Nicolas Waldburger

Checking Presence Reachability Properties on Parameterized Shared-Memory Systems

Keywords: 2012 ACM Subject Classification Theory of computation → Verification by model checking; Theory of computation → Distributed algorithms Verification, Parameterized models, Distributed algorithms Digital Object Identifier 10.4230/LIPIcs

We consider the verification of distributed systems composed of an arbitrary number of asynchronous processes. Processes are identical finite-state machines that communicate by reading from and writing to a shared memory. Beyond the standard model with finitely many registers, we tackle round-based shared-memory systems with fresh registers at each round. In the latter model, both the number of processes and the number of registers are unbounded, making verification particularly challenging. The properties studied are generic presence reachability objectives, which subsume classical questions such as safety or synchronization by expressing the presence or absence of processes in some states. In the more general round-based setting, we establish that the parameterized verification of presence reachability properties is PSPACE-complete. Moreover, for the roundless model with finitely many registers, we prove that the complexity drops down to NP-complete and we provide several natural restrictions that make the problem solvable in polynomial time.

Introduction

Parameterized verification. Distributed systems consist of multiple processes running in parallel. Verification of such systems is a major topic of modern verification, because of how common these systems are and how difficult their verification has proven to be. Indeed, when multiple processes run asynchronously, the number of relevant interleavings to consider quickly becomes large. An intuitive approach for their verification is to fix the number of processes involved and try to apply classical verification techniques. Another approach is that of parameterized verification, where one aims to prove the more general statement that the property of interest holds for any number of participants. The interest of this approach is threefold. First, it allows to prove that the system is correct regardless of the number of processes. Second, the efficiency of parameterized techniques does not depend on the number of participants, which makes them more suitable for large systems for which classical techniques scale poorly. Third, parameterized verification often yields decidability or better computational complexity for problems that are hard to solve with classical techniques; see for example [START_REF] Hague | Parameterised pushdown systems with non-atomic writes[END_REF] for a problem that becomes decidable in the parameterized case. In their seminal work [START_REF] German | Reasoning about systems with many processes[END_REF], German and Sistla consider systems consisting of a leader and arbitrarily many contributors, all of which are finite-state machines communicating via rendez-vous. In this setting, the safety verification problem is EXPSPACE-complete and the complexity drops down to polynomial time when the leader is removed. Since then, many similar models have been studied, with variations on the expressiveness of the processes and the means of communication in order to capture the large variety of existing distributed algorithms [START_REF] Esparza | Keeping a crowd safe: On the complexity of parameterized verification (invited talk)[END_REF][START_REF] Bloem | Decidability of Parameterized Verification[END_REF].

Contributions. We study parameterized verification of systems where all processes are identical and anonymous finite-state machines that communicate via reading from and writing to a shared memory. The read and write actions are performed non-atomically, meaning that no process may perform a read-write combination while preventing all other processes from Roundless register protocols are executed on multiple processes that behave asynchronously and can only communicate via reading from and writing to the shared registers. The behavior of a process is described by a finite-state machine. The possible actions of the transitions are reading a symbol from and writing a symbol to one of the dim shared registers; d ∈ D denotes the symbol and α indicates the register on which the action is performed. Each register stores one symbol from the finite set D at a time. Read-write combinations are performed non-atomically, i.e., no process can perform a read-write combination while excluding all other processes. The size of the protocol P is defined as |P| := |Q| + |D| + |∆| + dim. For all α ∈ [1, dim], we write rg[α] for the register of index α. We also write Reg for the set {rg

[α] | α ∈ [1, dim]} of all registers.
Processes are assumed to have no identifiers so they are identical anonymous agents. Therefore, a configuration is a pair γ = ⟨µ, ⃗ d⟩ ∈ N Q ×D Reg such that 0 < q∈Q µ(q) < ∞. Let st(γ) := µ which indicates the number of processes in each state, and data(γ) := ⃗ d mapping to each register its symbol: for all r ∈ Reg, data(γ)(r) is the symbol contained in register r in γ. Let Γ := N Q ×D Reg denote the set of all configurations. Let supp(γ) := {q ∈ Q | st(γ)(q) > 0} denote the support of the multiset st(γ). We write ⊕ and ⊖ the operations on multisets that add and remove elements, respectively. A configuration is initial if all processes are in states from Q 0 while all registers have value d 0 . We denote by Init c the set of initial configurations (the letter c stands for "concrete" as opposed to "abstract" configurations defined later). Formally, Init c := {γ | st(γ) ⊆ Q 0 , data(γ) = d Reg 0 }. Given γ, γ ′ ∈ Γ, γ ′ is a successor of γ when there exists δ = (q, a, q ′) ∈ ∆ such that st(γ)(q) > 0, st(γ ′) = (st(γ) ⊖ {q}) ⊕ {q ′ } and:

if a = read α (d) then data(γ)(rg[α]) = d and data(γ ′) = data(γ), if a = write α (d) then data(γ ′)(rg[α]) = d and ∀α ′ ̸ = α, data(γ ′)(rg[α ′]) = data(γ)(rg[α ′]).
In that case, we write γ δ -→ γ ′ or simply γ -→ γ ′ , which is called a step. . A concrete execution is a sequence π = γ 0 , δ 1 , γ 1 , . . . , γ l-1 , δ l , γ l such that for all i, γ i δi+1 ---→ γ i+1 . We write γ 0 * -→ γ l for the existence of such an execution. γ ′ is reachable from γ when γ ---------→ ⟨A ⊕ C, a⟩ (A,read(a),q f) ---------→ ⟨q f ⊕ C, a⟩. ◀

Reachability Problems

Our first problem of interest is the coverability problem (COVER):

COVER for roundless register protocols Input: A roundless register protocol P, q f ∈ Q Question: Does there exist γ ∈ Reach c (Init c) such that st(γ)(q f) > 0?

