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I. INTRODUCTION

The electrical properties (EPs), i.e. conductivity σ and permittivity of tissues can now be estimated from radiofrequency (RF) field B1 measurements utilizing a variety of magnetic resonance electrical property tomography (MR-EPT) methods. The reconstructed EPs have the potential to be used as biomarkers in a variety of clinical applications, including cancer diagnosis and monitoring [START_REF] Shin | Initial study on in vivo conductivity mapping of breast cancer using MRI: In Vivo Conductivity Mapping of Breast Cancer[END_REF]- [START_REF] Tha | Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma[END_REF]. In addition, the distribution of EPs can be used to calculate the specific absorption rate (SAR) for the evaluation of RF safety in MRI systems.

Due to the calculation procedure of second-order derivatives of B1, i.e. the Laplacian operator, the reconstructed EPs maps are extremely susceptible to noise. This increases the difficulty in achieving high resolution, better accuracy, and removing boundary artifacts. To avoid that, strategies have been proposed, based on large derivative smoothing kernels, in combination with Savitzky-Golay (SG) or Gaussian filtering to mitigate noise amplification. However, large kernels result in extended numerical boundary propagation [START_REF] Mandija | Error analysis of helmholtz-based MR-electrical properties tomography: MR-Electrical Properties Tomography Reconstruction Errors[END_REF], which severely hampers the accuracy and resolution of reconstructions of many tissue structures. In recent years, the more advanced method has been to apply smaller SG kernel size in small tissues or at the boundary [START_REF] Katscher | Mapping electric bulk conductivity in the human heart[END_REF]- [START_REF] Arduino | Automatic selection of the optimal kernel size for Helmholtzbased EPT[END_REF]. However, the shape of their kernel always remains the same, and even though this strategy reduces processing costs, it is not entirely fitted to arbitrary domains. Zhu and Smith proposed a novel K-nearest neighbor SG kernel, applicable to arbitrary domains [START_REF] Zhu | Least Squares Surface Reconstruction on Arbitrary Domains[END_REF], but the number K *Research supported by ANR-21-CE-19-0040. Zhongzheng He (e-mail: zhongzheng.he@univ-lorraine.fr), Bailiang Chen, Pauline Lefevre and Freddy Odille are with IADI U1254, INSERM, Université de Lorraine, Nancy, France. is fixed. Its size cannot adapt to the tissue size, which may lead to errors over tissue boundary and degrade resolution.

In this paper, we report a novel adaptative SG kernel, which extends the concept of restricted SG kernel size. The main novelty is that we allow arbitrary kernel shape and find the most similar voxels in each kernel domain, to avoid errors that would otherwise be caused by applying the kernel over tissue boundaries. Firstly, we investigated its impacts on a simple 3D simulated image with varying signal-to-noise ratio (SNR) levels. Secondly, we evaluated the proposed kernel performance using the two conventional MR-EPT reconstruction methods, phase-based (PB) and complex image-based (IB), with the real MR data acquired from a resolution conductivity phantom.

II. THEORY AND METHOD

A. EPT Central Equation

The EPT central equation (so-called Helmholtz equation) [START_REF] Leijsen | Electrical Properties Tomography: A Methodological Review[END_REF] is given by:

∆ = - × × , (1) 
with the complex admittivity = + , where is conductivity, is relative permittivity, is the vacuum permittivity, is the vacuum permeability, is the angular frequency and B the magnetic flux density (here it is the RF complex transmit field or receive field ). All current differential EPT were derived from this equation, the presence of the Laplacian operator ∆ amplifies the noise from B1, degrading the accuracy of reconstructed EPs.

B. Phase-Based EPT and Image-Based EPT

Considering the admittivity as a piecewise constant function (∇ = 0), (1) provides the truncated version, which can be easily solved for the unknown :

= 1 ∆ . ( 2 
)
The phase-based (PB) EPT formula can be derived from (2) with the transceive phase ! = + assumption (i.e.,

" #$ % ≈ = ) to reconstruct conductivity [10]: = ∆ ! 2 , (3) 
where ! can be measured using the phase image from a spin echo, FSE, balanced SSFP or UTE/ZTE sequence.
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C. 3D Savitzty-Golay Filter

