
HAL Id: hal-04394319
https://hal.science/hal-04394319

Preprint submitted on 15 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Matching via convex relaxation to the simplex
Ernesto Araya Valdivia, Hemant Tyagi

To cite this version:
Ernesto Araya Valdivia, Hemant Tyagi. Graph Matching via convex relaxation to the simplex. 2024.
�hal-04394319�

https://hal.science/hal-04394319
https://hal.archives-ouvertes.fr

Graph Matching via convex relaxation to the simplex

Ernesto Araya∗

ernesto-javier.araya-valdivia@inria.fr

Hemant Tyagi ∗

hemant.tyagi@inria.fr

November 1, 2023

Abstract

This paper addresses the Graph Matching problem, which consists of finding the best possible
alignment between two input graphs, and has many applications in computer vision, network
deanonymization and protein alignment. A common approach to tackle this problem is through
convex relaxations of the NP-hard Quadratic Assignment Problem (QAP).

Here, we introduce a new convex relaxation onto the unit simplex and develop an efficient
mirror descent scheme with closed-form iterations for solving this problem. Under the correlated
Gaussian Wigner model, we show that the simplex relaxation admits a unique solution with
high probability. In the noiseless case, this is shown to imply exact recovery of the ground truth
permutation. Additionally, we establish a novel sufficiency condition for the input matrix in
standard greedy rounding methods, which is less restrictive than the commonly used ‘diagonal
dominance’ condition. We use this condition to show exact one-step recovery of the ground
truth (holding almost surely) via the mirror descent scheme, in the noiseless setting. We also
use this condition to obtain significantly improved conditions for the GRAMPA algorithm [26]
in the noiseless setting. Our method is evaluated on both synthetic and real data, demonstrating
superior statistical performance compared to existing convex relaxation methods with similar
computational costs.

1 Introduction

In the context of the Graph Matching (GM) problem, also referred to as network alignment, we
consider two input undirected graphs, G = ([n], E) and G′ = ([n], E ′), which are assumed to share
the same set of vertices, denoted as [n] = {1, · · · , n}. The objective is to find a bijective map,
represented by a permutation x : [n]→ [n], between the vertices of G and G′, which is intended to
align their edges as effectively as possible. The alignment is considered optimal when the largest
possible number of edges in G and G′ satisfy the relation {i, j} ∈ E ⇐⇒ {x(i), x(j)} ∈ E ′.
This problem has numerous applications, such as computer vision [33], network de-anonymization
[51], pattern recognition [18, 24], protein-protein interactions and computational biology [67, 60],
to name a few. For instance, it has been used in computer vision to track a moving object by
identifying the correspondence between the different portions in two different frames.

Mathematically, the Graph Matching problem can be formulated as an instance of the NP-hard
quadratic assignment problem, as follows

max
x∈Sn

n∑
i,j=1

AijBx(i)x(j) ≡ max
X∈Pn

⟨AX,XB⟩F , (1.1)

∗Inria, Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000

1

ar
X

iv
:2

31
0.

20
60

9v
1

 [
st

at
.M

L
]

 3
1

O
ct

 2
02

3

where A,B ∈ Rn×n are the (possibly weighted) adjacency matrices of the pairs of input graphs to
be matched and Pn (resp. Sn) is the set of n×n permutation matrices (resp. the set of permutation
maps). In words, a solution of (1.1) will maximize the total edge alignment between A and B. For
our purposes, it will be more useful to consider the following equivalent formulation,

min
X∈Pn

∥AX −XB∥2F , (1.2)

which has the advantage of possessing a convex objective function that we define by

E(X) := ∥AX −XB∥2F , (1.3)

where the input graphs A and B will be clear from the context. It will be useful to consider the
vector form of (1.2), and for that we write with a slight abuse of notation1

E(vec(X)) = vec(X)TH vec(X), (1.4)

where H := (Id⊗A−B⊗ Id)2 and vec(X) represents the vector form of X obtained by stacking its
columns (notations are described in Section 1.2). Despite the convexity of E(·) the problem (1.2)
is NP-Hard in the worst case [17], which can be mainly attributed to its combinatorial constraints,
and even finding a constant factor approximation remains a hard problem [59]. On the other hand,
notice that when B = X∗TAX∗ for some X∗ ∈ Pn, (1.2) is equivalent to the well-known Graph
Isomorphism Problem [9].

A general algorithmic strategy In spite of its worst-case complexity, several efficient algo-
rithms have been proven to solve the problem (1.5) within a specific class of instances. Most of the
time, these instances are sampled by a statistical model, which generates matrices A,B according
to a ground truth permutation X∗ ∈ Pn (we will formally introduce statistical models in Section
2.3). The meta-strategy used by most graph matching algorithms consists of two steps that can be
summarized as follows.

1. Similarity finding stage. We construct a data-dependent similarity matrix X̂(A,B) ∈
Rn×n, where we expect that X̂ij(A,B) captures the likelihood of X∗

ij = 1, where X∗ is the
ground truth permutation.

2. Rounding stage. The similarity matrix X̂ is then prejected onto the set of permutations,
which, when minimizing the Frobenius norm, is equivalent to solving a maximum linear
assignment problem. Since analyzing linear assignment can be quite challenging, many al-
gorithms opt for using a greedy rounding strategy. This approach is simpler to analyze,
computationally more efficient, and often exhibits comparable error rates to linear assign-
ment in experiments.

Convex relaxations of graph matching. One common approach for the similarity finding stage
consists of defining X̂(A,B) as the solution of a relaxation of (1.2), where the set of permutation
is relaxed to a continuous constraint set. Of special importance is the family of convex relaxations
which can be expressed in general as

min
X∈K
∥AX −XB∥2F . (1.5)

1Allowing E to take vectors in Rn2

as arguments, using the canonical matrix-vector identification.

2

where K ⊆ Rn×n is a convex set such that Pn ⊆ K. Some of the choices for the set K that
have been investigated in the literature include the hyperplane defined by 1TX1 = n [26] and
the Birkhoff polytope of doubly stochastic matrices [1]. The latter can be considered the gold
standard, in terms of tightness of convex relaxations, but its analysis has proven to be challenging,
and obtaining theoretical guarantees remains largely open.

Graph matching on the simplex and mirror descent. We consider the set of matrices

∆n2 := {X ∈ Rn×n : 1TX1 = 1, Xij ≥ 0, ∀i, j ∈ [n]},

which can be identified with the usual unit simplex in Rn2
, in the sense that X ∈∆n2 if and only

if vec(X) belongs to the unit simplex (we will refer to ∆n2 as the unit simplex in the sequel). By
choosing K = ∆n2 in (1.5), we arrive to the following convex relaxation

min
X∈∆n2

∥AX −XB∥2F . (1.6)

This formulation is referred to as graph matching on the simplex. Despite (1.6) representing a
natural problem and being an advancement over other convex relaxations (e.g., it is tighter than
the 1TX1 = n constraint in [26]), it has been largely overlooked in the literature. We argue that
(1.6) presents at least two advantages over existing work.

• Regularization through positivity. In the works [26, 25], the hyperplane constraint
K = {X ∈ Rn×n : 1TX1 = n} was considered and an additional regularizing term of
the form η∥X∥2F was added to the objective E(·). By directly incorporating the positivity
constraints, we achieve a similar regularization effect without the need for a cumbersome
explicit regularizer. This approach helps us avoid the task of parameter selection for such a
parameter in practice. We show in experiments that it outperforms [26, 25].

• Efficient algorithms. we can solve (1.6) using iterative first-order methods such as pro-
jected gradient descent(PGD) and entropic mirror descent(EMD). Although the existence of
efficient projection algorithms onto ∆n2 can make PGD within the simplex more expedited
compared to PGD within the Birkhoff polytope, employing the EMD algorithm allows us to
completely bypass this projection step, as it possesses an explicit update formula in the form
of multiplicative weights updates [16, 12].

Contributions. The primary contributions of this paper are outlined below. To our knowledge,
these findings mark the first results for both convex graph matching on the simplex and the mirror
descent (MD) algorithm for graph matching.

• We propose an efficient iterative algorithm based on the mirror descent to solve the simplex
relaxation of graph matching, which improves in O(log n) in running time with respect to the
more common projected gradient descent method.

• We introduce a novel sufficient condition for achieving exact recovery, which is notably less
stringent than the commonly used diagonal dominance property. We employ this condition
to establish exact one-step recovery (i.e., in one iteration) of the ground truth permutation
via EMD, in the noiseless case of the Correlated Gaussian Wigner model. This result holds
almost surely, and for any positive step size in EMD. Furthermore, we use this condition to
improve a pivotal lemma from [26], yielding stronger results with a simpler proof.

3

• In the noiseless case of the Correlated Gaussian Wigner model, we prove that (1.6) has a
unique solution with high probability, with the solution corresponding to a scaled version of
the ground truth permutation. This, along with [11, Theorems 9.16 and 9.18], ensures that
EMD and PGD converge to a unique point (under certain conditions on step size), which in
the noiseless setting leads to exact recovery of the ground truth permutation.

• Through extensive experiments, we demonstrate that our proposed algorithm performs well
on synthetic data, for several correlated random graph models (described in Section 2.3). In
addition, we show the applicability of our algorithm to real-world datasets where it is seen to
outperform other methods either in speed or accuracy.

1.1 Related work

Convex relaxations. Although many algorithms based on solving a problem of the form (1.5)
have been proposed [29, 27, 46, 68], some with very good experimental performance, there is still
a lack of theoretical understanding regarding their statistical guarantees. In the case where K is
the set of doubly stochastic matrices, some early theoretical work, which applies under restrictive
conditions on the inputs graphs and mostly in the deterministic setting, can be found in [1]. A
spectral estimator dubbed GRAMPA, which is the solution of a regularized version of (1.5), taking
K to be the hyperplane 1TX1 = n, was studied in [26]. They prove that, after greedy rounding,
their estimator perfectly recovers the ground truth permutation when the graphs are generated

with a correlated Gaussian Wigner model, in the regime where the correlation is

√
1−O

(
1

log2 n

)
.

There is still a big gap between these guarantees and the sharp information theoretic threshold for
recovery, as discusses below.

Information-theoretic limits of graph matching. The necessary and sufficient conditions for
correctly estimating the matching between two graphs when they are generated at random, from
either the correlated Gaussian Wigner or the correlated Erdős-Rényi models (see Section 2.3), have
been investigated by several authors in [19, 34, 65, 31, 28, 49, 32]. For the correlated Gaussian
Wigner model, it has been shown in [65, Thm.1] that the ground truth permutation x∗ can be

exactly recovered w.h.p. only when σ2 ≤ 1 − (4+ϵ) logn
n . When σ2 ≥ 1 − (4−ϵ) logn

n no algorithm
can even partially recover x∗. One natural question pertains to the possibility of closing the gap
between the performance bound for GRAMPA as outlined in [26] and the information-theoretic
threshold by utilizing convex relaxations.

MD algorithm and Multiplicative Weights Updates. The MD algorithm, introduced in
[52], has been extensively studied in convex optimization [12, 16], learning theory, and online learn-
ing [35]. On the other hand, the EMD algorithm, also known as Exponentiated Gradient Descent
(EGD) [40] or exponential Multiplicative Weights Updates (MWU) [7], has found diverse applica-
tions spanning machine learning [13], optimization [8, 6, 3], computer science [7, 2], and game theory
[21], among others. Although prior work, such as [22] and [38], has explored MWU strategies for
graph matching, there are notable distinctions from our research. Firstly, they consider different
objective functions and constraint sets, yielding fundamentally different update strategies. Sec-
ondly, their approach lacks a principled assessment of robustness against noise due to the absence
of statistical generative models for inputs A and B. It is worth noting that the same exponential
MWU technique we explore here was previously considered in the context of the nonconvex formu-
lation of Graph Isomorphism in [56]. However, it was primarily proposed as a heuristic inspired by

4

the replicator equations from theoretical biology, and no connection with the MD algorithm was
established in that work.

Other algorithms for seedless graph matching. Although less related to our work, it is worth
mentioning that there exist several approaches for seedless graph matching not directly based on
convex relaxations. When K is the set of orthogonal matrices in (1.5), its solution can be expressed
in closed form in terms of the spectrum of the graphs, as was proven in the celebrated work [63].
In [48], the authors prove that a two-step algorithm can attain exact recovery in the context of
the sparse Erdős-Rényi graphs, even in the constant correlation regime. For sparse Erdős-Rényi
graphs, other approaches based on counting combinatorial structures include [50, 30]. Exploring
the possibility of extending those approaches to the dense case remains an open question.

