆t
w⋆
L dx+

1

∆x

∫ λ∆t

0
w⋆
R dx+

1

∆x

∫ ∆x
2

λ∆t
wR dx,

=

(
−λ

∆t

∆x
+

1

2

)
wL + λ

∆t

∆x
w⋆
L + λ

∆t

∆x
w⋆
R +

(
1

2
− λ

∆t

∆x

)
wR.

As a consequence the equation (19) equivalently rewrites(
−λ

∆t

∆x
+

1

2

)
wL + λ

∆t

∆x
w⋆
L + λ

∆t

∆x
w⋆
R +

(
1

2
− λ

∆t

∆x

)
wR =

wL + wR

2
− λ

∆t

∆x

f(wR)− f(wL)

λ
+ λ

∆t

∆x

(
0,

ŝLR(zR − zL)

λ

)T

.

Writing the above equation component by component, we easily obtain the equations (33a) and (33b).
Now, we have to recover the last equation (33c). By expanding the integral of the left hand side in

(32), we get

1

∆x

∫ ∆x
2

−∆x
2

η
(
w̃
( x

∆t
, ŵL, ŵR

))
dx

=
1

∆x

∫ −λ∆t

−∆x
2

η(wL) dx+
1

∆x

∫ 0

−λ∆t
η(w⋆

L) dx+
1

∆x

∫ λ∆t

0
η(w⋆

R) dx+
1

∆x

∫ ∆x
2

λ∆t
η(wR) dx,

=

(
−λ

∆t

∆x
+

1

2

)
η(wL) + λ

∆t

∆x
η(w⋆

L) + λ
∆t

∆x
η(w⋆

R) +

(
1

2
− λ

∆t

∆x

)
η(wR).

So that, the equation (32) equivalently writes(
−λ

∆t

∆x
+

1

2

)
η(wL) + λ

∆t

∆x
η(w⋆

L) + λ
∆t

∆x
η(w⋆

R) +

(
1

2
− λ

∆t

∆x

)
η(wR) =

η(wL) + η(wR)

2
− λ

∆t

∆x

G(wR)−G(wL)

λ
− gλ

∆t

∆x

zR − zL
λ

Fh
LR.

With ηHLL defined by (31d), we immediately reformulate (32) as follows:

η(w⋆
L) + η(w⋆

R)

2
= ηHLL − g

zR − zL
2λ

Fh
LR. (34)
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We now expand the numerical flux Fh
LR given by (20). Adopting the notation [X] = XR −XL for any

quantity X, since the approximate Riemann solver is given by (29), the water height numerical flux
function writes

Fh
LR =

(hu)R + (hu)L
2

− λ

2
[h] +

λ

2
[h⋆].

As a consequence, and using the definition of hHLL given by (31a), we have

− [z]

2λ
Fh
LR = − [z][h⋆]

4
+

[z]

4

(
[h]− (hu)L + (hu)R

λ

)
,

= − [z][h⋆]

4
+

zRhR + zLhL
2

− zL + zR
2

hHLL − [huz]

2λ
.

Now, considering the above relation and η̂HLL, given by (31e), expanding η(w⋆
L) and η(w⋆

R), we then
deduce from (34)

h⋆R(u
⋆
R)

2 + h⋆L(u
⋆
L)

2

4
+ g

(h⋆L)
2 + (h⋆R)

2

4
+

g

4
[z][h⋆] = η̂HLL − g

zL + zR
2

hHLL. (35)

Moreover, from the equation (33a) we directly obtain

g

8
(h⋆L + h⋆R)

2 =
g

2
(hHLL)2,

so that, subtracting the above equation to (35), we deduce

h⋆R(u
⋆
R)

2 + h⋆L(u
⋆
L)

2

4
+

g

8
[h⋆]2 +

g

4
[z][h⋆] = η̂HLL − g

2
(hHLL)2 − g

zL + zR
2

hHLL. (36)

The next step consists to rewrite h⋆L(u
⋆
L)

2 + h⋆R(u
⋆
R)

2 in order to show that the above equation (36) is
equivalent to

h⋆Rh
⋆
L[u

⋆]2

8hHLL +
g

8
[h⋆]2 +

g

4
[h⋆][z] = η̂HLL − η̂(ŵHLL). (37)

According to the definition of wHLL given by (31a), a direct computation shows that hHLL writes

hHLL =
hR
2

(
1− uR

λ

)
+

hL
2

(
1 +

uL
λ

)
. (38)

Since the CFL condition (30) holds and since hL > 0 and hR > 0, the above equality leads to hHLL > 0.
As a consequence, and using the equations (33a)-(33b), the following computation holds

h⋆L(u
⋆
L)

2 + h⋆R(u
⋆
R)

2

4
=
h⋆L(u

⋆
L)

2 + h⋆R(u
⋆
R)

2

4

h⋆L + h⋆R
2hHLL ,

=
(h⋆Lu

⋆
L)

2 + 2h⋆Lu
⋆
Lh

⋆
Ru

⋆
R + (h⋆Ru

⋆
R)

2 + h⋆Rh
⋆
L[u

⋆]2

8hHLL ,

=
1

2hHLL

(h⋆Lu⋆L + h⋆Ru
⋆
R

2

)2
+

h⋆Lh
⋆
R[u

⋆]2

8hHLL ,

=
(hHLLûHLL)2

2hHLL
+

h⋆Lh
⋆
R[u

⋆]2

8hHLL . (39)

Considering the above relation in (36), we eventually deduce that the equation (32) is equivalent to the
equation (37). Adding g[z]2

8 on both sides of (37), we deduce the expected equation (33c) and the proof
is achieved.

In the above lemma we have impose hL > 0 and hR > 0. To deal with the dry-wet transitions,
we need a specific treatment [4, 40, 42]. Indeed, the quantity ûHLL given by (31b) is defined up to a
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multiplication by hHLL. According to (38), since hHLL is null if and only if hL = 0 and hR = 0, the
admitted convention in [4, 40,42] requires to define ûHLL in R as follows:

ûHLL =


0, if hL = 0 and hR = 0,

(hu)HLL + ŝLR(zR−zL)
2λ

hHLL , otherwise.
(40)

However, form a practical point of view, the dry-wet transitions must be considered but they are not
the main goal of this work. As a consequence, and for the clarity, with hL > 0 and hR > 0 both
definitions (31b) and (40) are equivalent.

Now, we emphasize that intermediate states w⋆
L and w⋆

R, satisfying (19) and (32), because of Lemma
2.2 (i) and (ii), will produce a consistent entropy preserving Godunov-type scheme (16). At this level,
we also notice that the system made of (19) and (32) to govern w⋆

L and w⋆
R is under-determined since

we have only three equations to define h⋆L, h⋆R, u⋆L, u⋆R, and the source term discretization ŝLR. The
missing relation will be detailed in the next section according to the selected well-balanced property.

To conclude this section, we remark a natural compatibility condition to be satisfied in (33c). Indeed,
it is clear that a well-posed property of this quadratic equation requires the following inequality:

η̂HLL − η̂(ŵHLL) +
g(zR − zL)

2

8
≥ 0. (41)

At this level, this above inequality can not be proved in its full generality. However, some properties
are now given.

Lemma 3.2. Consider ŵL and ŵR two states with hL > 0 and hR > 0. Let also consider the couples
(η,G) and (η̂, Ĝ) given by (5) and (7), and the quantities (ŵHLL, η̂HLL) and (wHLL, ηHLL), defined by
(31). Assume that the CFL-like condition (30) holds. The following statements are verified:

(i) For all given quantity ŝLR, the following estimate is satisfied:

η̂HLL − η̂(ŵHLL) +
g

8
(zR − zL)

2 =

hRhL(uR − uL)
2

4(hL + hR)
+

g

8
(hR − hL + zR − zL)

2

− (uR − uL)
2hRhL(hLuR − hRuL)

4λ(hL + hR)2
− hLuL + hRuR

4λ

(
g(zR − zL) +

ŝLR(zR − zL)

hHLL

)
+O

(
1

λ2

)
.

(42)

(ii) Assume zL = zR = 0 and adopt the CFL-like restriction (30), then we have

ηHLL − η(wHLL) ≥ 0. (43)

Proof. Concerning (i), with the notation [X] = XR−XL for any quantity X and arguing (31) to define
the quantities ûHLL, η̂HLL, η̂(ŵHLL), we obtain

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 = η̂HLL −

(
(hu)HLL + ŝLR(zR−zL)

2λ

)2
2hHLL − g

2
(hHLL)2 − ghHLL zL + zR

2
+

g

8
[z]2,

= ηHLL + g
hLzL + hRzR

2
− g

[huz]

2λ
− η(wHLL)− ghHLL zL + zR

2

− (hu)HLL

hHLL
ŝLR(zR − zL)

2λ
− 1

8hHLL

(
ŝLR(zR − zL)

λ

)2

+
g

8
[z]2,

= ηHLL − η(wHLL) +
g

4
[z][h] +

g

8
[z]2

− g

4λ
[z]

(
hLuL + hRuR

)
− (hu)HLL

hHLL
ŝLR(zR − zL)

2λ
− 1

8hHLL

(
ŝLR(zR − zL)

λ

)2

.

(44)
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The right hand side of the above equality is now expanded with respect to 1
λ in a neighborhood of 0.

