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Fully well-balanced entropy stable Godunov numerical schemes for
the Shallow Water equations with the topography source term.

Ludovic Martaud∗, Christophe Berthon†

January 15, 2024

Abstract

This work concerns the design of well-balanced entropy stable numerical schemes for the Shallow
Water equations. The fully discrete entropy inequality is reached with a local condition incorporated
in the scheme design. The source term is discretized to preserve the steady states and the entropy
stability. The method yields explicit schemes. We illustrate the schemes relevancy with several tests
cases in the wet and dry areas.

Keywords. Shallow Water equations, Finite Volume Schemes, Discrete Entropy Stability, Well-
Balanced Schemes

Math. classification

1 Introduction

The present work is devoted to the numerical approximation of the weak solutions of the Shallow
Water equations with the topography source term in one space dimension given by

∂t

(
h
hu

)
+ ∂x

(
hu

hu2 + gh2/2

)
=

(
0

−gh

)
∂xz.

This model governs the water height h ≥ 0 and the velocity u ∈ R of a fluid which is defined as follows
(see [5, 41] for the details):

u =

{
(hu)/h, if h > 0,

0, otherwise.

The gravitation constant is g > 0 and z : R → R is a given time independent smooth topog-
raphy function. The unknown state vector w = (h, hu)T is assumed to be in the convex set
Ω =

{
(h, hu) ∈ R2 |h ≥ 0, hu ∈ R

}
. We consider w0 : R → Ω a given measurable function of L1

loc(R)
as initial condition of w at time t = 0 and we study the following Cauchy problem:{

∂tw + ∂xf(w) = S(w)∂xz, x ∈ R, t > 0,

w(x, t = 0) = w0(x), x ∈ R,
(1.1)

where f(w) = (hu, hu2 + gh2/2)T, S(w) = (0,−gh)T. For the sake of clarity, we introduce ŵ =
(h, hu, z)T which takes its values in the convex set Ω̂ defined by

Ω̂ =
{
(h, hu, z) ∈ R3 |h ≥ 0, hu ∈ R, z ∈ R

}
.
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In the flat regions (i.e ∂xz = 0), it is well-known that the homogeneous Shallow Water system is
endowed with the following entropy inequality

∂tη(w) + ∂xG(w) ≤ 0,

with η(w) = hu2/2+ gh2/2, G(w) = hu3/2+ gh2u. A generic z function modifies the above inequality
with the term −ghu∂xz in its right hand side. As a consequence, the entropy inequality associated to
Shallow Water system (1.1) now reads

∂tη(w) + ∂xG(w) ≤ −ghu∂xz. (1.2)

According [12] (for instance, see also [21]) and since ∂tz = 0, the inequality (1.2) reformulates equiva-
lently as a conservative form given by

∂t

(
η(w) + ghz

)
+ ∂x

(
G(w) + g(hu)z

)
≤ 0.

Let us set

η̂(ŵ) =
(hu)2

2h
+

gh2

2
+ ghz, Ĝ(ŵ) =

(hu)3

2h2
+ g(hu)(h+ z), ∀ŵ ∈ Ω̂, (1.3)

so that the above entropy inequality is equivalent to

∂tη̂(ŵ) + ∂xĜ(ŵ) ≤ 0. (1.4)

Therefore, the presence of the source term S(w)∂xz in the system (1.1) modifies the entropy inequality
∂tη(w) + ∂xG(w) ≤ 0 into an other conservative entropy equality that includes a contribution of the
topography function.

In addition, the presence of the source term S(w)∂xz involves the existence of non-trivial stationary
solutions that satisfy

hu = cst,
u2

2
+ g (h+ z) = cst. (1.5)

Among these steady states, a special attention is paid to the lake at rest (for instance, see [11, 22, 34,
37, 38, 43, 46]) which is given by

u = 0, h+ z = cst. (1.6)

From a numerical point of view, the solutions of the Shallow Water system (1.1) are approximated
on uniform space meshes (xi+ 1

2
)i∈Z in R of constant size ∆x > 0. Thus, the equality xi+ 1

2
= xi− 1

2
+∆x

holds for all i ∈ Z. Uniform meshes in time (tn)n∈N in [0,+∞) of constant size ∆t > 0 are also
considered and they satisfy tn+1 = tn + ∆t for all n in N. At the initial datum t0 = 0, the initial
condition w0 and the given regular function z are discretized with a sequence

(
(w0

i , zi)
)
i∈Z in Ω̂ such

that
(w0

i , zi)
T =

1

∆x

∫ x
i+1

2

x
i− 1

2

(w0, z)
T(x) dx, ∀i ∈ Z. (1.7)

The sequence
(
(w0

i , zi)
T)

i∈Z define a piecewise constant approximation of
(
w(·, t = 0), z

)T. As a
consequence, a numerical approximation of w(·, tn+1) is entirely defined by a numerical scheme that
gives the updated sequence (wn+1

i )i∈Z from the sequence (wn
i )i∈Z. However, a suitable updated sequence

(wn+1
i )i∈Z has to satisfy some properties. In order to give this properties and for the sake of clarity,

the notation ŵn
i = (wn

i , zi)
T is now considered but we emphasize zi is a given quantity.

At first, the sequence (ŵn+1
i )i∈Z has to be well-balanced that means it exactly preserves stationary

solutions. In the one hand, the well-balanced property for the lake at rest (1.6) writes

uni = 0, hni + zi = cst, then, wn+1
i = wn

i , ∀i ∈ Z. (1.8)

Several schemes satisfying this property have been proposed during the two last decays (for instance,
see [11, 22, 34, 37, 38, 43, 46]). In the other hand, the well-balanced property for the moving equilibria
(1.5) is given by

(hu)ni = cst,
(uni )

2

2
+ g(hni + zi) = cst, then, wn+1

i = wn
i , ∀i ∈ Z, (1.9)
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and a such property is satisfied by the schemes described in [16, 25, 35, 41] for instance.
In addition to a well-balanced property, the sequence (ŵn+1

i )i∈Z has to verify a discrete entropy
inequality. Denoting Ĝi+1/2 a consistent approximation of Ĝ defining in (1.3), such an inequality writes

η̂(ŵn+1
i )− η̂(ŵn

i )

∆t
+

Ĝi+ 1
2
− Ĝi− 1

2

∆x
≤ 0, ∀i ∈ Z. (1.10)

In the flat regions (i.e ∂xz = 0), several schemes verifying the discrete entropy inequality (1.10) have
already been introduced [23, 24, 28, 29, 30, 31, 33]. In the present work, we focus on Godunov type
scheme based on approximate Riemann solver made of two intermediate constant states (see [28] for
details). Considering the well-known Euler equations, the fully discrete entropy inequality (1.10) can
be established for the HLLC scheme [45] or equivalently, for the Suliciu relaxation schemes [7, 12, 18].
Let us underline Section b.ii in [28] that presents an alternative to derive an entropy satisfying Godunov
type scheme with two intermediate constant states.

For a generic function z (i.e ∂xz ̸= 0), the design of a well-balanced scheme that satisfies a discrete
entropy inequality (1.10) turn out to be very challenging. Both properties are satisfied by some Godunov
schemes [1, 2, 6, 17, 27, 36, 47] or a relaxation well-balanced for the lake at rest scheme [12], but all of
theses schemes need to solve a set of non linear equation for each cells of the mesh and for each time
iterations. These non linear equations are not used to define the lake at rest well-balanced schemes
(1.8) in [4, 5] nor to define the moving equilibria well-balanced schemes (1.9) in [8, 9, 10]. However, the
fully discrete entropy estimations proposed in these works contain an error term of the form O(∆x2)
such that

η̂(ŵn+1
i )− η̂(ŵn

i )

∆t
+

Ĝi+ 1
2
− Ĝi− 1

2

∆x
≤ O(∆x2).

The error term O(∆x2) does not occur in the works of [20, 32] but the proposed well-balanced schemes
satisfied a global version of the entropy inequality (1.10) that writes

∑
i∈Z η̂(ŵ

N
i )∆x ≤ η̂(ŵ0

i )∆x where
tN , t0 respectively denote the final and the initial time of the simulation.

In this work, we propose to design numerical schemes approximating the weak solutions of the
system (1.1) and that ensure the weak consistency of the scheme and the discrete entropy inequality
(1.10). These schemes also satisfy the well-balanced property. More precisely, we consider schemes
written under the following from

wn+1
i = wn

i − ∆t

∆x

(
F̂(ŵn

i , ŵ
n
i+1)− F̂(ŵn

i−1, ŵ
n
i )
)
+

∆t

2

(
Ŝn
i+ 1

2

+ Ŝn
i− 1

2

)
, ∀i ∈ Z. (1.11)

where F̂ : (Ω̂)2 → R2 stands for the numerical flux and Ŝn
i+1/2 denotes a consistent approximation of

the source term (0,−ghu)T∂xz.
The paper is organized as follows. In Section 2, we reformulate the numerical scheme (1.11) under

the Godunov type schemes form then we give sufficient conditions to obtain the weak consistency, the
discrete entropy inequality (1.10) and the well-balanced property. The two first sufficient conditions
are used in Section 3 to define an approximate Riemann solver made of two intermediate constant
states. This approximate Riemann solver is governed by under-determined equations that ensure the
consistency and the discrete entropy stability (1.10). Theses equations are completed in Section 4 to
obtain consistent, entropic schemes in the case of z = cste then Sections 5 and 6 propose other closures
in order to define consistent, entropic, well-balanced schemes for the lac at rest (1.6) then for the moving
equilibria (1.5). In Section 7, numerical tests are carried out to illustrate our numerical schemes.

2 Consistent, well-balanced, entropy stable Godunov type scheme for
the Shallow Water equations

In this section, we establish an equivalent reformulation of the numerical scheme (1.11) under
the form of a Godunov type scheme. Namely, considering a given approximate Riemann solver w̃ :
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R× (Ω̂)2 → Ω, a Godunov type scheme writes

wn+1
i =

1

∆x

∫ ∆x
2

0
w̃(x/∆t, ŵn

i−1, ŵ
n
i ) dx+

1

∆x

∫ 0

−∆x
2

w̃(x/∆t, ŵn
i , ŵ

n
i+1) dx, ∀i ∈ Z. (2.1)

According to the above formulation, the sequence (wn+1
i )i∈Z is given by the L2 projection of the sequence

(w̃(·, ŵn
i , ŵ

n
i+1))i∈Z that is a set of approximate juxtaposed Riemann solvers without interaction, This

non interaction is ensured by a restriction on the time step ∆t > 0 also called the non interaction CFL
condition. In the sequel, such a CFL condition is assumed satisfied.

The following lemma precises the definition of an approximate Riemann solver w̃ : R × (Ω̂)2 → Ω
then shows the equivalence between the numerical scheme (1.11) and the Godunov type scheme (2.1).

Lemma 2.1 (Equivalent reformulation of the numerical scheme (1.11)). Let consider ŵ = (w, z)T in
Ω̂, a function ŝ : (Ω̂)2 → R such that

ŝ(ŵ, ŵ) = −gh, ∀ŵ ∈ Ω̂,

and (Ŝn
i+1/2)i∈Z a sequence of R2 that writes

Ŝn
i+ 1

2

=

(
0

ŝ(ŵn
i , ŵ

n
i+1)

)
zi+1 − zi

∆x
, ∀i ∈ Z, (2.2)

where (zi)i∈Z is defined in (1.7). Let also consider a Godunov type scheme (2.1) defined by an approx-
imate Riemann solver w̃ : R× (Ω̂)2 → Ω that satisfies w̃(·, ŵ, ŵ) = w and that satisfies in addition the
following consistency integral relation:

1

∆x

∫ ∆x
2

−∆x
2

w̃
(
x/∆t, ŵn

i , ŵ
n
i+1

)
dx =

wn
i + wn

i+1

2
− ∆t

∆x

(
f(wn

i+1)− f(wn
i )
)
+∆tŜn

i+ 1
2

. (2.3)

The Godunov type scheme (2.1) is equivalent to the numerical scheme (1.11) in which the numerical
flux function F̂ : (Ω̂)2 → R2 is given by

F̂(ŵn
i , ŵ

n
i+1) =

f(wn
i+1) + f(wn

i )

2
− ∆x

4∆t

(
wn
i+1 − wn

i

)
+

1

2∆t

∫ ∆x
2

0
w̃
(
x/∆t, ŵn

i , ŵ
n
i+1) dx

− 1

2∆t

∫ 0

−∆x
2

w̃(x/∆t, ŵn
i , ŵ

n
i+1) dx.

(2.4)

Proof. Since a CFL condition holds, the integral formulation of a Godunov type scheme (2.1) can be
rewritten as follows:

wn+1
i =

1

2∆x

∫ 0

−∆x
2

w̃
(
x/∆t, wn

i , w
n
i+1

)
dx+

1

2∆x

∫ ∆x
2

0
w̃
(
x/∆t, wn

i−1, w
n
i

)
dx

+
1

2∆x

∫ ∆x
2

−∆x
2

w̃
(
x/∆t, wn

i−1, w
n
i

)
dx+

1

2∆x

∫ ∆x
2

−∆x
2

w̃
(
x/∆t, wn

i , w
n
i+1

)
dx

− 1

2∆x

∫ 0

−∆x
2

w̃
(
x/∆t, wn

i−1, w
n
i

)
dx− 1

2∆x

∫ ∆x
2

0
w̃
(
x/∆t, wn

i , w
n
i+1

)
dx.

Using the integral consistency relation (2.3), the above equality re-writes

wn+1
i =

1

2∆x

∫ 0

−∆x
2

w̃
(
x/∆t, wn

i , w
n
i+1

)
dx+

1

2∆x

∫ ∆x
2

0
w̃
(
x/∆t, wn

i−1, w
n
i

)
dx

+
1

2

(wn
i−1 + wn

i

2
− ∆t

∆x

(
f(wn

i )− f(wn
i−1)

)
+∆tŜi− 1

2

)
+

1

2

(wn
i + wn

i+1

2
− ∆t

∆x

(
f(wn

i+1)− f(wn
i )
)
+∆tŜi+ 1

2

)
− 1

2∆x

∫ 0

−∆x
2

w̃
(
x/∆t, wn

i−1, w
n
i

)
dx− 1

2∆x

∫ ∆x
2

0
w̃
(
x/∆t, wn

i , w
n
i+1

)
dx.
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Considering the formulation of the numerical flux function F̂ given by (2.4) in the above equality, we
deduce the formulation of the numerical scheme given by (1.11). Since the converse is direct, that
concludes the proof.