1.2 Notation.

We denote Pn (resp. Sn) the set of permutation matrices (resp. permutation maps) of size n. We
define the vectorization operator vec : Rn×n → Rn2×1, which, for a matrix M , vec (M) gives the
corresponding vector formed by stacking the columns of M . For any given matrix M , we define the
norm ∥M∥1,1 :=

∑
i,j |Mij | and the usual Frobenius norm ∥M∥F := (

∑
i,j |Mij |2)

1
2 =

√
⟨M,M⟩F ,

where for matrices M,M ′, ⟨M,M ′⟩F := ⟨vec(M), vec(M ′)⟩ (here ⟨·, ·⟩ is the usual inner product in
Rn2×1). Similarly, for M,M ′ ∈ Rn×n, we define M ⊙M ′ to be their Hadamard (entrywise) product
and M ⊗M ′ their usual Kronecker product. For a matrix M we define its Hadamard (entrywise)
exponential exp⊙ (M) to be matrix with (i, j)−th entry exp(Mij). We use 1 (resp. J) to denote
the vector (resp. matrix) of all ones in Rn (resp. Rn×n), where the size n will be clear from context.
We define ∆n := {x ∈ Rn : 1Tx = 1} and we identify ∆n2 with the set of matrices M ∈ Rn×n such
that vec(M) ∈ ∆n2 . We denote Id the identity matrix, where the dimension will be clear from
context. We will denote e1, . . . , en the elements of the canonical basis of Rn.

2 Algorithms

2.1 A greedy rounding procedure and a sufficiency lemma

We consider the following greedy rounding algorithm, named Greedy MaximumWeighted Matching
(GMWM) algorithm in [45, 66], which will serve us to accomplish Step 2 in the meta-strategy
described earlier. The specific version presented below, as Algorithm 1, has been taken from [5].
To simplify our analysis, we will consider the notion of algorithmic equivariance, which, in the

Algorithm 1 GMWM (Greedy maximum weight matching)

Require: A cost matrix C ∈ Rn×n.
Ensure: A permutation matrix X ∈ Pn.
1: Select (i1, j1) such that Ci1,j1 is the largest entry in C (break ties arbitrarily). Define C(1) ∈

Rn×n: C
(1)
ij = Cij1i ̸=i1,j ̸=j1 −∞ · 1i=i1or j=j1 .

2: for k = 2 to N do
3: Select (ik, jk) such that C

(k−1)
ik,jk

is the largest entry in C(k−1) (break ties arbitrarily).

4: Define C(k) ∈ Rn×n: C
(k)
ij = C

(k−1)
ij 1i ̸=ik,j ̸=jk −∞ · 1i=ikor j=jk .

5: end for
6: Define X ∈ {0, 1}n×n: Xij =

∑N
k=1 1i=ik,j=jk .

7: return X

5

context of graph matching, means that if an algorithm outputs an estimator X̂P for inputs A and
B, then the same algorithm outputs X̂PΠ

T when the inputs are A and ΠBΠT instead, for any
Π ∈ Pn. The following lemma tells us that any algorithm that, first, obtains X̂ by solving (1.5)
for a permutation-invariant set K and, second, rounds X̂ using Algorithm 1, is equivariant. We
include its proof in Appendix B for completeness.

Lemma 1. Let K be a convex subset of Rn×n such that KΠT = K, for any Π ∈ Pn, and for
A,B ∈ Rn×n define S(A,B) to be the set of solutions of (1.5). Assume that the set defined by

{Y ∈ Rn×n : Y = GMWM(X̂) for X̂ ∈ S(A,B)},

is a singleton. Then the algorithm that outputs X̂P = GMWM(X̂) for any X̂ ∈ S(A,B) is equivariant.

The previous lemma implies that we can consider, without loss of generality, the ground truth
to be X∗ = Id (see [26, Section 1.2] for additional discussion). This motivates the following
deterministic lemma.

Lemma 2. Let C ∈ Rn×n be any matrix. Then the following statements hold.

(i) If C satisfies
Cii ∨ Cjj > Cij ∨ Cji, ∀i ̸= j ∈ [n], (2.1)

then GMWM(C) = Id.

(ii) If C is symmetric and
Cii + Cjj > 2Cij , ∀i ̸= j ∈ [n], (2.2)

then GMWM(C) = Id .

(iii) If C is symmetric and positive definite, we have GMWM(C) = Id.

In (i) and (ii), if for each i ∈ [n] the set argmaxj Cij is a singleton, then the sufficient conditions
(2.1) and (2.2) are also necessary.

Proof. Notice that in the first step of GMWM we select the indices (i1, j1) corresponding to the
largest entry of C. Those indices satisfy i1 = j1, otherwise this would contradict (2.1). Then it
suffices to notice that in the subsequent steps the matrix C(k) still satisfy (2.1) which implies that
ik = jk for all k ∈ [n]. This proves (i). When C is symmetric, the property (2.2) implies (2.1).
This proves (ii). On the other hand, if C is positive definite, then for all i ̸= j ∈ [n] we have
(ei − ej)

TC(ei − ej) > 0, where ek is the k-the element of the canonical basis of Rn. From this, we
deduce that Cii +Cjj > 2Cij , which directly implies (2.1), proving (iii). To prove the converse, in
the case (i), notice that if GMWM(C) = Id and for each i ∈ [n] the set argmaxj Cij is a singleton, then
there are no ties in lines 1 and 3 of Algorithm 1, and it is clear that the maximum for each matrix
C(k) is attained by some element in its diagonal. This implies (2.1). The proof for the converse of
(ii) is analogous.

In terms of the general algorithmic strategy sketched in Section 1, the main use of Lemma 2 will
be the following. If we can prove that X̂, a solution of the convex relaxation (1.5), satisfies (2.1)
with certain probability, then Lemma 2 implies that X̂P := GMWM(X̂) is equal to X∗ = Id (that is,
we obtain exact recovery), with the same probability. An interesting point is to understand if the
properties (2.1) and (2.2) are preserved under typical matrix operations such as additions, scaling,
etc. In this direction, we have the following result, whose proof is direct.

6

Lemma 3. Let C ∈ Rn×n be a matrix satisfying (2.1), then for any t > 0, α ∈ R, the matrices tC
and C + αJ also satisfy (2.1). Let C ′, C ′′ ∈ Rn×n be any two symmetric matrices satisfying (2.2),
then tC ′,C + αJ and C ′ + C ′′ satisfy (2.2).

In words, the previous lemma states that property (2.1) is closed under scaling by a positive
factor and a global additive translation, while (2.2) is also closed under addition.

2.2 Mirror descent algorithm for graph matching

Our proposed method consists of two main steps: first, solving (1.6), which addresses the graph
matching problem on the unit simplex and yields X̂; second, rounding this solution using Algorithm
1 to generate X̂P an estimate of the ground truth X∗. To efficiently solve (1.6), we propose the
utilization of the mirror descent (MD) method. This first-order iterative optimization algorithm
generalizes projected gradient descent by allowing for non-Euclidean2 distances [52]. To avoid
unnecessary generality, we will focus on two primary examples within the MD family on the unit
simplex: Projected Gradient descent (PGD) and Entropic Mirror Descent (EMD). As mentioned
ealier, EMD has also received the name of Exponentiated Gradient Descent (EGD) [40] and can
be seen as an example of the Multiplicative Weights Update (MWU) [7] strategy.

EMD and PGD updates. Both methods receive an initial point X(0) as input but differ in
their approach to performing updates. More specifically, the update process for these methods, in
the case of problem (1.6), is as follows,

X(k+1) = argmin
X∈∆n2

n∑
i,j=1

[(
γk∇E(X(k))ij −X

(k)
ij

)
Xij +X2

ij

]
, (PGD update)

X(k+1) = argmin
X∈∆n2

n∑
i,j=1

[(
γk∇E(X(k))ij − 1− logX

(k)
ij

)
Xij +Xij logXij

]
, (EMD update)

where (γk)k≥0 is a sequence of positive learning rates (also called the step-sizes). The derivation of
these updates is well-known (refer to [11, Section 9]) and, without entering into details, stems from
a broader form of MD, which permits the selection of different (Bregman) distances to project onto
the set of constraints. In (PGD update), the Euclidean distance is used as the Bregman distance,
and it is easy to see that (PGD update) is equivalent to

X(k+1) = proj∆n2

(
X(k) − γk∇E(X(k))

)
, (2.3)

where proj∆n2
corresponds to the Euclidean (Frobenius norm) projection onto ∆n2 and ∇E(X) =

A2X + XB2 − 2AXB. In the case of (EMD update), the Bregman distance employed is the
Kullback-Liebler divergence, which gives rise to the term ‘entropic mirror descent’. Perhaps more
importantly, from (EMD update) one can easily derive (as shown in [11, Example 3.17]) the fol-
lowing simplified form (which corresponds to a MWU rule)

X
(k+1)
ij = X

(k)
ij exp

(
−γk∇E(X(k))ij + c

)
, (2.4)

where c is a constant which ensures that X(k+1) ∈∆n2 . Our proposed algorithm, written in matrix
language, is summarized in Algorithm 2.

2Here a non-Euclidean metric means simply a metric different from ∥ · ∥2 =
√

⟨·, ·⟩.

7

Initialization. We chose to always start with X(0) = J/n2, the barycenter of the unit simplex,
which can be seen as an agnostic initialization, given that the Frobenius distance from X(0) to any
permutation is the same. Additionally, this choice satisfies the known boundedness hypothesis for

Kullback-Leibler divergence, with respect to the initial point, that guarantees O
(

1√
N

)
convergence

to the optimal solution in (1.6) (see [11, Theorem 9.16] and [11, Example 9.17]).

Algorithm 2 Entropic mirror descent for Graph Matching (EMDGM)

Require: A,B ∈ Rn×n, N ∈ N and sequence {γk}Nk=0 ∈ R+.

Ensure: A permutation X̂P ∈ Pn.
1: Define the initial point X(0) = J/n2.
2: Initialize Xbest ← X(0)

3: for k = 0 to N do
4: Compute Nk = ∥X(k) ⊙ exp⊙

(
− γk(A

2X(k) +X(k)B2 − 2AX(k)B)
)
∥1,1

5: Update X(k+1) = X(k) ⊙ exp⊙
(
− γk(A

2X(k) +X(k)B2 − 2AX(k)B)
)
/Nk

6: if E(X(k+1)) < E(Xbest) then
7: Reassign Xbest ← X(k+1)

8: end if
9: end for

10: return X̂P := GMWM(Xbest)

Remark 1 (Complexity of Algorithm 2). Each iteration within the for loop of Algorithm 2 has
two main steps. First, the gradient computation, which has the same time complexity as matrix
multiplication, O(nω) where ω ≤ 2.373 (as established in [42]). Second, the Hadamard product of
X(k) and the entrywise exponentiated gradient, which has complexity n2. Similarly, it is clear (see
discussion in [66]) that Algorithm 1 has complexity O(n2). Hence, overall, Algorithm 2 has a time
complexity of O(Nnω).

2.3 Generative models for correlated random graphs

We now recall the two most popular models for the statistical study of the graph matching problem.
These models generate a pair of correlated adjacency matrices A,B, based on a ground truth
permutationX∗ ∈ Pn. Noteworthy fact for these models is that the solution of the QAP formulation
(1.1) coincides with the maximum likelihood estimator of X∗. This is not true for other models, as
shown in [64], in the case of random graph models with an underlying geometric structure.

Correlated Gaussian Wigner(CGW) model W(n, σ,X∗). The Correlated Gaussian Wigner
(CGW) model, introduced in [23], defines a distribution on pairs of complete weighted graphs, such
that each of them is (marginally) distributed as a random symmetric Gaussian matrix and their
correlation is described by a single parameter σ. More specifically, we will say that A,B ∈ Rn×n

follow the CGW model, and write A,B ∼ W(n, σ,X∗) if B = X∗TAX∗ + σZ where σ > 0 and
A,Z are i.i.d GOE(n) and X∗ ∈ Pn. We recall that a n × n matrix A follows the GOE(n) law if
its entries are distributed as

Aij ∼

{
N (0, 1

n) if i < j,

N (0, 2
n) if i = j,

and Aij = Aji for all i, j ∈ [n].

8

Correlated Erdős-Rényi (CER) model G(n, σ, p,X∗). For σ, p ∈ [0, 1], we describe the cor-
related Erdős-Rényi model with latent permutation X∗ ∈ Pn by the following two-step sampling
process.

1. A is sampled according to the classic single graph Erdős-Rényi model G(n, p), i.e. for all
i < j, Aij are independent Bernoulli’s random variables with parameter p, Aji = Aij and
Aii = 0.

2. Conditionally on A, the entries of B are i.i.d according to the following law

(X∗TBX∗)ij ∼

{
Bern

(
1− σ2(1− p)

)
if Aij = 1,

Bern
(
σ2p

)
if Aij = 0.

(2.5)

Another equivalent description of this model in the literature involve first sampling an Erdős-
Rényi “mother” graph, and then obtaining A,B as independent subsamples with certain density
parameter (related to σ). We refer to [55] for details on this alternative formulation.