Developing wHLL and ηHLL, given by (31a) and (31d), we have

ηHLL − η(wHLL) =
hLu

2
L

4hL
+

hRu
2
R

4hR
+

g(h2L + h2R)

4
− [G]

2λ
− g

8

(
hR + hL − [hu]

λ

)2

−
(
(hu)HLL)2
2hHLL . (45)

Now, it is necessary to expand the quantity
(
(hu)HLL

)2
(2hHLL)

in the above equality. Using the definition of
hHLL and (hu)HLL given by (31a), we have

(hu)HLL =
hLuL + hRuR

2
− 1

2λ
[hu2 +

gh2

2
],

1

2hHLL =
1

(hL + hR)
(
1− [hu]

λ(hR+hL)

) .
(46a)

(46b)

Considering the square of (hu)HLL in (46a) and interpreting the quantity 1(
1− [hu]

λ(hR+hL)

) as a geometric

series, we get (
(hu)HLL)2 = (hLuL + hRuR

2

)2 − 1

2λ

(
hLuL + hRuR

)
[hu2 +

g

2
h2] +O

(
1

λ2

)
,

1

1− [hu]
λ(hR+hL)

= 1 +
[hu]

λ(hL + hR)
+O

(
1

λ2

)
.

(47a)

(47b)

As a consequence, using the two above equalities to develop the quantity
(
(hu)HLL

)2
(2hHLL)

with respect to 1
λ ,

from (45) we obtain

ηHLL − η(wHLL) =
hLu

2
L

4hL
+

hRu
2
R

4hR
− (hLuL + hRuR)

2

4(hL + hR)
+

g

8
[h]2 − [G]

2λ
+

g

4
(hL + hR)

[hu]

λ

− (hLuL + hRuR)
2[hu]

4λ(hL + hR)2
+

(hLuL + hRuR)[hu
2 + g

2h
2]

2λ(hL + hR)
+O

(
1

λ2

)
,

=
hRhL[u]

2

4(hL + hR)
+

g

8
[h]2 − [u]2hRhL(hLuR − hRuL)

4λ(hL + hR)2
+O

(
1

λ2

)
.

With the two equalities (46), it is also possible to develop (hu)HLL

hHLL and 1
hHLL in the equation (44) then

using the above estimate, we eventually deduce

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 =

hRhL[u]
2

4(hL + hR)
+
g

8
[h+z]2− [u]2hRhL(hLuR − hRuL)

4λ(hL + hR)2
−hLuL + hRuR

4λ

(
g[z] +

ŝLR(zR − zL)

hHLL

)
+O

(
1

λ2

)
,

to achieve the establishment of (i).
Concerning (ii), with ŝLR|zR=zL = 0, because of (44) we directly get the following equality:(

η̂HLL − η̂(ŵHLL) +
g

8
(zR − zL)

2
)∣∣∣

zL=zR
= ηHLL − η(wHLL).

To conclude the proof of this result, we underline that the inequality (43) is just an easy consequence
of the discrete entropy inequality satisfied by the well-known one intermediate state HLL scheme given
in [29].

It is worth noticing that the statement (i) of the above lemma highlights the role of the parameter
ŝLR in the inequality (41). In fact the choice of this parameter has to be motivated in one hand for
the consistency but also, in the other hand, to enforce the inequality (41) in the case uL = uR and
hL + zL = hR + zR.

Now, this system (33) is adopted to define an approximate Riemann solver (29).
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4 Application in the flat regions

This section concerns the design of an approximate Riemann solver (29) defined by the system (33)
but for z = cst. Locally on an interface, we have to deal with zL = zR. As a consequence, the system
(33) now reads

h⋆L + h⋆R
2

= hHLL,

h⋆Lu
⋆
L + h⋆Ru

⋆
R

2
= hHLLuHLL,

h⋆Lh
⋆
R

8hHLL (u
⋆
R − u⋆L)

2 +
g

8
(h⋆R − h⋆L)

2 = ηHLL − η(wHLL),

(48a)

(48b)

(48c)

where wHLL and ηHLL are given by (31a) and (31d), and with

uHLL =


0, if hL = 0 and hR = 0,

(hu)HLL

hHLL , otherwise.

Since the system (48) is under-determined, it is completed with the continuity of u in the intermediate
states of the solver (29). Such continuity writes

u⋆L = u⋆R, (49)

which has already been proposed in [45] for the HLLC scheme for instance.

Lemma 4.1 (Entropy satisfying approximate Riemann solver for the homogeneous shallow water
equations). Let us consider wL and wR with hL > 0 and hR > 0. Let us define an approximate
Riemann solver w̃(·, wL, wR) : R → R2 in the form (29). Assume the CFL-like condition (30) holds. If
the intermediate states w⋆

L and w⋆
R of the approximate Riemann solver are defined by the system (48)-

(49) then, there exists two solutions for w⋆
L and w⋆

R, according to the notations (31), given by

u⋆L = u⋆R = uHLL,

h⋆R = hHLL ±
√

2

g

(
ηHLL − η(wHLL)

)
,

h⋆L = hHLL ∓
√

2

g

(
ηHLL − η(wHLL)

)
.

(50a)

(50b)

(50c)

Moreover, a Godunov-type scheme (16) associated to one of the two above approximate Riemann solvers

(i) is consistent with the homogeneous shallow water equations given by (1) with z = cst,

(ii) satisfies a discrete entropy inequality (14)-(25).

In the equalities (50), both symbols ± and ∓ that mean + or − but they are self-dependent. If ±
is positive (resp. negative) then ∓ is negative (resp. positive). This notation will be kept in the sequel.

Before we establish the above result, since z = cst, we emphasize that the discrete entropy inequality,
given by (14)-(25), reads

1

∆t

( (
η(ŵn+1

i ) + zhn+1
i

)
− (η(ŵn

i ) + zhni )
)
+

1

∆x

((
Gi+ 1

2
+ zFh

i+ 1
2

)
−
(
Gi− 1

2
+ zFh

i− 1
2

))
≤ 0,

where

Gi+ 1
2
=
G(wn

i+1) +G(wn
i )

2
− ∆x

4∆t

(
η(wn

i+1)− η(wn
i )
)

+
1

2∆t

∫ ∆x
2

0
η
(
w̃(

x

∆t
, ŵn

i , ŵ
n
i+1)

)
dx− 1

2∆t

∫ 0

−∆x
2

η
(
w̃(

x

∆t
, ŵn

i , ŵ
n
i+1)

)
dx. (51)
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Since we have
hn+1
i = hni − ∆t

∆x

(
Fh
i+ 1

2

−Fh
i− 1

2

)
,

then we recover the usual discrete entropy inequality

1

∆t

(
η(ŵn+1

i )− η(ŵn
i )
)
+

1

∆x

(
Gi+ 1

2
− Gi− 1

2

)
≤ 0. (52)

Proof of Lemma 4.1. First, involving the notation (31) we solve the system (48)-(49). Since u⋆L = u⋆R =
u⋆, the equation (48b) associated to (48a) gives

hHLLuHLL =
h⋆Lu

⋆
L + h⋆Ru

⋆
R

2
,

=
h⋆L + h⋆R

2
u⋆,

= hHLLu⋆. (53)

With hL > 0 and hR > 0 then, under the CFL-like condition (30), hHLL > 0 so that (50a) is obtained.
Now, we prove the expressions of h⋆L and h⋆R given by (50b)-(50c). Since the equality u⋆L = u⋆R

holds, the equation (48c) reads

g

8
(h⋆R − h⋆L)

2 = ηHLL − η
(
wHLL).

According to Lemma 3.2, the inequality ηHLL−η
(
wHLL) ≥ 0 is ensured by the CFL-like condition (30).

As a consequence, we get

h⋆R − h⋆L = ±

√
8
(
ηHLL − η(wHLL)

)
g

.

The above equation with (48a) immediately gives (50b)-(50c).
Next, we note that w̃(·, w, w) = w for all w ∈ Ω. Since the approximate Riemann solver satisfies

the integral consistency, according to Lemma 3.1 and relations (33) here reformulated by (48a)-(48b),
the resulting Godunov-type scheme (16) is consistent.

Eventually, the discrete entropy stability (ii) is a direct consequence of the equation (48c), of Lemma
2.2 and of Lemma 3.1, that concludes the proof.

Unfortunately, adopting (50b) and (50c) to define h⋆L and h⋆R, it is not possible to satisfy h⋆L ≥ 0
and h⋆R ≥ 0 for all wL and wR in Ω. To enforce the required positiveness of the intermediate water
heights, we adopt a conservative cut-off introduced in [4, 8, 42].

Lemma 4.2 (Robust and entropy satisfying approximate Riemann solver for the homogeneous shallow
water equations). Consider wL and wR in Ω. Consider a Godunov-type scheme (16) that approximates
the solution of the homogeneous shallow water equations and defined by an approximate Riemann solver
w̃(·, wL, wR) : R → R2 in the form (29). Assume the CFL-like condition (30). Let also consider the
quantities wHLL and ηHLL given by (31a) and (31d), and let denote

h̃⋆R = hHLL ±
√

2

g

(
ηHLL − η(wHLL)

)
, h̃⋆L = hHLL ∓

√
2

g

(
ηHLL − η(wHLL)

)
. (54)

If the intermediate states w⋆
L and w⋆

R of the approximate Riemann solver write

u⋆L = u⋆R = uHLL,

h⋆R = min
(
max

(
h̃⋆R, 0

)
, 2hHLL

)
,

h⋆L = min
(
max

(
h̃⋆L, 0

)
, 2hHLL

)
,

(55)

then we have
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(i) The Godunov-type scheme (16), or equivalently the scheme (15)-(18)-(20), associated to such an
approximate Riemann solver is consistent with the homogeneous shallow water equations given by
(1) with z = cst and it preserves the convex set Ω.

(ii) If h̃⋆L > 0 and h̃⋆R > 0 then the Godunov-type scheme (16), or equivalently the scheme (15)-(18)-
(20), associated to such an approximate Riemann solver satisfies the discrete entropy inequality
(51)-(52).