The literature [9, 12, 37] devoted to the numerical approximation of the weak solutions of the
Shallow Water system (1.1) gives several definitions of the weak consistency for the discrete source
term (Ŝn

i+1/2)i∈Z. The definition (2.2) is proposed in this work because it is a sufficient condition to the
definition suggested in [12, Eq 4.17] and it degenerates toward the usual definition [28] if the sequence
(zi)i∈Z is locally constant.

The sequence (Ŝn
i+1/2)i∈Z is used in the consistency integral relation (2.3) that defines a suitable

approximate Riemann solver w̃ : R × (Ω̂)2 → Ω. Therefore, a Godunov type scheme (2.1) is entirely
defined by the given of a such approximate Riemann solver. As both numerical schemes (2.1) and (1.11)
are equivalent, only the integral form given by (2.1) will be used in the rest of this work. This integral
form is very useful to show the well-balanced property that is now defined for the sake of completeness.

Definition 2.1 (Local equilibrium and well-balanced scheme for the Shallow Water equations (1.1)).
Consider the Shallow Water equations (1.1) endowed with the notation

B̂(ŵ) =
u2

2
+ g(h+ z), ∀ŵ ∈ Ω̂.

At the datum tn, let also consider ŵn
i and ŵn

i+1 two constants states in Ω̂ respectively being on the left
and on the right of the interface xi+ 1

2
.

i) The two states ŵn
i and ŵn

i+1 define a local moving equilibrium if

hni u
n
i = hni+1u

n
i+1, B̂(ŵn

i ) = B̂(ŵn
i+1). (2.5)

ii) The two states ŵn
i and ŵn

i+1 define a local lake at rest equilibrium if

uni = uni+1 = 0, hni + zi = hni+1 + zi+1. (2.6)

iii) A numerical scheme is well-balanced for the moving equilibrium (1.5) if it exactly preserves a
sequence (ŵn

i )i∈Z that satisfies, at each interfaces of the mesh, a local moving equilibrium (2.5).
This property writes

if ∀i ∈ Z

{
hni u

n
i = hni+1u

n
i+1,

B̂(ŵn
i ) = B̂(ŵn

i+1),
then wn+1

i = wn
i , ∀i ∈ Z.

A numerical scheme is well-balanced for the lake at rest (1.6) if it exactly preserves a sequence
(ŵn

i )i∈Z that satisfies, at each interfaces of the mesh, a local lake at rest equilibrium (2.6). This
property writes

if ∀i ∈ Z

{
uni = uni+1 = 0,

hni + zi = hni+1 + zi+1,
then wn+1

i = wn
i , ∀i ∈ Z.

According to the above definitions, if a local equilibrium (2.5) or (2.6) holds then the hu continuity
is ensured for all (zi, zi+1) in (R)2. In the case zi = zi+1, the continuity of h is also ensured for the
discrete lake at rest (2.6). In this work, in the case zi = zi+1, the continuity of h in the local moving
equilibrium (2.5) is also assumed. This assumption writes

if


zi = zi+1

hni u
n
i = hni+1u

n
i+1,

B̂(ŵn
i ) = B̂(ŵn

i+1),

then hni = hni+1. (2.7)

5



Lemma A.1-ii) given in the Appendix A shows that the smooth stationary solutions of the Shallow
Water system (1.1) satisfy a continuous analogous of the equalities (2.7). Theses equalities formally
mean if the given function z is locally constant then the smooth stationary solutions of the Shallow
Water system (1.1) are constant.

Using Definition 2.1, a sufficient condition to the well-balanced property is reachable. This condition
is used in [9, 40, 41] for instance and we detail it in this work for the sake of completeness. The well-
balanced property is also completed in the following lemma with a sufficient condition to the discrete
entropy inequality (1.10) that is the main originality of this work.

Lemma 2.2 (Consistent, well-balanced, entropy stable Godunov type scheme for the Shallow Water
equations (1.1)). Consider the functions η,G : Ω → R respectively defined by

η(w) =
hu2

2
+ g

h2

2
, G(w) =

hu3

2
+ gh2u. (2.8)

Let also consider (Ŝn
i+1/2)i∈Z a sequence of R2 and an approximate Riemann solver w̃ : R × (Ω̂)2 → Ω

receptively satisfying the consistency definitions (2.2) and the consistency integral relation (2.3). Let
denote Fh

i+1/2 the numerical flux of the variable h given by the first component of F̂(ŵn
i , ŵ

n
i+1) defined

in (2.4). Assume a CFL condition of non interaction holds.

i) If the approximate Riemann solver satisfies the consistency integral relation

1

∆x

∫ ∆x
2

−∆x
2

w̃(x/∆t, ŵn
i , ŵ

n
i+1) dx =

wn
i + wn

i+1

2
− ∆t

∆x
(f(wn

i+1)− f(wn
i )) + ∆tŜn

i+ 1
2

, ∀i ∈ Z, (2.9)

then the Godunov type scheme (2.1) is consistent with the Shallow Water system (1.1).

ii) If the approximate Riemann solver satisfies the inequality

1

∆x

∫ ∆x
2

−∆x
2

η
(
w̃(x/∆t, ŵn

i , ŵ
n
i+1)

)
dx ≤

η(wn
i ) + η(wn

i+1)

2
− ∆t

∆x

(
G(wn

i+1)−G(wn
i )
)
− g

∆t

∆x
(zi+1 − zi)Fh

i+ 1
2

, ∀i ∈ Z, (2.10)

then the Godunov type scheme (2.1) verifies a discrete entropy for the couple (η̂, Ĝ) defined in
(1.3). This inequality writes

η̂(ŵn+1
i )− η̂(ŵn

i )

∆t
+

Ĝi+ 1
2
− Ĝi− 1

2

∆x
≤ 0, ∀i ∈ Z, (2.11)

with,

Ĝi+ 1
2

=
G(wn

i+1) +G(wn
i )

2
+ gFh

i+ 1
2

zi+1 + zi
2

− ∆x

4∆t

(
η(wn

i+1)− η(wn
i )
)

+
1

2∆t

∫ ∆x
2

0
η
(
w̃(x/∆t, ŵn

i , ŵ
n
i+1)

)
dx− 1

2∆t

∫ 0

−∆x
2

η
(
w̃(x/∆t, ŵn

i , ŵ
n
i+1)

)
dx.

(2.12)

iii) If the approximate Riemann solver satisfies

w̃(x/∆t, ŵn
i , ŵ

n
i+1) =

{
wn
i if x < 0,

wn
i+1 otherwise,

∀i ∈ Z, (2.13)

as soon as the sequence (ŵn
i )i∈Z verifies, at each interface of the mesh, a local moving equilibrium

(2.5) (resp. a local lake at rest equilibrium (2.6)) then the Godunov type scheme (2.1) is well-
balanced for the moving equilibrium (resp. for the lake at rest).
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Proof. For the statement i), according to the definition of Ŝn
i+1/2 given by (2.2) and since the function

z is regular, Ŝn
i+1/2 est consistent with (0,−gh∂xz)

T. In addition, we have

Ŝ(ŵ, ŵ) = 0, ∀ŵ ∈ Ω̂. (2.14)

As a consequence, an approximate Riemann solver that verifies the consistency integral relation (2.9)
defines a consistent scheme.

For the statement ii), let consider the function w 7→ η(w) defined by (2.8). This function is convex
and it satisfies the conditions described in [42]. Hence, the Jensen inequality applied to the Godunov
type scheme (2.1) gives

η(wn+1
i ) ≤

1

2∆x

∫ 0

−∆x
2

η
(
w̃(x/∆t, ŵn

i , ŵ
n
i+1)

)
dx+

1

2∆x

∫ ∆x
2

0
η
(
w̃(x/∆t, ŵn

i−1, ŵ
n
i )
)
dx

+
1

2∆x

∫ ∆x
2

−∆x
2

η
(
w̃(x/∆t, ŵn

i−1, ŵ
n
i )
)
dx+

1

2∆x

∫ ∆x
2

−∆x
2

η
(
w̃(x/∆t, ŵn

i , ŵ
n
i+1)

)
dx

− 1

2∆x

∫ 0

−∆x
2

η
(
w̃(x/∆t, ŵn

i−1, ŵ
n
i )
)
dx− 1

2∆x

∫ ∆x
2

0
η
(
w̃(x/∆t, ŵn

i , ŵ
n
i+1)

)
dx.

Using the inequality (2.10) in the above inequality, we have

η(wn+1
i ) ≤

1

2∆x

∫ 0

−∆x
2

η
(
w̃(x/∆t, ŵn

i , ŵ
n
i+1)

)
dx+

1

2∆x

∫ ∆x
2

0
η
(
w̃(x/∆t, ŵn

i−1, ŵ
n
i )
)
dx

+
1

2

(η(wn
i−1) + η(wn

i )

2
− ∆t

∆x

(
G(wn

i )−G(wn
i−1)

)
− ∆t

∆x
g(zi − zi−1)Fh

i− 1
2

)
+

1

2

(η(wn
i ) + η(wn

i+1)

2
− ∆t

∆x

(
G(wn

i+1)−G(wn
i )
)
− ∆t

∆x
g(zi+1 − zi)Fh

i+ 1
2

)
− 1

2∆x

∫ 0

−∆x
2

η
(
w̃(x/∆t, ŵn

i−1, ŵ
n
i )
)
dx− 1

2∆x

∫ ∆x
2

0
η
(
w̃(x/∆t, ŵn

i , ŵ
n
i+1)

)
dx.

(2.15)

Since there is no contribution of the source therm S(w) in the first equation of the Shallow Water
system (1.1), the numerical scheme for the variable h writes

hn+1
i = hni − ∆t

∆x

(
Fh
i+ 1

2

−Fh
i− 1

2

)
, ∀i ∈ Z. (2.16)

Multiplying the equation (2.16) by gzi then adding the result to the inequality (2.15), we obtain an
inequality of the form

η(wn+1
i ) + ghn+1

i zi ≤ η(wn
i ) + ghni zi −

∆t

∆x

(
Ĝi+ 1

2
− Ĝi− 1

2

)
, ∀i ∈ Z,

with Ĝi+ 1
2

given by (2.12). Since the equality η̂(ŵ) = η(w) + ghz is obvious and since the function z

does not depend on the time, this last inequality rewrites under the form of (2.11). Before to conclude
the proof of the statement ii), we have to show that the quantity Ĝi+ 1

2
given by (2.12) is consistent

with Ĝ defined in (2.8).
Considering the consistency equality w̃(·, ŵ, ŵ) = w and the consistency of the numerical flux Fh

i+ 1
2

,
we have

Ĝ(ŵ, ŵ) =
G(w) +G(w)

2
+ gFh(w,w)z − ∆x

4∆t
(η(w)− η(w))

7



+
1

2∆t

∫ ∆x
2

0
η
(
w̃(x/∆t, ŵ, ŵ)

)
dx− 1

2∆t

∫ 0

−∆x
2

η
(
w̃(x/∆t, ŵ, ŵ)

)
dx,

= G(w) + g(hu)z +
1

2∆t

∫ ∆x
2

0
η(w) dx− 1

2∆t

∫ 0

−∆x
2

η(w) dx,

= G(w) + g(hu)z.

As a direct computing gives Ĝ(ŵ) = G(w)+ g(hu)z, the above equality achieves to show the statement
ii).

Finally, for the statement iii), let assume the sequence (ŵn
i )i∈Z is such that a local equilibrium

is satisfied at each interface of the mesh. In this case, using the condition (2.13) in a Godunov type
scheme (2.1), we have

wn+1
i =

1

∆x

∫ ∆x
2

0
w̃(x/∆t, ŵn

i−1, ŵ
n
i ) dx+

1

∆x

∫ 0

−∆x
2

w̃(x/∆t, ŵn
i , ŵ

n
i+1) dx,

=
1

∆x

∫ ∆x
2

0
wn
i dx+

1

∆x

∫ 0

−∆x
2

wn
i dx,

= wn
i .

According to Definition 2.1-iii), this last equality gives the well-balanced property that concludes the
proof.

Since the entropy ŵ 7→ η̂(ŵ) defined in (1.3) is not convex, the proof of the discrete entropy inequality
(2.11) uses the sufficient condition (2.10) and the equality (2.16) that arises from the numerical scheme.
This proof is quite similar to a computation described in [12, Section 4.4] but the originality of this work
is the definition of the inequality (2.10). This inequality ensures the discrete entropy stability (2.11)
and it is now associated to the consistency integral relation (2.9) to define an approximate Riemann
solver made of two intermediate symmetric constant states.

3 Consistent, entropy stable two states approximate Riemann solver
for the Shallow Water equations

For the sake of clarity and in order to define an approximate Riemann solver made of two interme-
diate symmetric constant states, the following notations are considered:

(wn
i , zi) = (wL, zL) = ŵL, (wn

i+1, zi+1) = (wR, zR) = ŵR, ŝi+ 1
2
= ŝLR. (3.1)

Then, with a real λ > 0, a CFL condition is given by the inequalities

λ ≥ max
α∈{L,R}

∣∣∣uα ±
√
ghα

∣∣∣ and
λ∆t

∆x
≤ 1

2
. (3.2)

In the sequel, the above inequalities are assumed satisfied. As a consequence, an approximate Riemann
solver denoted w̃(·, ŵL, ŵR) : R → R2 and made of two intermediate symmetric constant states writes

w̃(x/∆t, ŵL, ŵR) =



wL if
x

∆t
≤ −λ,

w∗
L if − λ <

x

∆t
≤ 0,

w∗
R if 0 <

x

∆t
≤ λ,

wR if λ <
x

∆t
.

(3.3)
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The intermediate states w∗
L and w∗

R that define the approximate Riemann solver (3.3) have to be
determined and they write

w∗
α = (h∗α, h

∗
αu

∗
α)

T, ∀α ∈ {L,R} .
An approximate Riemann solver of the form (3.3) is now defined with the consistency integral relation
(2.9) and an additional relation obtained with the equality case in the inequality (2.10). The following
lemme gives the equations satisfied by w∗

L and w∗
R.