3 Theoretical results

This section is dedicated to presenting our theoretical results. In Section 3.1, we prove that (1.6)
has a unique solution with high probability, which, in the noiseless setting, corresponds to the
scaled ground truth permutation. This, along with [11, Theorems 9.16 and 9.18], ensures that
EMD and PGD converge to a unique point (under certain conditions on {γk}N−1

k=0 and N), which
in the noiseless setting leads to exact recovery of the ground truth permutation. In Section 3.2, we
examine the EMD dynamic (2.4) in the noiseless setting (σ = 0). We establish, as demonstrated
in Theorem 2 below, that in this scenario, a single iteration of Algorithm 2 is sufficient to almost
surely recover the ground truth permutation for any positive step-size γ0. In Section 3.3, we prove
a stronger version, as shown in Theorem 3, of a critical lemma originally found in [26] (specifically,
[26, Lemma 2.3]) for the GRAMPA algorithm. This lemma forms the cornerstone of GRAMPA’s
theoretical guarantees for the general noisy setting.

3.1 Uniqueness of the solution of simplex Graph Matching

In this section, we will prove that under the CGW model, the solution of (1.6) is unique with high
probability. As usual, we assume without loss of generality that X∗ = Id. Note that if σ > 0, then
the objective ∥AX −XB∥2F is strongly convex a.s, so the solution of (1.6) is unique a.s. Hence, we
focus on the noiseless case where (1.6) reduces to

min
X∈∆n2

∥AX −XA∥2F . (3.1)

Notice that under the CGW model, A ∼ GOE(n), and it is well-known that A has distinct eigen-
values almost surely [4, Theorem 2.5.2]. In this case, we know that X = 1

n Id ∈ ∆n2 is a solu-
tion of (3.1), which implies that any solution has to satisfy ∥AX − XA∥F = 0 or, equivalently,
AX −XA = 0. In vector notation, this can be written as

vec (AX −XA) = H vec (X) = 0,

where we recall that H = (Id⊗A − A ⊗ Id). It is easy to see that the null space of H is given by
span {vi ⊗ vi}ni=1, where v1, . . . , vn are the eigenvectors of A. Therefore, all the solutions of (3.1)
satisfy two conditions: first, they are of the form X =

∑n
i=1 µiviv

T
i for some reals µ1, . . . , µn (i.e.

X ∈ span{v1vT1 , . . . , vnvTn }), and second, they belong to ∆n2 .

9

Theorem 1. Let A ∼ GOE(n), then with probability larger than 1 − n
2n−1 , the problem (3.1) has

a unique solution.

Before proving Theorem 1, we first recall some concepts that will be useful in the proof. The
following definitions are taken from [37, Section 6.2]. A matrix M ∈ Rn×n is reducible if there exist
P ∈ Pn, r ∈ [n− 1] and matrices M11 ∈ Rr×r,M12 ∈ R(n−r)×r,M22 ∈ R(n−r)×(n−r) such that

PMP T =

[
M11 M12

0(n−r),r M22

]
,

where 0(n−r),r is the matrix with all zero entries in R(n−r)×r. On the other hand, a square matrix
is irreducible if it is not reducible. We will denote I the set of irreducible matrices and R the set
of reducible matrices (their dimension will be clear from context). It is easy to see that if M is
symmetric, then

M ∈ R ⇐⇒ ∃m < n, (Bkk)
m
k=1 with Bkk ∈ Rnk×nk and Bkk ∈ I

∃P ∈ Pn s.t PMP T = blockdiag(B11, . . . , Bmm). (3.2)

This block diagonal representation (3.2) is referred to as the Frobenius (or irreducible) normal form
of M . We will use repeatedly the fact that if M ∈ I and has nonnegative entries, then the “strong”
form of the Perron-Frobenius theorem (see [37, Theorem 8.4.4]) applies. As a consequence, the
largest modulus eigenvalue of M ∈ I is (algebraically) simple and its associated eigenvector can be
chosen with all its entries strictly larger than zero.

Proof of Theorem 1. Let S be the (random) set of solutions3 of (3.1). By the remarks at the
beginning of this section, we have

S = span {vivTi }ni=1 ∩∆n2 ,

where v1, . . . , vn are the eigenvectors of A. Note that S is nonempty, because clearly 1
n Id ∈ S. Our

objective is to control the probability of the event

E :=

{
S ≠

{ 1

n
Id

}}
.

Consider R1 to be the class of reducible matrices with a Frobenius normal form having at least
one block of size one, and similarly, R2 will denote the class of reducible matrices with a Frobenius
normal form with all of its blocks of size two or more (so clearly {R1,R2} form a partition of R).
With this definition, it is easy to see that

E = {S ∩ I ≠ ∅}︸ ︷︷ ︸
=:E1

∪
{
S ∩R1 ̸=

{ 1

n
Id

}}
︸ ︷︷ ︸

=:E2

∪{S ∩ R2 ̸= ∅}︸ ︷︷ ︸
=:E3

.

Here, the events E1, E2, and E3 are clearly disjoint. We will bound their probabilities separately.

3This set corresponds to S(A) introduced in Section 2. Here we drop the dependence on A to ease the notation.

10

Bounding P(E1). Notice that if there exists a matrix X in S ∩ I, then for that X, the Perron-
Frobenius theorem applies, which justifies the implication

X ∈ S ∩ I =⇒ X ∈ span {vivTi }ni=1, and

∃i′ ∈ [n] s.t. vi′(k) > 0 ∀k ∈ [n], or vi′(k) < 0 ∀k ∈ [n],

where vi′(k) denotes the k-th coordinate of vi′ . From this we deduce that

E1 ⊆ {∃i′ s.t. vi′(k) > 0,∀k ∈ [n]} ∪ {∃i′ s.t. vi′(k) < 0,∀k ∈ [n]}.

We will need the following lemma, whose proof can be found in Appendix C.

Lemma 4. Let v1, v2, . . . , vn be a set of (not necessarily independent) vectors uniformly distributed
on the unit sphere Sn−1. Then it holds

P(∃i′ ∈ [n] s.t. vi′(k) > 0,∀k ∈ [n]) ≤ n

2n
.

Given that v1, . . . , vn are uniformly distributed in the unit sphere Sn−1, we use Lemma 4 and
the union bound, to conclude that

P(E1) ≤
n

2n−1
. (3.3)

Bounding P(E2). Fix any X ∈ S ∩ R1. We have that there exists at least one block in the
Frobenius normal form of X (c.f. (3.2)) with size one. For simplicity, we can assume w.l.o.g. that
its first block is of size one, i.e., B11 ∈ R. Given that entries of X are nonnegative, it is clear
that B11 ≥ 0. Then, the following chain of implications holds (denoting e1 the first element of the
canonical basis of Rn)

PXP T e1 = B11e1

=⇒ XP T e1 = B11P
T e1

=⇒
n∑

i=1

µivi⟨vi, P T e1⟩ = B11P
T e1

=⇒ V Dµ = B11P
T e1, (3.4)

where V has as columns v1, . . . , vn, D is a diagonal matrix with entries Dii = ⟨vi, P T e1⟩ and
µ = (µ1, . . . , µn)

T . We have the following simple result.

Claim 1. D is almost surely invertible.

Proof. Clearly D is invertible iff Dii ̸= 0 for all i ∈ [n]. Note that, there exists k′ ∈ [n] such that
P T e1 = ek′ . Hence, Dii = ⟨vi, ek′⟩ for some k′ ∈ [n]. We claim that

P
(
∀k, i ∈ [n], ⟨vi, ek⟩ ≠ 0

)
= 1. (3.5)

Indeed, for any given pair i, k ∈ [n], we have that P(⟨vi, ek⟩ = 0) = 0 (because vi is uniformly
distributed on Sn−1). Then (3.5) follows from the union bound. From (3.5), we deduce that
Dii ̸= 0 a.s.

Claim 1 implies that V D is almost surely invertible, which in turn implies that there exists a
unique µ that satisfies V Dµ = B11P

T e1. On the other hand, it is clear that µ = B111 is a solution
of (3.4), so it has to be the unique solution. But, if µ = B111, then X = B11 Id. However, the fact
that X ∈ S implies that B11 =

1
n . In summary, we have demonstrated that for any X ∈ S ∩R1, it

holds that X = 1
n Id almost surely. In other words, with probability one, there are no elements in

S ∩R1 other than 1
n Id. Equivalently, P(E2) = 0.

11

Bounding P(E3). Fix any X ∈ S ∩R2 (assuming it exists). Then for some P ∈ Pn, we have

PXP T = blockdiag(B11, . . . , Bmm)︸ ︷︷ ︸
=:B

, (3.6)

with all the blocks Bkk ∈ Rnk×nk having size nk ≥ 2, and Bkk ∈ I. We note that

AX = XA ⇐⇒ PAP TB = BPAP T .

We will use the following lemma.

Lemma 5. For A ∼ GOE(n) and B as defined in (3.6), it holds

P
(
∀Q ∈ Pn, QAQTB ̸= BQAQT

)
= 1.

Proof. Fix Q ∈ Pn. Consider the following block decomposition of Ã := QAQT .

Ã =


Ã11 Ã12 · · · Ã1m

Ã21 Ã22
. . .

...
...

. . .

Ãm1 · · · Ãmm,


where Ãkl belongs to Rnk×nl (we use bold notation here to distinguish Ãkl from the (k, l) entry of
Ã). Observe that Ãkl = ÃT

lk. With this, it is easy to verify that

ÃB = BÃ ⇐⇒ ÃklBll = BkkÃkl, ∀k, l ∈ [m],

which implies that
ÃlkÃklBll = BllÃlkÃkl, ∀k, l ∈ [m] with k ̸= l,

and
ÃllBll = BllÃll, ∀l ∈ [m].

In the sequel, we will assume w.l.o.g. that n1 ≤ n2 and only use the following implication

ÃB = BÃ =⇒ Ã12Ã21B11 = B11Ã12Ã21, and Ã11B11 = B11Ã11. (3.7)

It can be seen that the following facts hold.

(i) Ã
dist.
= A ∼ GOE(n). In particular, Ã11 ∼ GOE(n1), which implies that Ã11 has n1 different

eigenvalues almost surely (c.f. [4, Thm. 2.5.2]). Hence, its eigenvectors, denoted ṽ
(1)
1 , . . . , ṽ

(1)
n1

are uniquely defined up to sign change.

(ii) Ã12Ã21 = Ã12Ã
T
12 ∼Wish(n1, n2). Here M ∼Wish(n1, n2) means that M ∈ Rn1×n1 can be

written M = M̃M̃T , where M̃ ∈ Rn1×n2 is a matrix with independent Gaussian entries with
variance 1

n . From [4, Prop. 4.1.3], we see that Ã12Ã21 has n1 different eigenvalues almost

surely. Hence, its eigenvectors, denoted ṽ
(1,2)
1 , . . . , ṽ

(1,2)
n1 are uniquely determined up to sign

change.

(iii) Ã12Ã21 is independent from Ã11.

12

Given that B11 ∈ I, we deduce, by Perron-Frobenius theorem, that its largest eigenvalue has
multiplicity one. On the other hand, by (3.7) we have that

B11 ∈ span
(
{ṽ(1)i ṽ

(1)T
i }n1

i=1

)
∩ span

(
{ṽ(1,2)i ṽ

(1,2)T
i }n1

i=1

)
.

In other words, {ṽ(1)1 , . . . , ṽ
(1)
n1 } and {ṽ

(1,2)
1 , . . . ṽ

(1,2)
n1 } are both basis of eigenvectors for B11. Assume

w.l.o.g that the largest eigenvalue of B11 (of multiplicity one) is associated with ṽ
(1)
1 , in the first

basis, and ṽ
(1,2)
1 , in the second. This implies that either ṽ

(1)
1 = ṽ

(1,2)
1 or ṽ

(1)
1 = −ṽ(1,2)1 . From

facts (i) and (ii), ṽ
(1)
1 and ṽ

(1,2)
1 are uniformly distributed in Sn1−1. From (iii), ṽ

(1)
1 and ṽ

(1,2)
1 are

independent. We deduce that P(ṽ(1)1 = ṽ
(1,2)
1) = P(ṽ(1)1 = −ṽ(1,2)1) = 0. Summarizing, for our fixed

permutation Q we have

P(QAQTB = BQAQT) ≤ P(ṽ(1)1 = ṽ
(1,2)
1) + P(ṽ(1)1 = −ṽ(1,2)1) = 0.

Then, the stated result follows from a union bound over the (finite) set Pn.

Using Lemma 5, we conclude that P(E3) = 0.

Concluding the proof. We have obtained

P(E) = P(E1) + P(E2)︸ ︷︷ ︸
=0

+P(E3)︸ ︷︷ ︸
=0

≤ n

2n−1
,

which concludes the argument.