Proof. First, if h̃⋆L and h̃⋆R given by (54) are both positive then (55) coincides with (50). In this case,
Lemma 4.1 applies and the required consistency and entropy stability are recovered. Moreover, since
h⋆L > 0 and h⋆R > 0, then by the definition of the Godunov-type scheme (16) we immediately get
hn+1
i > 0 for all i ∈ Z.

Next, if one of h̃⋆L or h̃⋆R is non-positive, say h̃⋆L ≤ 0, then by (55) we get h⋆L = 0 and h⋆R = 2hHLL.
As a consequence, the consistency condition (48a) is satisfied and the scheme remains consistent. Once
again, since h⋆L ≥ 0 and h⋆R ≥ 0, the associated Godunov-type scheme also preserves the positiveness
of the updated approximate water height hn+1

i ≥ 0 for all i ∈ Z. The proof is thus complete.

We underline that the positiveness procedure min(max(·, ·), ·), imposed in (55), ensures the robust-
ness in the regions near the dry areas. This procedure still ensures the consistency relation (48a) when
h̃⋆L ≤ 0 or h̃⋆R ≤ 0 but it not necessary ensures the entropy condition (48c). As a consequence, the
discrete entropy stability may be locally lost in the dry-wet transition regions.

5 A well-balanced entropy stable numerical scheme for the lake at
rest

In this section, we consider the shallow water equations (1) for a given arbitrary smooth function
z : R → R. We aim to design a consistent, entropy satisfying and well-balanced scheme for the
lake at rest (10). In this regard, we propose to define an approximate Riemann solver (29) with the
under-determined system (33) completed as follows:

u⋆L = u⋆R,

ŝLR = ŝWBAR
LR = −ghHLL −

√
g

hHLL
hLuL + hRuR

hHLL (zR − zL),

(56a)

(56b)

where the notation ŝWBAR
LR means Well-Balanced At Rest. This notation is defined in order to distinguish

ŝWBAR
LR given by (56b) from a generic discretization ŝLR.

According to Lemma 2.2, the under-determined system (33) will be shown to be a sufficient condition
to the consistency and to the discrete entropy inequality (14) for the couple (η̂, Ĝ) defined by (7). The
closure (56) is sufficient to obtain the well-balanced property for the lake at rest (10). Before to prove
this property, we show the existence of the solutions of the system made of (33) and (56).

Lemma 5.1. Consider ŵL and ŵR two states with hL > 0 and hR > 0 and consider w̃(·, ŵL, ŵR) :
R → R2 an approximate Riemann solver in the form (29). Assume the CFL-like condition (30) and
λ > 0 large enough. The intermediate states, w⋆

L and w⋆
R, solutions of the system (33) and (56), are

given by
u⋆L = u⋆R = ûHLL,

h⋆R = hHLL −
(zR − zL)±

√
8

(
η̂HLL−η̂(ŵHLL)

)
g + (zR − zL)2

2
,

h⋆L = hHLL +
(zR − zL)±

√
8

(
η̂HLL−η̂(ŵHLL)

)
g + (zR − zL)2

2
,

(57a)

(57b)

(57c)

15



where

8

(
η̂HLL − η̂(ŵHLL)

)
g

+ (zR − zL)
2 ≥ 0. (58)

A Godunov-type scheme (16) defined by such an approximate Riemann solver

(i) is consistent with the shallow water equations (1),

(ii) satisfies a discrete entropy inequality (14) for the couple (η̂, Ĝ) defined by (7), where the numerical
entropy flux function Ĝi+ 1

2
of this inequality is given by (25).

(iii) is well-balanced for the lake at rest (10).

Proof. First, we solve the system made of (33) and (56). As u⋆L = u⋆R, let denote u⋆ = u⋆L = u⋆R. The
equation (33b) associated to (33a) gives

hHLLûHLL =
h⋆Lu

⋆
L + h⋆Ru

⋆
R

2
,

=
h⋆L + h⋆R

2
u⋆,

= hHLLu⋆. (59)

Since hL > 0 and hR > 0, we have hHLL > 0 to obtain (57a).
Next, in order to exhibit h⋆R and h⋆L given by (57b)-(57c), we study the equation (33c). With

u⋆L = u⋆R and the notation [X] = XR −XL for any quantity X, (33c) rewrites

g

8
[h⋆ + z]2 = η̂HLL − η̂(ŵHLL) +

g

8
[z]2. (60)

Since the above equation is quadratic, it is now necessary to show that its right hand side is positive;
namely we have to prove the estimation (58). Let us first consider the case zR − zL = 0. Then, since
ŝWBAR
LR is consistent and since the CFL condition (30) holds, Lemma 3.2-(ii) gives(

η̂HLL − η̂(ŵHLL) +
g

8
[z]2

)∣∣∣
[z]=0

= ηHLL − η(wHLL) ≥ 0.

Next, with zR − zL ̸= 0, Lemma 3.2-(i) gives the following relation:

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 =

hRhL[u]
2

4(hL + hR)
+
g

8
[h+z]2− [u]2hRhL(hLuR − hRuL)

4λ(hL + hR)2
−hLuL + hRuR

4λ

(
g[z] +

ŝLR(zR − zL)

hHLL

)
+O

(
1

λ2

)
.

(61)

Therefore, if [u] ̸= 0 or [h + z] ̸= 0 then there exists λ > 0 large enough such that the inequality
η̂HLL − η̂(ŵHLL) + g[z]2

8 ≥ 0 is satisfied. Now, assume uL = uR = u and [h + z] = 0. Arguing the
definition of ŝWBAR

LR , given by (56b), we have(
g[z] +

ŝWBAR
LR [z]

hHLL

)∣∣∣ [u]=0,
[h+z]=0

= −√
g
(hL + hR)

(hHLL)
5
2

u[z]2,

= −2
5
2
√
g(hL + hR)

− 3
2u[z]2 +O

(
1

λ

)
.

Considering the above equality in the relation (61), we deduce(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2

)∣∣∣ [u]=0,
[h+z]=0

= −(hL + hR)u

4λ

(
g[z] +

ŝWBAR
LR [z]

hHLL

∣∣∣ [u]=0,
[h+z]=0

)
+O

(
1

λ2

)
,

=

√
2g

hL + hR

u2[z]2

λ
+O

(
1

λ2

)
.

(62)
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According to the above equation, if u ̸= 0, there exists once again λ > 0 large enough such that the
inequality η̂HLL − η̂(ŵHLL) + g[z]2

8 ≥ 0 holds for the cases [h + z] = 0 and uL = uR ̸= 0. To conclude,
we have to consider the last case [h + z] = 0 and uL = uR = 0 which defines a local equilibrium for
the lake at rest (22). In this specific situation, a direct computation using ŵHLL and ŝWBAR

LR defined by
(31c) and (56b) gives

hHLL
∣∣∣uL=uR=0,

[h+z]=0

=
hL + hR

2
,

ŝWBAR
LR

∣∣∣uL=uR=0,
[h+z]=0

= −g
hL + hR

2

zR − zL
∆x

,

(
hHLLûHLL)∣∣∣uL=uR=0,

[h+z]=0

= − g

4λ
[h2]− g

4λ
(hL + hR)[z] = − g

4λ
(hL + hR)[h+ z] = 0.

(63)

Considering the three above relations in the quantity η̂HLL − η̂(ŵHLL) + g[z]2

8 , we obtain(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2

)∣∣∣uL=uR=0,
[h+z]=0

=
hRhL[u]

2

4(hL + hR)
+

g

8
[h+ z]2 = 0. (64)

Therefore, there always exists λ > 0 large enough such that the required inequality (58) is verified.
As a consequence, the quadratic equation (60) is well-posed and we get

[h⋆ + z] = ±

√
8

(
η̃HLL − η̃(wHLL)

)
g

+ [z]2.

Associating the above equation to (33a), we deduce the expected definition of h⋆R and h⋆L, given by
(57b) and (57c).

Concerning the statements (i) and (ii), ŝWBAR
LR is consistent and a direct computation shows that

w̃(·, ŵ, ŵ) = w. In addition, as the intermediate states are defined by the system (33), Lemma 3.1
ensures that the approximate Riemann solver verifies the consistency integral relation (19) and the
inequality (24). Therefore, the consistency of the Godunov-type scheme (i) and the discrete entropy
stability (ii) are direct consequences of Lemma 2.2.

To establish the well-balanced property (iii), according to Lemma 2.2, we have to show that w⋆
L =

wL and w⋆
R = wR as soon as ŵL and ŵR define a local lake at rest equilibrium (22), namely uL = uR = 0

and hL+zL = hR+zR. With ŝLR, w⋆
L, w⋆

R given by (56b) and (57), we now show that u⋆ = 0, h⋆L = hL
and h⋆R = hR.

First, we establish that ûHLL = 0. According to (31a) and (31b) we have

(
hHLLûHLL)∣∣∣uL=uR=0,

[h+z]=0

= − 1

2λ

(
g
h2R
2

− g
h2L
2

)
+

(zR − zL)

2λ
ŝLR

∣∣∣uL=uR=0,
[h+z]=0

. (65)

Since

ŝLR

∣∣∣uL=uR=0,
[h+z]=0

= −ghHLL
∣∣∣uL=uR=0,

[h+z]=0

,

= −g

2
(hL + hR),

we get (
hHLLûHLL)∣∣∣uL=uR=0,

[h+z]=0

= − g

4λ

(
h2R − h2L

)
− g

4λ
(hL + hR)(zR − zL).