Lemma 3.1. Consider ŵL, ŵR two constant states being in the interior of Ω̂, ŝLR a consistent dis-
cretization of 1

∆x

∫ ∆x/2
−∆x/2(−gh∂xz) dx in the sens of Definition (2.2) and w̃(·, ŵL, ŵR) : R → R2 an

approximate Riemann solver of the form (3.3). Let also consider the couples (η̂, Ĝ) and (η,G) respec-
tively given by (1.3), (2.8). Assume the CFL condition (3.2) holds and consider

wHLL = (hHLL, (hu)HLL)T =
wR + wL

2
− f(wR)− f(wL)

2λ
∈ R2, (3.4a)

hHLLûHLL = (hu)HLL +
∆xŝLR
2λ

∈ R, (3.4b)

ŵHLL =
(
hHLL, hHLLûHLL,

zL + zR
2

)T ∈ R3, (3.4c)

ηHLL =
η(wR) + η(wL)

2
− G(wR)−G(wL)

2λ
∈ R, (3.4d)

η̂HLL =
η̂(ŵR) + η̂(ŵL)

2
− Ĝ(ŵR)− Ĝ(ŵL)

2λ
∈ R. (3.4e)

The following equalities

1

∆x

∫ ∆x
2

−∆x
2

w̃(x/∆t, ŵL, ŵR) dx =
wL + wR

2
− ∆t

∆x
(f(wR)− f(wL)) + ∆t (0, ŝLR)

T,

1

∆x

∫ ∆x
2

−∆x
2

η
(
w̃(x/∆t, ŵL, ŵR)

)
dx =

η(wL) + η(wR)

2
− ∆t

∆x
(G(wR)−G(wL))− g

∆t

∆x
(zR − zL)Fh

LR,

(3.5a)

(3.5b)

are equivalent to

h∗L + h∗R
2

= hHLL,

h∗Lu
∗
L + h∗Ru

∗
R

2
= hHLLûHLL,

h∗Lh
∗
R

8hHLL (u
∗
R − u∗L)

2 +
g

8
(h∗R − h∗L + zR − zL)

2 = η̂HLL − η̂(ŵHLL) +
g

8
(zR − zL)

2.

(3.6a)

(3.6b)

(3.6c)

Before to prove the above lemma, we empathize the quantity hHLLûHLL given by (3.4b) depends on
the free parameter ŝLR. This parameter has to satisfy the consistency condition described in (2.2) and
some admissible choices will be given in the sequel sections. Lemma 3.1 is now proved.

Proof of Lemma 3.1. At first, we show that the system (3.5) implies the system (3.6). As a CFL
condition holds and noting ν = λ∆t/∆x, the left hand side of the equation (3.5a) is equivalent to

1

∆x

∫ ∆x
2

−∆x
2

w̃ (x/∆t, ŵL, ŵR) dx

=
1

∆x

∫ −λ∆t

−∆x
2

wL dx+
1

∆x

∫ 0

−λ∆t
w∗
L dx+

1

∆x

∫ λ∆t

0
w∗
R dx+

1

∆x

∫ ∆x
2

λ∆t
wR dx,

= (−ν + 1/2)wL + νw∗
L + νw∗

R + (1/2 − ν)wR.
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As a consequence the equation (3.5a) equivalently rewrites

(−ν + 1/2)wL + νw∗
L + νw∗

R + (1/2 − ν)wR =
wL + wR

2
− ν

f(wR)− f(wL)

λ
+ ν (0,∆xŝLR/λ, 0)T.

Writing the above equation component by component then dividing both sides by 2ν, we deduce the
equations (3.6a)-(3.6b).

Now, we have to rewrite the equation (3.5b). Developing the integral of the left hand side of (3.5b)
and using once again the notation ν = λ∆t/∆x, we have

1

∆x

∫ ∆x
2

−∆x
2

η (w̃ (x/∆t, ŵL, ŵR)) dx

=
1

∆x

∫ −λ∆t

−∆x
2

η(wL) dx+
1

∆x

∫ 0

−λ∆t
η(w∗

L) dx+
1

∆x

∫ λ∆t

0
η(w∗

R) dx+
1

∆x

∫ ∆x
2

λ∆t
η(wR) dx,

= (−ν + 1/2)η(wL) + νη(w∗
L) + νη(w∗

R) + (1/2 − ν)η(wR).

With the above equality, the equation (3.5b) is equivalent to

(−ν + 1/2)η(wL) + νη(w∗
L) + νη(w∗

R) + (1/2 − ν)η(wR) =

η(wL) + η(wR)

2
− ν

G(wR)−G(wL)

λ
− gν

zR − zL
λ

Fh
LR.

Multiplying this last equality by 1/(2ν) > 0 and using the quantity ηHLL defined in (3.4d), we obtain a
new equivalent form of the equation (3.5b) which is given by

η(w∗
L) + η(w∗

R)

2
= ηHLL − g

zR − zL
2λ

Fh
LR. (3.7)

In order to rewrite the numerical flux Fh
LR, the notation [·] = ·R − ·L is now considered. According to

the approximate Riemann solver (3.3), this quantity writes

Fh
LR =

(hu)R + (hu)L
2

− λ

2
[h] +

λ

2
[h∗].

As a consequence, and using the definition of hHLL given by (3.4a), we have

− [z]

2λ
Fh
LR = − [z][h∗]

4
+

[z]

4

(
[h]− (hu)L + (hu)R

λ

)
,

= − [z][h∗]

4
+

zRhR + zLhL
2

− zL + zR
2

hHLL − [huz]

2λ
.

Now, considering the above equality and the quantity η̂HLL given by (3.4e) in the equation (3.7), then
developing η(w∗

L) and η(w∗
R), we deduce

h∗R(u
∗
R)

2 + h∗L(u
∗
L)

2

4
+ g

(h∗L)
2 + (h∗R)

2

4
+

g

4
[z][h∗] = η̂HLL − g

zL + zR
2

hHLL. (3.8)

Moreover, applying the square function on both sides of the equation (3.6a) then multiplying the result
by g/2, we have

g

8
(h∗L + h∗R)

2 =
g

2
(hHLL)2.

Therefore, subtracting the above equation to the equation (3.8), we deduce

h∗R(u
∗
R)

2 + h∗L(u
∗
L)

2

4
+

g

8
[h∗]2 +

g

4
[z][h∗] = η̂HLL − g

2
(hHLL)2 − g

zL + zR
2

hHLL. (3.9)
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The next step consists to rewrite the quantity h∗L(u
∗
L)

2 + h∗R(u
∗
R)

2 in order to show that the equation
(3.9) is equivalent to

h∗Rh
∗
L[u

∗]2

8hHLL +
g

8
[h∗]2 +

g

4
[h∗][z] = η̂HLL − η̂(ŵHLL). (3.10)

According to the definition of wHLL given by (3.4a), a direct computation shows that hHLL writes

hHLL =
hR
2

(
1− uR/λ

)
+

hL
2

(
1 + uL/λ

)
. (3.11)

Since the CFL condition (3.2) holds and since ŵL and ŵR are in the interior of Ω̂, the above equality
leads to hHLL > 0. As a consequence, and using the equations (3.6a)-(3.6b), the following computation
holds

h∗L(u
∗
L)

2 + h∗R(u
∗
R)

2

4
=

h∗L(u
∗
L)

2 + h∗R(u
∗
R)

2

4

h∗L + h∗R
2hHLL ,

=
(h∗Lu

∗
L)

2 + 2h∗Lu
∗
Lh

∗
Ru

∗
R + (h∗Ru

∗
R)

2 + h∗Rh
∗
L[u

∗]2

8hHLL ,

=
1

2hHLL

(h∗Lu∗L + h∗Ru
∗
R

2

)2
+

h∗Lh
∗
R[u

∗]2

8hHLL ,

=
(hHLLûHLL)2

2hHLL
+

h∗Lh
∗
R[u

∗]2

8hHLL .

(3.12)

Considering the above result in the equation (3.9), we eventually deduce that the equation (3.5b) is
equivalent to the equation (3.10). Adding g[z]2/8 on both sides of the equation (3.10), we deduce the
equation (3.6c) that shows that the system (3.5) implies the system (3.6). The converse is a direct
consequence of the above computations.

The results of the above lemma are given with ŵL and ŵR in the interior of Ω̂ that formally means
hL ≫ 0 and hR ≫ 0. The cases hL or hR closed to zero concern the transitions dry-wet and they
need a specific treatment [5, 39, 41]. Indeed, the quantity ûHLL given by (3.4b) is defined up to a
multiplication by hHLL. Since hHLL is null if and only if hL = 0 and hR = 0 (see the equation (3.11)),
the admitted convention in [5, 39, 41] requires to define ûHLL in R as follows:

ûHLL =


0, if hL = 0 and hR = 0,

(hu)HLL + ∆xŝLR/2λ

hHLL , otherwise.
(3.13)

Form a general point of view, the dry-wet transitions will be treated but they are not the main interest
of this work. As a consequence, and for the clarity, the intermediate results are given with ŵL and ŵR

in the interior of Ω̂. In this case, both definitions (3.4b) and (3.13) are equivalent.
The equations (3.5) are chosen in this work because, according to Lemma 2.2-i)-ii), they are suffi-

cient conditions to the consistency and to the discrete entropy stability of the Godunov type scheme.
Starting with the equations (3.5), Lemma 3.1 gives a system of three equations (3.6) composed of four
unknown h∗L, h∗R, u∗L, u∗R and one parameter ŝLR. As a consequence, the system (3.6) that defines w∗

L

and w∗
R is under-determined.

In particular, the parameter ŝLR is used in the quantity η̂HLL − η̂(ŵHLL) + g(zR−zL)
2/8 that defines

the right hand side of the quadratic equation (3.6c). It is clear that the well-posed property of this
quadratic equation requires the inequality

η̂HLL − η̂(ŵHLL) +
g(zR − zL)

2

8
≥ 0. (3.14)

At this point, the above inequality can not be proved yet but some properties are now given.

Lemma 3.2 (Properties of η̂HLL − η̂(ŵHLL) + g(zR−zL)
2/8). Consider ŵL, ŵR two constant states being

in the interior of Ω̂. Let also consider the couples (η̂, Ĝ) and (η,G) respectively given by (1.3), (2.8)
and the quantities (ŵHLL, η̂HLL), (wHLL, ηHLL) defined in (3.4). Assume the CFL condition (3.2) holds.
The following statements are verified.
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i) For all given quantity ŝLR, the following estimate is satisfied:

η̂HLL − η̂(ŵHLL) +
g

8
(zR − zL)

2 =

hRhL(uR − uL)
2

4(hL + hR)
+

g

8
(hR − hL + zR − zL)

2

− (uR − uL)
2hRhL(hLuR − hRuL)

4λ(hL + hR)2
− hLuL + hRuR

4λ

(
g(zR − zL) +

∆xŝLR
hHLL

)
+O

(
1

λ2

)
.

(3.15)

i) If ŝLR is consistent with 1
∆x

∫ ∆x/2
−∆x/2(−gh∂xz) dx in the sens of Definition (2.2) then(

η̂HLL − η̂(ŵHLL) +
g

8
(zR − zL)

2
)∣∣∣

zL=zR
= ηHLL − η(wHLL). (3.16)

In addition, there exists λ > 0 large enough such that

ηHLL − η(wHLL) ≥ 0. (3.17)

Proof. For the statement i), using the notation [·] = ·R−·L then developing the quantities ûHLL, η̂HLL,
η̂(ŵHLL) defined in (3.4), we deduce

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 = η̂HLL −

(
(hu)HLL + ∆xŝLR/2λ

)2
2hHLL − g

2
(hHLL)2 − ghHLL zL + zR

2
+

g

8
[z]2,

= ηHLL + g
hLzL + hRzR

2
− g

[huz]

2λ
− η(wHLL)− ghHLL zL + zR

2

− (hu)HLL

hHLL
∆xŝLR
2λ

− 1

8hHLL

(
∆xŝLR

λ

)2

+
g

8
[z]2,

= ηHLL − η(wHLL) +
g

4
[z][h] +

g

8
[z]2

− g

4λ
[z]
(
hLuL + hRuR

)
− (hu)HLL

hHLL
∆xŝLR
2λ

− 1

8hHLL

(
∆xŝLR

λ

)2

.

(3.18)
At this point, the right hand side of the above equality will be developed considering λ goes to infinity.
Let denote q = hu and developing the quantities wHLL and ηHLL respectively given by (3.4a)-(3.4d),
we have at first

ηHLL − η(wHLL) =
q2L
4hL

+
q2R
4hR

+
g(h2L + h2R)

4
− [G]

2λ
− g

8

(
hR + hL − [q]

λ

)2

−
(
(hu)HLL)2
2hHLL . (3.19)

Now, it is necessary to develop the quantity
(
(hu)HLL

)2
/(2hHLL) in the above equality. Using the definition

of hHLL and (hu)HLL given by (3.4a), we have

(hu)HLL =
qL + qR

2
− 1

2λ
[hu2 + gh2/2],

1

2hHLL =
1

(hL + hR)
(
1− [q]

λ(hR+hL)

) .
(3.20a)

(3.20b)

Considering the square of (hu)HLL in the equality (3.20a) and interpreting the quantity 1/
(
1− [q]

λ(hR+hL)

)
as a geometric series, we respectively deduce(

(hu)HLL)2 = (qL + qR
2

)2 − 1

2λ

(
qL + qR

)
[hu2 +

g

2
h2] +O

(
1

λ2

)
,

1

1− [q]
λ(hR+hL)

= 1 +
[q]

λ(hL + hR)
+O

(
1

λ2

)
.

(3.21a)

(3.21b)
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As a consequence, using the two above equalities to develop the quantity
(
(hu)HLL

)2
/(2hHLL) then con-

sidering the result in ηHLL − η(wHLL) given by (3.19), we have

ηHLL − η(wHLL) =
q2L
4hL

+
q2R
4hR

− (qL + qR)
2

4(hL + hR)
+

g

8
[h]2 − [G]

2λ
+

g

4
(hL + hR)

[q]

λ

− (qL + qR)
2[q]

4λ(hL + hR)2
+

(qL + qR)[hu
2 + g

2h
2]

2λ(hL + hR)
+O

(
1

λ2

)
,

=
hRhL[u]

2

4(hL + hR)
+

g

8
[h]2 − [u]2hRhL(hLuR − hRuL)

4λ(hL + hR)2
+O

(
1

λ2

)
.