3.2 Noiseless EMD dynamics

We now consider the “noiseless” version of the GM problem, where σ = 0 or equivalently A = B
(given that we assumed X∗ = Id), which makes the gradient ∇E(X) that appears in (2.4) equal
to A2X + XA2 − 2AXA. We consider the CGW model, or equivalently, when A ∼ GOE(n).
Interestingly, in this case one iteration of Algorithm 2 suffices to recover the ground truth (i.e., we
can fix N = 1).

Theorem 2. Let A ∼ GOE(n) and let X(1) be the first iterate of the dynamic defined by (2.4) with
initialization X(0) = J/n2. Then GMWM(X(1)) = Id a.s., for any γ0 > 0.

To prove the previous theorem, we will need the following auxiliary result.

Lemma 6. Let A ∼ GOE(n). Then for any i, j ∈ [n] with i ̸= j, −∇E(X(0)) satisfies a.s. the
property (2.2), i.e. the following holds almost surely

∇E(J)ii +∇E(J)jj − 2∇E(J)ij < 0.

Proof. We use the decomposition

∇E(J)ii +∇E(J)jj − 2∇E(J)ij = Mii +Mjj − 2Mij +M ′
ii +M ′

jj − 2M ′
ij

13

where M := A2J + JA2 and M ′ := −2AXA. Define ak as the k-th column of A, with this we have
for i, j ∈ [n]

(A2J + JA2)ij = ⟨ai,
n∑

k=1

akJkj⟩+ ⟨
n∑

k=1

akJik, aj⟩

= ⟨
n∑

k=1

ak, ai + aj⟩,

which clearly implies Mii +Mjj = 2Mij . For the term M ′ we have

M ′
ii +M ′

jj − 2M ′
ij = −⟨(ai − aj), J(ai − aj)⟩︸ ︷︷ ︸

=(⟨ai−aj ,1⟩)2

.

Since ⟨ai − aj ,1⟩ =
∑

k/∈{j,i}[Aik −Ajk], it is clear that ⟨ai − aj ,1⟩ ≠ 0 almost surely.

Observe that in this case, it follows from its definition that X(1) is symmetric. Indeed, it is the
Hadamard product of X(0) and exp⊙

(
−γ0∇E(X(0))

)
, and both are symmetric matrices.

Proof of Theorem 2. Take i, j ∈ [n]. From (2.4) and X(0) = J/n2 we deduce

X
(1)
ij = N−1

0 e
−γ0∇E

(
J
n2

)
ij

= N−1
0 e−

γ0
n2 (A

2J+JA2−2AJA)ij

where the scalar random variable N0 = ∥e−
γ0
n2 (A

2J+JA2−2AJA)ij∥1,1 is clearly almost surely strictly

positive (we will only need this fact in the sequel). Define the following quantity qij =

√
X

(1)
ii X

(1)
jj

X
(1)
ij

,

which is well-defined given that X
(1)
ij > 0, almost surely. On the other hand,

qij = exp (−γ0(∇E(J)ii +∇E(J)jj − 2∇E(J)ij)).

By Lemma 6 we deduce that for i ̸= j, we have almost surely that qij > 1. Which means that

X
(1)
ij <

√
X

(1)
ii X

(1)
jj , so we deduce that X

(1)
ij < 1

2(X
(1)
ii +X

(1)
jj). Consequently, X(1) satisfies (2.2),

and given the symmetry of X(1), we deduce that GMWM(X(1)) = Id almost surely.

Remark 2 (The Erdős-Rényi case). Clearly, if we take an Erdős-Rényi graph A ∼ G(n, p), the
argument in Lemma 6 will not work, since there are, with probability one, at least two vertices (say
i, j ∈ [n]) with the same degree, hence ⟨ai − aj ,1⟩ = 0. Using the degree profile distribution of
Erdős-Rényi graphs, which is a well-studied problem [14, 15], one can give a bound on the number
of vertices that will be correctly assigned by Algorithm 2 with N = 1. We remark that for the graph
isomorphism problem, more elaborated “signatures” using the degrees have been used with success
under the Erdős-Rényi model [10, 20, 54, 23].

Given a similarity matrix X̂, several existing theoretical results for exact recovery (see [26, 66,
48, 5]) use the following sufficient condition for ensuring GMWM(X̂) = Id;

X̂ii > max
j ̸=i

X̂ij , ∀i ∈ [n], (3.8)

14

this is known as diagonal dominance. It is clear that (3.8) implies (2.1) (which is equivalent to
(2.2) in the symmetric case). The approach of using (3.8) instead of (2.2) to prove Theorem 2
fails. Indeed, when X̂ = X(1) as in Theorem 2, showing (3.8) is equivalent to showing ∇E(J)ii <
∇E(J)ij , for all j ̸= i. A simple calculation shows that

E[∇E(J)ii] = −1 + o(1), E[∇E(J)ij] = o(1) ∀i ̸= j,

and Var[∇E(J)ij] = 3− o(1) ∀i, j.

Then using Chebyshev’s inequality, we deduce that the event ∇E(J)ii ≥ ∇E(J)ij occurs with at
least a constant probability, for any given i ̸= j. Hence it follows that (3.8) will fail to hold with
at least a constant probability.

3.3 Alternative analysis for GRAMPA in noiseless setting

To further illustrate the advantage of using (2.2) over (3.8), we will prove a stronger version of [26,
Lemma 2.3] which provides guarantees for exact recovery (in the noiseless case) for the GRAMPA
algorithm that operates as follows. First, for a regularization parameter η, it computes the similarity
matrix

X̂grampa :=
n∑

i,j=1

1

η2 + (λi − λj)2
viv

T
i Jvjv

T
j . (3.9)

Here, A =
∑n

i=1 λiviv
T
i . Next, the algorithm rounds X̂grampa using any rounding procedure (e.g.,

linear assignment, greedy rounding etc.). For the result in [26, Lemma 2.3], however, conditions
are derived on η which ensure that X̂grampa is diagonally- dominant4, with high probability.

In the following theorem, we show for the noiseless setting that exact recovery is in fact possible
for any choice of η.

Theorem 3. Let A be a GOE(n) distributed matrix with spectral expansion A =
∑n

i=1 λiviv
T
i .

Then for any η, the matrix X̂grampa, defined in (3.9), satisfies

GMWM(X̂grampa) = Id,

almost surely.

Proof. Define the matrix Λη, with entries

(Λη)ij = (λi − λj)
2 + η2.

Observe that X̂grampa can be rewritten as

X̂grampa = V
(
Λ(−1)
η ⊙ (V TJV)

)
V T , (3.10)

where Λ
(−1)
η denotes the entrywise inverse of Λη and V is the matrix with columns v1, . . . , vn. Recall

that a matrix M ∈ Rn×n is conditionally p.s.d (resp. conditionally p.d) if, for all v ̸= 0 such that
vT1 = 0, we have vTMv ≥ 0 (resp. vTMv > 0); see e.g., [36, Section 6.3]. We now have the
following claim.

Claim 2. −Λη is conditionally p.s.d for all η ∈ R.
4In fact, they consider an even stronger version of diagonal-dominance than (3.8).

15

Proof. We will first prove that −Λ0 is conditionally p.s.d. For that, notice that

Λ0 = (λ⊙ λ)1T + 1(λ⊙ λ)T − 2λλT ,

where λ = (λ1, . . . , λn)
T . Take v ∈ Rn such that v ̸= 0 and vT1 = 0. Then

vT (−Λ0)v = 2(vTλ)2 − vT (λ⊙ λ)1T v + vT1(λ⊙ λ)v︸ ︷︷ ︸
=0

≥ 0.

On the other hand, it is evident that Λη = Λ0+η2J . Since adding a scalar times the all ones matrix
preserves the conditional p.s.d property, we deduce that −Λη is conditionally p.s.d for any η.

Claim 2 is useful in light of Theorem 5 (see Appendix E), which says that the entrywise expo-
nential of a conditionally p.s.d matrix is p.s.d. We will use this to prove the following claim.

Claim 3. Λ
(−1)
η is almost surely p.d for all η ∈ R.

Proof. We will first prove that exp⊙(−tΛη) is p.d, for all t > 0. For that, using Claim 2 we obtain
that −tΛη is conditionally p.s.d. for all t ≥ 0. By Theorem 5 part (iii), exp⊙(−tΛη) is p.d. if and
only if −tΛη satisfies (2.2). It is clear that for all i ̸= j and t > 0

−t(Λη)ii − t(Λη)jj︸ ︷︷ ︸
=−2tη2

> −2t(Λη)ij︸ ︷︷ ︸
=−2t(λi−λj)2−2tη2

almost surely,

since λi ̸= λj almost surely [4, Theorem 2.5.2]. Hence, exp⊙(−tΛη) is almost surely p.d. for all
t > 0. Given that 1

s =
∫∞
0 e−stdt, we have the representation

Λ(−1)
η =

∫ ∞

0
exp⊙(−tΛη)dt,

where the integral of a matrix is understood entrywise. From Lemma 12, we have the integral of
positive definite matrices is positive definite. Given that exp⊙(−tΛη) is almost surely p.d. for all

t > 0, we conclude that Λ
(−1)
η is almost surely p.d.

From Claim 3, Λ
(−1)
η is almost surely p.d and, on the other hand, it is evident that V TJV is

p.s.d. In addition, the diagonal entries of V TJV (observe that (V TJV)ii = (vTi 1)
2) are almost

surely different from zero, since vi’s are uniformly distributed on the sphere (see e.g., [4]). Then by

Lemma 11 we obtain that Λ
(−1)
η ⊙ (V TJV) is almost surely p.d. From (3.10) it is easy to see that

X̂grampa is almost surely p.d. Combining this with Lemma 2 part (iii), the conclusion follows.

Remark 3 (Comparison with Lemma 2.3 in [26]). Theorem 3 is stronger than [26, Lemma 2.3]
in two aspects. First, it provides an almost sure guarantee instead of the high probability bound
in [26, Lemma 2.3]. Second, it holds for any η ∈ R, while in [26, Lemma 2.3] the result requires
that 1

n0.1 < |η| < c
logn for some constant c. In addition, our approach also leads to a shorter and

arguably simpler proof.

Remark 4 (Extension to the Erdős-Rényi case). Notice that in the proof of Theorem 3, the as-
sumption that A ∼ GOE(n) is crucial at two key points. First, to establish Claim 3, it is necessary
that A almost surely possesses a simple spectrum. Second, we rely on this assumption to demon-
strate that the quantities vTi 1 are almost surely non-zero for i ∈ [n]. In light of [61, Corollary
1.4], we believe that it should be relatively straightforward to extend Theorem 3 to the case where
A ∼ G(n, p), at least in a high probability sense.

16

4 Numerical experiments

We now provide numerical experiments using both synthetic and real data to assess the perfor-
mance of Algorithm 2. We evaluate its performance along with other competing graph matching
algorithms, considering both accuracy and running time as key metrics. In graph matching, the
customary measure of accuracy is the overlap with the ground truth X∗ ∈ Pn, also known as the
recovery fraction. This measure, denoted as overlap(X∗, X̂P), is defined as:

overlap(X∗, X̂P) :=
1

n
⟨X∗, X̂P⟩F ,

where X̂P represents the output of any graph matching algorithm, and we recall that ⟨X∗, X̂P
denotes the Frobenius inner product between X∗ and X̂P .

All the experiments were conducted using MATLAB R2021a (MathWorks Inc., Natick, MA) on
an Apple M1 machine with 8 cores, 3.2 GHz clock speed, and 16GB of RAM. The reported running
times are based on this setup.

4.1 Synthetic data setup

For the synthetic data experiments, we follow this general setup: we generate matrices A and B
using the CER and CGW models described in Section 2.3, with X∗ chosen uniformly at random
from Pn. We then apply various graph matching methods based on convex relaxations, using A
and B as inputs.

Standardization of the inputs. To ease the comparison between different models, we will
consider their standardized version. Following [26], we consider the following standardized version
of the CER model described in Sec. 2.3

Ã =
(A− E(A))

p(1− p)n
, B̃ =

(B − E(B))

p(1− p)n
,

where A,B ∼ G(n, σ, p,X∗). This can be regarded as a simple preprocessing step in the pipeline
of the three graph matching algorithms that will be experimentally tested here.

Step-size selection. An obvious question for any gradient descent-like method is the selection
of a step-size updating rule. We investigate the following popular strategies for EMD and PGD.