We notice that zR − zL = hL − hR because of the assumption [h+ z] = 0, and we immediately obtain
ûHLL = 0 as soon as uL = uR = 0 and hL + zL = hR + zR that implies u⋆L = u⋆R = 0.
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Now, we prove that h⋆L = hL and h⋆R = hR. When the local lake at rest equilibrium (22) holds,
Lemma 5.1 gives in (64) the equality η̂HLL − η̂(ŵHLL) + g[z]2

8 = 0. Associating this equality to h⋆R and
h⋆L given by (57b) and (57c), we obtain

h⋆R

∣∣∣uL=uR=0,
[h+z]=0

=
hL + hR − [z]

2
=

hL + hR + [h]

2
= hR,

h⋆L

∣∣∣uL=uR=0,
[h+z]=0

=
hL + hR + [z]

2
=

hL + hR − [h]

2
= hL,

that concludes the establishment of the well-balanced property (iii). The proof is thus complete.

Let us remark that the consistent discretization ŝWBAR
LR , given by (56b), leads to the following

equalities:

ûHLL
∣∣∣
[z]=0

= uHLL and
(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2

)∣∣∣
[z]=0

= ηHLL − η(wHLL).

As a consequence, as soon as zL = zR the intermediate states (57) degenerate toward (50). The
approximate Riemann solvers of Lemma 5.1 can be understood as extensions of the solvers presented
in Section 4 for a flat topography.

The explicit formulations of w⋆
L and w⋆

R given by (57) entirely define an approximate Riemann
solver (29). Nevertheless, it is necessary to complete these formulations by limitation techniques that
ensure the robustness for the dry-wet transitions.

Theorem 5.1 (Robust, entropy satisfying, well-balanced Godunov-type scheme for the lake at rest).
Consider ŵL and ŵR two states of Ω̂ and w̃(·, ŵL, ŵR) : R → R2 an approximate Riemann solver in
the form (29). Assume λ > 0 is such that the CFL-like condition (30) holds and such that the system
made of (33) and (56) admits reals solutions. Let also consider the quantities ŵHLL and η̂HLL defined
by (31c) and (31e), and the quantity (h̃⋆R, h̃

⋆
L) in R2 such that

h̃⋆R = hHLL −
(zR − zL)±

√
8

(
η̂HLL−η̂(ŵHLL)

)
g + (zR − zL)2

2
,

h̃⋆L = hHLL +
(zR − zL)±

√
8

(
η̂HLL−η̂(ŵHLL)

)
g + (zR − zL)2

2
.

(66a)

(66b)

If ŝLR verifies

ŝLR =



0, if hL = 0 and hR = 0,

gh2R/2, if hRuR = 0 and hL = 0 and hR + zR ≤ zL,

−gh2L/2, if hLuL = 0 and hR = 0 and hL + zL ≤ zR,

−g(hL + hR)(zR − zL)/2, if hL = 0 or hR = 0,

ŝWBAR
LR , otherwise,

(67)

with ŝWBAR
LR defined by (56b) and if the intermediate states, w⋆

L and w⋆
R, write


h⋆L
u⋆L
h⋆R
u⋆R

 =



(
0, 0, 0, 0)T, if hL = 0 and hR = 0,(

0, 0, 2hHLL, ûHLL)T
, if hL = 0 and hR > 0,(

2hHLL, ûHLL, 0, 0
)T

, if hL > 0 and hR = 0,
min

(
max

(
h̃⋆L, 0

)
, 2hHLL

)
ûHLL

min
(
max

(
h̃⋆R, 0

)
, 2hHLL

)
ûHLL

 , otherwise,

(68)

then the Godunov-type scheme (16) defined by such an approximate Riemann solver
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(i) is consistent with the shallow water equations (1),

(ii) preserves the convex set Ω̂, i.e.: if (ŵn
i )i∈Z ⊂ Ω̂ then, (ŵn+1

i )i∈Z ⊂ Ω̂,

(iii) is robust for the dry-wet transitions,

(iv) is well-balanced for the lake at rest (10).

In addition, if h̃⋆L > 0 and h̃⋆R > 0 then the Godunov-type scheme (16) associated to such an approximate
Riemann solver satisfies a discrete entropy inequality (14) for the couple (η̂, Ĝ) defined by (7) with a
numerical entropy flux function Ĝi+ 1

2
given by (25).

The well-balanced property and the discrete entropy inequality detailed in the above theorem are
also given in [12] with a relaxation scheme that needs to solve a cubic equation. The result of Theorem
5.1 overcomes this constrain and its main originality arises from the explicit solving of a quadratic
equation. This explicit solving gives two numerical schemes distinguished with the symbol ± in the
definitions (66). Both schemes are entropy satisfying, well-balanced for the lake at rest and preserves
the set Ω̂ thank to the limitation techniques min(max(·, ·), ·). However, as soon as the limitation is
active, the system (33) is no longer necessary verified and consequently, the entropy stability might be
locally lost in the dry-wet transitions.

These transitions are also treated with the several cases in the equalities (67) and (68). According
to [40, Section 3.1.2.4], theses equalities are robust but it is clear that they are not continuous with the
numerical scheme defined Lemma 5.1.

We now prove Theorem 5.1.

Proof. Concerning (i), the consistency has only to be proved in the wet regions. Therefore, if h̃⋆L and
h̃⋆R given by (66) are both positive then (68) coincides with (57). In this case, the consistency is shown
in Lemma 5.1. Next, if h̃⋆L ≤ 0 or h̃⋆R ≤ 0, then the limitations techniques min(max(·, ·), ·) is active
but, following the arguments as in the proof of Lemma 4.2, the integral consistency relation is shown
to be preserved. As a consequence, we deduce the consistency of the numerical scheme.

Now, the preservation of the convex set Ω̂, given by (ii), comes from h⋆L ≥ 0 and h⋆R ≥ 0. According
to (68), these inequalities are obviously satisfied.

Concerning (iii) and according to [40, Section 3.1.2.4], the definitions (67) for ŝLR and (68) for the
states w⋆

L and w⋆
R ensure the robustness of the scheme in wet-dry transitions.

The last statement (iv) easily comes from Lemma 5.1-(iii), the source term definition (67) and the
intermediate state definition (68).

Finally, concerning the discrete entropy inequality, if h̃⋆L and h̃⋆R, given by (66), are both positive
then (68) coincide with (57). In this case, the discrete entropy inequality is a direct consequence of the
approximate Riemann solver definition and Lemma 5.1-(ii), that concludes the proof.

The schemes designed in Theorem 5.1 are obtained by adopting (33) to enforce both consistency
and entropy preservation completed by the source term discretization (56b). An other closure is now
presented in order to define an entropy satisfying well-balanced scheme for the moving equilibrium.

6 A fully well-balanced entropy stable numerical scheme for the gen-
eral equilibrium

In this section, the equations (33) are completed with a suitable source term discretization in order
to reach a well-balanced property for the moving equilibrium (9).

Considering an interface separating (wn
i , zi) = (wL, zL) = ŵL and (wn

i+1, zi+1) = (wR, zR) = ŵR,
the local moving equilibrium (23) now reads

hLuL = hRuR, and B̂(ŵL) = B̂(ŵR), (69)

where B̂(ŵ) is defined by (21).
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For the sake of clarity in the notations, for any quantity X we set

Xeq = X
∣∣
[hu]=0 [B̂]=0

.

Since the local moving equilibrium (69) imposes hLuL = hRuR, the notation qeq ∈ R is now defined as
follows:

qeq = (hLuL)
eq = (hRuR)

eq.

Finally, h denotes the arithmetic mean of hL and hR that writes h = (hL+hR)
2 in R+.

In addition, we need to introduce some technical quantities, ζLR, qLR, βLR and F 2
LR, which will

take particular values when ŵL and ŵR define a local moving equilibrium (69). These quantities are
given by

ζLR = [hu]2 + h[B̂(ŵ)]2/g,

qLR =


0, if [z] = 0 and ζLR = 0,

min(hLuL, hRuR)(g[z]∆t)2

(g[z]∆t)2 + ζLR
, otherwise,

,

βLR =


0, if and [u] = 0 and [h+ z] = 0 and ζLR = 0,

(h[u])2 + gh[h+ z]2

(h[u])2 + gh[h+ z]2 + ζLR
, otherwise,

,

F 2
LR =

q2LR
ghLhRhHLL .

(70a)

(70b)

(70c)

(70d)

The following technical lemma gives properties satisfied by ζLR, qLR and F 2
LR.

Lemma 6.1. Let consider ŵL and ŵR two states with hL > 0 and hR > 0. Let consider λ > 0,
∆t > 0 satisfying the CFL-like condition (30). Let also consider wHLL given by (31a) and ζLR, qLR,
F 2
LR defined by (70). The following statements are satisfied:

(i) ζLR = 0 if and only if ŵL and ŵR verify a local equilibrium (69).

(ii) If [z] ̸= 0 then qeq
LR = qeq.

(iii) If [z] ̸= 0 then (F 2
LR)

eq = (qeq)2

(ghLhRh)
.

Proof. Concerning (i), since hL > 0 and hR > 0, then we have h > 0. As a consequence, ζLR is a
positive quantity which vanishes if and only if [hu] = 0 and [B̂(ŵ)] = 0.

For the statement (ii) with [z] ̸= 0, the equality ζeq
LR = 0 gives

qeq
LR =

(min(hLuL, hRuR)(g[z]∆t)2

(g[z]∆t)2 + ζLR

)eq
=

(
min(hLuL, hRuR)

)eq
= qeq.

Finally, for (iii), writing the definition of hHLL given by (31a), we obtain

(hHLL)eq =
hL + hR

2
− [hu]eq

2λ
=

hL + hR
2

= h.

Using the above relation and the statement (ii) in the definition of F 2
LR given by (70d), we deduce the

expected result that achieves the proof.

Considering the definitions (70), the equations (33) are completed as follows:

h⋆Rh
⋆
L(u

⋆
R − u⋆L)

2 =
q2LR
hRhL

(h⋆R − h⋆L)
2,

ŝLR = ŝFWB
LR = ŝWBAR

LR + βLR

(ghF 2
LR

4hLhR

(hR − hL)
3

∆x
+
√
g
hLuL + hRuR

(hHLL)
3
2

(zR − zL)
2

∆x

)
.

