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Abstract

In order to address stringent standards, energy efficiency objectives or also cost reduction imperatives, the op-
timal design of complex industrial structures is an important concern. In this context, parametric optimization
offers a powerful tool for engineers. Taking into account nonlinear behavior in the models allows performing
high-fidelity numerical simulations and thus reducing safety margins. However, in vibration dynamics, the
use of classical global optimization methods on industrial-scale structures with nonlinearities is not affordable
due to too many required solver calls to localize the optimum. This work proposes an approach to achieve
global constrained optimization of structures with local nonlinearities in vibration. The strategy is based on
a Bayesian Optimization process relying on two tools: (i) a Gaussian Process as a surrogate model and (ii) a
dedicated nonlinear mechanical solver based on the Harmonic Balance Method. These two tools are presented
in detail. Their performance and characteristics are presented and analyzed on academic and industrial-scale
examples. The whole strategy is finally applied on a Duffing oscillator without optimization’s constraint and
a gantry crane to illustrate the efficiency on constrained optimization. In addition, many discussions are made
relative to the number of initial sample points. The results show that the proposed approach is able to find the
global optimum with a limited number of solver calls, demonstrating its ability to be integrated into an actual
industrial design process.
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1 Introduction
The design of complexmechanical structures is an essential process for which the optimalmechanical performance
of the structures is pursued in order to satisfy challenging standards that are constantly evolving. However, this
process faces a contradiction between the need for high-fidelity numerical simulations and the requirement for
efficient optimization strategies. In the case of vibration dynamics, linear models are often insufficient to capture
local nonlinear phenomena such as contact and friction, leading to the use of overly conservative safety margins
[1]. One current important concern of industrial companies remains to reduce these margins. This is for example
the case in processes such as industrial structures retrofitting or mass reduction, leading to enhancements in energy
consumption and cost savings (see for instance [2]). Among numerous fields concerned by this issue, one can cite
nuclear standards which have strongly evolved from the 2011 Fukushima accident [3, 4]. Another example is the
transport industry which is facing the challenge of energy efficiency [5].

In order to contribute to addressing these issues, this work aims at proposing an efficient global strategy to
pursue constrained global parametric optimizations on nonlinear structural mechanical problems on vibrations.
As a way to provide an adapted framework for future uses of industrial solvers, the considered optimization
process has to remain non-intrusive. The proposed approach addresses two arising challenges: (i) the seek for an
efficient and robust mechanical solver that can deal with nonlinearities and underlying complicated phenomena
(bifurcations, quasi-periodic oscillations, chaos, etc.), and (ii) the limitation of the number of expensive high-
fidelity mechanical simulations. Thus, two main ingredients are introduced: (i) a mechanical nonlinear solver
based on model order reduction using Hurty-Craig Bampton technique [6], Harmonic Balance Method (HBM)
[7] and continuation technique, and (ii) a constrained Bayesian Optimizer [8].
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The paper is organized as follows. First, a brief analysis of the previous works related to global parametric
optimization of nonlinear dynamics problems is proposed (see Section 2). The considered optimization work-
flow is presented after. Then, the mechanical solver, relying on HBM, Alternating Frequency-Time (AFT) and
a path-following continuation procedure, is detailed (see Section 3). Afterward, Bayesian Optimization (BO) is
introduced (see Section 4). Gaussian Process (GP) models are briefly presented and the enrichment process using
the Constrained Expected Improvement (CEI) is described and illustrated on academic mathematical problems
(see Section 4.3). Finally, the whole strategy is applied for the unconstrained optimization of a Duffing oscilla-
tor (see Section 5.1) and the constrained optimization of an actual industrial gantry crane subjected to sporadic
contact (see Section 5.2).

2 Previous works and considered approach

2.1 Nonlinear structural dynamics methods
In the context of nonlinear structure optimization in vibration dynamics, the quantities of interest for the evaluation
of the objective and constraint functions (e.g. displacement, acceleration, resonance frequencies, mechanical
stress, etc.) are obtained from the structure’s steady-state response to an external excitation. For large industrial
structures, the response is usually obtained through a finite element (FE) computation. Most of the time, industrial
FE software products include nonlinear dynamical solvers generally based on a step-by-step time integration
procedure such as the Newmark scheme [9–11]. These methods are however computationally costly, especially
with weakly damped structures, since the computation of the transient response is required. Therefore, the use of
one of these solvers in the context of global parametric optimization is not practicable.

More efficient methods have been developed and lately applied to industrial-scale problems. The shooting
method [12–14] avoids the transient computation by seeking periodic solutions using the resolution of a boundary
value problem. However, this technique requires numerous time integrations that can make it computationally
expensive even though parallelization can be used. Methods based on orthogonal collocation [15] have been
implemented in several software programs [16–20] but are not often used for large systems.

Finally, frequency domain methods, that aim at finding the Fourier coefficients of periodic solutions, have also
been developed. Some studies use the trigonometric collocation [21, 22], but the HBM is the most widely used
frequency domain method. First introduced as an analytical method [7, 23, 24], HBM has been improved over
time, such as the incremental harmonic balance [25–28], making it suitable for numerical computation. The use
of the alternating frequency-time domain method (AFT) [29] to evaluate the nonlinear terms in the time domain
allows the consideration of a wide variety of nonlinearities. More recently, the use of HBM in combination
with reduction techniques and continuation procedures [30] has led to applications on industrial-scale structures
among which contact and friction problems for turbomachines [31–33], steam generators [34, 35], and spacecraft
structures [36], but also nonlinear material problems with elastomeric isolators [37] for instance. Following these
works, multiple software packages performing HBM have been proposed, some of which are listed in [38].

In conclusion, when looking for periodic solutions, HBM is an efficient, robust and suitable tool for the con-
sidered problem of local nonlinearities. Moreover, it is well adapted to be used as a parametric mechanical solver
considered as black-box in an optimization procedure. It will be later described in detail in Section 3.

2.2 Structural mechanics optimization methods
Optimization techniques have been proved useful for the design of structures [39]. Most of the time, solvers are
used as black-box to compute the objective and constraint functions. Since there is no explicit formulation of these
functions with respect to the design variables, ensuring global minimum convergence remains an actual challenge
because of lack of prior knowledge about local minima. Thus, a global optimization procedure is necessary. In
this purpose, one strategy is to perform numerous local optimizations (e.g. gradient descent [40], quasi-Newton
methods [41]) from different starting points. But there is no guarantee to find the global minimum and numerous
function evaluations are needed. Other specific global optimization algorithms, often inspired by processes found
in nature, have been developed such as simulated annealing [42], evolutionarymethods [43], or swarm intelligence
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[44, 45]. However, all of these methods require a significant amount of evaluations of the objective and constraint
functions to converge accurately, and their use is not suitable for the optimization of large nonlinear structures.

More recently, surrogate-based optimization has been developed [46] to provide inexpensive accurate approxi-
mations of actual functions based on only a few evaluations of them. Consequently, it leads to significant reduction
of the number of solver calls in various applications (optimization, sensitivity analysis, uncertainty quantification,
etc.). It relies on the building of a machine-learning model able to approximate the black-box functions. Bayesian
Optimization [8, 47–49] mixes surrogate models and the use of decision criterion (called acquisition function)
for sequential selection and model updating. Several implementations have been proposed as listed in [49]. BO
is generally based on Gaussian Process [50, 51] that is well adapted to the iterative process and provides robust
error criterion along the design space.

Applications of optimization techniques on nonlinear mechanics problems in dynamics forms a wide field of
research. The works of [52–54] focus on the use optimization to tune dynamic vibrations absorbers. Dedicated
approaches for dealing with contact with and without friction have been presented in [55–58]. Consideration of
topology optimization is currently also very active in the context of nonlinear structural mechanics, see for instance
[59–67]. Optimization in the context of structural crashworthiness has been subject of many developments to
improve efficiency of the whole process [63, 64, 68, 69]. Recently, a review presents optimization techniques
dedicated to seismic structural design [70].

In order to avoid too expensive dynamical nonlinear problems, [60, 71–75] proposes the use of the Equivalent
Static Load Method (ESLM). Readers can refer to [76] for a large review on optimization techniques for time-
dependant problem.