• Fixed step-sizes. In [11, Theorem 9.16 and Example 9.17] it is proven that MD converges

in O
(

1√
N

)
iterations, under the following constant step-size rule

γmd
k =

√
2 log nLE,∞√

N + 1
, ∀k ∈ [N], (4.1)

where LE,∞ := max
X∈∆n2

∥∇E(X)∥∞ and for v ∈ Rd, with d ∈ N, ∥v∥∞ := maxj∈N |vj |. Given

that LE,∞ is, in general, not observed, for each k we replace it (as a heuristic) with the
following observed quantity

L̂
(k)
E,∞ = max

X∈{X(0),...,X(k)}
∥∇E(X)∥∞. (4.2)

17

Notice that, contrary to (4.1), the rule obtained by replacing LE,∞ by the empirical quantity

L̂
(k)
E,∞ is not a fixed step strategy. Analogously, for the PGD algorithm, based on the same

theoretical result we define the following update rule

γpgdk =

√
2L̂

(k)
E,2√

N + 1
, ∀k ∈ [N], (4.3)

where
L̂
(k)
E,2 = max

X∈{X(0),...,X(k)}
∥∇E(X)∥F . (4.4)

• Dynamic step-sizes. TheO
(

1√
N

)
convergence of EMD and PGD has also been established,

see [11, Theorem 9.18], under the following alternative strategy

γmd
k =

{ √
2

∥∇E(X(k))∥∞
√
k+1

if ∇E(X(k)) ̸= 0

0 if ∇E(X(k)) = 0,
(4.5)

Notice that here γmd
k can change from iteration to iteration, as it is adapting to the current

gradient information. In the case of PGD the analogous rule is given by

γpgdk =

{ √
2

∥∇E(X(k))∥F
√
k+1

if ∇E(X(k)) ̸= 0

0 if ∇E(X(k)) = 0.
(4.6)

In the case that ∇E(X(k)) = 0, we have chosen to impute γmd
k and γpgdk with a zero value,

but this choice is arbitrary and has no effect in the value of the iterates.

• Other heuristic rules. We also consider certain purely heuristic rules, which are not based
on theoretical convergence results. In our experiments, these rules sometimes outperform the
theoretically established rules described above. For PGD we consider

γk = θ
∥∇E(X(k))∥2F
∥E(X(k))∥2F

, (4.7)

where θ is a positive constant, which is either fixed to 1 (default value) or determined by line
search.

4.1.1 Comparison with other convex optimization-based methods

We compare some of the state-of-art seedless graph matching methods based on convex relaxations
with our proposed method, Algorithm 2, using a fixed number of iterations N = 125. In terms
of efficient methods for convex graph matching, two of the better performing ones are Grampa [26]
and QPADMM, the latter of which solves (1.5) with K the set of doubly stochastic matrices, using the
method of Alternating Direction Method of Multipliers (ADMM). The QPADMM algorithm has also
been considered in the numerical experiments sections in [23, 26], under the name QS-DS. We recall
that Grampa is a regularized spectral method, which adds the term η∥X∥2F to the objective function
E(·) in (1.5) with K = {1TX1 = n}. Unless otherwise specified, we adopt the recommended value
of η = 0.2 (see [26, Section 4]). In our experiments, we observed that variations in this parameter
have minimal impact on the overall performance of Grampa, which aligns with findings reported in
[26]. We also include the classic Umeyama algorithm, which was originally introduced in [63], and
corresponds to an unregularized spectral method.

18

(a) CGW model. (b) CER model with p = 1
2
.

Figure 1: Comparison of the performance of seedless convex methods for CGW (Fig. 1a)
and CER (Fig. 1b) models. We plot the average overlap with the ground truth (recovery
fraction) over 15 Monte Carlo runs for graphs of size n = 300. We used N = 125 iterations
in EMDGM and in Grampa we use the regularization parameter η = 0.2. For EMDGM we used
the dynamic step-size rule (4.5).

Accuracy comparison. Figure 1 illustrates that, in terms of accuracy, the performance of EMDGM
sits between Grampa and QPADMM, while Umeyama is outperformed by all three methods. While this
result is not unexpected, considering the well-defined hierarchy of relaxations from the hyperplane
to the simplex and, finally, to the Birkhoff polytope, these experiments aim to provide a clearer
understanding of the gap between them. In this regard, taking the case of the CGW model in
Fig.1a, we see that EMDGM achieves exact recovery for noise levels as high as σ ≈ 0.5, while Grampa
can recover only up to σ ≈ 0.25. On the other hand, QPADMM outperforms all the rest, with a
recovery of up to σ ≈ 0.6. These experiments show that EMDGM (with N = 125) is closer, in terms
of accuracy, to the tightest relaxation of QPADMM. As we will see in the sequel, the performance
of EMDGM is highly correlated with the number of iterations. In the case of the CER model, the
gap between methods reduce and even QPADMM can recover only up to σ ≈ 0.4. This confirms that
matching CER graphs is more challenging for comparable levels of noise. One possible explanation
for this fact is that the (continuous) weights in the CGW model help to discriminate the correct
from incorrect matches (“breaking the symmetry”) more effectively than in the binary weights
case, where one relies solely on the graph structure. From the theoretical point of view, we saw a
manifestation of this phenomenon in Section 3, when trying to extend Theorem 1 to the CER case
(see Remark 2). Overall, these experiments show that EMDGM is closer, in terms of accuracy, to the
tightest relaxation of QPADMM.

Running time comparison. In Table 1, we summarize the average running time and standard
deviation over the 15 Monte Carlo runs, for each algorithm. In these experiments, we observe that
both Grampa and Umeyama are of comparable speed, while EMDGM operates about eight times slower
than them. Conversely, QPADMM is the slowest, being about a thousand times slower than Grampa.
In the next subsection, we will explore how it is possible to achieve good accuracy with EMDGM using
fewer iterations, thus speeding up the overall process.

19

Umeyama EMDGM Grampa QPADMM

CGW 0.0356(0.0211) 0.8609(0.0282) 0.0490(0.0048) 34.2666(1.1065)
CER 0.0382(0.015) 0.9226(0.0168) 0.0432(0.0063) 29.1306(1.1302)

Table 1: Average (over 15 Monte Carlos) running time in seconds (standard deviation in
parentheses).

4.1.2 Comparison with PGD

As mentioned earlier, the EMD algorithm is one of several algorithmic alternatives to solve (1.6).
In this section, we have two objectives: Firstly, to compare it with other algorithms that achieve
the same task, and secondly, to evaluate its performance with different values of N . For runtime
efficiency, we confine our comparison to the category of first-order methods, among which PGD is
arguably the most popular one. We will call PGDGM the algorithm that solves (1.6) using a gradient
descent approach, receiving the same inputs and following the same pipeline as Algorithm 2, but
changing the update rule from (2.4) to (2.3). Given the existing theoretical convergence guarantees
for MD and PGD, see [11, Sections 8 and 9], we know that there exists rate sequences (γk)k≥0 such
that both methods will converge to a minimizer of (1.6). Our objective here is to provide a practical
comparison of both algorithms within a unified setup, focusing on the number of iterations and
the selection of step-size rules. In this section, we will demonstrate that the overall results of both
approaches often diverge on synthetic data (a pattern consistent with real data, as we demonstrate
later in Section 4.2 below).

Accuracy comparison. In Fig. 2 we plot the average overlap between X∗ and the output of
EMDGM, PGDGM and Grampa. Among the step-size rules described in Section 4.1 above, the better
performing ones in our experiments were the dynamic adaptive rule (4.5) for EMDGM and the heuristic
rule for PGDGM with θ close to 1 (we chose to include the default value θ = 1 in the plot). We see that
all three algorithms perform better under the CGW model than under the CER model. Indeed, one
can see in Fig. 2a that EMDGM and PGDGM can achieve perfect recovery for σ ≈ 0.45, and Grampa for
σ around 0.25. Interestingly, in the case of the CER model, we see that EMDGM performs better in
terms of perfect recovery with a gap of at least 0.1 in the noise level it tolerates. When we restrict
the number of the iterations to N = 25, we see that all models have an accuracy of 90% or more
under a noise level as high as σ = 0.25. On the other hand, as seen in Fig. 2b, for the same noise
level, only the EMDGM algorithm achieves 90%, under the setting of this experiment. Overall, EMDGM
outperforms both Grampa and PGDGM in this experiments.

Running time comparison. Table 2 contains the running time information for the experiments
shown in Figure 2. We see that Grampa is the fastest algorithm, running approximately five times as
fast as EMDGM (with N = 25), which in turn is approximately two times faster than PGDGM. Despite
EMDGM being slower than Grampa, we demonstrate here that when terminated at N = 25, EMDGM
still outperforms Grampa, achieving an average speed five times faster than the case with N = 125.

4.1.3 Experimental comparison between (2.1) and diagonal dominance

As previously noted, both EMDGM and Grampa adhere to the meta-strategy outlined in the Intro-
duction: their output is the rounded version of a similarity matrix (specific for each algorithm).
To prove exact recovery, a large part of the literature [26, 66, 48, 5] has focused on proving that

20

(a) N = 125 in the CGW model. (b) N = 125 in the CER model with p = 1
2
.

(c) N = 25 in the CGW model. (d) N = 25 in the CER model with p = 1
2
.

Figure 2: We compare EMDGM, Grampa and PGD under the CGW and CER models for
n = 500. For EMDGM we used the dynamic step-size rule (4.5) and PGD we used the
heuristic rule (4.7) with θ = 1. In both cases, we fix the number of iterations to N = 25
(Figs.2c and 2d) and N = 125 (Figs. 2a and 2b). The Grampa regularization parameter γ
is set to 0.2 as recommended in [26]. We present the average overlap (recovery fraction)
for 25 Monte Carlo runs. The shaded area indicates where 90% of the data falls (excluding
the top and bottom 5%).

21

EMDGM(N = 25) EMDGM(N = 125) PGDGM(N = 25) PGDGM(N = 125) Grampa

CGW 0.5822(0.0150) 2.5410(0.0202) 0.9587(0.0695) 4.2685(0.02800) 0.1210(0.0072)
CER 0.5959(0.01621) 2.4803(0.0157) 0.9914(0.0723) 4.2382(0.0215) 0.1494(0.0082)

Table 2: Average (over 25 Monte Carlos) running time in seconds (standard deviation in
parentheses).

the similarity matrix X̂ satisfies the following diagonal dominance property with high probability
(under different random graph model assumptions and assuming that X∗ = Id), which we recall is

X̂ii > max
j ̸=i

X̂ij , ∀i ∈ [n].

Clearly, (3.8) implies that GMWM(X̂) = Id. We compare (3.8) with the property (2.1), which is
weaker than (3.8) and also sufficient to ensure GMWM(X̂) = Id (as proven in Lemma 2 part (ii)).
The objective is to see if for moderately small values of n, we see the diagonal dominance of the
similarity matrix. The setup is as follows: we run EMDGM (N = 25) and Grampa with n = 500 using
the CGW model and compute the following two metrics for the similarity matrix of each method.

• Number of non-diagonally dominant rows. We consider the quantity

|{i ∈ [n] : X̂ii ≤ max
j ̸=i

X̂ij}| (4.8)

• Number of pairs not satisfying (2.1). In this case, we consider

|{(i, j) ∈ [n]2 : i ̸= j and X̂ii ∨ X̂jj ≤ X̂ij}| (4.9)

In Fig. 3 we show the heatmaps for the metrics (4.8) and (4.9), for Grampa and EMDGM algorithms.
For both algorithms, we do not see diagonal dominance in any of the Monte Carlo samples, however
in the low noise regime, both algorithms have perfect recovery (as seen in Fig. 2c). If one compares
both algorithms by the metric (4.8), the conclusion would be that Grampa performs slightly better
than EMDGM, however by the results in Fig. 2c, we know the opposite is true. On the other hand,
we see in Figs. 3c and 3d that the metric (4.9) is 0 for algorithms for values of σ up to around
0.2, which coincides with the results in Fig. 2c. In addition, under this metric, EMDGM outperforms
Grampa, which is also the conclusion of Section 4.1.2. Overall, in this experiment, metric (2.1)
seems to be much better correlated with the perfect recovery cases in both methods.

4.2 Real data

This section focuses on evaluating the performance of the EMDGM algorithm on real data in compari-
son to PGDGM and Grampa. Before proceeding, it is important to note a few general remarks. Firstly,
since some of the datasets are relatively large (approximately ten thousand vertices per graph) and
sparse, we have omitted the standardization preprocessing discussed in Section 4.1 to more effec-
tively leverage their sparsity. Secondly, unless specified otherwise, we employ dynamic step sizes
derived from (4.5) for EMDGM and (4.7) for PGDGM. This choice is based on their performance with
synthetic data. The Grampa regularizer η is fixed to 0.2.

22

(a) Metric (4.8) for Grampa. (b) Metric (4.8) for EMDGM.

(c) Metric (4.9) for Grampa. (d) Metric (4.9) for EMDGM.

Figure 3: Heatmap for the metrics (4.8) and (4.9) for the similarity matrices of Grampa
(Figs. 3a and 3c) and EMDGM with N = 125 (Figs. 3b and 3d). The input graphs were
generated using the CGW model with n = 500 and the noise level corresponds to the
parameter σ. Recall that here a value of 0 means perfect recovery on that particular
realization.

.