(71a)

(71b)
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The notation ŝFWB
LR means Fully Well-Balanced. According to (71b), ŝFWB

LR is nothing but a correction
of ŝWBAR

LR given by (56b).
The solving of the system made of (33) and (71) is now detailed in the following lemma. From now

on, it is worth noticing that the obtained solutions will depend on the usual ± sign. In fact, ± sign will
be involved twice in the solutions. So, to avoid some possible confusion, we introduce two independent
symbols ±1 and ±2 such that if ±1,2 is positive (resp. negative) then ∓1,2 is negative (resp. positive).

Lemma 6.2. Let us consider ŵL and ŵR two states with hL > 0 and hR > 0. Let us also consider
w̃(·, ŵL, ŵR) : R → R2 an approximate Riemann solver (29). Assume the CFL-like condition (30).
Then, there exists λ > 0 large enough and ∆t > 0 small enough such that the system made of (33) and
(71) admits four solutions given by

h⋆L = hHLL − [h⋆]

2
,

h⋆R = hHLL +
[h⋆]

2
,

u⋆L = ûHLL ∓2
qLR[h

⋆]

2hHLL
√
hLhR

√
h⋆R
h⋆L

,

u⋆R = ûHLL ±2
qLR[h

⋆]

2hHLL
√
hLhR

√
h⋆L
h⋆R

.

(72a)

(72b)

(72c)

(72d)

with

[h⋆] = −(zR − zL)

1 + F 2
LR

±1

√
8

g

η̂HLL − η̂(ŵHLL)

1 + F 2
LR

+
(zR − zL)2

(1 + F 2
LR)

2
, (73)

where ŵHLL and η̂HLL are defined by (31c) and (31e).
Finally, a Godunov-type scheme (16) defined by such approximate Riemann solvers

(i) are consistent with the shallow water equations (1),

(ii) satisfy a discrete entropy inequality (14) for the couple (η̂, Ĝ), defined by (7), where the entropy
numerical flux function Ĝi+ 1

2
is given by (25).

The symbols ±1 and ±2, adopted in (72)-(73), may be interpreted as free parameters that will be
fixed in the sequel to guarantee the well-balanced property.

Before to prove Lemma 6.2, it is now necessary to give two intermediate results. The first one
concerns the behavior of ŝFWB

LR defined by (71b).

Lemma 6.3 (Property of ŝFWB
LR ). Consider ŵL and ŵR two states with hL > 0 and hR > 0. Assume that

the CFL-like condition (30) holds. In the expression of hHLLûHLL, given by (31b), impose ŝLR = ŝFWB
LR ,

then

(hHLLûHLL)eq =
(
(hu)HLL +

ŝFWB
LR (zR − zL)

2λ

)eq
= qeq.

Proof. The proof is led by three exhaustive cases given by

(i) [z] = 0,

(ii) [z] ̸= 0 and qeq = 0,

(iii) [z] ̸= 0 and qeq ̸= 0.

In the case (i), and according to the definition (71b), we immediately have ŝFWB
LR = 0. In addition,

a local smooth equilibrium defined by [z] = 0 necessary verifies ŵL = ŵR. As a consequence, using the
definition of hHLLûHLL given by (31b), we get

(hHLLûHLL)eq
∣∣
[z]=0

= ((hu)HLL)eq,
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=
(hLuL)

eq + (hRuR)
eq

2
−

[hu2 + gh2

2 ]eq

2λ
,

= qeq,

and the result is established in the case (i).
The case (ii) is defined by [z] ̸= 0 and qeq = 0. A direct computation shows that the local moving

equilibrium (69) degenerates toward the local lake at rest equilibrium that writes uL = uR = 0 and
[h+ z] = 0. But, according to the definition of βLR given by (70c), if the local lake at rest equilibrium
occurs then βLR = 0. Therefore, using the identity (71b), we have

(ŝFWB
LR )eq

∣∣
qeq=0

= (ŝWBAR
LR )eq

∣∣
qeq=0

= −g
hL + hR

2

zR − zL
∆x

.

As a consequence, arguing (65), we deduce hHLLûHLL = 0. Since hHLL > 0, this concludes the second
case.

Let consider now the case (iii) defined by [z] ̸= 0 and qeq ̸= 0. Since ŵL and ŵR define a local
moving equilibrium (69) with qeq ̸= 0, from (70c) and (69), we get

βeq
LR|qeq ̸=0 = 1 and − (qeq)2

2h2Lh
2
R

[h2] + g[h+ z] = 0.

Arguing the above identities and Lemma 6.1-(iii) to get (F 2
LR)

eq = 2 (qeq)2

(ghLhR(hL+hR)) , then we have

(ŝFWB
LR (zR − zL))

eq∣∣
qeq ̸=0

= −g
hL + hR

2
[z] +

g

8
[h]3

hL + hR
hLhR

F 2
LR

∣∣
qeq ̸=0

,

= −g
hL + hR

2
[z] +

[h]2

4

[h2](qeq)2

h2Lh
2
R(hL + hR)

,

= −g
hL + hR

2
[z] +

g[h]2

2

[h+ z]

hL + hR
.

Plugging this last identity in the definition of hHLLûHLL, given by (31b), we deduce

(hHLLûHLL)eq
∣∣
qeq ̸=0

=
(
hHLLuHLL +

ŝFWB
LR (zR − zL)

2λ

)eq∣∣
qeq ̸=0

,

= qeq − 1

2(hL + hR)λ

(
− (qeq)2[h2]

hRhL
+

g

2
(hL + hR)

2[h]
)
+

g

4λ

−(hL + hR)
2[z] + [h]2[h+ z]

hL + hR
,

= qeq − g[h+ z]

4λ(hL + hR)

(
−4hLhR + (hL + hR)

2 − [h]2
)
,

= qeq.

The proof is thus achieved.

The second technical intermediate result to establish Lemma 6.2 is an inequality that defines a
necessary and sufficient condition to the existence of h⋆L and h⋆R satisfying the system made of (33) and
(71).

Lemma 6.4. Consider ŵL and ŵR two states with hL > 0 and hR > 0. Assume that the CFL-like
condition (30) holds and ŝLR = ŝFWB

LR . Let us adopt the notation hHLLûHLL given by (31b). Consider
the quantities ŵHLL, η̂HLL and F 2

LR defined by (31c), (31e) and (70d). Then there exists λ > 0 large
enough and ∆t > 0 small enough such that the following inequality is satisfied:

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 − g[z]2

8

F 2
LR

1 + F 2
LR

≥ 0. (74)
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Proof. The proof is led by three exhaustive cases given by

(i) [z] = 0,

(ii) [z] ̸= 0 and ζLR = 0,

(iii) [z] ̸= 0 and ζLR ̸= 0.

First, we consider the case (i) defined by [z] = 0. Using on the one hand the definition (70b), we
have qLR = 0 and using on the other hand the equation (71b), we obtain ŝFWB

LR = 0. As a consequence,
in the case [z] = 0, we deduce F 2

LR = 0 and ûHLL = uHLL. Next, an analogous computation to (44)
gives (

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 − g[z]2

8

F 2
LR

1 + F 2
LR

)∣∣∣
[z]=0

= ηHLL − (hHLLûHLL)2

2hHLL

∣∣∣
[z]=0

− g

2
(hHLL)2 +

(g
4
[z]

(
[h]− hLuL + hRuR

λ

))∣∣∣
[z]=0

= ηHLL − η(wHLL).

Since the CFL condition (30) is satisfied, the inequality ηHLL − η
(
wHLL) ≥ 0 is ensured (see Lemma

3.2-(ii) for details).
The case (ii) is defined by [z] ̸= 0 and ζLR = 0. Since ζLR = 0, ŵL and ŵL define a local moving

equilibrium (69) and a direct computation gives Ĝ(ŵR) − Ĝ(ŵL) = [B̂]qeq = 0. According to Lemma
6.3, the equality (hHLLûHLL)eq = qeq is also verified. As a consequence, we have

(η̂HLL)eq − η̂(ŵHLL)eq =
η(wR)

eq + η(wL)
eq

2
+

g

2
(hLzL + hRzR)−

Ĝ(ŵR)
eq − Ĝ(ŵL)

eq

2λ

−
((hHLLûHLL)2

2hHLL

)eq
−
(g(hHLL)2

2

)eq
− g(hHLL)eq

zL + zR
2

,

=
(qeq)2

4

( 1

hL
+

1

hR

)
+

g

4
(h2L + h2R) +

g

2
(hLzL + hRzR)

− (qeq)2

hL + hR
− g(hL + hR)

2

8
− g

4
(hL + hR)(zL + zR),

=
(qeq)2hLhR
4(hL + hR)

[
1

h

]2
+

g

8
[h]2 +

g

4
[z][h],

=
g

8

(
1 + (F 2

LR)
eq)[h]2 + g

4
[z][h].

Using the above equation, we obtain the required estimation (74) as follows:(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2 − g[z]2

8

F 2
LR

1 + F 2
LR

)eq
=

g

8
(1 + (F 2

LR)
eq)[h]2 +

g

4
[h][z] +

g

8

[z]2

1 + (F 2
LR)

eq ,

=
g

8

(√
1 + (F 2

LR)
eq[h] +

[z]√
1 + (F 2

LR)
eq

)2
≥ 0.

Finally, the last case (iii) is such that [z] ̸= 0 and for couples ŵL and ŵL that not define a local
moving equilibrium (69). This last case writes [z] ̸= 0 and ζLR ̸= 0 and Lemma 3.2-(i) gives the
following estimate:

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 =

hRhL[u]
2

4(hL + hR)
+
g

8
[h+z]2− [u]2hRhL(hLuR − hRuL)

4λ(hL + hR)2
− hLuL + hRuR

4λ

(
g[z]+

ŝLR(zR − zL)

hHLL

)
+O

(
1

λ2

)
.