Both these EPT methods require the numerical Laplacian operator ∆. As shown in [START_REF] Lee | Theoretical Investigation of Random Noise-Limited Signal-to-Noise Ratio in MR-based Electrical Properties Tomography[END_REF], the Savitzky-Golay Laplacian filter achieves the lowest noise amplification among all linear Laplacian kernels, including finite difference (FD) Laplacian kernel. The principle of a Savitzky-Golay filter [START_REF] Savitzky | Smoothing and Differentiation of Data by Simplified Least Squares Procedures[END_REF] is to fit a polynomial of chosen order to a subsection of the image by linear least squares. It is common to use a second-order polynomial for EPT, as adding higher order terms to the Laplacian calculation decreases the stability of the fit and hence its noise-robustness. The polynomial coefficients depend only on the relative coordinates of voxels rather than the intensity of voxels.

The volume around a voxel / , 0 , 1 is fitted by the second-order polynomial 2 3 4 ,5 4 ,6 4 /, 0, 1 : ℝ 9 ⟼ ℝ with coefficient ; <,=,> : 2 3 4 ,5 4 ,6 4 /, 0, 1 = ? ; @, ,A / -/ < 0 -0

= 1 -1 > <,=,>B , ,% = = >C% . (6) 
We can solve for the polynomial coefficients ; <,=,> using least squares:

; ⃗ = E E E F ⃗ = GF ⃗ , ( 7 
)
where E is the relative coordinate matrix of voxels according to [START_REF] Lee | In vivo electrical conductivity measurement of muscle, cartilage, and peripheral nerve around knee joint using MR-electrical properties tomography[END_REF], F ⃗ is the vector of voxel intensity and G = E E E is the pseudo-inverse of E. The second derivative (Laplacian) of the fitted polynomial in the /, 0, 1 directions are given by ; %, , , ; ,%, , ; , ,% , respectively, corresponding to the three rows of G which can be reshaped into a cube-shaped convolution kernel.

D. 3D Adaptative Savitzty-Golay Kernel

In real situation, the tissue will not be cube-shaped, it can have any shape, thus, we need a strategy to restrict the kernel, in a way to fit the tissue size and shape for each kernel domain. As shown in Figure 1, the kernel domain of voxel A is entirely within the homogeneous tissue 2, therefore it remains its original shape for optimal smoothing quality, whereas in the kernel domain of voxel B, some voxels must be removed in order to adapt to the edge of the tissue and to prevent the artifact caused by considering another tissue. The identification of tissue type masks and corresponding boundaries can be obtained by segmenting the magnitude image, or another image, acquired with a different MR contrast (e.g. T1-weighted, T2-weighted image etc.). In each kernel domain, the voxels with greatest intensity similarity to the voxel in the center can be identified by an intensity difference threshold of 0.05 after normalization and windowing on the denoised magnitude data.

III. EXPERIMENTS

A. Simulation Experiment

Since the conductivity reconstruction only requires a Laplacian operator as shown in ( 3) and ( 4), we simulated a 3D second-order image with size [64 64 64] which has two different constant Laplacian regions as following:

) /, 0, 1 = H / % + 0 % + 1 % , IJK / < 32, 0 < 32 , 1 < 32 2 / % + 0 % + 1 % , JNℎ+KP@Q+ .

We added Gaussian noises to reach different SNR levels to assess the effects of finite difference Laplacian kernel, LSG kernel and adaptative LSG kernel, respectively.

B. Phantom Experiment

Phantom design We made a cylinder phantom using a mixture of 1 liter of deionized water and 17.5 g agar. The phantom was drilled with 4 cylinder-shaped holes of different diameters (5 mm, 10 mm, 15 mm and 20 mm, respectively) and a cross-shaped hole with a width of 2.5 mm. These holes were filled with the 2.5% saline solution (which had been added a few drops of blue colorant), the scanning was performed immediately after the filling, in order to minimize diffusion of the sodium cations between agar and water. We measured the conductivity at Larmor frequency before and after MR scanning (at room temperature of 17°C) using the dedicated probe from a commercial dielectric assessment kit (DAK 12, from SPEAG, Zurich, Switzerland), which was connected to a VNA (VNA ZNB 4, Rhodes & Schwartz). The ground truth conductivity of saline in the holes was considered in the range of these two measurements.