4.2.1 Computer vision dataset

We utilize the SHREC’16 dataset [47], comprising 25 shapes (in both high and low resolution) rep-
resenting a child in various poses. The goal is to match corresponding body parts when presented
with two different shapes. The initial step in our pipeline involves converting the triangulated rep-
resentation of an image (as stored in the database) into an adjacency matrix, a common procedure
in computer vision (refer to [57, Section 1]). We opt for the use of low-resolution versions of each
image, as they are already represented by adjacency matrices with an average size of approximately
10, 000 vertices. It is worth noting that, on average, the number of edges in these matrices is only
0.05% of the total possible edges, indicating a high degree of sparsity. To leverage this sparsity,
we will omit the input standardization described in Section 4.1. Another important aspect of the

23

Figure 4: Performance comparison of EMDGM, PGDGM, and Grampa on the SHREC’16
dataset, based on the error cumulative distribution function (CDF) defined in (4.10). We
conducted 100 iterations each for EMDGM and PGDGM.

SHREC’16 dataset is that all images have varying sizes, resulting in inputs of the form A ∈ RnA×nA

and B ∈ RnB×nB with nA ̸= nB. It is worth noting that both EMDGM and PGDGM naturally extend
to accommodate this variation, and the same can be said for Grampa (see [26, Section 4]). We
will apply and compare the EMDGM, PGDGM, and Grampa algorithms using the Princeton benchmark
protocol [39]. This benchmark protocol essentially involves a CDF comparison, defined by the
following steps.

• Normalized geodesic errors. Given inputs A and B, and the output π̂ of a graph match-
ing algorithm, we calculate the normalized geodesic error as follows: for each node i in A, we
compute dB(π̂(i), π

∗(i)), where π∗ represents the ground truth matching, and dB denotes the
geodesic distance on B (computed as the weighted shortest path distance using the triangu-
lation representation of the image [57]). The normalized error is defined as

ε(i) := dB(π̂(i), π
∗(i))/

√
Area(B),

where Area(B) is the surface area of B (computed using the triangulation representation).

• CDF computation. The error cumulative distribution function (CDF) is defined for t ≥ 0
as

CDF(t) =

nA∑
i=1

1ε(i)≤t, (4.10)

where nA is the number of nodes in A. Notice that CDF(0) corresponds to the recovery
fraction, or overlap as defined in Section 4.1.

In Fig.4 we show the average performance of the three algorithms on the SHREC’16 dataset.
We see that the performance of EMDGM is the best of the three, while for a small value of ϵ (around
0.05), Grampa has a similar performance. It is interesting that for the other values of ϵ mirror
descent has a big gap in performance compared to Grampa, because in the graph matching problem
we are not trying to explicitly optimize the errors beyond ϵ = 0 (which by the definition (4.10) is

24

related to exact recovery). In this case, EMDGM appears to introduce an additional level of regularity
beyond what is specified in the optimization problem. We attribute the suboptimal performance
of PGDGM to our difficulty in properly tuning the step-sizes.

4.3 Autonomous systems

We use data from the Autonomous Systems dataset, which belongs to the University of Oregon
Route Views Project [53], and is also available at the Stanford Network Analysis Project repository
[44, 43]. This data has also been used to evaluate the performance of Grampa and other graph
matching algorithms in [26, Section 4.5]. The dataset consists of a dynamically evolving network
of autonomous systems (a collection of IP networks under a common routing policy) that exchange
traffic through the Internet. There are a total of nine graphs, with each one representing weekly
observations of the autonomous system from March 31, 2001, to May 26, 2001. The node count
varies between 10, 670 and 11, 174, while the edge count fluctuates between 22, 002 and 23, 409
over time. Since the number of nodes and edges exhibits these fluctuations over time (see [44] for
more summarizing statistics), we have implemented a subsampling strategy adopted in [26, Section
4.5]. We focus on a subset of 1, 000 vertices with the highest degrees, found in all nine networks.
The nine resulting graphs can be seen as perturbations of each other. Fixing the first graph (from
March 31), as input A, and comparing it to the subsequent ones, we observe that the correlation
approximately decreases over time (although is not fully monotone). This provides a comparison
framework similar to the synthetic data experiments, where the correlation was controlled by the
parameter σ.

In Figure 5 we compare the output of the three methods EMDGM, Grampa, PGDGM under two
different metrics. The first is the recovery fraction, plotted in Figure 5a and the other is the
rescaled objective ⟨A, X̂T

PBX̂P⟩F (here X̂P represent the output of a graph matching algorithm),
plotted in Figure 5b. As noted in [26], the latter metric is more instructive for this dataset due
to the presence of numerous degree-one vertices connected to high-degree vertices, resulting in
symmetries that render the ground truth unidentifiable. In this experiment, we apply all three
graph matching algorithms to nine instances created by fixing input A as the first graph. Input B
is obtained by random node relabeling for each of the nine graphs. In Figures 5c and 5d we plot
the same metrics, but with standardized inputs. For that, we subtract to each matrix their average
value and divide them by their standard deviation. Notably, the performance of EMDGM and PGDGM

improves, while that of Grampa declines. This standardization alters the objective function and
appears to introduce a ‘regularization’ effect for the methods on the simplex. Further investigation
into this phenomenon is warranted, but we leave it for future research.

While we do not have a full explanation for why PGDGM outperforms EMDGM in this case, we can
provide some partial insights. In certain scenarios, the “regularity” of the objective function may
be more influential for achieving better results, whereas in other cases, the performance disparity
may be primarily attributed to the selection of an appropriate step-size strategy. We believe that
the latter plays a greater role in this case, based on the following experiment. We fix the step-size
rule, using (4.1) for MD and (4.3), and define the efficiency ratio of the function E (as seen in [11,
Example 9.17]) as:

ρE =

√
log n,LE,∞

LE,2
,

where it is clear that
√
logn√
n
≤ ρE ≤

√
log n. When ρE is closer to the lower bound, MD tends to

outperform PGD, while the reverse is true when ρE is closer to the upper bound. We compute

25

(a) Recovery fraction in a high-degree subsampled graph. (b) Common edges in a high-degree subsampled graph.

(c) Recovery fraction in a high-degree standardized graph. (d) Rescaled objective in a high-degree standardized graph.

Figure 5: Comparison of EMDGM, Grampa, and PGDGM using a high-degree subsampled
graph with 1, 000 vertices for each time instant. The input graph A remains fixed as the
graph from March 31, while the input graph B varies (with random permutations of its
rows and columns), as indicated on the x-axis. We used the dynamic step rule for EMDGM,
derived from (4.5) and the heuristic rule (4.7) for PGDGM, with 125 iterations in both cases.

an empirical version of the unobserved quantities LE,∞ and LE,2 (which can be regarded as reg-
ularity measures for E), by taking 10, 000 uniformly distributed samples on ∆n2 and computing
the maximum of the ℓ∞ and ℓ2 norms of the gradient evaluated on those points. The value of ρE
obtained varies from 0.46 to 0.53, while

√
logn√
n

= 0.0831 and
√
log n = 2.62. Using this metric, there

is not a clear advantage between the two methods. However, when applying rule (4.3), we observe
that PGDGM significantly underperforms EMDGM (approximately ten times worse). It appears that
the heuristic rule (4.7) plays a crucial role in accelerating the convergence of PGDGM. Unfortunately,
we currently lack a similar rule for EMDGM, but this is an avenue for future exploration.

26

4.4 Facebook networks

We use Facebook’s friendship network data from [62], consisting of 11, 621 individuals affiliated
with Stanford University. In contrast to the previous examples, where multiple networks were
available, here, we have a single large network. As a result, we need to employ a subsampling
strategy to generate correlated graphs for evaluating the graph matching methods. In the context
of seeded graph matching, [66] employed a specific sampling strategy to evaluate methods based
on seed quality. However, since our objective is different, our sampling strategy also differs from
theirs. The complete dataset contains 136, 660 (unweighted) edges, with a degree distribution
closely resembling a power-law pattern (density proportional to d−1), and an average degree of
approximately 100. We obtain two correlated graphs A,B as follows. First, we create graph H
by selecting 1, 000 vertices uniformly at random, forming the induced subgraph. From the parent
graph H, we retain each edge with a probability of s to create graph A. We independently repeat
this process to generate graph B (as usual, we shuffle the labels of B uniformly before applying the
graph matching algorithms). Intuitively, a higher value of s corresponds to a stronger correlation
between the graphs, with s = 1 implying isomorphism. Notice that our sampling scheme closely
resembles the “parent graph” definition in [55] for the CER model.

Figure 6: Comparison of graph matching algorithms on subsamples of 1, 000 edges of a
Facebook friendship network. We plot the average over 15 Monte Carlo (over the uniform
subsamples). We used the dynamic step rule for EMDGM, derived from (4.5) and the heuristic
rule (4.7) for PGDGM, with 125 iterations in both cases.

In Figure 6 we plot the recovery fraction for EMDGM, PGDGM and Grampa. As expected, all three
methods achieve exact recovery in the isomorphic case s = 1. However, for smaller values of s,
there is a significant gap in performance between EMDGM and PGDGM (which are comparable) and
Grampa. The more pronounced drop in performance, compared to the synthetic data experiments
presented in Section 4.1, is also expected given the power-law behavior exhibited by this network.
An interesting observation can be made from the confidence intervals in Figure 6: EMDGM shows less
variance across the Monte Carlo subsamples. To quantify this, we computed the average standard
deviation over the 6 instances of s. For EMDGM, this value is 0.0126, while for PGDGM, it is significantly
higher at 0.0604.

27

5 Concluding remarks

In this work, we present a novel graph matching algorithm based on a convex relaxation of the
permutation set to the unit simplex. We introduce an iterative mirror descent scheme that offers
closed-form expressions for the iterates, resulting in enhanced efficiency compared to competing
projecting gradient methods. Theoretical analysis demonstrates that, when coupled with a standard
greedy rounding procedure, our method can exactly recover the ground truth matching in the
noiseless case of the correlated Gaussian Wigner model. Experimental results support this claim,
showing that our proposed algorithm can achieve exact recovery even in the presence of significant
noise. In terms of statistical performance, it consistently outperforms other convex relaxation-based
methods with similar time complexity.

The following are potential avenues for future research.

• An intriguing theoretical question is to extend the guarantees to the case where σ ̸= 0 in
the CGW model. This presents two main challenges. First, understanding the eigenvector
structure of the iterates in (2.4) is nontrivial, given its Hadamard product definition and the
complexity of the gradient expression. Second, using Lemma 2 becomes less straightforward
when not all pairs satisfy the condition (2.1). To address this, one possible approach is to
demonstrate that the number of pairs not satisfying (2.1), as given in (4.9), converges to zero.
However, this seems to present significant technical challenges.

• Extending recovery guarantees to other models is also an important theoretical objective. A
common approach in the literature of iterative methods involves using uniform concentration
bounds, which is essentially a worst-case scenario approach. To follow this strategy, it will be
crucial to gain a deeper understanding of the structure of the iterates in (2.4) beyond X(1).
In particular, we need to improve our ability to “localize” X(k). Otherwise, there is a risk
that, in the worst-case scenarios, the gradient may point in the wrong direction. It is not
hard to provide examples of such scenarios.

• From an experimental perspective, it is intriguing to explore acceleration in the mirror descent
dynamic. Although accelerated MD schemes have been considered in the literature, as dis-
cussed in [41], they involve Bregman projections that are fast in theory but lack a closed form,
making their implementation more involved. It would be interesting to assess the practical
performance of these schemes.

• Another experimental question involves finding a rate selection method for EMD that en-
hances its statistical performance, similar to the heuristic (4.7) in the case of PGD. In gen-
eral, any other techniques used to improve the performance of first-order methods can also
be tested here, including adaptive restart, early stopping, and more.

28

References

[1] Yonathan Aflalo, Alexander Bronstein, and Ron Kimmel. On convex relaxation of graph
isomorphism. Proceedings of the National Academy of Sciences, 112(10):2942–2947, 2015.

[2] Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and regret min-
imization beyond matrix multiplicative updates. In Proceedings of the Forty-Seventh Annual
ACM Symposium on Theory of Computing, STOC ’15, page 237–245, New York, NY, USA,
2015. Association for Computing Machinery.

[3] David G. Anderson, Ming Gu, and Christopher Melgaard. An efficient algorithm for un-
weighted spectral graph sparsification, 2014.

[4] Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni. An Introduction to Random Matrices.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2009.

[5] Ernesto Araya, Guillaume Braun, and Hemant. Tyagi. Seeded graph matching for the corre-
lated Wigner model via the projected power method. arXiv:2204.04099, 2022.

[6] S. Arora, E. Hazan, and S. Kale. Fast algorithms for approximate semidefinite programming
using the multiplicative weights update method. In 46th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS’05), pages 339–348, 2005.

[7] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm
and applications. Theory of Computing, 8(1):121–164, 2012.

[8] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite pro-
grams. J. ACM, 63(2), may 2016.

[9] László Babai. Group, graphs, algorithms: the graph isomorphism problem. In Proceedings of
the International Congress of Mathematicians: Rio de Janeiro 2018, pages 3319–3336. World
Scientific, 2018.