Finally, Harmonic Balance Method (see Section 2.1), which is the chosen technique for solving mechanical
problems along a frequency range, has been used in previous works on optimization. It has been employed with
gradient descent [77, 78], or recently to serve the building and enrichment of a surrogate model in compliance with
the definition of Bayesian Optimization [67, 79]. Another proposed approach [80] involves a Gaussian Process
surrogate model built using nonlinear normal modes (NNM). NNM have been also used to achieve specified
frequency-amplitude dependence [81]. Constrained optimization problems have been studied for the design of
nonlinear energy sink using support vector machines [82].

In conclusion, although a very rich literature concerning optimization of nonlinear dynamics problems exists,
the proposed strategy in this work is original in the sense that it aims at proposing a global constrained optimization
strategy for nonlinear structures in vibration dynamics. The proposed work is incorporated in the context of the
development of an efficient non-intrusive technique that could be applied to industrial-scale structures. For these
reasons, the optimization is based in this work on the use of Bayesian Optimization using a Gaussian Process and
a Constrained Expected Improvement acquisition function due to its ability to efficiently converge to the global
minimum with a limited number of solver calls. Moreover, this strategy remains completely non-intrusive within
the mechanical solver to be applied to industrial-scale structures.

2.3 Considered workflow
The whole developed optimization strategy is summarized on Fig. 1. Themethod relies on a Constrained Bayesian
Optimization in combination with the Harmonic Balance Method and is referred to as CBO-HBM thereafter.

The mechanical solver (denoted HBM solver on Fig. 1) is employed to compute the structure’s objective y
and constraints h functions for a set of design parameters x. In the Bayesian Optimization framework, Gaussian
Processes of the objective and constraint functions are built and iteratively enriched starting from an initial set
of sample points x(𝑖) , 𝑖 ∈ J1; 𝑛sK and their associated responses. The enrichment procedure is governed by
a Constrained Expected Improvement acquisition function 𝛼CEI. For this purpose, an internal global common
optimizer is used to select the best new candidate x(𝑛s+ 𝑗 ) as enrichment point. Thus, at 𝑗-th iteration (denoted BO
iterations on Fig. 1), the enrichment procedure based on an existing growing database of points and responses
{x(𝑖) , y(x(𝑖) ), h(x(𝑖) )} with 𝑖 ∈ J1; 𝑛s + 𝑗K is the key point of the Bayesian Optimization. Finally, a convergence
criterion or a dedicated budget (allowed number of FEM simulations or computation time) is used to stop the
Bayesian Optimization.

All these notions as well as the general workflow and the notations introduced in Fig. 1 are later detailed and
discussed in Section 4.
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HBM solver Gaussian
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Inital sampling
x(𝒊) , 𝑖 ∈ J1; 𝑛sK

Objective
function
y(x(𝒏s+ 𝒋))

Constraint
functions
h(x(𝒏s+ 𝒋))

Stopping
criterion

Optimal pa-
rameters

x∗

CEI acquisition
function

Mean
predictions
ŷ(x), ĥ(x)

Variances
𝑠2
y(x), 𝑠2

h(x)

Optimizer 𝛼CEI(x)

Optimization loop to

find argmax𝛼CEI (x)

New sample (enrichment)
x(𝑛s+ 𝑗)

𝑗 ← 𝑗 + 1

BO iterations

Figure 1: Workflow of the constrained optimization strategy.

Remark on the notations
The whole paper contains many specific notations for each part corresponding to different disciplines. Note that
the bold style is used to designate vectors and matrices. In addition, lowercase bold notation is used for vectors
while uppercase bold notation is used for matrices.

3 Mechanical solver
The motion of a nonautonomous nonlinear dynamical system discretized with 𝑛 degrees of freedom (DOFs) can
be described by the general equation:

𝑴 ¥𝒒(𝑡) + 𝑪 ¤𝒒(𝑡) + 𝑲𝒒(𝑡) + 𝒇nl ( ¤𝒒(𝑡), 𝒒(𝑡)) = 𝒇ext(𝜔, 𝑡), (1)

where 𝑴, 𝑪 and 𝑲 are respectively the mass, damping and stiffness matrices. Vector 𝒒 represents the DOFs
and the notations ¤• and ¥• refer to the successive derivatives with respect to time 𝑡. Thus, notations ¥𝒒(𝑡) and
¤𝒒(𝑡) designate respectively the speed and acceleration. Vector 𝒇nl ( ¤𝒒(𝑡), 𝒒(𝑡)) contains the nonlinear forces and
𝒇ext(𝜔, 𝑡) corresponds to the periodic excitation forces with angular frequency 𝜔. The resolution of Eq. (1) over
an excitation frequency range is carried out using an in-house Python program based on the HBM. The main
elements of the method are detailed in the following subsections.

3.1 Harmonic Balance Method
The HBM [7, 23–28] aims at finding a periodic solution with angular frequency 𝜔 of Eq. (1) approximated by a
Fourier series truncated to the 𝑛h-th harmonic:

𝒒(𝑡) ' 𝒂0 +
𝑛h∑
𝑘=1

(𝒂𝒌 cos(𝑘𝜔𝑡) + 𝒃𝒌 sin(𝑘𝜔𝑡)) , (2)

with 𝒂𝒌 and 𝒃𝒌 the vectors of the real Fourier coefficients respectively related to the cosine and sine terms that
are the unknowns in the frequency domain. Equally, 𝒇nl and 𝒇ext are approximated by a truncated Fourier series
where the vectors of the Fourier coefficients are respectively denoted (𝒂nl

𝒌 , 𝒃
nl
𝒌 ) and (𝒂ext

𝒌
, 𝒃ext

𝒌
):

𝒇nl (𝒒(𝑡), ¤𝒒(𝑡)) ' 𝒂nl
0 +

𝑛h∑
𝑘=1

(
𝒂nl
𝒌 cos(𝑘𝜔𝑡) + 𝒃nl

𝒌 sin(𝑘𝜔𝑡)
)
, (3)
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𝒇ext(𝜔, 𝑡) ' 𝒂ext
0 +

𝑛h∑
𝑘=1

(
𝒂ext
𝒌 cos(𝑘𝜔𝑡) + 𝒃ext

𝒌 sin(𝑘𝜔𝑡)
)
. (4)

The following frequency variables are then introduced to gather these coefficients into 𝑛(2𝑛h + 1) × 1 vectors:

�̃� =
[
𝒂>0 𝒂1

> 𝒃1
> · · · 𝒂>𝒌 𝒃>𝒌 · · · 𝒂𝒏h

> 𝒃𝒏h
>]>

, (5)

�̃�nl =
[
𝒂nl

0
>

𝒂nl
1
>

𝒃nl
1
> · · · 𝒂nl

𝒌

>
𝒃nl
𝒌

> · · · 𝒂nl
𝒏h

>
𝒃nl
𝒏h

>
]>

, (6)

�̃�ext =
[
𝒂ext

0
> 𝒂ext

1
> 𝒃ext

1
> · · · 𝒂ext

𝒌
> 𝒃ext

𝒌
> · · · 𝒂ext

𝒏h
> 𝒃ext

𝒏h
>]>

. (7)

Eqs. (2) to (4) are substituted into Eq. (1) and the resulting expression is projected on the trigonometric basis
following a Galerkin procedure [83] to get rid of the time dependency. This results in a 𝑛(2𝑛h + 1) nonlinear
algebraic system:

�̃� ( �̃�, 𝜔) = 𝒁(𝜔) �̃� + �̃�nl (�̃�, 𝜔) − �̃�ext (𝜔) = 0. (8)

Using the symbol ⊗ to represent the Kronecker product, the 𝑛(2𝑛h + 1) × 𝑛(2𝑛h + 1) block diagonal matrix 𝒁(𝜔)
writes:

𝒁(𝜔) = 𝜔2∇2 ⊗ 𝑴 + 𝜔∇ ⊗ 𝑪 + 𝑰2𝑛h+1 ⊗ 𝑲, (9)

where 𝑰2𝑛h+1 is the identity matrix of size 2𝑛h + 1 and ∇ is the differential operator defined by:

∇ =



0
(0)

. . .

. . .

(0)

∇1

∇𝒌

∇𝒏h



, (10)

with:
∇𝒌 =

[
0 𝑘
−𝑘 0

]
. (11)

In the case of forced base motion, which is the situation in the case studied in Section 5.2, the terms related to the
forced DOFs are separated and Eq. (8) is solved on the unknown DOFs.