With the two equalities (3.20), it is also possible to develop (hu)HLL/hHLL and 1/hHLL in the equation
(3.18) then using the above estimate in the result, we eventually deduce

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 =

hRhL[u]
2

4(hL + hR)
+

g

8
[h+ z]2 − [u]2hRhL(hLuR − hRuL)

4λ(hL + hR)2
− hLuL + hRuR

4λ

(
g[z] +

∆xŝLR
hHLL

)
+O

(
1

λ2

)
,

that achieves to show the statement i).
For the statement ii), if ŝLR is consistent then ŝLR|zR=zL = 0 and the equality (3.16) is a direct

consequence of the computation (3.18). For the inequality (3.17), in the case of zL = zR, and since ŝLR
is consistent, the estimate (3.15) reads(

η̂HLL − η̂(ŵHLL) +
g

8
(zR − zL)

2
)∣∣∣

zL=zR
= ηHLL − η(wHLL),

=
hRhL[u]

2

4(hL + hR)
+

g

8
[h]2 +O

(
1

λ

)
.

As a consequence, as soon as [u] ̸= 0 or [h] ̸= 0, there exists λ > 0 large enough such that the inequality
(3.17) holds. In the case of [u] = 0 and [h] = 0, a direct computation gives ηHLL − η(wHLL) = 0.
Therefore, the inequality can be always enforced that concludes the proof.

The statement i) of the above lemme highlights the role of the parameter ŝLR in the inequality
(3.14). The choice of this parameter has to be motivated for the consistency but also to enforce the
inequality (3.14) in the case uL = uR and hL + zL = hR + zR.

In the case zL = zR, the consistency imposes ŝLR = 0 and the left hand side of the inequality
(3.14) degenerates to ηHLL − η(wHLL). The inequality ηHLL − η(wHLL) ≥ 0 is proved in Lemma 3.2-ii)
with algebraic computations but this inequality is a direct consequence of the entropy stability of the
standard HLL solver [28]. Therefore, the inequality ηHLL−η(wHLL) ≥ 0 holds under the standard CFL
condition (3.2) and consequently, if zL = zR then the system (3.6) is well-posed. This system is so used
at first to define an approximate Riemann solver (3.3) for the Shallow Water equations (1.1) in the flat
regions characterized by z = cste.

4 A consistent, entropy stable numerical scheme in the flat regions
(z = cste)

This section concerns the design of an approximate Riemann solver (3.3) defined by the system
(3.6) and for the case z = cste. In the case zL = zR, ŝLR = 0 and the system (3.6) reads

h∗L + h∗R
2

= hHLL,

h∗Lu
∗
L + h∗Ru

∗
R

2
= hHLLuHLL,

h∗Lh
∗
R

8hHLL (u
∗
R − u∗L)

2 +
g

8
(h∗R − h∗L)

2 = ηHLL − η(wHLL),

(4.1a)

(4.1b)

(4.1c)
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where wHLL, ηHLL are respectively given by (3.4a), (3.4d) and with

uHLL =


0, if hL = 0 and hR = 0,

(hu)HLL

hHLL , otherwise.

Since the system (4.1) is under-determined, we propose to complete it with the continuity of u in the
intermediate states of the solver (3.3). Such continuity writes

u∗L = u∗R, (4.2)

and it has already proposed in [45] for the HLLC scheme for instance. The next lemma deals with the
solutions of the system (4.1) completed with the equation u∗L = u∗R.

Lemma 4.1 (Entropic approximate Riemann solver for the homogeneous Shallow Water equations).
Consider wL, wR being two constant states in the interior of Ω (hL > 0, hR > 0). Consider a Godunov
type scheme (2.1) that approximates the solution of the homogeneous Shallow Water equations and
defined by an approximate Riemann solver w̃(·, wL, wR) : R → R2 of the form (3.3). Assume the CFL
condition (3.2) holds. If the intermediate states w∗

L, w∗
R of the solver are defined by the system (4.1),

(4.2) then, there exists two formulations for w∗
L and w∗

R. They are given by

u∗L = u∗R = uHLL,

h∗R = hHLL ±
√

2

g

(
ηHLL − η(wHLL)

)
,

h∗L = hHLL ∓
√

2

g

(
ηHLL − η(wHLL)

)
.

(4.3a)

(4.3b)

(4.3c)

A Godunov type scheme (2.1) associated to one of the two above approximate Riemann solvers

i) is consistent with the homogeneous Shallow Water equations given by (1.1) with z = cste,

ii) satisfies a discrete entropy inequality for the couple (η,G) defined in (2.8). The entropy numerical
flux of this entropy inequality is given by (2.12) evaluated with z = cste.

In the definitions (4.3), both symbols ± and ∓ that mean + or − but they are self-dependent. If ± is
positive (resp. negative) then ∓ is negative (resp. positive). This notation will be kept in the sequel.
The proof of Lemma 4.1 is given below.

Proof of Lemma 4.1. At first, we show that the definitions (4.3) are the solutions of the system (4.1),
(4.2). Since u∗L = u∗R, denoting u∗ = u∗L = u∗R, the equation (4.1b) associated to (4.1a) gives

hHLLuHLL =
h∗Lu

∗
L + h∗Ru

∗
R

2
,

=
h∗L + h∗R

2
u∗,

= hHLLu∗. (4.4)

As wL and wR are in the interior of Ω, we have hHLL > 0. Multiplying the above equation by 1/hHLL,
we deduce the result (4.3a) about u∗L and u∗R. Now, we prove the formulations of h∗L, h∗R given by
(4.3c)-(4.3b). Since the equality u∗L = u∗R holds, the equation (4.1c) reads

g

8
(h∗R − h∗L)

2 = ηHLL − η
(
wHLL).

According to Lemma 3.2, the inequality ηHLL − η
(
wHLL) ≥ 0 is ensured as soon as λ > 0 is large

enough. As a consequence the above equation is well-posed and applying the root-square on both sides,
we deduce

h∗R − h∗L = ±
√

8
(
ηHLL−η(wHLL)

)
/g.
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Using the above result in the consistency equation (4.1a), we deduce the results (4.3c)-(4.3b) about h∗L,
h∗R.

Concerning the consistency property i), the definitions (4.3) lead to w̃(·, w, w) = w. As the solver
satisfies the integral consistency relation under the form (4.1a)-(4.1b) (see Lemma 3.1 for details), a
Godunov type scheme (2.1) defined by (4.3) is consistent.

Eventually, the discrete entropy inequality ii) is a direct consequence of the equation (4.1c) as
established in Lemma 2.2, 3.1, that concludes the proof.

The intermediate heights (h∗α)α∈{L,R} of (4.3) are always well defined thanks to the HLL scheme
property [28] that writes ηHLL−η(wHLL) ≥ 0. But, the schemes of Lemma 4.1 do not necessary preserve
the convex set Ω. As a consequence, we couple the solver 4.1 to a procedure described in [41] that
ensures a conservative preservation of the convex set Ω near the dry areas in which hL or hR are closed
to zero.

Lemma 4.2 (Robust and entropic approximate Riemann solver for the homogeneous Shallow Water
equations). Consider wL, wR being two constant states of Ω. Consider a Godunov type scheme (2.1) that
approximates the solution of the homogeneous Shallow Water equations and defined by an approximate
Riemann solver w̃(·, wL, wR) : R → R2 of the form (3.3). Assume the CFL condition (3.2) holds. Let
also consider the quantities wHLL, ηHLL respectively given by (3.4a), (3.4d) and let denote

h̃∗R = hHLL ±
√

2

g

(
ηHLL − η(wHLL)

)
, h̃∗L = hHLL ∓

√
2

g

(
ηHLL − η(wHLL)

)
. (4.5)

If the intermediate states w∗
L, w∗

R of the approximate Riemann solver write

u∗L = u∗R = uHLL,

h∗R = min
(
max

(
h̃∗R, 0

)
, 2hHLL

)
,

h∗L = min
(
max

(
h̃∗L, 0

)
, 2hHLL

)
,

(4.6)

then we have

i) A Godunov type scheme (2.1) associated to a such solver is consistent with the homogeneous
Shallow Water equations given by (1.1) with z = cste and it preserves the convex set Ω.

ii) If h̃∗L > 0 and h̃∗R > 0 then a Godunov type scheme (2.1) associated to a such solver satisfies a
discrete entropy inequality for the couple (η,G) defined in (2.8). The entropy numerical flux of
this entropy inequality is given by (2.12) evaluated with z = cste.

Proof. At first, if h̃∗L and h̃∗R given by (4.5) are both strictly positive then (4.6) coincides with (4.3).
In this case, the consistency has already shown in Lemma 4.1. If the quantity h̃∗L given by (4.5) is
such that h̃∗L ≤ 0 then the procedure min(max(·, ·), ·) imposes h∗L = 0 and h∗R = 2hHLL ≥ 0. As a
consequence, the consistency equation h∗L + h∗R = 2hHLL holds. Since a similar computation can be
done in the case h̃∗R ≤ 0,we deduce the consistency of the statement i).

For the preservation of the domain Ω, it is sufficient to prove that h∗L ≥ 0 and h∗R ≥ 0 but according
to the definitions (4.6), these inequalities always hold.

Finally, if the quantities h̃∗L and h̃∗R given by (4.5) are both strictly positive then (4.6) coincides
with (4.3) and in this case, the discrete entropy inequality is shown in Lemma 4.1 that achieves the
proof.

The positiveness procedure min(max(·, ·), ·) described in (4.6) ensures the robustness in the regions
near the dry areas. This procedure still ensures the consistency relation (4.1a) when h̃∗L ≤ 0 or h̃∗R ≤ 0
but it not necessary ensures the entropy condition (4.1c). As a consequence, the discrete entropy
stability might be locally lost in the regions close to dry areas. In the next section, we extend the
design principles described in this section to the case where the bottom topography works.
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5 A well-balanced entropy stable numerical scheme for the lake at
rest

In this section, we consider the Shallow Water equations (1.1) for an arbitrary smooth given function
z : R → R. The aim is to design a consistent, entropic and well-balanced scheme for the lake at rest (1.6).
In this regard, we propose to define an approximate Riemann solver (3.3) with the under-determined
system (3.6) completed as follows:

u∗L = u∗R,

ŝLR = ŝWBAR
LR = − ghHLL zR − zL

∆x
−
√

g

hHLL
hLuL + hRuR

hHLL
(zR − zL)

2

∆x
,

(5.1a)

(5.1b)

where the notation ŝWBAR
LR means Well-Balanced At Rest. This notation is defined in order to distinguish

ŝWBAR
LR given by (5.1b) from a generic discretization ŝLR.

According to Lemma 2.2, the under-determined system (3.6) is a sufficient condition to the consis-
tency and to the discrete entropy inequality (2.11) for the couple (η̂, Ĝ) defined in (1.3). The closure
(5.1) is sufficient to obtain the well-balanced property for the lake at rest (1.6). Before to prove this
property, we show the existence of the solutions of the system (3.6), (5.1).

Lemma 5.1. Consider ŵL, ŵR two constant states being in the interior of Ω̂ and w̃(·, ŵL, ŵR) : R → R2

an approximate Riemann solver of the form (3.3). There exists λ > 0 large enough such that if the
CFL condition (3.2) holds and if the solvers intermediate states denoted w∗

L and w∗
R are defined by the

system (3.6), (5.1) then the two possible formulations for w∗
L and w∗

R are

u∗L = u∗R = ûHLL,

h∗R = hHLL +
−(zR − zL)±

√
8
(
η̂HLL−η̂(ŵHLL)

)
/g + (zR − zL)2

2
,

h∗L = hHLL −
−(zR − zL)±

√
8
(
η̂HLL−η̂(ŵHLL)

)
/g + (zR − zL)2

2
.

(5.2a)

(5.2b)

(5.2c)

A Godunov type scheme (2.1) defined by such an approximate Riemann solver

i) is consistent with the Shallow Water equations (1.1),

ii) satisfies a discrete entropy inequality (2.11) for the couple (η̂, Ĝ) defined in (1.3). The numerical
entropy flux Ĝ of this inequality is given by (2.12).

Proof. At first, we have to show that the definitions (5.2) are the solutions of the system (3.6), (5.1).
We show below the equalities u∗L = u∗R = ûHLL.

As u∗L = u∗R, let denote u∗ = u∗L = u∗R. The equation (3.6b) associated to (3.6a) gives

hHLLûHLL =
h∗Lu

∗
L + h∗Ru

∗
R

2
,

=
h∗L + h∗R

2
u∗,

= hHLLu∗. (5.3)

Since ŵL and ŵR are in the interior of Ω̂, the inequality hHLL > 0 holds. Therefore, multiplying the
equation (5.3) by 1/hHLL, we deduce the result (5.2a).

Then, in order to show the formulation of h∗R and h∗L given by (5.2b)-(5.2c), we have to study the
equation (3.6c). Using the equality u∗L = u∗R and the notation [·] = ·R − ·L, this equation reads

g

8
[h∗ + z]2 = η̂HLL − η̂(ŵHLL) +

g

8
[z]2. (5.4)
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Since the above equation is quadratic, it is now necessary to show that its right hand side is positive.
To show this sign, we consider at first the case [z] = 0. In this case, since ŝWBAR

LR is consistent and since
the CFL condition (3.2) holds, Lemma 3.2-ii) gives(

η̂HLL − η̂(ŵHLL) +
g

8
[z]2
)∣∣∣

[z]=0
= ηHLL − η(wHLL) ≥ 0.

In the case, [z] ̸= 0, Lemma 3.2-i) gives the following estimate for all ŝLR:

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 =

hRhL[u]
2

4(hL + hR)
+

g

8
[h+ z]2 − [u]2hRhL(hLuR − hRuL)

4λ(hL + hR)2
− hLuL + hRuR

4λ

(
g[z] +

∆xŝLR
hHLL

)
+O

(
1

λ2

)
.

(5.5)

Therefore, if [u] ̸= 0 or [h + z] ̸= 0 then there exists λ > 0 large enough such that the inequality
η̂HLL − η̂(ŵHLL) + g[z]2/8 ≥ 0 is satisfied. However, a particular attention has to be paid for the cases
[u] = 0 and [h + z] = 0. For these particular cases, noting u = uL = uR and using the definition of
ŝWBAR
LR given by (5.1b), we have(

g[z] +
∆xŝWBAR

LR

hHLL

)∣∣∣ [u]=0,
[h+z]=0

= −√
g
(hL + hR)

(hHLL)
5
2

u[z]2,

= − 2
5
2
√
g(hL + hR)

− 3
2u[z]2 +O

(
1

λ

)
.