[10] Laszlo Babai, Paul Erdos, and Stanley Selkow. Random graph isomorphism. SIAM Journal
on Computing, 9(3):628–635, 1980.

[11] Amir Beck. First Order Methods in Optimization. Society for Industrial and Applied Mathe-
matics, 2017.

[12] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 31(3):167–175, 2003.

[13] Jeremy Bernstein, Jiawei Zhao, Markus Meister, Ming-Yu Liu, Anima Anandkumar, and
Yisong Yue. Learning compositional functions via multiplicative weight updates. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems, NIPS’20,
Red Hook, NY, USA, 2020. Curran Associates Inc.

[14] Béla Bollobás. The distribution of the maximum degree of a random graph. Discrete Mathe-
matics, 32(2):201–203, 1980.

[15] Béla Bollobás. Degree sequences of random graphs. Discrete Mathematics, 33(1):1–19, 1981.

[16] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found. Trends Mach.
Learn., 8(3–4):231–357, nov 2015.

29

[17] Rainer Ernst Burkard, Eranda Dragoti-Cela, P.M. Pardalos, and L.S. Pitsoulis. The quadratic
assignment problem, volume 2, pages 241–337. Kluwer Academic Publishers, Netherlands,
1998.

[18] Dajana Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph
matching in pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence, 18(03):265–298, 2004.

[19] Daniel Cullina and Negar Kiyavash. Exact alignment recovery for correlated Erdös-Rényi
graphs. arXiv:1711.06783, 2017.

[20] Tomek Czajka and Gopal Pandurangan. Improved random graph isomorphism. Journal of
Discrete Algorithms, 6(1):85–92, 2008.

[21] Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim. Near-optimal no-regret algo-
rithms for zero-sum games. Games and Economic Behavior, 92:327–348, 2015.

[22] Chris Ding, Tao Li, and Michael I. Jordan. Nonnegative matrix factorization for combinatorial
optimization: Spectral clustering, graph matching, and clique finding. In 2008 Eighth IEEE
International Conference on Data Mining, pages 183–192, 2008.

[23] Jian Ding, Zongming Ma, Yihong Wu, and Jiaming Xu. Efficient random graph matching via
degree profiles. Probability Theory and Related Fields, 179:29–115, 2021.

[24] Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. Fifty years of graph matching,
network alignment and network comparison. Inf. Sci., 346(C):180–197, jun 2016.

[25] Zhou Fan, Cheng Mao, Yihong Wu, and Jiaming Xu. Spectral graph matching and regularized
quadratic relaxations II: Erdős-Rényi graphs and universality. arXiv:1907.08883, 2019.

[26] Zhou Fan, Cheng Mao, Yihong Wu, and Jiaming Xu. Spectral graph matching and the
quadratic relaxation I: the Gaussian model. arXiv: 1907.08880v1, 2019.

[27] Soheil Feizi, Gerald T. Quon, Mariana Recamonde-Mendoza, Muriel Médard, Manolis Kellis,
and Ali Jadbabaie. Spectral alignment of graphs. IEEE Transactions on Network Science and
Engineering, 7:1182–1197, 2020.

[28] Luca Ganassali. Sharp threshold for alignment of graph databases with gaussian weights. In
Joan Bruna, Jan Hesthaven, and Lenka Zdeborova, editors, Proceedings of the 2nd Mathe-
matical and Scientific Machine Learning Conference, volume 145 of Proceedings of Machine
Learning Research, pages 314–335. PMLR, 16–19 Aug 2022.

[29] Luca Ganassali, Marc Lelarge, and Laurent Massoulié. Spectral alignment of correlated gaus-
sian matrices. Advances in Applied Probability, 54(1):279–310, 2022.

[30] Luca Ganassali and Laurent Massoulié. From tree matching to sparse graph alignment. In
Jacob D. Abernethy and Shivani Agarwal, editors, Conference on Learning Theory, COLT
2020, 9-12 July 2020, Virtual Event [Graz, Austria], volume 125 of Proceedings of Machine
Learning Research, pages 1633–1665. PMLR, 2020.

[31] Luca Ganassali, Laurent Massoulie, and Marc Lelarge. Impossibility of partial recovery in
the graph alignment problem. In Mikhail Belkin and Samory Kpotufe, editors, Proceedings of
Thirty Fourth Conference on Learning Theory, volume 134 of Proceedings of Machine Learning
Research, pages 2080–2102. PMLR, 15–19 Aug 2021.

30

[32] Luca Ganassali, Laurent Massoulié, and Guilhem Semerjian. Statistical limits of correlation
detection in trees, 2022.

[33] W. Zhou H. Sun and M. Fei. A survey on graph matching in computer vision. 2020 13th Inter-
national Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), pages 225–230, 2020.

[34] Georgina Hall and Laurent Massoulié. Partial recovery in the graph alignment problem. Op-
erations Research, Aug 2022.

[35] E. Hazan. Introduction to online convex optimization. Foundations and Trends R© in Opti-
mization, 2(3-4):157–325, 2015.

[36] Roger Horn and Charles Johnson. Topics in matrix analysis. Cambridge University Press,
1991.

[37] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2
edition, 2012.

[38] Bo Jiang, Jin Tang, Chris Ding, Yihong Gong, and Bin Luo. Graph matching via multiplicative
update algorithm. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, page 3190–3198, Red Hook, NY, USA, 2017. Curran Associates
Inc.

[39] Vladimir G. Kim, Yaron Lipman, and Thomas Funkhouser. Blended intrinsic maps. ACM
Trans. Graph., 30(4), jul 2011.

[40] J. Kivinen and M.K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Information and Computation, pages 1–63, 1997.

[41] Walid Krichene, Alexandre Bayen, and Peter L Bartlett. Accelerated mirror descent in con-
tinuous and discrete time. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 28. Curran Associates,
Inc., 2015.

[42] François Le Gall. Algebraic complexity theory and matrix multiplication. In Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, page 23, 2014.

[43] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densification laws,
shrinking diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, KDD ’05, page 177–187,
New York, NY, USA, 2005. Association for Computing Machinery.

[44] Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset collection.

[45] Joseph Lubars and R. Srikant. Correcting the output of approximate graph matching algo-
rithms. IEEE conference on Computer Communications, pages 1745–1753, 2018.

[46] Vince Lyzinski, Donniell E. Fishkind, Marcelo Fiori, Joshua T. Vogelstein, Carey E. Priebe,
and Guillermo Sapiro. Graph matching: relax at your own risk. IEEE transactions on pattern
analysis and machine intelligence, 38(1):60–73, 2016.

31

[47] Zorah Lähner, Emanuele Rodolà, Michael M. Bronstein, Daniel Cremers, Oliver Burghard,
Luca Cosmo, Andreas Dieckmann, Reinhard Klein, and Yusuf Sahillioglu. Matching of De-
formable Shapes with Topological Noise. In Eurographics Workshop on 3D Object Retrieval,
2016.

[48] Cheng Mao, Mark Rudelson, and Konstantin Tikhomirov. Exact matching of random graphs
with constant correlation. arXiv:2110.05000, 2021.

[49] Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H. Yu. Testing network correlation efficiently
via counting trees, 2022.

[50] Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H. Yu. Random graph matching at otter’s
threshold via counting chandeliers. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, page 1345–1356, New York, NY, USA, 2023. Association
for Computing Machinery.

[51] A. Narayanan and V. Shmatikov. De-anonymizing social networks. 2009 30th IEEE Symposium
on Security and Privacy, pages 173–187, 2009.

[52] A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Optimiza-
tion. Wiley-Interscience, New York, 1983.

[53] University of Oregon Route Views Project. Autonomous systems peering networks.

[54] Negar Kiyavash Osman Emre Dai, Daniel Cullina and Matthias Grosslglauser. Analy-
sis of a canonical labeling algorithm for the alignment of correlated erdős-rényi graphs.
arXiv:1804.09758v2, 2019.

[55] Pedram Pedarsani and Matthias Grossglauser. On the privacy of anonymized networks. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 1235–1243, 2011.

[56] Marcello Pelillo. Replicator equations, maximal cliques, and graph isomorphism. Neural
Computation, 11(8):1933–1955, 1999.

[57] Gabriel. Peyré. Numerical mesh processing, 2008.

[58] Robert Reams. Hadamard inverses, square roots and products of almost semidefinite matrices.
Linear Algebra and its Applications, 288:35–43, 1999.

[59] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM,
23(3):555–565, jul 1976.

[60] Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interac-
tion networks with application to functional orthology detection. Proceedings of the National
Academy of Sciences, 105(35):12763–12768, 2009.

[61] Terence Tao and Van Vu. Random matrices have simple spectrum. Combinatorica, 37(3):539–
553, Jun 2017.

[62] Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of facebook net-
works. Physica A: Statistical Mechanics and its Applications, 391(16):4165–4180, 2012.

32

[63] Shinji Umeyama. An eigendecomposition approach to weighted graph matching problems.
IEEE transactions on pattern analysis and machine intelligence, 10(5):695–703, 1988.

[64] Haoyu Wang, Yihong Wu, Jiaming Xu, and Israel Yolou. Random graph matching in geometric
models: the case of complete graphs. arXiv:2202.10662, 2022.

[65] Yihong Wu, Jiaming Xu, and H Yu Sophie. Settling the sharp reconstruction thresholds of
random graph matching. 2021 IEEE International Symposium on Information Theory, pages
2714–2719, 2021.

[66] Liren Yu, Jiaming Xu, and Xiaojun Lin. Graph matching with partially-correct seeds. Journal
of Machine Learning Research, 22(2021):1–54, 2021.

[67] Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. Global alignment of protein–protein
interaction networks by graph matching methods. Bioinformatics, 25(12):1259–1267, 2009.

[68] Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. A path following algorithm for the
graph matching problem. IEEE transactions on pattern analysis and machine intelligence,
31(12):60–73, 2009.

33

A The population dynamics

We introduce and analyze the population (or average) version of the mirror descent dynamics. For
that, notice that all randomness in the dynamics defined by (2.4) is given by the input matrices
A,B. In addition, the dependence on these matrices in the iterative process is captured by the
term ∇E(X) = A2X + XB2 − 2AXB (as it is clear from line 3 of Algorithm 2). We define
the population dynamics, by replacing the (random) loss function E(X) by the (deterministic)
population loss, defined as EA,BE(X). This is equivalent to replace the term ∇E(X) in (2.4) by
its expectation ∇E(X) := EA,B∇E(X), which is proven as part of Lemma 10. More formally,
this dynamic, which is deterministic, is defined given a sequence (γk)

∞
k=1 of positive rates, by the

recursion

X(0) = J/n2, (A.1)

X(k+1) = n ·
X(k) ⊙ exp⊙

(
−γk∇E(X(k))

)
∥X(k) ⊙ exp⊙

(
−γk∇E(X(k))

)
∥1,1

. (A.2)

For each k, we define the normalization factor by

Nk :=
1

n
∥X(k) ⊙ exp⊙

(
−γk∇E(X(k))

)
∥1,1,

which is a positive real number.

A.1 One iteration (N = 1)

The following result shows that Algorithm 2 succeeds in finding the ground truth X∗ in one step
(i.e., when N = 1). We will assume without loss of generality that X∗ = Id, and consequently in
the definition of the population gradient, we have∇E(X) = EA,B∇E(X), where the joint law of
A,B is W(n, σ,X∗ = Id). The following result shows that in the case of the population dynamic,
one step is sufficient for recovering the ground truth if we applied Algorithm 1 directly after the
first iteration.

Proposition 1. Let X(1) ∈ Rn×n be the first iterate in the dynamic defined by (A.1) and (A.2),
defined by γ0 ∈ R+. Then GMWM(X(1)) = Id, for any γ0 > 0.

Proof. From (A.1) and (A.2), we have

X(1) = N
−1
0 X(0) ⊙ exp⊙

(
−γ0∇E(X(0))

)
,

where N0 > 0 is the normalization term. Using the definition for the population gradient, Lemma
10 and by a simple calculation, we get

X(1) = N
−1
0 J ⊙ exp⊙

(
−γ0
n2

(
(2 +

n+ 1

n
σ2)J − 2 Id

))
= N

−1
0 J ⊙ exp⊙

(
−γ0
n2

(2 +
n+ 1

n
σ2)J

)
⊙ exp⊙

(
2γ0
n2

Id

)
= N

′
0 exp⊙

(
2γ0
n2

Id

)
,

where we define N
′
0 := N

−1
0
n e−

γ0
n
(2+n+1

n
σ2). Given that e

2γ0
n2 > 1 for γ0 > 0, we deduce that X(1)

satisfies (3.8), which implies that GMWM(X(1)) = Id.