The nonlinear Eq. (8) can be solved using an iterative procedure such as the Newton-Raphson method [84],
employed in this work. Since the external force 𝒇ext is known in the time domain and periodic, the determination
of �̃�ext is straightforward. However, an analytical expression of the nonlinear forces is often not known in the
frequency domain making the evaluation of the �̃�nl term challenging.

3.2 The Alternating Frequency/Time method
The AFT algorithm introduced in [29] offers an efficient way to numerically compute the �̃�nl term with successive
transitions between the frequency and time domains using the discrete Fourier transform. The process is repre-
sented in Fig. 2 where the application of the direct discrete Fourier transform (DFT) is represented by the function
F while the inverse discrete Fourier transform (DFT⁻¹) is denoted F −1. In this illustration, an arbitrary set of
Fourier coefficients is taken for �̃�, and the nonlinear term is such that 𝒇nl ( ¤𝒒(𝑡), 𝒒(𝑡)) = 0.2𝒒3 (𝑡).

Starting from the �̃� term, DFT⁻¹ allows an evaluation of vectors 𝒒 and ¤𝒒 at 𝑛𝑡 time steps (𝑡1, · · · , 𝑡𝑛𝑡 ) equally
spread over a period:

𝖖 =


𝒒(𝑡1)
...

𝒒(𝑡𝑛𝑡 )

 = F −1 ( �̃�), (12)
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Figure 2: The alternating frequency time process.

¤𝖖 =


¤𝒒(𝑡1)
...

¤𝒒(𝑡𝑛𝑡 )

 = F −1 (𝜔∇�̃�). (13)

Assuming its analytical expression is known in the time domain, the nonlinear term is then evaluated at these time
steps forming the 𝖋nl vector written as:

𝖋nl (𝖖, ¤𝖖) =

𝒇nl (𝒒(𝑡1), ¤𝒒(𝑡1))

...
𝒇nl (𝒒(𝑡𝑛𝑡 ), ¤𝒒(𝑡𝑛𝑡 ))

 . (14)

The application of the DFT to this vector allows switching back to the frequency domain in order to obtain the
�̃�nl term. The whole process can be summarized by the following expression:

�̃�nl ( �̃�, 𝜔) = F (𝖋nl (F −1 ( �̃�),F −1 (𝜔∇�̃�))). (15)

The number of time steps 𝑛𝑡 is a significant parameter here. In order to prevent aliasing errors, the Nyquist-
Shanon criterion [85] gives a lower bound value: 𝑛𝑡 > 2𝑛h, but a much larger value of 𝑛𝑡 is often required to give
an accurate estimation of the nonlinear term for strong nonlinearities. Although empirical rules depending on the
mechanical system have been attempted, no global theory seems to exist to identify a correct number of samples
[86].

The AFT technique therefore enables the resolution of Eq. (8) with a large variety of nonlinearities. Although
the computational cost can be important with large values of 𝑛𝑡 , the DFT can be performed efficiently using
the Fast Fourier Transform (FFT) algorithm [87] making it computationally practicable. Moreover, the AFT
method provides a semi-analytical expression of the residual’s Jacobian presented on Eq. (8) needed for an iterative
resolution (see [88–90] for details). This saves an important amount of time compared to a numerical evaluation
with finite differences for instance.
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𝜼𝑘

𝜼𝑘+1
𝜼 (𝑚)
𝑘+1

𝜼 (0)
𝑘+1

Δ𝑠𝑘+1

𝜔

�̃�

Figure 3: Schematic representation of the pseudo-arclength path continuation procedure in one dimension.

3.3 Path following continuation procedure
The previously mentioned Newton-Raphson iterative method to solve Eq. (8) requires an initial guess �̃� (0) . If this
initial guess is not close enough to the exact solution, the convergence may be too slow or the solver may outright
diverge. In this work, the values of the objective and constraint functions are obtained through the computation
of the solution under the variation of the angular frequency excitation 𝜔, called the frequency response. Since
nonlinear dynamical systems exhibit complex behavior, bifurcations may occur and the Jacobian becomes singular
at turning points, making impossible the iterative resolution. Numerical path following continuation has thus
been applied with harmonic balance to compute a branch of solution points [91, 92]. This technique allows for
overcoming turning points and increases the efficiency and robustness of the solver.

The predictor-corrector methods form a popular class of algorithms to perform continuation with the HBM [38,
93]. First, a prediction is made from the previously obtained solution. Corrections are then made using an itera-
tive procedure with the prediction as an initial guess. Another alternative is based on the asymptotic numerical
method [94, 95] and consists in expanding the solution path in a Taylor series with respect to an arc length param-
eter. In the present work, a predictor-corrector method is used since it is better suited for problems with strong
nonlinearities such as unilateral contact [86]. The prediction is made with a tangent predictor and orthogonal
corrections (sometimes referred as pseudo-arclength) are performed with the Newton-Raphson method.

In the following lines, the theory behind the pseudo-arclength path following continuation procedure is briefly
explained. A schematic illustration of the process in 1D is given in Fig. 3.

Let 𝜼𝑘 =
[
�̃�>𝑘 𝜔𝑘

]> be a previously found solution of Eq. (8). The unit tangent vector t𝑘 =
[
t>
𝒒𝑘

t>𝜔𝑘

]>
is

evaluated using the Keller algorithm [89, 96]. The predicted point 𝜼 (0)
𝑘+1 is taken on a hypersphere of Δ𝑠𝑘+1 radius

along the tangent vector:
𝜼 (0)
𝑘+1 = 𝜼𝑘 ± Δ𝑠𝑘+1t𝑘 . (16)

As detailed later, the prediction direction changeswhen fold bifurcations are encountered. The corrections are then
iteratively made with the constraint that any next point must lie in the prediction direction orthogonal hyperplane.

This results in the resolution of the following linear system to determine the increment Δ𝜼 (𝑚)
𝑘+1 =

[
Δ�̃� (𝑚)

𝑘+1
Δ𝜔 (𝑚)

𝑘+1

]
at each

iteration: [
𝑱𝒒 (𝜼 (𝑚)

𝑘+1 ) 𝑱𝜔 (𝜼 (𝑚)
𝑘+1 )

t𝒒𝑘
t𝜔𝑘

] [
Δ�̃� (𝑚)

𝑘+1
Δ𝜔 (𝑚)

𝑘+1

]
=

[
�̃� (𝜼 (𝑚)

𝑘+1 )
0

]
, (17)
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where 𝑱𝒒 ( �̃�, 𝜔) =
𝜕 �̃�

𝜕 �̃�
( �̃�, 𝜔) and 𝑱𝜔 ( �̃�, 𝜔) =

𝜕 �̃�

𝜕𝜔
( �̃�, 𝜔) are the Jacobian matrices of �̃� with respect to �̃� and 𝜔.

The correction is reiterated as long as the norm of the residual ‖ �̃�‖ is greater than a small fixed parameter 𝜀.
In order to detect fold bifurcations, and thus the sign in Eq. (16), the test function defined in [97] is used. A

fold bifurcation occurs when the Jacobian 𝑱𝒒 has a single zero eigenvalue. The continuation method can then
overcome turning point by ensuring that the sign in Eq. (16) is the same as the sign of det(𝑱𝒒 (𝜼𝑘)).

The step length Δ𝑠 needs to be small enough to ensure fast convergence and to follow the nonlinear behaviors
of the solution, but it should also be as large as possible to reduce the computational cost. It is common practice
to automatically adapt Δ𝑠 using empirical rules [38]. Many rules can be employed [92], but while working with
Newton-type methods, the number of iterations until convergence is often used to adapt the step length [30]. In
this work, the evolution of Δ𝑠 is adapted from [90]:

Δ𝑠𝑘+1 = Δ𝑠𝑘2
𝑛iter
𝑘

−𝑛tar

𝑛tar , (18)

with 𝑛iter𝑘 the number of iterations needed to compute 𝜼𝑘 and 𝑛tar a targeted number of iterations. A maximum
and minimum value, respectively Δ𝑠max and Δ𝑠min, are implemented. A maximum number of iterations 𝑛max is
also established, and if convergence is not achieved when this value is reached, the continuation process restarts
with a smaller value for Δ𝑠 (for instance, Δ𝑠 can be divided by 2). Since no general rule exists, 𝜀, 𝑛tar, Δ𝑠min and
Δ𝑠max are determined from empirical analysis depending on the studied structure. Another empirical trick used
to improve the solver efficiency is to slightly increase Δ𝑠 if 𝑛iter𝑘 < 𝑛iter𝑘−1, even if 𝑛iter𝑘 > 𝑛tar.

