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1 Introduction

Human arguments serve as a means to express and substantiate ideas, and the way they
are presented can vary in terms of style, language, and objectives. In recent years, de-
tecting and understanding ’human values’ behind arguments become important with
the proliferation of digital communication [1,2]. Specifically, this task gained more at-
tention as it was introduced in the SemEval 2023 competition. This task focuses on
detecting human values using a multi-level taxonomy comprising 54 values [2]. De-
tecting these values using machine learning presents considerable challenges due to the
multitude of values and their implicit usage in arguments, and several existing research
employed various approaches to improve the performance [3,4,5,6]3.

The process of extracting information from human values involves interpreting the
ethical, cultural, and emotional foundations that drive individuals and groups to express
their opinions to support their discussion. Fine-grained emotion analysis is a valuable
disciplinary research area to reinforce detecting and understanding human values be-
cause it provides a deeper, more nuanced insight into the emotional support of value
expressions. We investigated this subject to improve implicit hate speech detection ear-
lier [7], and in this paper, we aim to utilize emotion analysis to enhance the process
of human value detection by providing an interdisciplinary perspective on how values
encompass emotional knowledge [8], [9].

In this study, we analyze fine-grained emotions using GoEmotion [10] in human
values dataset [11], which is an annotated dataset for the SemEval 2023 Task 4. We
also conducted an experiment by using emotion features for the human value detection
task. In order to extract information from the discussions and construct a large-scale
knowledge graph, unravelling these emotions becomes vital for understanding the char-
acteristics behind different values through data-driven analyses.

2 Method

In our study, we investigated the ’fine-grained emotions’ analysis applied to the human
values dataset, which consists of religious texts, political discussions, free-text argu-
ments, newspaper editorials, and online democracy platforms. To carry out our analy-
sis, we used Huggingface implementation of the original taxonomy of the GoEmotions

3https://touche.webis.de/publications.html
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model 4, which consists of 27 emotions + neutral which is inherently structured in
a finer-grained Hierarchical Grouping (positive, negative, ambiguous). This model is
based on Transformers and computes a probabilistic score for each emotion within the
range of 0 to 1, thereby quantifying the likelihood of its occurrence. We set the thresh-
old at 0.1 for the purposes of our experiments to include a wide range of emotions for
each value.

Furthermore, the human value dataset contains 9324 arguments consolidated multi-
level taxonomy [11]. At the first level, this taxonomy comprises a total of 54 fundamen-
tal human values. Subsequently, at the second level, these values are further categorized
into distinct value categories. Although the dataset extends to encompass additional
levels, such as Higher-Order Values (Level 3), Personal/Social Focus (Level 4a), and
Motivation (Level 4b), our study focused solely on the initial two levels for our analyt-
ical experiments.

3 Results and Discussion

Figure 1 depicts the detailed distribution of fine-grained emotions within Level 2 of
the human value dataset [11]. In Positive polarity, most of the human values are under
the “Approval” category, while “Disapproval” and “Annoyance” emerge as the domi-
nant emotion categories of Negative sentiments. This indicates that when individuals
argue about negative opinions, they often do so to convey disapproval of certain values
or experiences that provoke annoyance, and positive opinions convey approval of cer-
tain values. Additionally, “Realization” is prominent among the ambiguous emotions,
which indicates that these values do not strongly express approval or disapproval. No-
tably, these emotions hold significant potential as additional features for enhancing the
classification process. Moreover, as the dataset comprises arguments characterized by
a premise, a conclusion, and a stance indicator that specifies whether the premise is in
favor or against the conclusion, it is noticeable that the emotions extracted from this
data mostly contain opposing emotions, such as “Approval” and ”Disapproval”.

For human values detection at Level 2, we leveraged the BERT model [12] and
concatenated the extracted emotion features with textual features, yielding the results
presented in Table 1. These results emphasise the promising possibility of enhancing
the performance of human value detection through the incorporation of emotion-related
information and the utilization of emotion features within the classification model.

In pursuing future research directions, we plan to extend our fine-grained emotion
analysis and employ emotion features to encompass other levels of human values. This
involves assessing the influence of emotional features on each distinct level to enhance
human value detection performance. Moreover, we intend to construct a comprehen-
sive knowledge graph founded on the insights gleaned from emotional features and
investigate other aspects of information extraction for understanding human values.
Furthermore, we will utilize Large Language Models (LLMs) and techniques such as
chain-of-thought (CoT) prompting [13] as they enable complex reasoning capabilities.
This integrated approach, encompassing emotion-driven analysis, knowledge graph de-
velopment, and LLM-based reasoning, represents our strategic vision for pushing the
frontiers of human value detection tasks as an interdisciplinary analysis.

4https://github.com/monologg/GoEmotions-pytorch
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Table 1. Experimental Result: Human value classification (level 2) using emotion features.
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Precision 0.33 0.42 0.16 0.21 0.47 0.20 0.39 0.19 0.62 0.45 0.35 0.38 0.19 0.20 0.41 0.33 0.49 0.49 0.17 0.39 0.32
Recall 0.64 0.75 0.52 0.84 0.73 0.57 0.77 0.55 0.89 0.88 0.45 0.77 0.30 0.44 0.88 0.66 0.93 0.86 0.44 0.65 0.68

F1 0.44 0.54 0.24 0.34 0.57 0.30 0.52 0.28 0.73 0.60 0.39 0.51 0.23 0.28 0.56 0.44 0.64 0.62 0.25 0.49 0.44

Fig. 1. Fine-grained emotion distribution of human values. This distribution indicates the impor-
tance of specific emotions with different polarities in human value arguments that can be a good
candidate to consider as a feature for improving the performance of human value detection. The
y-axis represents the Value category of the dataset at level 2, and the x-axis shows the fine-grained
emotions from the original taxonomy of GoEmotions. The blue color in this heatmap is assigned
for emotions under positive sentiment categories, and red and orange indicate emotions of nega-
tive and ambiguous categories, respectively.
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