(75)
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Then, as soon as [u] ̸= 0 or [h+z] ̸= 0, there exists λ > 0 large enough such that the following inequality
is satisfied

η̂HLL − η̂(ŵHLL) +
g[z]2

8
> 0. (76)

For the particular cases [u] = 0 and [h+ z] = 0, the following equations are verified:

βLR| [u]=0,
[h+z]=0

= 0 and ŝFWB
LR |βLR=0 = ŝWBAR

LR .

As a consequence, the existence of the inequality (76) is related to the proof of Lemma 5.1, which
concerns the estimate (75) with ŝLR = ŝWBAR

LR . But, according to the computations (62) and (63), the
inequality (76) can be held excepted for ŵL and ŵR defined by a local lake at rest equilibrium (22).
Since, the lake at rest coincides to a moving equilibrium with a null velocity, it has already been treated
in the case (ii). As a consequence, the inequality (76) can always be ensured for this case (iii). In
addition, according to the definitions (70b) and (70d), and since ζLR ̸= 0, then F 2

LR is proportional to
∆t4. Then, if the inequality (76) is verified, the large inequality (74) can be held with ∆t > 0 small
enoough such that

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 ≥ g[z]2

8

F 2
LR

1 + F 2
LR

.

We thus easily deduce the expected inequality (74) for this last case that concludes the proof.

With both above lemma, Lemma 6.2 is now established.

Proof of Lemma 6.2. First, we show that the formulations (72) are solutions of the system made of (33)
and (71). Plugging (71a) in (33c) and according to the definition of F 2

LR given by (70d), we deduce the
two following equations satisfied by h⋆L and h⋆R:

h⋆L + h⋆R
2

= hHLL,

g

8
(1 + F 2

LR)[h
⋆]2 +

g

4
[z][h⋆] = η̂HLL − η̂(ŵHLL).

(77a)

(77b)

Now, we have to show that the above quadratic equation is well-posed. Dividing this quadratic equation
(77b) on both sides by g

8(1+F 2
LR)

then adding [z]2

(1+F 2
LR)2

, we obtain

(
[h⋆] +

[z]

1 + F 2
LR

)2
=

8

g

η̂HLL − η̂(ŵHLL)

1 + F 2
LR

+
[z]2

(1 + F 2
LR)

2
,

=
8

g(1 + F 2
LR)

(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2 − g[z]2

8

F 2
LR

1 + F 2
LR

)
.

According to Lemma 6.4, if λ (resp. ∆t) is large (resp. small) enough then the right hand side of the
above equation is positive As a consequence, as soon as λ and ∆t are well-chosen, the previous equation
is well-posed and a direct computation leads to [h⋆] given by (73). Next, coupling [h⋆] = h⋆R − h⋆L to
(77a), we deduce the values of h⋆L and h⋆R given by (72a) and (72b).

Since the quantities h⋆R and h⋆L are known and since they are assumed to be positive, the equation
(71a) re-writes

[u⋆] = ± qLR√
hLhR

[h⋆]√
h⋆Lh

⋆
R

. (78)

Arguing the above equation and (77a) in the relation (h⋆
Lu

⋆
L+h⋆

Ru⋆
R)

2 = hHLLûHLL, we obtain

hHLLûHLL =
h⋆Lu

⋆
L + h⋆Ru

⋆
R

2
,

=
h⋆L + h⋆R

2

u⋆L + u⋆R
2

+
[h⋆][u⋆]

4
,
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= hHLLu
⋆
L + u⋆R
2

± qLR

4
√
hLhR

[h⋆]2√
h⋆Lh

⋆
R

. (79)

This equation associated to the equalities (78) and (77a) gives

u⋆R = ûHLL ± qLR[h
⋆]

2
√
hLhRh⋆Lh

⋆
R

∓ qLR[h
⋆]2

4hHLL
√
hLhR

√
h⋆Rh

⋆
L

,

= ûHLL ± qLR[h
⋆]

2
√
hLhRh⋆Lh

⋆
R

(
1− [h⋆]

2hHLL

)
,

= ûHLL ± qLR[h
⋆]

2
√
hLhRh⋆Lh

⋆
R

h⋆L
hHLL .

From this last equality, we get the formulation of u⋆R presented in (72d). Since u⋆L, given by (72c), can
be derived from an analogous computation, this achieves to show (72).

Concerning the statements (i) and (ii), ŝFWB
LR is consistent and a direct computation shows w̃(·, ŵ, ŵ) =

w. In addition, as the intermediate states are defined by the system (33), Lemma 3.1 ensures that the
approximate Riemann solver verifies the integral consistency relation (19) and the entropy inequality
(24). Therefore, the consistency of the Godunov-type scheme (i) and the discrete entropy stability (ii)
are direct consequences of Lemma 2.2 that concludes the proof.

As underlined, (72) exhibits four solutions which depend on the choices of the symbols ±1 and ±2.
The selection of one solution has to be done according to the well-balanced property.

In order to satisfy this property, ±2 has to be negative (that imposes ∓2 positive) and a direct
computing shows that the choice of ±1 has to be done according a condition obtained when ŵL and
ŵR define a local equilibrium (69). This condition formally writes

±eq
1 = sign

(
(1 + (F 2

LR)
eq)[h] + [z]

)
.

As a consequence, a simple formulation for the symbol ±1 is given by

±1 = sign
(
(1 + (F 2

LR))[h] + [z]
)
.

This definition of ±1 will be adopted but others choices are possible. This formulation leads to an
expression of (h⋆L, u

⋆
L) and (h⋆R, u

⋆
R) now detailed in the following result.

Theorem 6.1 (Robust, entropy satisfying, well-balanced Godunov-type scheme for all smooth equi-
librium). Consider ŵL and ŵR two states of Ω̂ and w̃(·, ŵL, ŵR) : R → R2 an approximate Riemann
solver in the form (29). Assume λ > 0 and ∆t > 0 such that the CFL-like condition (30) holds and
such that the system (33), (71) admits reals solutions. Let also consider the quantities ŵHLL, η̂HLL, qLR
and F 2

LR defined by (31c), (31e) (70b), (70d) and the quantities (h̃⋆L, ũ
⋆
L, h̃

⋆
R, ũ

⋆
R) in R4 given by

h̃⋆L = hHLL − [h⋆]

2
,

ũ⋆L = ûHLL +
qLR[h

⋆]

2hHLL
√
hLhR

√
h⋆R
h⋆L

,

h̃⋆R = hHLL +
[h⋆]

2
,

ũ⋆R = ûHLL − qLR[h
⋆]

2hHLL
√
hLhR

√
h⋆L
h⋆R

,

(80a)

(80b)

(80c)

(80d)

with

[h⋆] = −(zR − zL)

1 + F 2
LR

+ sign
(
(1 + F 2

LR)[h] + [z]
)√8

g

η̂HLL − η̂(ŵHLL)

1 + F 2
LR

+
(zR − zL)2

(1 + F 2
LR)

2
. (81)
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In addition, consider ŝLR in the form

ŝLR =



0, if hL = 0 and hR = 0,

gh2R/2, if hRuR = 0 and hL = 0 and hR + zR ≤ zL,

−gh2L/2, if hLuL = 0 and hR = 0 and hL + zL ≤ zR,

−g(hL + hR)(zR − zL)/2, if hL = 0 or hR = 0,

ŝFWB
LR , otherwise,

(82)

with ŝFWB
LR defined by (71b). For ε > 0, assume that the intermediate states, w⋆

L and w⋆
R, are given by


h⋆L
u⋆L
h⋆R
u⋆R

 =



(
0, 0, 0, 0)T, if hL = 0 and hR = 0,(

0, 0, 2hHLL, ûHLL)T
, if hL = 0 and hR > 0,(

2hHLL, ûHLL, 0, 0
)T

, if hL > 0 and hR = 0,
min

(
max

(
h̃⋆L, ε

)
, 2hHLL − ε

)
ũ⋆L

min
(
max

(
h̃⋆R, ε

)
, 2hHLL − ε

)
ũ⋆R

 , otherwise.

(83)

The Godunov-type scheme (16) defined by such an approximate Riemann solver

(i) is consistent with the shallow water equations (1),

(ii) preserves the convex set Ω̂, i.e.: if (ŵn
i )i∈Z ⊂ Ω̂ then, (ŵn+1

i )i∈Z ⊂ Ω̂, and it is robust for the
dry-wet transitions,

(iv) is well-balanced for all moving smooth equilibrium (9).

In addition, if h̃⋆L > 0 and h̃⋆R > 0 then the Godunov-type scheme (16) associated to such an approximate
Riemann solver satisfies a discrete entropy inequality (14) for the couple (η̂, Ĝ), defined by (7), with a
numerical entropy flux function Ĝi+ 1

2
given by (25).

Proof. Concerning (i), the consistency has only to be proved in the wet regions. Therefore, if h̃⋆L and h̃⋆R
given by (80a) and (80c) are both positive then (83) coincides with (80). In this case, the consistency is
shown in Lemma 6.2-(i). If h̃⋆L ≤ 0 or h̃⋆R ≤ 0, then the limitation technique min(max(·, ·), ·) works and
an analogous computation to the one done in Lemma 4.2-(i) shows that these procedures preserve the
consistency integral relation for all ε > 0 small enough. As a consequence, we deduce the consistency
statement (i).