The association of the pseudo-arclength path following continuation procedure along with HBM and AFT is
referred as the mechanical solver thereafter. It allows us to solve the nonlinear dynamical Eq. (1) over a range of
frequencies.

4 Bayesian Optimization
During a parametric optimization process, the goal is to find the parameters x∗ that minimize a particular quantity
of interest, called objective function y. The mathematical expression of the unconstrained problem is:

x∗ = arg min
x∈D

y(x), (19)

where the design spaceD of dimension 𝑛p denotes the design space of the varying parameters. But in a more gen-
eral case, the parameters are subjected to a set of inequality constraints h 𝑗 for 𝑗 ∈ J1; 𝑟K, such that the constrained
optimization problem is written:

x∗ = arg min
x∈D

y(x),

subjected to (s.t.) h 𝑗 (x) ≥ 0 ∀ 𝑗 ∈ J1; 𝑟K. (20)

The variation of y over D is typically unknown and local minima can exist. It is therefore required to conduct
a global optimization procedure. Although the mechanical solver defined in Section 3 can be relatively efficient
compared to other nonlinear dynamical solvers, it remains too expensive to be used within a usual global optimiza-
tion algorithm [42–45] requiring many evaluations of the objective function (several hundred or even thousands).
The proposed strategy, thus relies on a Bayesian Optimization [8, 47] based on Gaussian Process surrogate model
approximating the objective and all the constraint functions. An acquisition function is used to iteratively enrich
all the surrogate models. This optimization phase is here conducted using the Python library BoTorch [98] and
the integrated GP model from GPyTorch [99] both built on the PyTorch module. Thereafter, a brief explanation
of the theoretical background of GP and BO is given. For more details about the tackled notions, one can refer to
[51, 100]. Finally, a short review on surrogate-based evolutionary optimization techniques can be found in [101].

4.1 Gaussian Process surrogate model
A surrogate model (or metamodel) is a mathematical model that aims at approximating a function from a limited
number of analysis data. In engineering, they can be used to interpolate the results coming from an expensive
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simulation, to act as calibration mechanisms for predictive codes, to deal with noisy or missing data or gain in-
sight into the functional relationships between variables [102]. The literature on surrogate models is vast and
numerous methods have been developed for the past 40 years. The range of use is also wide and leads to many
reviews and comparisons of surrogate models applied to different fields. Especially, previous works aim at com-
paring surrogates for global approximation [103–114], optimizationwith surrogatemodels [115–132], uncertainty
quantification [133, 134], multi-fidelity approaches [135], and sensitivity analysis [136]. Among these reviews,
Gaussian Process [50] appears to be an efficient and robust surrogate model that can be used for a wide range of
applications. Although it is not the most efficient surrogate model on certain applications, it can provide a robust
error estimator based on a rigorous probabilistic framework which can be used within the acquisition function of
a Bayesian Optimization.

In this work, the expensive objective and constrained functions y and h 𝑗 are approximated using independent
GP surrogate models.

For simplicity’s sake, the following paragraphs detail the theory behind GP for the approximation of y. Con-
straint functions are built using the same principle.

Gaussian Process prediction was first used in the geostatistical field by D. Krige [137] where the method is
called kriging [138] and in meteorology [139]. It was applied in the context of computer experiments [140] based
on deterministic observation data which inspired the Efficient Global Optimization (EGO) method presented by
[8]. In this study, the functions are evaluated through a mechanical simulation which is considered deterministic.
Therefore, all the surrogate models need to interpolate the data over the evaluated points.

The surrogate model of a function y is built from a set of 𝑛s sample points x(𝑖) ∈ D and the corresponding
observations y(x(𝑖) ) for 𝑖 ∈ J1; 𝑛sK. Throughout this work, the samples are determined using a Latin-Hypercube
method [141] because it gives non-redundant sampling with a low discrepancy. The function y is supposed to be
the fulfillment of a stochastic process 𝑌 described by its mean function 𝜇 and its kernel function (or covariance
function) 𝜅. For each x ∈ D, 𝑌 (x) follows a normal distribution N(𝜇(x), 𝜅(x, x)) such that 𝑌 (x) = 𝜇(x) + 𝑍 (x),
with 𝑍 (x) being a random variable that satisfies cov(𝑍 (x(𝑖) ), 𝑍 (x( 𝑗 ) )) = 𝜅(x(𝑖) , x( 𝑗 ) ) for 𝑖, 𝑗 ∈ J1; 𝑛sK. The
mean function of 𝑌 is sought as a regression:

𝜇(x) =
𝑝∑

𝑚=1
𝛽𝑚 𝑓𝑚 (x), (21)

where ( 𝑓𝑚)𝑚∈J1;𝑝K are 𝑝 basis functions (usually chosen polynomial) and (𝛽𝑚)𝑚∈J1;𝑝K are the associated coeffi-
cients of the regression. Moreover, this work uses the Matérn 5/2 kernel which is acknowledged as an efficient
default kernel function [49]. For two observed parameters set x(𝑖) and x( 𝑗 ) , the kernel function then writes:

𝜅(x(𝑖) , x( 𝑗 ) ) = 𝜎2
(
1 +

√
5𝑑 + 5

3
𝑑2

)
exp(−

√
5𝑑), (22)

where 𝑑 = (x(𝑖)−x( 𝑗 ) )>Θ−2 (x(𝑖)−x( 𝑗 ) ) is the distance between x(𝑖) and x( 𝑗 ) scaled by the lengthscale parameters
matrix Θ, and 𝜎 is the standard deviation.

While fitting the GP with the 𝑛s observations, the hyperparametersΘ, 𝛽𝑚 and 𝜎 are determined by maximizing
the likelihood of the sample using optimization methods. In this process, the vector 𝜷 = (𝛽𝑚)𝑚∈J1;𝑝K can be
analytically expressed according to the other hyperparameters [50] :

𝜷 = (𝑭>K−1𝑭)−1𝑭>K−1𝒚, (23)

where for (𝑖, 𝑗) ∈ J1; 𝑛sK and 𝑚 ∈ J1; 𝑝K:
• 𝑭 is the matrix containing the regressors evaluated at the observation points such that (𝑭)𝑚𝑖 = 𝑓𝑚 (x(𝑖) ),

• K is the symmetric kernel matrix such that (K)𝑖 𝑗 = 𝜅(x(𝑖) , x( 𝑗 ) ),

• 𝒚 is the observed responses vector such that (𝒚)𝑖 = y(x(𝑖) ).

In this work, the hyperparameters are determined by maximizing the logarithm of the marginal likelihood using
the PyTorch built-in Adam optimizer [142] with multiple restarts.
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Figure 4: GP prediction for y(𝑥) = exp(−𝑥/10) cos(𝑥) + 𝑥/10 over [−1;15].

To predict a point x(0) ∈ D, the idea is to build the best linear unbiased predictor 𝑌 (x(0) ) of the Gaussian
Process 𝑌 (x(0) ). This predictor provides a mean prediction ŷ(x(0) ) and the associated variance 𝑠2 (x(0) ):

ŷ(x(0) ) = 𝒇 (0)
>
𝜷 + 𝜿 (0)

>K−1 (𝒚 − 𝑭𝜷), (24)

𝑠2 (x(0) ) = 𝜅(x(0) , x(0) ) −
[
𝜿 (0)

𝒇 (0)

]> [
K 𝑭
𝑭> 0

]−1 [
𝜿 (0)

𝒇 (0)

]
, (25)

with 𝒇 (0) the vector containing the 𝑝 terms 𝑓𝑚 (x(0) ) of the regression basis evaluated at x(0) and 𝜿 (0) the kernel
vector such that (𝜿 (0) )𝑖 = 𝜅(x(𝑖) , x(0) ). An illustration is proposed in Fig. 4 where a GP, built from 6 sample points,
approximates the unidimensional actual function y such that ∀𝑥 ∈ R, y(𝑥) = exp(−𝑥/10) cos(𝑥) +𝑥/10. On Fig. 4,
Expected Improvement (see Eq. (26)) is also plotted. As previously mentioned, since the data are deterministic,
the prediction interpolates the sample points and the variance is equal to 0 at these points. The maximum values
of the variance are found where information is lacking, which in the deterministic case corresponds to the areas
of the design space that are the furthest from a sample point.