34

A.2 Multiple iterations (N > 1)

In practice, we do not have a priori information on how many iterations we need to perform before
the rounding step, but we expect Algorithm 2 to be relatively robust with respect to the choice
of the number of iterations N (at least in some range), for some choice of the step size sequence
(γk)

N
k=1. The next result proves that this is the case for the population dynamic, in the sense that

all its iterates can be rounded to the ground truth, provided that a certain condition on the rate
sequence (γk)k≥0 holds.

Theorem 4. Consider X(0), X(1), · · · , X(N) ∈ Rn×n the iterates of the dynamic defined by (A.1)
and (A.2), defined by the rate sequence (γk)

N−1
k=0 ∈ R+. If σ ≤ 1 and it holds

N−1∑
k=0

γk <
n− 1

4
log 2, (A.3)

then GMWM(X(k)) = Id, for all 1 ≤ k ≤ N .

Before proving this theorem, we will prove two lemmas that characterize the structure of iterates
in the population dynamic.

Lemma 7. Let (X(k))∞k=0 be a trajectory of the population dynamic given by some step size sequence
(γk)

∞
k=0 ∈ R+. We have that X(k) is symmetric for all k and that

X
(k)
ij =

{
X

(k)
11 if i = j

X
(k)
12 if i ̸= j

(A.4)

Proof. The proof is by induction. Clearly X(0) is symmetric. Assume that X(k) is symmetric.
Notice that

X(k+1) = N
−1
k X(k) ⊙ exp⊙

(
−γk∇E(X(k))

)
, (A.5)

for a constant N
−1
k > 0. The proof follows by the inductive hypothesis, by the fact that ∇E(X) is

symmetric if X is symmetric (see (D.5)) and the fact that the Hadamard product of two symmetric
matrices is symmetric. We also prove (A.4) by induction. The base case k = 0 is evident. We
assume that X(k) satisfies the property (A.4). Using (A.5), the fact that ∇E(X) satisfies (A.4) if
X does, and the fact that (A.4) is closed under Hadamard products, the conclusion follows.

The previous lemma asserts that each entry of X(k) can take only two values, depending on
its location inside the matrix (diagonal or off-diagonal). In this case, it is easy to see that the
greedy rounding of X(k), for any k, will be equal to the identity (the ground truth) if and only

if X
(k)
11 > X

(k)
12 , which is in fact equivalent to say that X(k) is diagonally dominant, i.e. for all

i ∈ [n] we have X
(k)
ii > X

(k)
ij , for all j ̸= i. Since the iterates of the population dynamics X(k), up

to the step K (for a given K ∈ N), are completely determined by the sequence of learning rates
(γk)

K
k=0, we can characterize them as a function of them. To prove the diagonal dominance, it

will be convenient to define the ratio between the off-diagonal and diagonal entries, for k ≥ 1, as
follows,

rk(γ0, · · · , γk−1) :=
X

(k)
12

X
(k)
11

.

Note that, in the previous definition, rk is a function from Rk to R. The following lemma provides
a recursive characterization for these ratios.

35

Lemma 8. For any given sequence (γk)
∞
k=0, the ratio between off-diagonal and diagonal entries rk

defined above, satisfy the following

rk(γ0, · · · , γk−1) = rk−1(γ0, · · · , γk−2)e
−γk−1

aσrk−1(γ0,··· ,γk−2)−(aσ−2)

n(n−1)rk−1(γ0,··· ,γk−2)+n , for k ≥ 2

r1(γ0) = e−2γ0/n2
,

where aσ := 2 + n+1
n σ2.

Proof. To save notation, we will write rk instead of rk(γ0, · · · , γk−1). Using Lemma 7 and (D.5)
we get that

∇E(X(k))12 −∇E(X(k))11 = aσX
(k)
12 − (aσ − 2)X

(k)
11 .

From this and the definition of the population dynamics, we see that

rk = rk−1e
−γk−1(∇E(X(k))12−∇E(X(k))11)

= rk−1e
−γk−1(aσX

(k−1)
12 −(aσ−2)X

(k−1)
11), (A.6)

for k ≥ 2. Similarly,

r1 =
X

(0)
12

X
(0)
11

e−γ0(aσX
(0)
12 −(aσ−2)X

(0)
11)

= e−
γ0
n2 (aσ−(aσ−2))

= e−2
γ0
n2 .

On the other hand, given the fact that X(l) ∈∆n2 we have, for any l ∈ N,

nX
(l)
11 + n(n− 1)X

(l)
12 = 1,

which together with the fact X
(k−1)
12 = rk−1X

(k−1)
11 , imply the following,

X
(k−1)
12 =

rk−1

n(n− 1)rk−1 + n

X
(k−1)
11 =

1

n(n− 1)rk−1 + n
.

Plugging this on (A.6) finishes the proof.

Proof of Thm.4. Given Lemma 7, it suffices to compare X
(k)
11 and X

(k)
12 for each k > 1. Indeed, if

we prove for a given k that X
(k)
12 < X

(k)
11 or, equivalently, that rk < 1, then X(k) will satisfy the

diagonal dominance property on all of its rows, thus we will get GMWM(X(k)) = Id. We now fix a
k ∈ [N − 1]. From Lemma 8, it is easy to see that

rk = r1

k−1∏
j=1

e
−γj

aσrj−aσ+2

n(n−1)rj+n (A.7)

On the other hand, notice that aσ < 4 (because σ ≤ 1), from which we deduce that

aσrj − aσ + 2

n(n− 1)rj + n
≤ aσrj

n(n− 1)rj + n
<

4

n(n− 1)
,

36

for all j ≤ k − 1. This in turn implies that

rk ≥ e−2γ0/n2
k−1∏
j=1

e−4γj/n(n−1) ≥ e
− 4

n(n−1)

∑k−1
j=0 γj .

Given that the sequence of rates satisfies

n(n− 1)

4
log 2 >

N−1∑
j=0

γj ≥
k−1∑
j=0

γj ,

we have that

rk >
1

2
≥ aσ − 2

aσ
,

where the last inequality follows from the fact that σ ≤ 1. Noticing that k was arbitrary in [N −1],
we conclude that rj > aσ−2

aσ
, for all j ∈ [N − 1]. From this, and from the fact that γj > 0, we

deduce that for all 2 ≤ j ≤ N − 1 we have that

e
−γj

aσrj−aσ+2

n(n−1)rj+n < 1,

which combined with (A.7) gives that rk < 1, for 2 ≤ k ≤ N (the fact that r1 < 1 is evident).

B Proof of Lemma 1

Notice that for any Π ∈ Pn and X ∈ Rn×n we have

∥AX −XΠBΠT ∥2F = ∥AXΠ−XΠB∥2F ,

by the unitary invariance of the Frobenius norm. Then, given the permutation invariance of the
set K, if X̂ ∈ S(A,B), then X̂ΠT ∈ S(A,ΠBΠT). It remains to show that if X̂P is the output
of the algorithm described in the lemma with input A,B, then the X̂PΠ

T will its output for the
inputs A,ΠBΠT . For this is sufficient to notice that (given the mechanism of Algorithm 1) that if
the largest element of X̂ is the entry (i, j) then the largest of X̂ΠT is the entry (i, π(j)), where π
is the permutation map associated to Π.

C Proof of Lemma 4

Note that for all i ∈ [n], we have vi is marginally distributed uniformly on Sn−1. This is equivalent

to vi
dist
= g

∥g∥2 , where g is a standard normal vector in Rn. It is easy to see that sign(vi(k))
dist
=

sign(g(k)), and the variables sign(g(1)), . . . , sign(g(n)) are i.i.d Rademacher distributed. Then, for
any given i ∈ [n], we have

P(∀k, vi(k) > 0) =
1

2n
.

The result follows by applying the union bound.

37

D Useful calculations

We gather here some useful calculations, used at different parts of the analysis.

Lemma 9. Let A be a GOE(n) distributed random matrix, then

E(A2) =
n+ 1

n
Id (D.1)

E(A⊗A) =
1

n
vec(Id) vec(Id)T +

1

n
T, (D.2)

where T is a n2 × n2 matrix that represents the transposition operator defined on Rn×n.

Proof. Take i, j ∈ [n]. We have

E(A2)ij =

n∑
k=1

E(AikAkj)

=

n∑
k=1

1

n
δij(1 + δki),

from which we get (D.1). To prove (D.2), we take any matrix X ∈ Rn×n and compute

E(AXA)ij =
n∑

k,k′=1

E(AikXkk′Ak′j)

=
n∑

k=1

1

n
Xkkδij(1 + δki) +

1

n
Xji

=
1

n
δij(Tr(X) +Xii) +

1

n
(1− δij)Xji,

and from this we deduce that

E(AXA) =
1

n
(Tr(X) Id+XT),

=
1

n
(⟨X, Id⟩F Id+XT).

Given that (A⊗A) vec(X) = AXA, it is clear that the previous implies the expression (D.2).

Lemma 10. Let A,B ∼ W(n, σ,X∗ = Id). Recall the definition E(X) = ∥AX − XB∥2F or, in
vector notation, E(vec(X)) = vec(X)TH vec(X), where H = (Id⊗A−B ⊗ Id)2. We have

∇EA,BE(vec(X)) = EA,B∇E(vec(X)) = E(H) vec(X) (D.3)

and

E(H) = (2 + σ2)
(n+ 1

n

)
(Id⊗ Id)− 2

n

(
vec(Id) vec(Id)T + T

)
, (D.4)

where T ∈ Rn2×n2
is the matrix representing the transpose transformation in Rn×n. In particular,

we have (in matrix language)

EA,B∇E(X) = (2 + σ2)
(n+ 1

n

)
X − 2

n

(
Tr(X) Id+XT

)
(D.5)

38

Proof. Both equalities in (D.3) follow from EA,B(E(vec(X))) = vec(X)TEA,B(H) vec(X) and lin-
earity of expectation. On the other hand, a simple calculation shows that

E(H) = E(Id⊗A2) + E(B2 ⊗ Id)− 2E(B ⊗A)

= E(Id⊗A2) + E(A2 ⊗ Id) + σ2E(Z2 ⊗ Id)− 2E(A⊗A).

From this and Lemma 9, the expression (D.4) follows. Equality (D.5) follows by translation of
(D.3) and (D.4) to the matrix language.

E Useful facts about positive semidefinite matrices

The following result proves that the entrywise exponential of a conditionally positive definite matrix
is positive definite. Recall that a n×n symmetric matrix M is said to be conditionally p.s.d (resp.
conditionally p.d) if for all v ∈ Rn×n such that vT1 = 0 and v ̸= 0 we have vTMv ≥ 0 (resp.
vTMv > 0).

Theorem 5. Let M ∈ Rn×n be conditionally p.s.d. Then the following statements hold.

(i) exp⊙(tM) is p.s.d. for all t ≥ 0.

(ii) If, in addition, M is conditionally p.d, then exp⊙(tM) is p.d. for all t > 0.

(iii) exp⊙(M) is p.d. if and only if Mii +Mjj > 2Mij for all i ̸= j.

Theorem 5 parts (i) and (iii) are part of [58, Lemma 2.5]. Notice that part (ii) follows from
part (iii).

Lemma 11. Let A,B ∈ Rn×n be symmetric matrices. If A is p.s.d with nonzero diagonal entries,
and B is p.d., then A⊙B is p.d.

Proof. Denote λmin(B) to be the smallest eigenvalue of B (which is strictly positive by assumption).
Then by the Schur product theorem we have that

A⊙ (B − λmin(B) Id) ≽ 0 ⇐⇒ A⊙B ≽ λmin(B) diag(A11, A22. . . . , Ann) Id .

Since λmin(B) > 0 and the entries A11, . . . , Ann are nonzero, we conclude that A⊙B ≻ 0.

Lemma 12. Let M(t) ∈ Rn×n be a symmetric matrix which is also integrable w.r.t the Lebesgue
measure over the positive reals. If M(t) is p.s.d (resp. p.d) for t > 0, then the matrix

∫∞
0 M(t)dt

is p.s.d (resp. p.d).

Proof. For any v ∈ Rn we have from the integrability of M(t) that

vT
(∫ ∞

0
M(t)dt

)
v =

∫ ∞

0
vTM(t)vdt

from which the statement follows directly.

39

	Introduction
	Related work
	Notation.

	Algorithms
	A greedy rounding procedure and a sufficiency lemma
	Mirror descent algorithm for graph matching
	Generative models for correlated random graphs

	Theoretical results
	Uniqueness of the solution of simplex Graph Matching
	Noiseless EMD dynamics
	Alternative analysis for GRAMPA in noiseless setting

	Numerical experiments
	Synthetic data setup
	Comparison with other convex optimization-based methods
	Comparison with PGD
	Experimental comparison between (2.1) and diagonal dominance

	Real data
	Computer vision dataset

	Autonomous systems
	Facebook networks

	Concluding remarks
	The population dynamics
	One iteration (N=1)
	Multiple iterations (N>1)

	Proof of Lemma 1
	Proof of Lemma 4
	Useful calculations
	Useful facts about positive semidefinite matrices