Considering the above equality in the estimate (5.5), we deduce(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2
)∣∣∣ [u]=0,

[h+z]=0

= −(hL + hR)u

4λ

(
g[z] +

∆xŝWBAR
LR

hHLL

∣∣∣ [u]=0,
[h+z]=0

)
+O

(
1

λ2

)
,

=

√
2g

hL + hR

u2[z]2

λ
+O

(
1

λ2

)
.

(5.6)
According to the above equation, if u ̸= 0, there exists once again λ > 0 large enough such that the
inequality η̂HLL − η̂(ŵHLL) + g[z]2/8 ≥ 0 holds for the cases [h + z] = 0 and uL = uR ̸= 0. Before to
conclude, we have to consider the case [h+ z] = 0 and uL = uR = 0 which defines a local equilibrium
for the lake at rest (2.6). In this last case, a direct computation using ŵHLL and ŝWBAR

LR respectively
defined in (3.4c) and in (5.1b) gives

hHLL
∣∣∣uL=uR=0,

[h+z]=0

=
hL + hR

2
,

ŝWBAR
LR

∣∣∣uL=uR=0,
[h+z]=0

= − g
hL + hR

2

zR − zL
∆x

,

(
hHLLûHLL)∣∣∣uL=uR=0,

[h+z]=0

= − g

4λ
[h2]− g

4λ
(hL + hR)[z] = − g

4λ
(hL + hR)[h+ z] = 0.

(5.7)

Considering the three above equations in the quantity η̂HLL − η̂(ŵHLL) + g[z]2/8, we obtain(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2
)∣∣∣uL=uR=0,

[h+z]=0

=
hRhL[u]

2

4(hL + hR)
+

g

8
[h+ z]2 = 0. (5.8)

Therefore, there always exists λ > 0 large enough such that the following inequality is verified:

η̂HLL − η̂(ŵHLL) +
g[z]2

8
≥ 0. (5.9)
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As a consequence, the quadratic equation (5.4) is well-posed and we deduce

[h∗ + z] = ±
√

8
(
η̃HLL−η̃(wHLL)

)
/g + [z]2.

Associating the above equation to the equation (3.6a), we deduce the quantities h∗R, h∗L respectively
given by (5.2b)-(5.2c).

Concerning the statements i) and ii), ŝWBAR
LR is consistent and a direct computation shows

w̃(·, ŵ, ŵ) = w. In addition, as the intermediate states are defined by the system (3.6), Lemma 3.1
ensures that the approximate Riemann solver verifies the consistency integral relation (2.9) and the
inequality (2.10). Therefore, the consistency of the Godunov type scheme i) and the discrete entropy
stability ii) are direct consequences of Lemma 2.2 that concludes the proof.

According to the above proof, the consistent discretization ŝWBAR
LR given by (5.1b) leads to the

following equalities:

ûHLL
∣∣∣
[z]=0

= uHLL,
(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2
)∣∣∣

[z]=0
= ηHLL − η(wHLL).

As a consequence, the formulations (5.2) degenerate toward (4.3) when zL = zR. The approximate
Riemann solvers of Lemma 5.1 are so the direct extensions of the solvers presented in Section 4 for the
particular case z = cste.

The explicit formulations of w∗
L and w∗

R given by (5.2) entirely define an approximate Riemann
solver (3.3). Nevertheless, it is necessary to complete these formulations by limitation techniques that
ensure the robustness for the dry-wet transitions in which hL or hR are closed to zero. A limitation
technique is given in the following theorem that also establishes the well-balanced property for the lake
at rest.

Theorem 5.1 (Robust, entropic, well-balanced Godunov type scheme for the lake at rest). Consider
ŵL, ŵR two constant states of Ω̂ and w̃(·, ŵL, ŵR) : R → R2 an approximate Riemann solver of the
form (3.3). Assume λ > 0 is such that the CFL condition (3.2) holds and such that the system (3.6),
(5.1) admit reals solutions. Let also consider the quantities ŵHLL, η̂HLL defined in (3.4c)-(3.4e) and the
quantity (h̃∗R, h̃

∗
L) in R2 such that

h̃∗R = hHLL +
−(zR − zL)±

√
8
(
η̂HLL−η̂(ŵHLL)

)
/g + (zR − zL)2

2
,

h̃∗L = hHLL −
−(zR − zL)±

√
8
(
η̂HLL−η̂(ŵHLL)

)
/g + (zR − zL)2

2
.

(5.10a)

(5.10b)

If ŝLR verifies

∆xŝLR =



0, if hL = 0 and hR = 0,

gh2R/2, if hRuR = 0 and hL = 0 and hR + zR ≤ zL,

− gh2L/2, if hLuL = 0 and hR = 0 and hL + zL ≤ zR,

− g(hL + hR)(zR − zL)/2, if hL = 0 or hR = 0,

∆xŝWBAR
LR , otherwise,

(5.11)
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with ŝWBAR
LR defined in (5.1b) and if the solver intermediate states denoted w∗

L and w∗
R write


h∗L
u∗L
h∗R
u∗R

 =



(
0, 0, 0, 0)T, if hL = 0 and hR = 0,(

0, 0, 2hHLL, ûHLL)T, if hL = 0 and hR > 0,(
2hHLL, ûHLL, 0, 0

)T
, if hL > 0 and hR = 0,

min
(
max

(
h̃∗L, 0

)
, 2hHLL

)
ûHLL

min
(
max

(
h̃∗R, 0

)
, 2hHLL

)
ûHLL


, otherwise,

(5.12)

then a Godunov type scheme (2.1) defined by such an approximate Riemann solver

i) is consistent with the Shallow Water equations (1.1),

ii) preserves the convex set Ω̂, i.e: if (ŵn
i )i∈Z ⊂ Ω̂ then, (ŵn+1

i )i∈Z ⊂ Ω̂,

iii) is robust for the dry-wet transitions,

iv) is well-balanced for the lake at rest (1.6).

In addition, if h̃∗L > 0 and h̃∗R > 0 then a Godunov type scheme (2.1) associated to such an approximate
Riemann solver satisfies a discrete entropy inequality (2.11) for the couple (η̂, Ĝ) defined in (1.3). The
entropy numerical flux Ĝ of this inequality is given by (2.12).

The well-balanced property and the discrete entropy inequality detailed in the above theorem are
also given in [12] with a relaxation scheme that needs to solve a cubic equation. The result of Theorem
5.1 overcomes this constrain and his main originality arises from the explicit solving of a quadratic
equation. This explicit solving gives two numerical schemes distinguished with the symbol ± in the
definitions (5.12). Both schemes are entropic, well-balanced for the lake at rest and preserves the set
Ω̂ thank to the limitation techniques min(max(·, ·), ·). However, if these limitations work, the system
(3.6) is no longer necessary verified and consequently, the entropy stability might be locally lost in the
dry-wet transitions.

These transitions are also treated with the several cases in the equalities (5.11) and (5.12). According
to [39, Section 3.1.2.4], theses equalities are robust but it is clear that they are not continuous with the
numerical scheme defined in Lemma 5.1.

Next to this remarks, we now prove Theorem 5.1.

Proof of Theorem 5.1. Concerning i), the consistency has only to be proved in the wet regions. There-
fore, if h̃∗L and h̃∗R given by (5.10) are both strictly positive then the formulations (5.12) coincide with
the formulations (5.2). In this case, the consistency is shown in Lemma 5.1. If h̃∗L ≤ 0 or h̃∗R ≤ 0,
then the limitations techniques min(max(·, ·), ·) work but, in this case, the proof of Lemma 4.2 shows
that the consistency integral relation is preserved. As a consequence, we deduce the consistency of the
numerical scheme.

For the preservation of the convex set Ω̂ given by ii), it is sufficient to show h∗L ≥ 0 and h∗R ≥ 0
but, according to (5.12), these inequalities are ensured.

Concerning iii) and according to [39, Section 3.1.2.4], the formulations given in (5.11) for ŝLR and
in (5.12) for the states w∗

L, w∗
R ensure the robustness of the scheme in wet-dry transitions.

For the well-balanced property iv), and according to Lemma 2.2, it is sufficient to show that if ŵL

and ŵR define a local lake at rest equilibrium (2.6) then w∗
L = wL and w∗

R = wR. Using the notation
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[·] = ·R − ·L, if ŵL and ŵR define a local equilibrium (2.6) then uL = uR = 0, [h+ z] = 0 and ŝLR, w∗
L,

w∗
R are respectively given by (5.1b), (5.2).

As u∗L = u∗R = ûHLL, the first aim is to show that ûHLL = 0. If the local lake at rest equilibrium
(2.6) holds then Lemma 5.1 gives hHLLûHLL = 0. As a consequence, we have

0 =
(
hHLLûHLL)∣∣∣uL=uR=0,

[h+z]=0

, (5.13)

= hHLL
∣∣∣uL=uR=0,

[h+z]=0

ûHLL
∣∣∣uL=uR=0,

[h+z]=0

,

=
hL + hR

2
ûHLL

∣∣∣uL=uR=0,
[h+z]=0

.

According to the above equation, when the local lake at rest equilibrium (2.6) holds ûHLL = 0 that
implies u∗L = u∗R = 0.

Now, we prove the equalities h∗L = hL et h∗R = hR. When the local lake at rest equilibrium (2.6)
holds, Lemma 5.1 gives in (5.8) the equality η̂HLL − η̂(ŵHLL) + g[z]2/8 = 0. Associating this equality to
the formulations of h∗R, h∗L respectively given by (5.2b) and (5.2c), we obtain

h∗R

∣∣∣uL=uR=0,
[h+z]=0

=
hL + hR − [z]

2
=

hL + hR + [h]

2
= hR,

h∗L

∣∣∣uL=uR=0,
[h+z]=0

=
hL + hR + [z]

2
=

hL + hR − [h]

2
= hL.

Both above results conclude the proof of the well-balanced property iv).
Finally, for the discrete entropy inequality, if h̃∗L and h̃∗R given by (5.10) are both strictly positive

then (5.12) coincide with (5.2). In this case, the discrete entropy inequality is a direct consequence of the
approximate Riemann solver definition and this inequality is shown in Lemma 5.1-ii), that concludes
the proof.

The schemes of Theorem 5.1 are designed from the system (3.6) closed by the equations (5.1).
An other closure is now presented in order to define an entropic well-balanced scheme for the moving
equilibria.

6 A fully well-balanced entropy stable numerical scheme for the gen-
eral equilibrium

In this section, a closure of the system (3.6) is proposed in order to reach a well-balanced property
for the moving equilibria (1.5). Since the under-determined system (3.6) ensures the consistency and
the discrete entropy inequality (2.11), this section concerns an entropic fully well-balanced scheme.

All the notations used in Section 4 and 5 are still used and in particular [·] = ·R − ·L. These
notations are completed by

B̂(ŵ) =
(hu)2

2h2
+ g(h+ z), [B̂] = B̂(ŵR)− B̂(ŵL).

Considering the above definitions, the local moving equilibrium (2.5) now reads

hLuL = hRuR, and B̂(ŵL) = B̂(ŵR). (6.1)

In addition, for all quantity X, if the above local equilibrium holds then X is denoted Xeq that writes

X
∣∣
[q]=0 [B̂]=0

= Xeq.
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Since the local moving equilibrium (6.1) imposes hLuL = hRuR, the notation qeq in R is now defined
as follows:

(hLuL)
eq = (hRuR)

eq = qeq.

Finally, h denotes the arithmetic mean of hL and hR that writes h = (hL+hR)/2 in R+.
Associating these notations to a couple λ > 0, ∆t > 0 and to wHLL given by (3.4a), we now define

the reals ζLR, qLR, βLR et F 2
LR which take particular values when ŵL and ŵR define a local moving

equilibrium (6.1). These reals are given by

ζLR = [hu]2 + h[B̂]2/g,

qLR =


0, if ζLR = 0 and [z] = 0,

min(hLuL, hRuR)(g[z]∆t)2

(g[z]∆t)2 + ζLR
, otherwise,

,

βLR =


0, if ζLR = 0 and [u] = 0 et [h+ z] = 0,

(h[u])2 + gh[h+ z]2

(h[u])2 + gh[h+ z]2 + ζLR
, otherwise,

,

F 2
LR =

q2LR
ghLhRhHLL .

(6.2a)

(6.2b)

(6.2c)

(6.2d)

The lemma below gives the properties satisfied by ζLR, qLR and F 2
LR.

Lemma 6.1. Consider ŵL, ŵR two constant states in the interior of Ω̂ and λ > 0, ∆t > 0 satisfying
the CFL condition (3.2). Let also consider wHLL given by (3.4a) and ζLR, qLR, F 2

LR respectively defined
in (6.2a), (6.2b) and (6.2d). The following statements are satisfied.

i) ζLR = 0 if and only if ŵL, ŵR verify a local equilibrium (6.1).

ii) If [z] ̸= 0 then qeq
LR = qeq.

iii) If [z] ̸= 0 then (F 2
LR)

eq = 2(qeq)2/(ghLhR(hL+hR)).

Proof. Concerning i), as ŵL, ŵR are in the interior of Ω̂, the strict inequality h > 0 is satisfied. As a
consequence, ζLR is an addition of positive quantities and the result is obvious.

For the statement ii) which concerns a property for a local equilibrium (6.1), as [z] ̸= 0, the equality
ζeq
LR = 0 gives

qeq
LR =

(min(hLuL, hRuR)(g[z]∆t)2

(g[z]∆t)2 + ζLR

)eq
=
(
min(hLuL, hRuR)

)eq
= qeq.

Finally, for iii), writing the definition of hHLL given by (3.4a), we obtain

(hHLL)eq =
hL + hR

2
− [hu]eq

2λ
=

hL + hR
2

.

Using the above equation and the statement ii) in the definition of F 2
LR given by (6.2d), we deduce the

result that achieves the proof.

Considering the definitions (6.2), the proposed closure of the system (3.6) is the following:

h∗Rh
∗
L(u

∗
R − u∗L)

2 =
q2LR
hRhL

(h∗R − h∗L)
2,

ŝLR = ŝFWB
LR = ŝWBAR

LR + βLR

(ghF 2
LR

4hLhR

(hR − hL)
3

∆x
+
√
g
hLuL + hRuR

(hHLL)3/2
(zR − zL)

2

∆x

)
,

(6.3a)

(6.3b)
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The solving of the system (3.6), (6.3) is detailed in the above lemma which uses the usual symbols ±
that mean + or −. Two independent symbols ±1 and ±2 are necessary and the second one is completed
by ∓2 such that if ±2 is positive (resp. negative) then ∓2 is negative (resp. positive).