The use of GP thus provides an efficient way to approximate the objective and constraint functions, and the
procurement of the standard deviation indicates its variability. This information allows the implementation of an
enrichment criterion (also designated as acquisition function) to perform a Bayesian Optimization.
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4.2 Optimization
Once the surrogate models are built, a global optimization could be performed directly on the surrogate models
because they provide an approximation of the functions along the design space with negligible time compared to
the evaluation of the actual functions. However, if the sampling does not permit a sufficiently good approximation
around the globalminimumof the objective function, the optimization process could lead to an incorrect minimum.
Consequently, without prior knowledge about the functions, dense sampling is required. The strategy here is to
use the surrogate model to identify the areas where samples need to be added to avoid densification on the whole
design space which would lead to a high number of evaluations of the approximated functions. The surrogate
model is then enriched iteratively until convergence of the predicted global minimum. The x(𝑛s+ 𝑗 ) notation is
used to refer to the 𝑗-th point added to the initial sampling.

Multiple criteria, called acquisition functions, have been established to select the enrichment area [143]. The
Expected Improvement (EI) [144], at the core of the EGO method [8], is used here for the unconstrained problem
presented on Eq. (19) because it offers a satisfying trade-off between exploration (trying new points in unknown
regions to discover new information) and exploitation (refining around the best values already found). Given 𝑌 ,
a Gaussian Process fitted on 𝑛s + 𝑗 samples, for each point x(0) ∈ D with predictor 𝑌 (x(0) ), the EI acquisition
function 𝛼EI writes:

𝛼EI (x(0) ) =E[I(x(0) |ymin)]

=
(
ymin − ŷ(x(0) )

)
Φ(𝑧(x(0) )) + 𝑠(x(0) )𝜙(𝑧(x(0) )). (26)

The term I(x(0) |ymin) = max(ymin − 𝑌 (x(0) ); 0) is the potential for improvement over ymin, the minimum of
y on the sampled points. The density probability and cumulative distribution function of the standard normal

distribution are respectively denoted 𝜙 and Φ. The term 𝑧 is such that 𝑧(x(0) ) = ymin − ŷ(x(0) )
𝑠(x(0) )

. The next sample

point is chosen to maximize the EI criterion:

x(𝑛s+ 𝑗+1) = arg max
x(0) ∈D

E[I(x(0) |ymin)] . (27)

In the case of deterministic data, this acquisition function has the benefit to vanish at the sample points, avoiding
adding samples too close to already observed points. The calculation of the expected improvement only involves
the surrogate model and thus has a negligible computational cost. It is therefore possible to solve Eq. (27) comput-
ing the value of the EI on a fine mesh of the design space when its dimension is low enough, but an optimization
algorithm is preferred for a higher number of parameters. However, the 𝛼EI often has a lot of local minima which
makes it difficult to find the actual global minimum. BoTorch directly integrates methods for the optimization
of acquisition functions based on multi-start gradient descents. The determination of the initial sampling size
requires careful consideration. An excessively high number of initial samples may lead to excessive computa-
tional costs, while too few samples could slow down or even obstruct the convergence of the strategy toward the
global minimum. For the EGO algorithm, the choice of an initial sampling size around ten times the design space
dimension (𝑛s = 10𝑛p) is recommended [8]. An illustration of this iterative process is given in Fig. 5 where the
initial model built in Fig. 4 is enriched. On the first iteration, a sample is added near the predicted minimumwhich
corresponds to a local minimum of the real function but not to the global minimum. On the second iteration, the
enrichment is made where information is lacking, which proves the method’s ability to explore the design space to
find the global minimum. In the following iterations, the model is enriched to refine the predicted minimum and
only a few iterations are needed to get an accurate estimation of the global minimum. Note that in Fig. 5, at each
iteration, the Expected Improvement is plotted based on the new GP built using the new sample point (green dia-
mond). The enriched sampling contains at each iteration the initial expanded with new (enriched) sample points
from previous iterations.

In the case of constrained optimization of Eq. (19) (which only feature inequality constraints), the CEI [145,
146] is employed as an acquisition function. It consists in weighting the EI with the probabilities to satisfy the 𝑟
inequality constraints 𝑃(h 𝑗 (x(0) ) ≥ 0). In the EI term, ymin is replaced by the best achievable value, denoted y𝑐min,
which corresponds to the minimum of y on the sampled points over the feasible regionA = {x(0) ∈ D|h 𝑗 (x(0) ) ≥
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(d) Iteration 4.

Figure 5: Enrichment illustration for y(𝑥) = exp(−𝑥/10) cos(𝑥) + 𝑥/10.

0}. The expression of CEI acquisition function writes:

𝛼CEI (x(0) ) = E[I(x(0) |y𝑐min)]
𝑚∏
𝑗=1

𝑃(h 𝑗 (x(0) ) ≥ 0). (28)

To the knowledge of the authors, an extensive comparison of constrained global optimization algorithms, including
variations of Bayesian optimization strategies, has not been published yet.

The stopping condition of the iterative enrichment process is often based on a budget: the algorithm stops when
either a maximum number of solver calls is reached or a total computational time is exceeded. But other criteria
based on the acquisition function values have been developed. One of them is used and detailed in Section 5.1.

The Bayesian Optimization approach allows a good approximation of the optimal parameters with a few costly
evaluations of the objective function. If a precise optimum is needed, the optimization can be later refined using
a local search around the solution reached [147, 148].
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Figure 6: Reference for the functions of the optimization problem on Eq. (30) over D = [−2.5; 2.5]2.

4.3 Example of application of the Constrained Bayesian Optimization
The constrained Bayesian Optimization approach is applied to find the minimum of the Peaks function from
Matlab. The function is defined over D = [−2.5; 2.5]2 by:

y : D → R

(x1, x2) ↦→ 3(1 − x1)2e−x
2
1−(x2+1)2

− 10( x1

5
− x1

3 − x2
5)e−x1

2−x2
2 − 1

3
e−(x1+1)2−x2

2
. (29)

The surface representation of the Peaks function is plotted on Fig. 6a. Multiple local minima exists which makes
this example an interesting benchmark for optimization algorithms. The constrained optimization problem writes:

x∗ = arg min
(x1 ,x2 ) ∈ [−2.5;2.5]2

y(x1, x2),

s.t. h(x1, x2) ≤ 0,
(30)

with the constraint function defined by:

h(x1, x2) = −12x2 − x1
2 − 6x1 − 9. (31)

The contour plot of the Peaks function and the unfeasible domain are represented on Fig. 6b. The computation of
the functions over a very fine mesh shows that problem on Eq. (30) admits a global minimum at (−1.348; 0.205)
with a reference value of −3.050. Problem on Eq. (30) also admits four local minima that are represented on
Fig. 6b.

Several iterations of Eq. (30) solving process are depicted in Fig. 7. The surrogate models are initialized with
10 samples (Fig. 7a) and the enrichment process is repeated over 25 iterations. Until iteration 10 (Fig. 7c), points
are mainly added around the local minima at (0.68,−1.13). At iteration 12 (Fig. 7d), the global minimum area
is reached by the enrichment process. Finally, the last iterations are mainly dedicated to the exploitation in the
global minimum region (Fig. 7e). This provides a fairly precise refinement of the obtained result. For a total of
35 evaluations of the objective function, the enrichment process results in a rather good approximation of critical
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areas by the metamodel. Indeed, in addition to the exploitation around the global minimum, samples are added
close to the local minima, which ensures there is no global minima in these locations. Numerous points are also
present along the feasible domain boundary. The acquisition function representations show that 𝛼CEI is strongly
irregular, with a profusion of local minima. An important effort thus must be done to detect its global maximum.
The evolution of the optimization process is depicted on Fig. 8. The best feasible minimum sampled y𝑐min, and the
maximum value of the acquisition function are represented with respect to 𝑛𝑦 , denoting the number of objective
(or constraint) function evaluations. In this example, the optimization strategy converges quickly towards the
global minimum with a good accuracy. The acquisition function peak value globally decreases, but may exhibit
local surges.