Image Acquisition Protocol Three-dimensional magnitude and phase images were acquired with a 3T MRI scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) using a UTE Spiral VIBE sequence [START_REF] Mugler | Breath-hold UTE lung imaging using a stack-of-spirals acquisition[END_REF] prototype (TE = 50 μs, TR = 4.3 ms, flip angle = 5°, Number of excitations = 2, Voxel size = 1 mm isotropic, Matrix acquisition size = (256×256×144) voxels). Radiofrequency (RF) excitation was transmitted by the volume body coil of the MR system, and a combination of surface coils (an 18channel body matrix coil and a 32-channel posterior spine coil) was used for signal reception, using the vendor's coil combination (i.e. a SENSE-like combination) [START_REF] Soullié | MR electrical properties imaging using a generalized image-based method[END_REF].

IV. RESULTS

A. Simulation Results

We use the structure similar metric (SSIM) and normalized root mean square error (NRMSE) to evaluate the performance of the processing methods. Figure 2 shows the noisy simulated images at 80 dB and 30 dB levels, the typical finite difference Laplacian, the Laplacian Savitzky-Golay (LSG) kernel and the adaptative LSG kernel results. The typical FD Laplacian results demonstrate the amplification of noise, especially at low SNR. The LSG kernel eliminates the noise effectively but shows the boundary artifacts. This boundary artifacts can be removed successfully by the adaptative LSG kernel. On the other hand, the adaptative LSG method has constantly the best performance in terms of SSIM and NRMSE criteria from high SNR of 80 dB to low SNR of 10 dB, as shown in Figure 3.

B. Resolution Phantom Results

Raw UTE images (SNR ≈ 35dB) and reconstructed conductivity maps (PB and IB) by LSG and adaptative LSG kernel are shown in Figure 4. Due to the uncertainty in the ground truth conductivity caused by diffusion, we also used a metric which does not require a ground truth, namely the sharpness index (SI) [START_REF] Blanchet | An explicit sharpness index related to global phase coherence[END_REF], to assess the reconstruction resolution. The conductivity maps using adaptative LSG provide higher SI than LSG in both PB and IB reconstruction methods (Figure 4). On the other hand, we can observe that the adaptative LSG reduces effectively the typical boundary artifacts.

The mean values of reconstructed conductivity in each hole are shown in Figure 5. The reconstructed conductivity in the smallest cross hole (2.5mm) were underestimated in all cases, it may reach the resolution limit of EPT. When the hole size was larger than 2.5mm, the adaptative LSG results were all in the range of VNA pre-MR and VNA post-MR measurements.

V. DISCUSSION AND CONCLUSION

Compared with the standard method, the proposed adaptative LSG Kernel for EPT can improve effectively sharpness and accuracy of reconstructed maps and reduce the typical boundary artefacts. The more developed forms of EPT, such as Gradient EPT [START_REF] Gurler | Gradient-based electrical conductivity imaging using MR phase[END_REF] and Generalized Image Based EPT [START_REF] Soullié | MR electrical properties imaging using a generalized image-based method[END_REF], also necessitate the application of the adaptative SG kernel for robust computation of the first derivative. It could be also applied in other physics domains which require numerical differentiation calculation. 
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 1 Figure 1. Example of adaptative Savitzky-Golay Filters of kernel size [5 5 5]. The left figure shows a 2D slice of 3D volume over two distinct homogeneous tissues. For voxel A we can use the default cube-shaped kernel. Its Laplacian SG kernel in midplane is shown up-right side as KA. For voxel B we only use the similar voxels in homogeneous tissue 2. Its Laplacian SG filter kernel in midplane is shown bottom-right side as KB.
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 2 Figure 2. Results in simulated noisy images of SNR = 80dB and SNR = 30dB. All Laplacian images are displayed with the same colorbar (right) in the same range (from 0 to 18).
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 3 Figure 3. NRMSE (left) and SSIM (right) curves for 3 different kernels, the FD Laplacian (blue), LSG (red) and adaptative LSG (orange).
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 4 Figure 4. Resolution Phantom, Raw UTE images, Magnitude (SNR≈35dB) and Phase, and reconstructed conductivity maps by LSG ( RS and TS ) and adaptative LSG kernel ( RS UVUW and TS UVUW ) with kernel size [9 9 9]. XYZ W[\ ]^ and XYZ W_`a ]^ are the VNA measurements pre-MR and post-MR acquisitions.
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 5 Figure 5. Reconstructed conductivity mean values for each hole.
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