For the statement (ii) related to the preservation of the convex set Ω̂, it is sufficient to prove
the inequalities h⋆L ≥ 0 and h⋆R ≥ 0 but according to (83), these inequalities are obviously ensured
for ε > 0 small enough. Moreover, the robustness of the scheme in wet-dry transitions is emsured
by [40, Section 3.1.2.4] with ŝLR given by (82) and w⋆

L and w⋆
R given by (83).

For the well-balanced property (iii), according to Lemma 2.2, it is sufficient to show that if ŵL

and ŵR define a local moving equilibrium (69) then w⋆
L = wL and w⋆

R = wR. Adopting a local moving
equilibrium, ŝLR, w⋆

L and w⋆
R are thus given by (71b) and (80), and the proof of Lemma 6.3 yields to

(hHLL)eq(ûHLL)eq =
hL + hR

2
(ûHLL)eq = qeq.

Next, according to the proof of Lemma 6.4-(ii), the above equation infers

g

8

1

1 + (F 2
LR)

eq

(
1 + (F 2

LR)
eq[h] + [z]

)2
=

(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2 − g[z]2

8

F 2
LR

1 + F 2
LR

)eq
,
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=
(η̂HLL)eq − η̂(ŵHLL)eq

1 + (F 2
LR)

eq +
g

8

[z]

1 + (F 2
LR)

eq .

Plugging this last equation in (81), we deduce that [h⋆]eq verifies

[h⋆]eq =

− [z]

1 + (F 2
LR)

eq +
(
sign

(
(1 + (F 2

LR))[h] + [z]
))eq

√
8

g

(η̂HLL)eq − η̂(ŵHLL)eq

1 + (F 2
LR)

eq +
[z]2

(1 + (F 2
LR)

eq)2
,

= − [z]

1 + (F 2
LR)

eq + sign
(
(1 + (F 2

LR)
eq)[h] + [z]

) |((1 + (F 2
LR)

eq)[h] + [z]|
|1 + (F 2

LR)
eq|

,

=
−[z] + (1 + (F 2

LR)
eq)[h] + [z]

1 + (F 2
LR)

eq ,

= [h].
(84)

Associating the above equality to (80a) and (80c), we eventually have (h⋆L)
eq = hL and (h⋆R)

eq = hR.
Now, we have to show the equalities

qeq = (h⋆R)
eq(u⋆R)

eq = (h⋆L)
eq(u⋆L)

eq.

Since (h⋆L)
eq = hL and (h⋆R)

eq = hR, the above equalities are equivalent to (u⋆L)
eq = qeq

hL
and (u⋆R)

eq =
qeq

hR
. According to Lemma 6.1, we have qeq

LR = qeq and from (80b) we get

(u⋆L)
eq = (ûHLL)eq +

qeq
LR[h

⋆]eq

2(hHLL)eq
√
hLhR

√
(h⋆R)

eq

(h⋆L)
eq ,

=
2qeq

hL + hR
+

qeq[h]

(hL + hR)hL
,

= qeq 2hL + [h]

(hL + hR)hL
,

=
qeq

hL
= uL.

Arguing (80d), a similar computation gives (u⋆R)
eq = uR, and we deduce the well-balanced property.

Concerning the discrete entropy inequality, if h̃⋆L and h̃⋆R given by (80a) and (80c) are both positive
then the formulations (83) coincide with (80). In this case, the discrete entropy inequality is a direct
consequence of the Riemann solver definition and this inequality is shown in Lemma 6.2 that completes
the proof.

To conclude this section, let us notice that the dry-wet transitions in the above theorem are done
with several cases in the formulations (82) and (83). These case distinctions are robust (see [40,
Section 3.1.2.4]) but their formulations are not continue with the numerical scheme defined in Lemma
6.2.

Moreover, the limitation technique min(max(·, ·), ·) used in (83) is an ε-parametrized version of the
procedure defined in Sections 4 and 5. The parameter ε > 0 guarantees the inequalities h⋆L > 0 and
h⋆R > 0 that are essential to solve the system (33)-(71) (see Lemma 6.2).

In addition, we remark that Theorem 6.1 shows the existence of an entropy satisfying well-balanced
numerical scheme for the the moving equilibrium. This scheme generalizes the entropy satisfying well-
balanced scheme for the lake at rest established in Theorem 5.1. Indeed, as soon as we have qLR = 0
then (83) degenerates toward (68). As a consequence, Theorem 6.1 unifies the numerical schemes
introduced in Theorem 5.1 (well-balanced for the lake at rest) and in Lemma 4.2 (z = cst).
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7 Numerical results

For all test cases, we fix g = 9.81. The subsection 7.1 concerns the flat regions and we focus on the
schemes given by Lemma 4.2. In the subsection 7.2, we illustrate the entropy stable schemes 5.1 that
are only well balanced for the lake at rest (10). Finally, the numerical tests of the subsection 7.3 deal
with the fully well-balanced entropy stable scheme described in Theorem 6.1.

7.1 Two states entropy stable approximate Riemann solvers in the flat regions

In this section, we consider the two schemes described in Lemma 4.1 and their limited versions given
by Lemma 4.2. For all interfaces having the states wL, wR on its either sides, the numerical artificial
viscosity λ > 0 and the time step ∆t > 0 are taken equals to

λ = max
α∈{L,R}

|uα ±
√

ghα|,
λ∆t

∆x
≤ 1

2
, ∀(L,R). (85)

The results are compared to the Suliciu relaxation scheme and to the solver proposed in [29, Section b.ii].
The two constants C1 and C2 required for the scheme [29, Section b.ii] are fixed to C1 = C2 = 10−7.

At first, we illustrate the influence of the choice of the intermediate states h⋆ given by Lemma 4.1.
In this regard, we set

EC1 :


h⋆R = hHLL +

√
2

g

(
ηHLL − η(wHLL)

)
,

h⋆L = hHLL −
√

2

g

(
ηHLL − η(wHLL)

)
.

EC2 :


h⋆R = hHLL −

√
2

g

(
ηHLL − η(wHLL)

)
,

h⋆L = hHLL +

√
2

g

(
ηHLL − η(wHLL)

)
.

EC3 : random(EC1, EC2),

(86)

with wHLL, ηHLL given by (31a)-(31d) and where random(EC1, EC2) denotes a random choice between
the two configurations EC1, EC2. The domain [−1, 1] is discretized with 400 cells and we consider the
following initial condition:

h0(x) =

{
3, if x < 0.5,

1, otherwise,
u0(x) = 0. (87)

We impose homogeneous Neumann boundary conditions on both sides. The exact solution consists in
a rarefaction wave and a shock wave. The final time is 0.1. Figure 1 shows the compared results.
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Figure 1: Numerical results at time 0.1 for the initial condition (87), with the legend (ECi)i∈{1,2,3}:
Lemma’s 4.1 solvers with the configurations (86), Relax: Suliciu relaxation scheme and HLLSE: solver
[29, Section b.ii].

The three configurations (ECi)i∈{1,2,3} provide very close results. As a consequence, we only keep the
EC3 configuration. The second numerical test concerns the role of the limitation techniques for the dry
areas described Lemma 4.2.

The domain [−1, 1] is discretized with 400 cells and we consider the following initial condition:

h0(x) = 0.1, u0(x) =

{
10 if x < 0.5,

0 otherwise.
(88)

We lay down homogeneous Neumann boundary conditions on both sides. The exact solution is com-
posed of two strong shock waves near dry areas. The CFL condition is given by (85). The final time is
0.1. Figure 2 displays the results.

Figure 2: Numerical results at time 0.1 for the initial condition (88), with the legend EC3: Lemma’s
4.2 solvers, Relax: Suliciu relaxation and HLLSE: solver [29, Section b.ii].

We observe a very good agreement with the exact solution. Without the conservative limitations
techniques used Lemma 4.2, this problem can not be carried out with the solvers of Lemma 4.1.

7.2 Well-balanced two states entropy stable approximate Riemann solvers

In this section, we consider Theorem’s schemes 5.1. For these solvers, the numerical artificial
viscosity λ > 0 has to be selected to ensure the existence of solutions of the system made of (33) and
(56). We adopt the following selection procedure. Starting from the equation (85), we increase λ until
the system made of (33) and (56) admits solutions. The time step ∆t > 0 is then selected according to
the standard CFL condition λ∆t

∆x ≤ 1
2 . To run the following simulations, we select randomly one of two

solvers defined in Theorem 5.1 and we compare the results to the standard hydro-static reconstruction [3]
coupled to the standard Rusanov numerical flux [44].
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The first experiment is devoted to a flow at rest with emerging bottom as introduced in [23]. The
space domain [0, 25] is discretized with 400 cells. The initial condition and the topography are given
by

h0(x) = max (0.15− z(x), 0) , u0(x) = 0, with z(x) = max(0, 0.2− 0.05(x− 10)2). (89)

We prescribe periodic boundary conditions. The exact solution is a lake at rest equilibrium (10). The
final time is 100. Figure 3 shows the results.

Errors on (h, hu) for the lake at rest.
h

L1 L2 L∞

WBEC 1.69E-21 4.79E-21 2.29E-41
HR 6.55E-18 8.44E-18 1.25E-17

hu
L1 L2 L∞

WBEC 9.88E-20 3.43E-20 1.14E-22
HR 3.17E-17 2.52E-17 3.07E-17

Figure 3: On the left: numerical results at time 100.0 for the lake at rest problem (89) with the legend
WBEC: entropy satisfying well-balanced solvers for the lake at rest given by Theorem 5.1, HR: hydro-
static reconstruction [3] with Rusanov numerical flux [44]. On the right: errors between the exact and
the numerical solutions at time 100.0 for the variables h, hu.

Thanks to the well-balanced property and to the transition toward dry areas, the steady state at rest
(89) is preserved up to the machine precision.