The resolution of the optimization problem on Eq. (30) is reproduced 30 times, for different number of initial
samples, with a budget of 50 functions evaluations. The mean results are represented on Fig. 9. The optimization
strategy is typically able to accurately find the global minimum after a few number of iterations for the largest
numbers of initial samples (𝑛s ≥ 20). It should however be noted that for some experiments, the enrichment
process is not able to explore the whole domain and is still stuck around the local minimum after the 50 evaluations.
This usually happens for small values of 𝑛s when large areas of the design space are not covered by the initial
sampling. This behavior is expected when optimizing challenging functions and is consistent with the results
presented in [149]. Fig. 9b shows that the acquisition function maximum value globally decreases throughout
the optimization process. A stopping criterion based on this quantity could then be considered in the case of
constrained optimization.

The optimization strategy successfully accomplishes its primary objective of identifying the global minimum
in a constrained optimization problem, requiring a reasonable number of function evaluations. The efficiency of
the method is comparable with previous works on constrained Bayesian optimization [146, 150]. As highlighted
in [49], a relatively small number of initial samples may lead to the best performances. The value 𝑛s = 10𝑛p
remains a reliable choice in the constrained case to ensure a good convergence rate.

5 Application of the strategy
In the context of nonlinear dynamical structure optimization, the Bayesian Optimization process (Section 4) is
implemented to find the optimal parameters of a mechanical problemwhose objective and constraint functions are
computed using the HBM solver (Section 3). The application of this whole CBO-HBM strategy whose workflow
is represented in Fig. 1, is illustrated on two cases: an unconstrained and a constrained global optimizations
respectively applied on a Duffing oscillator and a gantry crane.

5.1 Unconstrained optimization of a Duffing oscillator
In this section, the optimization strategy is applied for an unconstrained optimization problem on the Duffing
oscillator inspired from [151]. The Duffing oscillator is a single degree of freedom system with cubic stiffness
which makes it one of the simplest nonlinear mechanical system. This problem is studied because of its quite
fast mechanical response computation (only 1 DOF). It allows to compute a reference objective function, which
is interesting to follow the evolution of the enrichment process and to understand the behavior of the Expected
Improvement acquisition function.

A schematic representation of the Duffing oscillator is given in Fig. 10a and its equation of motion writes:

𝑚 ¥𝑞(𝑡) + 𝜉 ¤𝑞(𝑡) + 𝑘𝑞(𝑡) + 𝑘nl𝑞
3 (𝑡) = 𝑓e cos(𝜔𝑡), (32)

with 𝑚 the mass, 𝜉 the dumping factor, 𝑘 the linear stiffness and 𝑘nl the nonlinear stiffness. First introduced by
Georg Duffing to study the large deflections of pendulums [152], this oscillator is a classical nonlinear problem
and has been widely studied in the literature, for instance, in [153]. This system either softens, when 𝑘nl < 0,
or hardens, when 𝑘nl > 0, throughout its motion. It can correspond to several mechanical or electrical systems.
Despite its apparent simplicity, the Duffing oscillator can exhibit complex nonlinear phenomena such as period
doubling bifurcations, quasi-periodic oscillations and even chaotic behavior. In this work, the system is only
studied within a parameter range that allows a periodic solution having the same frequency as the excitation (the
values are detailed later). Fig. 10b shows the maximum displacement of the Duffing oscillator for 𝜔 ∈ [0.05; 2.5]
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Figure 7: Enrichment process to solve problem on Eq. (30) with 10 initial samples.
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Figure 7: Enrichment process to solve problem on Eq. (30) with 10 initial samples (cont.).

rad s−1 for several values of 𝑘nl and illustrates the hardening or softening property of the system as well as the
ability of the mechanical solver to overcome fold bifurcations.

The quantity of interest is the root-mean-square (RMS) of the acceleration, denoted ¥𝑞rms. The two design
parameters are the dumping factor 𝜉 in the range [0.1; 1] kg s−1 and the nonlinear stiffness 𝑘nl in the range [0.1; 2]
N m−3 while the mass, the linear stiffness and the amplitude of the excitation are fixed: 𝑘 = 1 N m−1, 𝑚 = 1 kg
and 𝑓e = 0.3 N. The RMS acceleration is calculated over a range of frequencies. No constraints are involved. The
y objective function is taken as the maximum value reached by ¥𝑞rms for 𝜔 ∈ [0.05; 2.5] rad s−1. The formulation
of the optimization problem is:

(𝜉∗, 𝑘∗nl) = arg min
𝜉 ∈[0.1;1] kg s−1

𝑘nl∈[0.1;2] N m−3

y(𝜉, 𝑘nl), (33)
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the example shown on Fig. 7.
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Figure 9: Mean values resulting from the repetition of 30 experiments for each number of initial samples.

with:
y(𝜉, 𝑘nl) = max

𝜔∈[0.05;2.5] rad s−1
¥𝑞rms (𝜉, 𝑘nl, 𝜔). (34)

For this unconstrained problem, the classic EI acquisition function is used (see Eq. (26)). The stopping criterion
introduced in [8] is here examined. The algorithm stops once the ratio between the maximum value of the EI over
D and |ymin |, called 𝑐EGO, is less than a small parameter 𝛿:

𝑐EGO = max
x(0) ∈D

E[I(x(0) |ymin)]
|ymin |

< 𝛿. (35)

A common choice for 𝛿 is 1% which is the employed value in this investigation.
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Figure 10: Duffing problem and frequency responses.

Figs. 11 and 12 show the evolution of ¥𝑞rms over [0.05; 2.5] rad s−1 for different sets of parameters. This result
confirms the ability of the mechanical solver to solve Eq. (32) over the whole design space. It seems that the more
𝑘nl increases, the more ¥𝑞rms increases and the more 𝜉 increases, the more ¥𝑞rms reduces. The HBM parameters
used here are: 𝑛h = 8, 𝑛𝑡 = 40, Δ𝑠max = 0.05. These values remain the same throughout this section.

As only two parameters are involved in the optimization problem and the system only has 1 DOF, the objective
function on Eq. (34) is computed over a fine mesh of the design spaceD = [0.1; 1] × [0.1; 2] in order to use it as a
reference and the result is represented in Fig. 13. This simulation confirms that y(𝜉, 𝑘nl) is minimal for 𝜉 = 1 kg s−1

and 𝑘nl = 0.1 N/m3. The evolution of the objective function is here quite simple, with no local minima. For this
specific problem other methods such as local optimization algorithm [40] could probably be more efficient, but
the goal of this study is to set up a robust enough strategy for any kind of optimization problems in nonlinear
dynamics. It is nonetheless interesting to note that the objective function almost displays a plateau in some areas,
which can be a hurdle to some methods, especially the gradient-based ones.

The optimization strategy is applied in the unconstrained case to solve problem presented on Eq. (33): a
Bayesian Optimization is conducted relying on a Gaussian Process surrogate model which is built using the me-
chanical solver detailed in Section 3 to compute ¥𝑞rms. A result of the whole process is presented in Fig. 14. The
first surrogate model is computed with 15 initial samples (Fig. 14a). The stopping criterion on Eq. (35) is fulfilled
after the addition of 33 points, totaling 48 calls to the mechanical solver. The enrichment process adds the global
minimum point as early as the first iteration (Fig. 14b), but a substantial number of iterations ensue before the stop-
ping criterion is met. This arises from the need to precisely approximate the plateau area, ensuring the absence
of a lower minimum. This can be illustrated by the numerous samples added along the boundary 𝜉 = 1 (Fig. 14d).
Comparisons between Figs. 13 and 14d highlight the fact that the built surrogate model does not approximate
accurately the objective function over the whole design space, but the enrichment process with the EI criterion
is able to find and accurately estimate the area of the global minimum (unknown in the general case). For this
problem, the computational cost of the EI acquisition function over a finely discretized mesh, spanning the whole
design space, is sufficiently affordable to be illustrated in Fig. 14a, for all the iterations presented. This confirms
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Figure 11: Frequency responses for a few pairs of values of 𝜉 and 𝑘𝑛𝑙 .

Table 1: Objective function evaluations mean value using the stopping criterion 𝑐EGO < 0.01 for various numbers
of initial samples 𝑛s.

𝑛s Iterations mean number 𝑛𝑦
10 35 45
15 47 62
20 59 79
25 58 83
30 59 89

that 𝛼EI can have multiple local maxima and that the search for the global maximum may be challenging.