Lemma 6.2. Consider ŵL, ŵR two constant states in the interior of Ω̂ and w̃(·, ŵL, ŵR) : R → R2 an
approximate Riemann solver (3.3). There exists λ > 0 large enough and ∆t > 0 small enough such
that if the CFL condition (3.2) is satisfied and if the solver intermediate states denoted w∗

L and w∗
R are

defined by the system (3.6), (6.3) then two formulations for h∗L and h∗R are possible. Considering the
quantities ŵHLL and η̂HLL defined in (3.4c)-(3.4e), these formulations are

h∗L = hHLL − [h∗]

2
,

h∗R = hHLL +
[h∗]

2
,

with, [h∗] = − (zR − zL)

1 + F 2
LR

±1

√
8

g

η̂HLL − η̂(ŵHLL)

1 + F 2
LR

+
(zR − zL)2

(1 + F 2
LR)

2
.

(6.4a)

(6.4b)

(6.4c)

In addition, if the above quantities h∗R and h∗L are strictly positive then the quantities u∗L and u∗R
respectively write

u∗L = ûHLL ∓2
qLR[h

∗]

2hHLL
√
hLhR

√
h∗R
h∗L

,

u∗R = ûHLL ±2
qLR[h

∗]

2hHLL
√
hLhR

√
h∗L
h∗R

.

(6.5a)

(6.5b)

Finally, a Godunov type scheme (2.1) defined by such an approximate Riemann solver

i) is consistent with the Shallow Water equations (1.1),

ii) satisfies a discrete entropy inequality (2.11) for the couple (η̂, Ĝ) defined in (1.3). The numerical
entropy flux Ĝ of this inequality is given by (2.12).

The symbols ±1 and ±2 respectively used in (6.4) and in (6.5) may be interpreted as free parameters
that will be fixed in the sequel to guarantee the well-balanced property.

The well-balanced property will be also reached with (6.3b) in which the notation ŝFWB
LR means Fully

Well-Balanced. This notation is defined in order to distinguish ŝWBAR
LR given by (5.1b) from a generic

discretization ŝLR. According to (5.1b), ŝFWB
LR is defined as a correction of the quantity ŝWBAR

LR given
by (5.1b) and this property will be used in the sequel.

Before to prove Lemma 6.2, it is now necessary to give two intermediate results. The first one
concerns the quantity ŝFWB

LR defined in (6.3b).

Lemma 6.3 (Property of ŝFWB
LR ). Consider ŵL, ŵR two constant states in the interior of Ω̂. If the

CFL condition (3.2) holds and if ŝLR = ŝFWB
LR in the formulation of hHLLûHLL given by (3.4b) then

(hHLLûHLL)eq =
(
(hu)HLL +

∆xŝFWB
LR

2λ

)eq
= qeq.

Proof. The proof is led by three exhaustive cases given by

i) [z] = 0,

ii) [z] ̸= 0 et qeq = 0,

iii) [z] ̸= 0 et qeq ̸= 0.
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In the case i), and according to the definition (6.3b), we have ŝFWB
LR = 0. In addition, and ac-

cording the hypothesis (2.7), a local equilibrium defined by [z] = 0 necessary verifies ŵL = ŵR. As a
consequence, using the definition of hHLLûHLL given by (3.4b), we have

(hHLLûHLL)eq
∣∣
[z]=0

= ((hu)HLL)eq,

=
(hLuL)

eq + (hRuR)
eq

2
− [hu2 + gh2/2]eq

2λ
,

= qeq.

As the above equality gives the expected result, we now consider the second case of the proof.
The case ii) is defined by [z] ̸= 0 and qeq = 0. In this case, a direct computation shows that

the local moving equilibrium (6.1) degenerates toward the local lake at rest equilibrium that writes
uL = uR = 0 and [h+ z] = 0. But, according to the definition of βLR given by (6.2c), if the local lake
at rest equilibrium occurs then βLR = 0. Therefore, using the equation (6.3b), we have for the case ii)

(ŝFWB
LR )eq

∣∣
qeq=0

= (ŝWBAR
LR )eq

∣∣
qeq=0

= −g
hL + hR

2

zR − zL
∆x

.

As a consequence, arguing the result (5.13) of Theorem 5.1-iv), we deduce hHLLûHLL = 0 and since
hHLL > 0, this last equality concludes the second case.

Let consider now the case iii) defined by [z] ̸= 0 and qeq ̸= 0. Since ŵL and ŵR define a local
moving equilibrium (6.1) with qeq ̸= 0, usual computations that use (6.2c) and (6.1) show

βeq
LR|qeq ̸=0 = 1 and − (qeq)2

2h2Lh
2
R

[h2] + g[h+ z] = 0.

Using both above result and the equality (F 2
LR)

eq = 2(qeq)2/(ghLhR(hL+hR)) given by Lemma 6.1-iii), we
have

(∆xŝFWB
LR )eq

∣∣
qeq ̸=0

= −g
hL + hR

2
[z] +

g

8
[h]3

hL + hR
hLhR

F 2
LR

∣∣
qeq ̸=0

,

= − g
hL + hR

2
[z] +

[h]2

4

[h2](qeq)2

h2Lh
2
R(hL + hR)

,

= − g
hL + hR

2
[z] +

g[h]2

2

[h+ z]

hL + hR
.

Writing the above equation in the definition of hHLLûHLL given by (3.4b), we deduce

(hHLLûHLL)eq
∣∣
qeq ̸=0

=
(
hHLLuHLL +

∆xŝFWB
LR

2λ

)eq∣∣
qeq ̸=0

,

= qeq − 1

2(hL + hR)λ

(
− (qeq)2[h2]

hRhL
+

g

2
(hL + hR)

2[h]
)
+

g

4λ

−(hL + hR)
2[z] + [h]2[h+ z]

hL + hR
,

= qeq − g[h+ z]

4λ(hL + hR)

(
−4hLhR + (hL + hR)

2 − [h]2
)
,

= qeq.

The above equality achieves the proof.

The second useful intermediate result for Lemma 6.2 is an inequality that defines a necessary and
sufficient condition to the existence of reals h∗L and h∗R satisfying the system (3.6), (6.3).

Lemma 6.4. Consider ŵL, ŵR two constant states in the interior of Ω̂. There exists λ > 0 large enough
and ∆t > 0 small enough such that if CFL condition (3.2) holds and if ŝLR = ŝFWB

LR in the formulation
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of hHLLûHLL given by (3.4b) then, considering the quantities ŵHLL, η̂HLL and F 2
LR respectively defined

in (3.4c), (3.4e),(6.2d), the following inequality is satisfied:

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 − g[z]2

8

F 2
LR

1 + F 2
LR

≥ 0. (6.6)

Proof. The proof is led by three exhaustive cases given by

i) [z] = 0,

ii) [z] ̸= 0 et ζLR = 0,

iii) [z] ̸= 0 et ζLR ̸= 0.

Let consider at first the case i) defined by [z] = 0. Using on the one hand the definition (6.2b), we
have qLR = 0 and using on the other hand the equation (6.3b), we obtain ŝFWB

LR = 0. As a consequence,
in the case [z] = 0, we deduce F 2

LR = 0 and ûHLL = uHLL. Using both last equalities, an analogous
computation to (3.18) gives(

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 − g[z]2

8

F 2
LR

1 + F 2
LR

)∣∣∣
[z]=0

= ηHLL − (hHLLûHLL)2

2hHLL

∣∣∣
[z]=0

− g

2
(hHLL)2 +

(g
4
[z]
(
[h]− hLuL + hRuR

λ

))∣∣∣
[z]=0

= ηHLL − η(wHLL).

Since the CFL condition (3.2) is satisfied, the inequality ηHLL − η
(
wHLL) ≥ 0 is ensured (see Lemma

3.2-ii) for details).
The case ii) is defined by [z] ̸= 0 and ζLR = 0. As ζLR = 0, ŵL and ŵL define a local moving

equilibrium (6.1) and in this case, a direct computation shows Ĝ(ŵR)−Ĝ(ŵL) = [B̂]qeq = 0. According
to Lemma 6.3, the equality (hHLLûHLL)eq = qeq is also verified. As a consequence, we have

(η̂HLL)eq − η̂(ŵHLL)eq =
η(wR)

eq + η(wL)
eq

2
+

g

2
(hLzL + hRzR)−

Ĝ(ŵR)
eq − Ĝ(ŵL)

eq

2λ

−
((hHLLûHLL)2

2hHLL

)eq
−
(g(hHLL)2

2

)eq
− g(hHLL)eq

zL + zR
2

,

=
(qeq)2

4

( 1

hL
+

1

hR

)
+

g

4
(h2L + h2R) +

g

2
(hLzL + hRzR)

− (qeq)2

hL + hR
− g(hL + hR)

2

8
− g

4
(hL + hR)(zL + zR).

=
(qeq)2hLhR
4(hL + hR)

[
1

h

]2
+

g

8
[h]2 +

g

4
[z][h],

=
g

8

(
1 + (F 2

LR)
eq)[h]2 + g

4
[z][h].

Using the above equation, we obtain(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2 − g[z]2

8

F 2
LR

1 + F 2
LR

)eq
=

g

8
(1 + (F 2

LR)
eq)[h]2 +

g

4
[h][z] +

g

8

[z]2

1 + (F 2
LR)

eq ,

=
g

8

(√
1 + (F 2

LR)
eq[h] +

[z]√
1 + (F 2

LR)
eq

)2
≥ 0.
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Finally, the last case iii) is such that [z] ̸= and for couples ŵL and ŵL that not define a local
moving equilibrium (6.1). This last case writes [z] ̸= 0 and ζLR ̸= 0 and Lemma 3.2-i) gives the
following estimate:

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 =

hRhL[u]
2

4(hL + hR)
+

g

8
[h+ z]2 − [u]2hRhL(hLuR − hRuL)

4λ(hL + hR)2
− hLuL + hRuR

4λ

(
g[z] +

∆xŝLR
hHLL

)
+O

(
1

λ2

)
.

(6.7)

As soon as [u] ̸= 0 or [h+z] ̸= 0, there exists λ > 0 large enough such that the following strict inequality
is satisfied

η̂HLL − η̂(ŵHLL) +
g[z]2

8
> 0. (6.8)

For the particular cases [u] = 0 and [h+ z] = 0, the following equations are verified:

βLR| [u]=0,
[h+z]=0

= 0, ŝFWB
LR |βLR=0 = ŝWBAR

LR .

Therefore, when [u] = 0 and [h + z] = 0, the definition of βLR given by (6.2c) commute ŝFWB
LR to

ŝWBAR
LR . As a consequence, the existence of the strict inequality (6.8) for these particular cases is

related to the proof of Lemma 5.1 that concerns the estimate (6.7) with ŝLR = ŝWBAR
LR . But, according

to the computations (5.6) and (5.7) detailed in this lemma, the strict inequality (6.8) can be held
except for the case where ŵL and ŵR define a local lake at rest equilibrium (2.6). Since, the lake at
rest is a moving equilibrium with a null velocity, it has already been treated in the case ii). As a
consequence, the strict inequality (6.8) can always be ensured for this case iii). In addition, according
to the definitions (6.2b), (6.2d) and as ζLR ̸= 0, F 2

LR is porpotionnal to ∆t4. Therefore, if the strict
inequality (6.8) is verified, the large inequality (6.6) can be held with ∆t > 0 such that

η̂HLL − η̂(ŵHLL) +
g

8
[z]2 ≥ g[z]2

8

F 2
LR

1 + F 2
LR

.

We deduce the expected result for this last case that concludes the proof.

With both above lemma, Lemma 6.2 is now proved.

Proof of Lemma 6.2. At first, we show that the formulations (6.4)-(6.5) are solutions of the system
(3.6), (6.3). Using the equation (6.3a) in the equation (3.6c) and according to the definition of F 2

LR

given by (6.2d), we deduce the two following equations satisfied by h∗L and h∗R:

h∗L + h∗R
2

= hHLL,

g

8
(1 + F 2

LR)[h
∗]2 +

g

4
[z][h∗] = η̂HLL − η̂(ŵHLL).

(6.9a)

(6.9b)

Now, we have to show that the above quadratic equation is well-posed. Dividing this quadratic equation
(6.9b) on both sides by g/8(1+F 2

LR) then adding [z]2/(1+F 2
LR)2, we obtain(

[h∗] +
[z]

1 + F 2
LR

)2
=

8

g

η̂HLL − η̂(ŵHLL)

1 + F 2
LR

+
[z]2

(1 + F 2
LR)

2
,

=
8

g(1 + F 2
LR)

(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2 − g[z]2

8

F 2
LR

1 + F 2
LR

)
.

According to Lemma 6.4, if λ (resp. ∆t) is large (resp. small) enough then the right hand side of
the above equation is positive As a consequence, if λ and ∆t are well-chosen, the previous equation
is well-posed and a direct computation leads to the formulation of [h∗] given by (6.4c). Coupling the
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formulation of [h∗] = h∗R − h∗L to the equation (6.9a), we deduce the quantities h∗L and h∗R respectively
given by (6.4a),(6.4b).

Since the quantities h∗R et h∗L are known and since they are assumed to be strictly positive, the
equation (6.3a) re-writes

[u∗] = ± qLR√
hLhR

[h∗]√
h∗Lh

∗
R

. (6.10)

Using the above equation and the equation (6.9a) in the relation (h∗
Lu

∗
L+h∗

Ru∗
R)/2 = hHLLûHLL, we obtain

hHLLûHLL =
h∗Lu

∗
L + h∗Ru

∗
R

2
,

=
h∗L + h∗R

2

u∗L + u∗R
2

+
[h∗][u∗]

4
,

= hHLLu
∗
L + u∗R
2

± qLR

4
√
hLhR

[h∗]2√
h∗Lh

∗
R

. (6.11)

The above equation associated to the equalities (6.10) and (6.9a) yields

u∗R = ûHLL ± qLR[h
∗]

2
√
hLhRh∗Lh

∗
R

∓ qLR[h
∗]2

4hHLL
√
hLhR

√
h∗Rh

∗
L

,

= ûHLL ± qLR[h
∗]

2
√
hLhRh∗Lh

∗
R

(
1− [h∗]

2hHLL

)
,

= ûHLL ± qLR[h
∗]

2
√
hLhRh∗Lh

∗
R

h∗L
hHLL .