The second numerical experiment concerns the three Goutal and Maurel’s test cases [27]. For these
three experiments, the space domain [0, 25] is discretized with 400 cells. Using the superscript GM1,
GM2 and GM3 to denote each problems, the initial conditions are

hGMk
0 (x) = hGMk , (hu)GMk

0 (x) = qGMk , ∀k ∈ {1, 2, 3} , (90)

where (hGMk)k∈{1,2,3} and (qGMk)k∈{1,2,3} are given in Table 1. The bottom topography z is given
by (89). On the left boundary, the water height satisfies a homogeneous Neumann condition and the
discharge q = hu is set to (qGMk)k∈{1,2,3}. On the right boundary, the water height is set to hGMk when
the flow is sub-critical and a homogeneous Neumann boundary condition is prescribed otherwise. The
discharge follows a homogeneous Neumann boundary condition.

Parameters used for the Goutal and Maurel test cases.
GM1 GM2 GM3

Final time 500 125 1000
Initial height hGMk 2 0.66 0.33
Boundary discharge qGMk 4.42 1.53 0.18

Table 1: Final times, initial values and boundary conditions for the Goutal and Maurel’s test cases 90.

Such initial and boundary conditions provide a transient state followed by a steady state made of
an uniform discharge. For GM1 and GM2, this steady state is continuous whereas GM3 involves a
stationary shock. The final times are given in Table 1. The exact solutions are computed with the
software SWASHES [19] and Figure 4 shows the compared results.
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Figure 4: Numerical results for the Goutal and Maurel’s problems (90) on a mesh composed of 400 cells.
The legend is WBEC: entropy satisfying well-balanced solvers for the lake at rest given by Theorem
5.1, HR: hydro-static reconstruction [3] with the standard Rusanov numerical flux [44].

The results are corrects but the free surface h + z may be misplaced: it is particularly obvious for
the GM2 problem. For the GM3 problem, the free surface is undervalued before the stationary shock
wave and it is sharp after. Despite the fully discrete entropy stability verified by the Theorem’s 5.1
schemes, the numerical solutions may converge to a non admissible weak solution. Such wrong arbitrary
convergences have already been observed [13,15,17]. In addition, the schemes of Theorem 5.1 produce
some spurious oscillations for the variable hu. For these three test cases, the standard hydro-static
reconstruction [3] coupled to the Rusanov numerical flux [44] is more relevant.

The last test case of this section is devoted to the break dam problem as described in [42]. The
domain [−1, 1] is discretized with 400 cells. We consider the following initial condition and topography:

h0(x) + z(x) =

{
3 if x < 0,

1 otherwise,
u0(x) = 0, with, z(x) =

1

2
cos2(πx). (91)

We prescribe homogeneous Neumann boundary conditions on both boundaries. The final time is 0.1.
A reference solution is computed with the standard HLL scheme [29] on a fine grid made of 50 000 cells.
Figure 5 displays the results.
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Figure 5: Numerical results at time 0.1 for the break dam problem (91) on a mesh made of 400 cells
with the legend WBEC: Theorem’s 5.1 solvers, HR: hydro-static reconstruction [3] with the Rusanov
numerical flux [44].

We observe a very good agreement to the reference solution. The shock waves is sharper with the
schemes detailed in Theorem 5.1.

7.3 Fully well-balanced two states entropy approximate stable Riemann solvers

In this section, we consider the fully well-balanced entropy stable scheme defined in Theorem 6.1.
For this scheme, the numerical artificial viscosity λ > 0 and the time step ∆t > 0 have to be selected
to guarantee the existence solutions of the system made of (33) and (71). To select such a couple, we
initialize λ > 0 with the value given by the equation (85) and we set ∆t > 0 according to λ∆t

∆x = 1
2 .

Then, we increase λ and we decrease ∆t until the system made of (33) and (71) admits solutions. For
the sign function required in the equation (81) we use the following regularized version:

sign(r) ≈ r

|r|+ ζLR/(gh)
, (92)

where ζLR and h are defined by (70). We compare the Theorem’s 6.1 scheme to the schemes detailed
in [21, Section 3.2] and in [14] that will be denoted FMT and BM. The scheme BM is associated to the
standard Rusanov numerical flux [44].

The first test case concerns the fully well-balanced property. We consider the domain [0, 1] dis-
cretized with 400 cells. The initial conditions and the bottom topography verify

(hu)0(x) = q0,
u20(x)

2
+ g(h0 + z)(x) = B0, with z(x) =

5

2
cos2(4πx), (93)

where q0 =
5
2 , B0 =

25
98 + 4g. The initial values (h0, u0)(x) are computed from the equations (93) with

a Newton method. We lay down periodic boundary conditions on both sides. The exact solution is a
moving steady state (9). The final time is 1.0. The results are reported in Figure 6. We also report
the errors between the numerical and the exact solution for several norms.

Errors on (h, hu) for the steady state (93).
h

L1 L2 L∞

FWBEC 0.00E-00 0.00E-00 0.00E-00
BM 2.49E-17 4.41E-17 1.27E-17
FMT 1.84E-13 2.03E-13 3.28E-13

hu
L1 L2 L∞

FWBEC 1.13E-20 8.74E-20 7.64E-39
BM 8.58E-17 1.29E-16 9.19E-17
FMT 2.87E-13 3.75E-13 4.10E-13
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Figure 6: On the left: numerical results at time 1.0 for the steady state problem (93) with the legend
FWBEC: fully well-balanced entropy satisfying solver given by Theorem 6.1, BM: scheme derived in [14]
associated to the Rusanov numerical flux [44], FMT: scheme derived in [21, Section 3.2]. On the right:
errors between the exact and the numerical solutions at time 1.0 for the variables h, hu.

Thanks to the well-balanced property, the moving equilibrium is preserved up to the machine precision.
Now we repeat the three Goutal and Maurel’s test cases [27] and we refer to Section 7.2 for the

details of the test cases. Figure 7 shows the results and Tables 8 show the errors between the numerical
and the exact solutions for each problems and for several norms.

Figure 7: Numerical results for the Goutal and Maurel’s problems (90) on a mesh composed of 400
cells. The legend is FWBEC: fully well-balanced entropy satisfying solver given by Theorem 6.1, BM:
scheme derived in [14] associated to the Rusanov numerical flux [44].

Despite our efforts, we was not able to run these three problems with the scheme FMT. Theorem’s
6.1 scheme generates spurious oscillations, in particular for the variable hu. Nevertheless, the wrong
convergences observed for the GM2, GM3 problems with the schemes derived in Theorem 5.1 and tested
in Section 7.2, do not occur with the fully well-balanced scheme in Figure 7. However, the free surface
for the GM1 problem is once again slightly misplaced.
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Errors on (h, hu) for the GM1 problem.
h

L1 L2 L∞

FWBEC 3.86E-02 1.41E-02 2.00E-04
BM 1.91E-15 4.16E-16 6.11E-17

hu
L1 L2 L∞

FWBEC 3.77E-02 2.10E-02 4.439E-04
BM 7.29E-15 1.49E-15 2.91E-16

Errors on (h, hu) for the GM2 problem.
h

L1 L2 L∞

FWBEC 9.35E-02 2.13E-02 4.46E-03
BM 9.06E-03 2.37E-03 5.12E-04

hu
L1 L2 L∞

FWBEC 4.89E-02 3.53E-02 1.25E-03
BM 7.78E-05 3.38E-05 4.33E-08

Errors on (h, hu) for the GM3 problem.
h

L1 L2 L∞

FWBEC 4.28E-02 5.11E-02 2.62E-03
BM 8.23E-03 2.20E-02 4.86E-04

hu
L1 L2 L∞

FWBEC 2.57E-02 2.00E-02 1.59E-03
BM 4.21E-03 1.15E-02 1.32E-04

Figure 8: Errors between the numerical and the exact solutions for each Goutal and Maurel’s problems
(90) and for several norms. The legend is FWBEC: fully well-balanced entropy satisfying solver given
by Theorem 6.1, BM: scheme derived in [14] coupled to the Rusanov numerical flux [44]

Regardless of its fully well-balanced property, the scheme derived in Theorem 6.1 does not reach the
exact solution up to the machine precision. This default could be due to the implementation of the sign
function required in the equation (81). The choice proposed in the equation (92) is a smooth version of
the sign function but other versions are possible and each of them could influence the result. For the
three Goutal and Maurel’s problems the BM scheme is more accurate.

We conclude this section with the break dam problem as done in Section 7.2. The initial condition
and the bottom topography are given by the equations (91). The final time is 0.1 and Figure 9 displays
the results.

Figure 9: Numerical results at time 0.1 on a mesh made of 400 cells for the break dam problem (91)
with the legend FWBEC: Theorem’s 6.1 solver, BM: scheme derived in [14] associated to the Rusanov
numerical flux [44], FMT: scheme derived in [21, Section 3.2].

The scheme [21, Section 3.2] generates spurious oscillations near the shock wave and we failed to
achieve better results. The scheme [14] associated to the Rusanov numerical flux [44] preserves the
initial condition and captures two steady states at rest. For the scheme of Theorem 6.1, we observe a
good agreement to the reference solution.
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8 Conclusion

We have presented three explicit entropy stable Godunov-type scheme for the shallow water equa-
tions. The first one concerns the flat regions, the second scheme is well-balanced for lake at rest (10)
and the third one is well-balanced for all smooth stationary solutions defined by (9).

The discrete entropy inequality is reached from sufficient conditions used in the scheme design.
These conditions lead to quadratic equations that are always well-posed under restrictions for the
artificial viscosity and for the time step. These restrictions are implicit for the well-balanced schemes.

From a numerical point of view, the scheme devoted to the flat regions provides good results. The
well-balanced schemes yield satisfying results in particular in the presence of shock waves. But, they
may converge to weak solutions made of non admissible stationary contact waves. The study of the
reasons of this wrong convergence should be investigated.
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