The optimization problem is reproduced 30 times with a different initial sampling to obtain an average number
of requests to the mechanical solver. The process is repeated for different numbers of initial samples 𝑛s, with
a number of calls to the mechanical solver set to 𝑛𝑦 = 100. The mean values and variances of the sampled
minimum ymin and the criterion 𝑐EGO throughout the iterations are depicted in Fig. 15. The global minimum is
consistently observed after only a few iterations of the enrichment process. However, as in the example presented
in Fig. 14, 𝑐EGO decreases gradually and quite slowly in all cases. Themean number of evaluations of the objective
function to meet the criterion 𝑐EGO > 0.01 is summed up in Table 1. These results reveal that the smallest
number of considered initial samples (𝑛s = 10) yields the best performance, which aligns with the conclusions
asserted in [49]. The relevance of the stopping criterion can however be questioned. On one hand, it leads to
a seemingly excessive number of iterations for this specific problem, considering that the global minimum is
accurately identified after only a few iterations. But on the other hand, this outcome could prove necessary to
optimize functions characterized by multiple local minima surrounding a plateau.

This academic example of a Duffing oscillator optimization demonstrates the effectiveness of the presented
strategy in solving a parametric optimization problem in nonlinear structural dynamics. The strategy achieves its
primary goal by limiting the number of required calls to the mechanical solver.
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(d) Frequency responses for 𝜉 = 1.0

Figure 12: Parametric study of the Duffing oscillator. See also Fig. 11.

5.2 Constrained optimization of a gantry crane
To assess the CBO-HBM strategy on an industrial-scale, the optimal retrofit of a gantry crane is studied. Gantry
cranes are industrial lifting devices intended to carry very heavy loads. The entire structure is wheeled (often on
rails) and a trolley containing the hoist moves in a transversal direction. As these structures often operate in risky
environments (e.g. nuclear sites) they need to satisfy demanding standards. One of the major issues is to prevent
the overturning of the gantry when it is subjected to a base motion as it occurs during earthquakes.

5.2.1 Model description

During their lifetime, gantry cranes’ designs may be required to be re-evaluated with more severe criteria, either
due to an evolution of the standards or because they are used for a different program in another environment
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Figure 13: Reference for the objective function shown on Eq. (34).

[154]. Here, the retrofit of such a structure is studied with a focus on the optimal design of an anti-tipping device.
The model of the structure is depicted in Fig. 16. The gantry is about 10 m high and 13 m wide with a payload
of 65 t. The finite element model derives from an industrial study and the mesh convergence is ensured. The
main parts of the structure are composed of 44 335 linear elastic steel shell elements and the bolted junctions are
modeled using 302 bush elements. The model also contains 42 beam elements and 12 point mass elements to
represent the wheels and their axles. In order to simplify the model and avoid accounting for the complex effects
induced by a flexible cable, the payload is modeled by another point mass element at the center of the trolley. The
analysis is therefore done under the assumption of small perturbations. The model has a total of 43 722 nodes,
corresponding to around 260 000 DOFs. A schematic illustration of an anti-tipping device is given in Fig. 17. It
consists of a beam, anchored to the ground, with the top end placed at an initial gap from a gantry leg to block its
vertical displacement. With such a mechanism, two local contact phenomena can appear: after the detachment
of the wheel, the gantry leg may reach the anti-tipping device and when the structure relapses, contact occurs
with the ground (or the supporting rail). Throughout the motion, the structure’s center of gravity velocity must
be controlled to prevent overturning and the contact force on the anti-tipping device must be restrained enough to
ensure the robustness of the anchor to concrete ground, which is the most critical.

As this problem is mainly intended as a proof of concept for the optimization strategy, some strong simplifica-
tions have been adopted on the mechanical model as shown in Fig. 18. Since most of the mass is concentrated
at the center of the trolley, the transversal velocity is investigated at this point (point M), rather than at the actual
center of gravity. The detachment of only one leg is studied: legs A, B and C are considered anchored to the
ground and only leg D may suffer detachment and contact phenomena. The complex bogie at the end of that leg
has been replaced by a single wheel modeled by a single node whose vertical translation DOF (denoted 𝑞D

𝑦 ) is
subjected to contact. As represented in Fig. 18, the contact is accounted for using a penalty method: a 𝑘2 stiffness
value is added for the contact with the anti-tipping device with an initial gap written 𝑔 and a 𝑘1 stiffness value is
added for the ground contact with no initial gap. The theoretical nonlinear force expresses:

𝐹D
𝑐 (𝑔, 𝑘1, 𝑘2) =


𝑘1𝑞

D
𝑦 if 𝑞D

𝑦 ≤ 0,
0 if 0 < 𝑞D

𝑦 < 𝑔,
𝑘2 (𝑞D

𝑦 − 𝑔) if 𝑞D
𝑦 ≥ 𝑔.

(36)
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Figure 14: Problem on Eq. (33) resolution with 15 initial samples.

To enhance the robustness of the mechanical solver, the contact law is smoothened as proposed on [90] such that:

𝐹D
𝑐 (𝑔, 𝑘1, 𝑘2) =

𝑘1𝑞
D
𝑦

2
−

√√√(
𝑘1𝑞

D
𝑦

2

)2

+ 𝜖2
1 +

𝑘2 (𝑞D
𝑦 − 𝑔)
2

+

√√√(
𝑘2 (𝑞D

𝑦 − 𝑔)
2

)2

+ 𝜖2
2 , (37)

with 𝜖1 and 𝜖2 additional parameters to adjust the smoothing of the contact law. A representation of this law is
given in Fig. 19 with different values of these parameters. When 𝜖1 = 𝜖2 = 0, the regularized contact law on
Eq. (37) is equivalent to the penalty method on Eq. (36). For the mechanical simulation of the gantry crane, the
parameters have been fixed to 𝜖1 = 1 × 102 N and 𝜖2 = 1 × 103 N.

The structure undergoes a harmonic base motion with frequency within the typical seismic excitation range
[0;35] Hz and whose acceleration magnitude, presented in Fig. 20, has been taken from the spectrums of ran-
domly generated accelerograms in compliance with Eurocode 8 [155] standards for nuclear sites. The considered
spectrum has a maximum constant value for low frequencies (between 1 Hz and 6 Hz) and slightly decreases for
higher frequencies.
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Figure 15: Repetition of 30 experiments in solving problem on Eq. (33) for various values of 𝑛s with a budget
fixed to 𝑛𝑦 = 100.

5.2.2 Optimization problem

As previously stated, the quantity of interest sought to be minimized is the transversal velocity at point M, denoted
𝑣M𝑇 . A coarse analysis using Hilti PROFIS Engineering [156] software allowed us to determine that the limit value
of the contact force ensuring the anti-tipping device anchor integrity under Eurocode 2 standards [157] is 𝐹D

𝑐 max =
200 kN which constitutes the constraint of the optimization problem. The contact stiffness between the wheel and
the ground is set to 𝑘1 = 1× 107 N m−1. The contact stiffness 𝑘2 is a parameter of the optimization problem with
values ranging from 0 to 1 × 108 N m−1. This can be influenced by the geometry and material of the anti-tipping
device as well as the presence of elastomer patches to alleviate the contact. The other considered parameter here
is the initial gap 𝑔 with value varying between 5 mm (minimal practicable distance) and 40 mm (contact never
occurring). To mathematically describe the problem, the parameters of the investigated optimization problem are:

x = (𝑔, 𝑘2) ∈ D, (38)
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Figure 17: Illustration of an anti-tipping device.