This last equality gives the formulation of u∗R presented in (6.5b). Since the formulation of u∗L (6.5a)
can be derived from an analogous computation, this achieves to show (6.4)-(6.5).

Concerning the statements i) and ii), ŝFWB
LR is consistent and a direct computation shows

w̃(·, ŵ, ŵ) = w. In addition, as the intermediate states are defined by the system (3.6), Lemma 3.1
ensures that the approximate Riemann solver verifies the consistency integral relation (2.9) and the
inequality (2.10). Therefore, the consistency of the Godunov type scheme i) and the discrete entropy
stability ii) are direct consequences of Lemma 2.2 that concludes the proof.

The equation (6.3a) decomposes the equations that define w∗
L and w∗

R into two system respectively
given by (6.9) and by (6.3a), (6.11). Each of this system is made of a linear equation and a quadratic
equation.

If the implicit condition (6.6) that restricts the couple (λ,∆t) is satisfied then the first quadratic
equation (6.9b) is well-posed. The well-posed property of the second quadratic equation (6.3a) is
obtained form the assumption that the quantities h∗L and h∗R given by (6.4) are strictly positive. If this
assumption is not satisfied then the inequalities h∗L > 0 and h∗R > 0 can be imposed with a limitation
technique. As a consequence, the system (3.6), (6.3) always admit solutions.

According to the formulations (6.4)-(6.5), these solutions are not unique and they depend on the
choices of the symbols ±1 and ±2. The selection of one solution has to be done according to the
well-balanced property.

In order to satisfy this property, ±2 has to be negative (that imposes ∓2 positive) and a direct
computing shows that the choice of ±1 has to be done according a condition obtained when ŵL and
ŵR define a local equilibrium (6.1). This condition formally writes

±eq
1 = sign

(
(1 + (F 2

LR)
eq)[h] + [z]

)
.

As a consequence, a simple formulation for the symbol ±1 is given by

±1 = sign
(
(1 + (F 2

LR))[h] + [z]
)
.
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The above formulation is considered in the equality (6.13) but others choices are possible. This for-
mulation leads to an expression of (h∗α, u

∗
α)α∈{L,R} that is detailed in the below theorem in which a

limitation procedure is also given.

Theorem 6.1 (Robust, entropic, well-balanced Godunov type scheme for all regular equilibrium).
Consider ŵL, ŵR two constant states of Ω̂ and w̃(·, ŵL, ŵR) : R → R2 an approximate Riemann solver
of the form (3.3). Assume λ > 0 and ∆t > 0 are such that the CFL condition (3.2) holds and such that
the system (3.6), (6.3) admits reals solutions. Let also consider the quantities ŵHLL, η̂HLL, qLR and
F 2
LR respectively defined in (3.4c), (3.4e) (6.2b), (6.2d) and the quantities (h̃∗L, ũ

∗
L, h̃

∗
R, ũ

∗
R) in R4 such

that

h̃∗L = hHLL − [h∗]

2
,

ũ∗L = ûHLL +
qLR[h

∗]

2hHLL
√
hLhR

√
h∗R
h∗L

,

h̃∗R = hHLL +
[h∗]

2
,

ũ∗R = ûHLL − qLR[h
∗]

2hHLL
√
hLhR

√
h∗L
h∗R

,

(6.12a)

(6.12b)

(6.12c)

(6.12d)

with

[h∗] = −(zR − zL)

1 + F 2
LR

+ sign
(
(1 + F 2

LR)[h] + [z]
)√8

g

η̂HLL − η̂(ŵHLL)

1 + F 2
LR

+
(zR − zL)2

(1 + F 2
LR)

2
. (6.13)

Let consider in addition ŝLR under the form

∆xŝLR =



0, if hL = 0 and hR = 0,

gh2R/2, if hRuR = 0 and hL = 0 and hR + zR ≤ zL,

− gh2L/2, if hLuL = 0 and hR = 0 and hL + zL ≤ zR,

− g(hL + hR)(zR − zL)/2, if hL = 0 or hR = 0,

∆xŝFWB
LR , otherwise,

(6.14)

with ŝFWB
LR defined by (6.3b). For ε > 0, assume the solver intermediate states denoted w∗

L and w∗
R

write


h∗L
u∗L
h∗R
u∗R

 =



(
0, 0, 0, 0)T, if hL = 0 and hR = 0,(

0, 0, 2hHLL, ûHLL)T, if hL = 0 and hR > 0,(
2hHLL, ûHLL, 0, 0

)T
, if hL > 0 and hR = 0,

min
(
max

(
h̃∗L, ε

)
, 2hHLL − ε

)
ũ∗L

min
(
max

(
h̃∗R, ε

)
, 2hHLL − ε

)
ũ∗R


, otherwise.

(6.15)

A Godunov type scheme (2.1) defined by such an approximate Riemann solver

i) is consistent with the Shallow Water equations (1.1),

ii) preserves the convex set Ω̂, i.e: if (ŵn
i )i∈Z ⊂ Ω̂ then, (ŵn+1

i )i∈Z ⊂ Ω̂,

iii) is robust for the dry-wet transitions,
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iv) is well-balanced for all moving regular equilibrium (1.5).

In addition, if h̃∗L > 0 and h̃∗R > 0 then a Godunov type scheme (2.1) associated to such an approximate
Riemann solver satisfies a discrete entropy inequality (2.11) for the couple (η̂, Ĝ) defined in (1.3). The
entropy numerical flux Ĝ of this inequality is given by (2.12).

Proof. Concerning i), the consistency has only to be proved in the wet regions. Therefore, if h̃∗L and
h̃∗R given by (6.12a), (6.12c) are both strictly positive then (6.15) coincide with (6.12). In this case,
the consistency is shown in Lemma 6.2-i). If h̃∗L ≤ 0 or h̃∗R ≤ 0, then the limitation techniques
min(max(·, ·), ·) work and an analogous computation to one done in Lemma 4.2-i) shows that these
procedures preserve the consistency integral relation for all ε > 0 small enough. As a consequence, we
deduce the consistency of the statement i).

For the statement ii) related to the preservation of the convex set Ω̂, it is sufficient to prove the
inequalities h∗L ≥ 0 and h∗R ≥ 0 but according to (6.15), these inequalities are obviously ensured for
ε > 0 small enough.

Concerning iii) and according to [39, Section 3.1.2.4], the formulations given in (6.14) for ŝLR and
in (6.15) for the states w∗

L, w∗
R ensure the robustness of the scheme in wet-dry transitions.

For the well-balanced property iv), according to Lemma 2.2, it is sufficient to show that if ŵL and
ŵR define a local moving equilibrium (6.1) then w∗

L = wL and w∗
R = wR. In the case of a such local

equilibrium, ŝLR, w∗
L and w∗

R are given by (6.3b), (6.12) and the proof of Lemma 6.3 yields

(hHLL)eq(ûHLL)eq =
hL + hR

2
(ûHLL)eq = qeq.

Denoting [·] = ·R − ·L and according to the proof of Lemma 6.4-ii), the above equation infers

g

8

1

1 + (F 2
LR)

eq

(
1 + (F 2

LR)
eq[h] + [z]

)2
=
(
η̂HLL − η̂(ŵHLL) +

g

8
[z]2 − g[z]2

8

F 2
LR

1 + F 2
LR

)eq
,

=
(η̂HLL)eq − η̂(ŵHLL)eq

1 + (F 2
LR)

eq +
g

8

[z]

1 + (F 2
LR)

eq .

Using this last formulation in (6.13), we deduce that [h∗]eq verifies

[h∗]eq =

− [z]

1 + (F 2
LR)

eq +
(
sign

(
(1 + (F 2

LR))[h] + [z]
))eq

√
8

g

(η̂HLL)eq − η̂(ŵHLL)eq

1 + (F 2
LR)

eq +
[z]2

(1 + (F 2
LR)

eq)2
,

= − [z]

1 + (F 2
LR)

eq + sign
(
(1 + (F 2

LR)
eq)[h] + [z]

)∣∣((1 + (F 2
LR)

eq)[h] + [z]
∣∣∣∣1 + (F 2

LR)
eq
∣∣ ,

=
−[z] + (1 + (F 2

LR)
eq)[h] + [z]

1 + (F 2
LR)

eq ,

= [h].
(6.16)

Associating the above equality to the definitions (6.12a), (6.12c), we eventually have (h∗α)
eq = hα for

all α ∈ {L,R}.
Now, we have to show the equalities

qeq = (h∗R)
eq(u∗R)

eq = (h∗L)
eq(u∗L)

eq.

Since the result (h∗α)
eq = hα has been shown, the above equalities are equivalent to (u∗α)

eq = qeq/hα for
all α ∈ {L,R}. According to Lemma 6.1, qeq

LR = qeq but using this result in the equality (h∗α)
eq = hα,
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we have

(u∗L)
eq = (ûHLL)eq +

qeq
LR[h

∗]eq

2(hHLL)eq
√
hLhR

√
(h∗R)

eq

(h∗L)
eq ,

=
2qeq

hL + hR
+

qeq[h]

(hL + hR)hL
,

= qeq 2hL + [h]

(hL + hR)hL
,

=
qeq

hL
= uL.

As a similar computation gives (u∗R)
eq = uR, we deduce the well-balanced property.

Concerning the discrete entropy inequality, if h̃∗L and h̃∗R respectively given by (6.12a), (6.12c)
are both strictly positive then the formulations (6.15) coincide with (6.12). In this case, the discrete
entropy inequality is a direct consequence of the Riemann solver definition and this inequality is shown
in Lemma 6.2 that concludes the proof.

The dry-wet transitions in the above theorem are done with several cases in the formulations (6.14)
and (6.15). These case distinctions are robust (see [39, Section 3.1.2.4]) but their formulations are not
continue with the numerical scheme defined in Lemma 6.2.

The limitation technique min(max(·, ·), ·) used in (6.15) is an ε-parametrized version of the procedure
defined in Sections 4 and 5. The parameter ε > 0 guarantees the strict inequalities h∗L > 0 and h∗R > 0
that are essential for the system (3.6), (6.3) (see Lemma 6.2).

However, the limit case ε = 0 is usually considered in the literature [40, 41]. This limit case can be
simply treated in Theorem’s 6.1 scheme because the approximate Riemann solver (3.3) only needs the
programming of h∗L, h∗R and h∗Lu

∗
L, h∗Ru

∗
R. But, if h∗L > 0 and h∗R > 0 in the definitions (6.15), then

h∗Lu
∗
L = h∗Lû

HLL +
qLR[h

∗]

2hHLL

√
h∗Lh

∗
R

hLhR
, h∗Ru

∗
R = h∗Rû

HLL − qLR[h
∗]

2hHLL

√
h∗Lh

∗
R

hLhR
. (6.17)

Since both above formulations are continue when h∗L → 0 or h∗R → 0, the programming of Theorem’s
6.1 scheme can be done with the quantities h∗L and h∗R considering the formal limit φ = 0 in (6.15) then
with h∗Lu

∗
L and h∗Ru

∗
R given by (6.17). Finally, if the limitation techniques work, the system (3.6) is not

necessary verified and consequently, the discrete entropy stability might be locally lost in this case.
Theorem 6.1 shows the existence of an entropic well-balanced numerical scheme for the the moving

equilibrium. This scheme generalizes the entropic well-balanced scheme for the lake at rest established
in Theorem 5.1 because a direct computation infers if qLR = 0 then the formulations (6.15) degenerate
toward (5.12). As a consequence, Theorem 6.1 unifies the numerical schemes introduced in Theorem
5.1 (well-balanced for the lake at rest) and in Lemma 4.2 (z = cste).

The next section is devoted to the numerical experiments.

7 Numerical results

For all test cases, we fix g = 9.81. The subsection 7.1 concerns the flat regions and we focus on the
schemes given by Lemma 4.2. In the subsection 7.2, we illustrate the entropy stable schemes 5.1 that
are only well balanced for the lake at rest (1.8). Finally, the numerical tests of the subsection 7.3 deal
with the fully well-balanced entropy stable scheme described in Theorem 6.1.

7.1 Two states entropy stable approximate Riemann solvers in the flat regions

In this section, we consider the two schemes described in Lemma 4.1 and their limited versions given
by Lemma 4.2. For all interfaces having the states wL, wR on its either sides, the numerical artificial
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viscosity λ > 0 and the time step ∆t > 0 are taken equals to

λ = max
α∈{L,R}

∣∣∣uα ±
√

ghα

∣∣∣, λ∆t

∆x
≤ 1

2
, ∀(L,R). (7.1)

The results are compared to the Suliciu relaxation scheme and to the solver proposed in [28, Section b.ii].
The two constants C1 and C2 required for the scheme [28, Section b.ii] are fixed to C1 = C2 = 10−7.

At first, we illustrate the influence of the choice of the intermediate states h∗ given by Lemma 4.1.
In this regard, we set

EC1 :

 h∗R = hHLL +
√

2
g

(
ηHLL − η(wHLL)

)
,

h∗L = hHLL −
√

2
g

(
ηHLL − η(wHLL)

)
.

EC2 :

 h∗R = hHLL −
√

2
g

(
ηHLL − η(wHLL)

)
,

h∗L = hHLL +
√

2
g

(
ηHLL − η(wHLL)

)
.

EC3 : random(EC1, EC2),

(7.2)

with wHLL, ηHLL given by (3.4a)-(3.4d) and where random(EC1, EC2) denotes a random choice between
the two configurations EC1, EC2. The domain [−1, 1] is discretized with 400 cells and we consider the
following initial condition:

h0(x) =

{
3 if x < 0.5,

1 otherwise,
u0(x) = 0. (7.3)

We impose homogeneous Neumann boundary conditions on both sides. The exact solution consists in
a rarefaction wave and a shock wave. The final time is 0.1. Figure 1 shows the compared results.
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Figure 1: Numerical results at time 0.1 for the initial condition (7.3), with the legend (ECi)i∈{1,2,3}:
Lemma’s 4.1 solvers with the configurations (7.2), Relax: Suliciu relaxation scheme and HLLSE: solver
[28, Section b.ii].