Figure 18: Simplified FE model: global FE mesh (left) and local simplified leg contact model (right).
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Figure 19: Representation of the contact force for 𝑘1 = 5×107 N m−1, 𝑘2 = 1×108 N m−1, 𝑔 = 4 mm and different
values of the smoothing parameters.
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with the design space D such that:

D = [5 × 10−3; 40 × 10−3] × [0; 1 × 108] . (39)

The objective function is:
y(𝑔, 𝑘2) = max

𝑓 ∈[0;35] Hz
𝑣M𝑇 (𝑔, 𝑘2, 𝑓 ), (40)

and the constraint function writes:

h(𝑔, 𝑘2) = max
𝑓 ∈[0;35] Hz

𝐹D
𝑐 (𝑔, 𝑘2, 𝑓 ) − 𝐹D

𝑐 max. (41)

Finally, the constrained optimization problem is:

(𝑔∗, 𝑘∗2) = arg min
(𝑔,𝑘2 ) ∈D

y(𝑔, 𝑘2),

s.t. h(𝑔, 𝑘2) < 0.
(42)

5.2.3 Mechanical simulation

In order to take advantage of the small number of nonlinear DOFs (only 1 in this considered simplified model),
a Craig Bampton condensation [6] is applied. The reduced basis includes 24 interface DOFs and 87 condensed
DOFs resulting in a total of 111DOFs. As theDOF undergoing contact is among the interfaceDOFs, the nonlinear
resulting force is not modified by the condensation. The mechanical solver specified in Section 3.1 is used to
solve the reduced problem. Results are represented in Figs. 21a and 21b over a frequency range of [0;35] Hz for
𝑔 = 5 mm and 𝑘2 = 1 × 108 N m−1 which is the case providing the strongest nonlinearities. The computation
takes about 40 minutes and results in 649 frequency steps, with Δ𝑠 adaptation providing smaller steps around the
resonance peaks, which allows to correctly detect and follow the fold bifurcations. Figs. 21a and 21b show that
only the first resonance peakmay lead to contact with the anti-tipping device and have an influence on the objective
and constraint functions. Therefore, during the optimization procedure, the solution will be only computed on the
range [0;3] Hz to reduce the computational cost. The nonlinear effects are apparent in Figs. 21c and 21d where
the frequency response is compared for the linear case (no contact at all)¹, the case with only ground contact and
no contact with the anti-tipping device and finally the case represented in Figs. 21a and 21b with 𝑔 = 5 mm and
𝑘2 = 1×108 N m−1. These results show that the ground contact leads to new resonance peaks (e.g. around 0.5 Hz
and 1.95 Hz) and to an offset on the main resonance peak. The contact with the anti-tipping device is the source
of a fold bifurcation and limits the vertical displacement 𝑞D

𝑦 .

¹The linear case is out of the scope of the present considered optimization problem, it is shown here to highlight the nonlinear effects.
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Figure 21: Frequency responses. HBM parameters: 𝑛h = 20, 𝑛𝑡 = 2000, Δ𝑠max = 0.25.

5.2.4 Optimization results

The constrained optimization problem (Eq. (42)) is investigated using the presented strategy. Fig. 22 represents
several steps of the enrichment process for 20 initial samples. The level curves represent the predictive evolution
of the y objective function given by the surrogate model. The red line depicts the limit of the predicted constraint
function h(𝑔, 𝑘2) = 0 that delimits the feasible domain . The predictions on both functions are refined along the
enrichment process. Fig. 22 shows that the method is able to find a not straightforward global minimum while
respecting the constraint with a limited number of HBM solver calls. To better assess the robustness of the method,
the optimization is replicated for different initial sampling and for different numbers of initial samples. Fig. 23
depicts the mean and standard deviation of the best value obtained during the process with regard to the number
of calls to the mechanical solver. This proves that the proposed strategy efficiently provides the global minimum
with a very limited number of evaluations of the expensive objective function. These results are also in line with
the conclusion of [49] that a few initial samples should be preferred.

The best obtained parameters for the design of the anti-tipping device are 𝑔∗ = 21.47 mm and 𝑘∗2 = 7.1281 ×
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5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1
·105

𝑔 [mm]

𝑘
2

[N
m

m
−1

]

0.0 2.0 4.0 6.0
·10−2

(a2) Acquisition Function 𝛼CEI.

(a) Initialization.

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1
·105

𝑔 [mm]

𝑘
2

[N
m

m
−1

]

480 500 520 540 560 580 600

(b1) Predictions ŷ and ĥ.
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Figure 22: Constrained optimization process for 20 initial samples. Contour lines represent the objective function
(in mm s−1), the red hatched area is the predicted unfeasible domain (h > 0) and the black circle
indicates the best feasible sampled parameters set.
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Figure 22: Constrained optimization process for 20 initial samples (cont.).

107 N m−1 which leads to a maximum transversal speed of 484.34 mm s−1 and a maximum contact force of
199.992 kN which confirms the optimal parameter set is at the frontier of the feasible domain. The results ob-
tained from the simulation of the gantry crane for the optimal parameters are shown in Fig. 24. Fig. 24a shows
that the frequency response behavior of 𝑣M𝑇 is similar to Fig. 21 with a fold bifurcation at the frequencies at which
the contact with the anti-tipping device may occur. The time representation at the 1.11 Hz peak in Fig. 24c seems
sinusoidal, but higher order harmonics are present even if not visible. Fig. 24b confirms that the contact with the
anti-tipping device only occurs on a small range of frequencies and its time representation at the peak (Fig. 24d)
clearly shows the sporadic contact alternating between the anti-tipping device and the ground. Fig. 24d also

30

http://dx.doi.org/10.1007/s00158-024-03747-5


Quentin Ragueneau, Luc Laurent, Antoine Legay, Thomas Larroque & Romain Crambuer. A Constrained
Bayesian Optimization Framework for Structural Vibrations with Local Nonlinearities. Structural and
Multidisciplinary Optimization, 67:47, 2024. doi: 10.1007/s00158-024-03747-5

485

490

495

500

505

510

y m
in

𝑛𝑠 = 10

𝑛𝑠 = 20

𝑛𝑠 = 30

min
(𝑔,𝑘2 ) ∈A

y(𝑔, 𝑘2)

0 10 20 30 40 50 60 70
0

5

10

15

Number of objective function evaluations

𝜎
2 y m

in

Figure 23: Mean and standard deviation of the best value sampled (in mm s−1) for 10, 20 and 30 initial samples.

showcases the Gibbs phenomenon inherent to the Fourier series.
The CBO-HBM strategy is able to solve a constrained optimization problem on a nonlinear industrial structure

in vibration. The optimal design parameters of the gantry crane can be accurately obtained with few calls to
the mechanical solver, which results in a reasonable computation time. For this specific example, a very small
number of initial samples gives the best performances. However, deriving a universal practice from it would
not be advisable, as this quantity appears highly dependent on the specific problem at hand. Particularly, the
topologies of the objective and constraint functions are important factors, as the example in Section 4.3 shows.
Using a budget to define the duration of the enrichment process is straightforward and ensures the computational
feasibility of the process. Exploring the implementation of a stopping criterion based on the acquisition function
value may nevertheless lead to better performances.

6 Conclusion and discussion
This work aims at proposing an efficient strategy to perform constrained optimization of mechanical structures
involving local nonlinearities. The developed CBO-HBM workflow is based on the Constrained Bayesian Op-
timization framework as well as the Harmonic Balance Method to solve mechanical problem. The objective
and potential constraint functions are approximated using independent Gaussian Process surrogate models, it-
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Figure 24: Frequency response of 𝑣M𝑇 and 𝐹D
𝑐 as well as their time representations over 3 periods at their maximal

value (excitation frequency of 1.11 Hz).

eratively enriched by employing the Constrained Expected Improvement acquisition function. A finite element
computation of the structures’ frequency responses using the Harmonic Balance Method with a path-following
continuation procedure provides the values of the objective and constraint functions for a given set of design pa-
rameters while taking into account the nonlinear dynamical effects. Moreover, bifurcations phenomena, which
arose commonly in nonlinear vibrations along the frequency range, are depicted which is not possible unlike a
classical time-integration solver. Applications on a Duffing oscillator and an industrial-scale gantry crane show
the robustness and efficiency of the mechanical solver for a wide range of parameters. The employed Gaussian
Processes are able to robustly approximate the nonlinear objective and constraint functions which enables per-
forming a constrained Bayesian Optimization with the CEI acquisition function. Results show that the strategy
is able to localize a global minimum fulfilling the constraints with a limited number of expensive mechanical
solver calls. The repetition of the strategy with different initial samplings shows consistent results as well as
the robustness of the whole method. To further improve the CBO-HBM strategy, the mechanical solver may be
made more efficient by including the latest developments on the HBM, which is an active field of research. The
path-following continuation method plays a huge role in the efficiency of the resolution. Other methods could be
investigated as well as a better rule for the length step adaptation in the procedure. For the applications presented
in this work, and for many optimization problems in vibrations, only a maximum value of a quantity of interest
over a frequency range is used. Therefore, methods able to directly find the resonance peak [67] or to follow
the peaks along the parameters [158] present a great interest. However, the choice has been made to compute
the whole frequency response with bifurcations to allow the possibility to build objective or constraint functions
exploiting the complete dynamical behavior of the structure. Moreover, the constraint and objective functions do
not necessarily have their maximal values at the same frequency. Developing a method able to follow the peaks
of all the functions at once would be a worth investigating direction of research based for instance on [159].
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