The three configurations (ECi)i∈{1,2,3} provide very close results. As a consequence, we only keep the
EC3 configuration. The second numerical test concerns the role of the limitation techniques for the dry
areas described in Lemma 4.2. The domain [−1, 1] is discretized with 400 cells and we consider the
following initial condition:

h0(x) = 0.1, u0(x) =

{
10 if x < 0.5,

0 otherwise.
(7.4)

We lay down homogeneous Neumann boundary conditions on both sides. The exact solution is com-
posed of two strong shock waves near dry areas. The CFL condition is given by (7.1). The final time
is 0.1. Figure 2 displays the results.
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Figure 2: Numerical results at time 0.1 for the initial condition (7.4), with the legend EC3: Lemma’s
4.2 solvers, Relax: Suliciu relaxation and HLLSE: solver [28, Section b.ii].

We observe a very good agreement with the exact solution. Without the conservative limitations
techniques used in Lemma 4.2, this problem can not be carried out with the solvers of Lemma 4.1.

7.2 Well-balanced two states entropy stable approximate Riemann solvers

In this section, we consider Theorem’s schemes 5.1. For these solvers, the numerical artificial
viscosity λ > 0 has to be selected to ensure the existence of solutions of the system (3.6)-(5.1). We
adopt the following selection procedure. Starting from the equation (7.1), we increase λ until the system
(3.6)-(5.1) admits solutions. The time step ∆t > 0 is then selected according to the standard CFL
condition λ∆t

∆x ≤ 1
2 . To run the following simulations, we select randomly one of two solvers defined in

Theorem 5.1 and we compare the results to the standard hydro-static reconstruction [3] coupled to the
standard Rusanov numerical flux [44].

The first experiment is devoted to a flow at rest with emerging bottom as introduced in [22]. The
space domain [0, 25] is discretized with 400 cells. The initial condition and the topography are given
by

h0(x) = max (0.15− z(x), 0) , u0(x) = 0, with z(x) = max(0, 0.2− 0.05(x− 10)2). (7.5)

We prescribe periodic boundary conditions. The exact solution is a lake at rest equilibrium (1.6). The
final time is 100. Figure 3 shows the results.
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Errors on (h, hu) for the lake at rest.
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Figure 3: On the left: numerical results at time 100.0 for the lake at rest problem (7.5) with the legend
WBEC: entropic well-balanced solvers for the lake at rest given by Theorem 5.1, HR: hydro-static
reconstruction [3] with Rusanov numerical flux [44]. On the right: errors between the exact and the
numerical solutions at time 100.0 for the variables h, hu.

Thanks to the well-balanced property and to the transition toward dry areas, the steady state at rest
(7.5) is preserved up to the machine precision.

The second numerical experiment concerns the three Goutal and Maurel’s test cases [26]. For these
three experiments, the space domain [0, 25] is discretized with 400 cells. Using the superscript GM1,
GM2 and GM3 to denote each problems, the initial conditions are

hGMk
0 (x) = hGMk , (hu)GMk

0 (x) = qGMk , ∀k ∈ {1, 2, 3} , (7.6)

where (hGMk)k∈{1,2,3} and (qGMk)k∈{1,2,3} are given in Table 1. The bottom topography z is given by
(7.5). On the left boundary, the water height satisfies a homogeneous Neumann condition and the
discharge q = hu is set to (qGMk)k∈{1,2,3}. On the right boundary, the water height is set to hGMk when
the flow is sub-critical and a homogeneous Neumann boundary condition is prescribed otherwise. The
discharge follows a homogeneous Neumann boundary condition.

Parameters used for the Goutal and Maurel test cases.
GM1 GM2 GM3

Final time 500 125 1000
Initial height hGMk 2 0.66 0.33
Boundary discharge qGMk 4.42 1.53 0.18

Table 1: Final times, initial values and boundary conditions for the Goutal and Maurel’s test cases 7.6.

Such initial and boundary conditions provide a transient state followed by a steady state made of
an uniform discharge. For GM1 and GM2, this steady state is continuous whereas GM3 involves a
stationary shock. The final times are given in the Table 1. The exact solutions are computed with the
software SWASHES [19] and Figure 4 shows the compared results.
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Figure 4: Numerical results for the Goutal and Maurel’s problems (7.6) on a mesh composed of 400
cells. The legend is WBEC: entropic well-balanced solvers for the lake at rest given by Theorem 5.1,
HR: hydro-static reconstruction [3] with the standard Rusanov numerical flux [44].

The results are corrects but the free surface h + z may be misplaced: it is particularly obvious for
the GM2 problem. For the GM3 problem, the free surface is undervalued before the stationary shock
wave and it is sharp after. Despite the fully discrete entropy stability verified by the Theorem’s 5.1
schemes, the numerical solutions may converge to a non admissible weak solution. Such wrong arbitrary
convergences have already been observed [13, 15, 17]. In addition, the schemes of Theorem 5.1 produce
some spurious oscillations for the variable hu. For these three test cases, the standard hydro-static
reconstruction [3] coupled to the Rusanov numerical flux [44] is more relevant.

The last test case of this section is devoted to the break dam problem as described in [41]. The

33



domain [−1, 1] is discretized with 400 cells. We consider the following initial condition and topography:

h0(x) + z(x) =

{
3 if x < 0,

1 otherwise,
u0(x) = 0, with, z(x) =

1

2
cos2(πx). (7.7)

We prescribe homogeneous Neumann boundary conditions on both boundaries. The final time is 0.1.
A reference solution is computed with the standard HLL scheme [28] on a fine grid made of 50 000 cells.
Figure 5 displays the results.
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Figure 5: Numerical results at time 0.1 for the break dam problem (7.7) on a mesh made of 400 cells
with the legend WBEC: Theorem’s 5.1 solvers, HR: hydro-static reconstruction [3] with the Rusanov
numerical flux [44].

We observe a very good agreement to the reference solution. The shock waves is sharper with the
schemes detailed in Theorem 5.1.

7.3 Fully well-balanced two states entropy approximate stable Riemann solvers

In this section, we consider the fully well-balanced entropy stable scheme defined in Theorem 6.1.
For this scheme, the numerical artificial viscosity λ > 0 and the time step ∆t > 0 have to be selected to
guarantee the existence solutions of the system (3.6)-(6.3). To select a such couple, we initialize λ > 0
with the value given by the equation (7.1) and we set ∆t > 0 according to λ∆t

∆x = 1
2 . Then, we increase

λ and we decrease ∆t until the system (3.6)-(6.3) admits solutions. For the sign function required in
the equation (6.13) we use the following regularized version:

sign(r) ≈ r

|r|+ ζLR/(gh)
, (7.8)

where ζLR and h are defined in (6.2). We compare the Theorem’s 6.1 scheme to the schemes detailed
in [21, Section 3.2] and in [14] that will be denoted FMT and BM respectively. The scheme BM is
associated to the standard Rusanov numerical flux [44].

The first test case concerns the fully well-balanced property. We consider the domain [0, 1] dis-
cretized with 400 cells. The initial conditions and the bottom topography verify

(hu)0(x) = q0,
u20(x)

2
+ g(h0 + z)(x) = B0, with z(x) =

5

2
cos2(4πx), (7.9)

where q0 =
5
2 , B0 =

25
98 + 4g. The initial values (h0, u0)(x) are computed from the equations (7.9) with

a Newton method. We lay down periodic boundary conditions on both sides. The exact solution is a
moving steady state (1.5). The final time is 1.0. The results are reported in Figure 6. We also report
the errors between the numerical and the exact solution for several norms.
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Errors on (h, hu) for the steady state (7.9).
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Figure 6: On the left: numerical results at time 1.0 for the steady state problem (7.9) with the
legend FWBEC: fully well-balanced entropic solver given by Theorem 6.1, BM: scheme derived in [14]
associated to the Rusanov numerical flux [44], FMT: scheme derived in [21, Section 3.2]. On the right:
errors between the exact and the numerical solutions at time 1.0 for the variables h, hu.

Thanks to the well-balanced property, the moving equilibrium is preserved up to the machine precision.
Now we repeat the three Goutal and Maurel’s test cases [26] and we refer to Section 7.2 for the

details of the test cases. Figure 7 shows the results and Tables 8 show the errors between the numerical
and the exact solutions for each problems and for several norms.
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Figure 7: Numerical results for the Goutal and Maurel’s problems (7.6) on a mesh composed of 400
cells. The legend is FWBEC: fully well-balanced entropic solver given by Theorem 6.1, BM: scheme
derived in [14] associated to the Rusanov numerical flux [44].

Despite our efforts, we was not able to run these three problems with the scheme FMT. Theorem’s
6.1 scheme generates spurious oscillations, in particular for the variable hu. Nevertheless, the wrong
convergences observed for the GM2, GM3 problems with the schemes derived in Theorem 5.1 and tested
in Section 7.2, do not occur with the fully well-balanced scheme in Figure 7. However, the free surface
for the GM1 problem is once again slightly misplaced.

Errors on (h, hu) for the GM1 problem.
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Errors on (h, hu) for the GM3 problem.
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Figure 8: Errors between the numerical and the exact solutions for each Goutal and Maurel’s problems
(7.6) and for several norms. The legend is FWBEC: fully well-balanced entropic solver given by Theorem
6.1, BM: scheme derived in [14] coupled to the Rusanov numerical flux [44]

Regardless of its fully well-balanced property, the scheme derived in Theorem 6.1 does not reach the
exact solution up to the machine precision. This default could be due to the implementation of the
sign function required in the equation (6.13). The choice proposed in the equation (7.8) is a regular
version of the sign function but other versions are possible and each of them could influence the result.
For the three Goutal and Maurel’s problems the BM scheme is more accurate.
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We conclude this section with the break dam problem as done in Section 7.2. The initial condition
and the bottom topography are given by the equations (7.7). The final time is 0.1 and Figure 9 displays
the results.
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Figure 9: Numerical results at time 0.1 on a mesh made of 400 cells for the break dam problem (7.7)
with the legend FWBEC: Theorem’s 6.1 solver, BM: scheme derived in [14] associated to the Rusanov
numerical flux [44], FMT: scheme derived in [21, Section 3.2].

The scheme [21, Section 3.2] generates spurious oscillations near the shock wave and we failed to
achieve better results. The scheme [14] associated to the Rusanov numerical flux [44] preserves the
initial condition and captures two steady states at rest. For the scheme of Theorem 6.1, we observe a
good agreement to the reference solution.

8 Conclusion

We have presented three explicit entropy stable Godunov type scheme for the Shallow Water equa-
tions. The first one concerns the flat regions, the second scheme is well-balanced for for lake at rest (1.8)
and the third one is well-balanced for all regular stationary solutions defined by (1.9). The discrete
entropy inequality is reached from sufficient conditions used in the scheme design. These conditions
lead to quadratic equations that are always well-posed under restrictions for the artificial viscosity and
for the time step. These restrictions are implicit for the well-balanced schemes.

From a numerical point of view, the scheme devoted to the flat regions provides good results. The
well-balanced schemes yield satisfying results in particular in the presence of shock waves. But, they
may converge to weak solutions made of non admissible stationary contact waves. The study of the
reasons of this wrong convergence should be investigated.
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A Smooth stationary solutions of the Shallow Water system

This appendix concerns the smooth stationary solutions of the Shallow Water equations (1.1). The
algebraic equations and a property verified by these solutions are given below.

Lemma A.1 (Smooth stationary solutions of the Shallow Water equations). Consider I a bounded,
closed interval included in R. For a given smooth function z : R → R, let also consider the Shallow
Water equations given by

∂t

(
h
q

)
+ ∂x

(
q

q2

h + gh2

2

)
=

(
0

−gh

)
∂xz, ∀(x, t) ∈ I×]0,+∞[. (A.1)

The vector
(
h(x, t), q(x, t)

)T belongs to Ω a convex set defined by

Ω =
{
(h, q) ∈ R2 |h > 0, q ∈ R

}
.

For x 7→ (h(x), q(x)), a smooth stationary solution of the Shallow Water system (A.1), the following
statements hold.

i) There exists (q0, B0) in R× R∗
+ such that for all x in I

q(x) = q0,

q0
2h2(x)

+ g
(
h(x) + z(x)

)
= B0.

(A.2a)

(A.2b)

ii) Considering the above definition of q0 in R and the set Jq0 ⊂ I such that

Jq0 =

{
x ∈ I | 1− q20

gh3(x)
̸= 0

}
, (A.3)

the derivative of h with respect to x satisfies

∂xh = − ∂xz

1− q20
gh3(x)

, ∀x ∈ Jq0 . (A.4)
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Proof. The stationary functions x 7→ h(x) and x 7→ q(x) satisfy the two following equations for all x in
I:

∂xq = 0,

∂x

(q2
h

+
gh2

2

)
= − gh∂xz.

(A.5a)

(A.5b)

For the statement i), and according to the equation (A.5a), the result (A.2a) is obvious. Using this
result in the equation (A.5b), the usual derivation rules give

0 = ∂x

(q20
h

+
gh2

2

)
+ gh∂xz,

= − (∂xh)
q20
h2

+ gh∂x
(
h+ z

)
,

= h
(
− (∂xh)

q20
h3

)
+ gh∂x

(
h+ z

)
,

= h∂x

( q20
2h2

)
+ gh∂x

(
h+ z

)
.

Multiplying the above equation by 1/h > 0, we deduce

∂x

( q20
2h2

+ g(h+ z)
)
= 0,

that concludes the proof of the result (A.2b) and the proof of the statement i).
For the statement ii), using the usual derivations rules, the equation (A.5b) also writes for all x in

I

−gh∂xz = ∂x

(q20
h

+
gh2

2

)
,

= − ∂xh
q20
h2

+ gh∂xh,

= gh∂xh
(
1− q20

gh3

)
.

Dividing the above equation by gh > 0, we have

−∂xz = ∂xh
(
1− q20

gh3

)
. (A.6)

Since the above equation is defined on the set Jq0 given by (A.3), 1− q20/gh3 ̸= 0 that yields the result
(A.4) and that concludes the proof of the statement ii).

According to the statement ii) of the above lemma, in stationary states and for x ∈ Jq0 , the
derivatives of h is proportional to the derivative of z. As a consequence, if z is locally constant then h
is also constant. In addition, the result (A.2a) establishes that q is also constant in stationary states.
Therefore, for x ∈ Jq0 the statement ii) shows that if z is locally constant then the only smooth
stationary solutions of the system (A.1) are the constants of Ω.

If x /∈ Jq0 , the equation (A.6) is singular. In this case, and as z is a given function, the stationary
equations written under the form of (A.5) could be ill-posed.
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