Note that, because the model is parameterized, a witness execution of COVER may have an arbitrarily large number of processes. The dual is the safety problem, the answer to which is yes when an error state cannot be covered regardless of the number of processes. A similar problem is the target problem (TARGET) where processes must synchronize at q f : TARGET for roundless register protocols Input: A roundless register protocol P, q f ∈ Q Question: Does there exist γ ∈ Reach c (Init c) s.t. for all q ̸ = q f , st(γ)(q) = 0? ▶ Remark 3. TARGET is harder than COVER: consider the reduction in which one adds a loop on q f writing a joker symbol which, from any state, may be read to reach q f . Presence constraints are Boolean combinations (with ∧, ∨ and ¬) of atomic propositions of the form "q populated" with q ∈ Q, or of the form "r contains d" with r ∈ Reg and d ∈ D. A presence constraint is interpreted over a configuration γ by interpreting "q populated" as true if and only if st(γ)(q) > 0 and "r contains d" as true if and only if data(γ)(r) = d. Note that presence constraints cannot refer to how many processes are on a given state. We write γ |= ϕ when configuration γ satisfies presence constraint ϕ.

▶ Example 4. If Q = {q 1 , q 2 , q 3 }, dim = 2, D = {d 0 , a, b} and ϕ := (q 1 populated) ∨ ((q 2 populated)∧(rg[1] contains a)) then ⟨q 1 ⊕q 3 , d 2 0 ⟩ |= ϕ, ⟨q 2 2 , (a, b)⟩ |= ϕ but ⟨q 2 2 , b 2 ⟩ ̸ |= ϕ. ◀
The Presence Reachability Problem (PRP) generalizes both COVER and TARGET. It corresponds to the cardinality reachability problem for cardinality constraints restricted to CC[≥ 1, = 0] studied for broadcast protocols [START_REF] Delzanno | On the complexity of parameterized reachability in reconfigurable broadcast networks[END_REF].

PRP for roundless register protocols

Input: A roundless register protocol P, a presence constraint ϕ Question: Does there exist γ ∈ Reach c (Init c) such that γ |= ϕ?

N. Waldburger

XX:5

The formula ϕ automatically makes PRP NP-hard, since one can encode the SAT problem. Therefore, we also consider the DNF Presence Reachability Problem (DNF-PRP), in which ϕ is in disjunctive normal form. COVER and TARGET are special cases of DNF-PRP, with ϕ = (q f populated) for COVER and ϕ = q̸ =q f ¬(q populated) for TARGET.

▶ Example 5. Consider again the protocol P defined in Figure 1. (P, q f) is a positive instance of COVER, as proved in Example 2. Let P blue be the protocol obtained from P by changing to read(c) the label of the transition from q 0 to B (in blue in Figure 1). (P blue , q f) is a negative instance of COVER. In fact, a process can only get to B if c has been written to the register, and then d 0 can no longer be read so no process may go to state C, a cannot be written and no process may go from A to q f . (P, q f) is a negative instance of TARGET: to leave A, one needs to read a, hence must have a process on state C, and to leave C, one must read b which would force us to send a process to A. Let P red be the protocol obtained from P by changing to write(a) the label of the transition from C to A (in red in Figure 1). (P red , q f) is a positive instance of TARGET:

⟨q 2 0 , d 0 ⟩ (q0,read(d0),B) ---------→ ⟨q 0 ⊕ B, d 0 ⟩ (B,read(d0),C) ---------→ ⟨q 0 ⊕ C, d 0 ⟩ (q0,write(c),A) ---------→ ⟨A ⊕ C, c⟩ (C,write(a),A) ---------→ ⟨A 2 , a⟩ (A,read(a),q f) ---------→ ⟨A ⊕ q f , a⟩ (A,read(a),q f) ---------→ ⟨q 2 f , a⟩. Let ϕ := ¬(C populated) ∧ ((rg contains a) ∨ [(rg contains b) ∧ ¬(A populated)]
). ϕ is a presence constraint and (P, ϕ) is a negative instance of PRP. Indeed, if a is in the register, then C must be populated and if b is in the register, then A must be populated. ◀

Abstract Semantics

In this subsection, we define an abstraction of the semantics that is sound and complete with respect to PRP. The intuition of this abstraction is that the exact number of processes in a given state is not relevant. Indeed, register protocols, thanks to non-atomicity, enjoy a classical monotonicity property named copycat property.

▶ Lemma 6 (Copycat). Consider γ 1 , γ 2 , q 2 such that γ 1 * -→ γ 2 , q 2 ∈ supp(γ 2). There exists

q 1 ∈ supp(γ 1) s.t. ⟨st(γ 1) ⊕ q 1 , data(γ 1)⟩ * -→ ⟨st(γ 2) ⊕ q 2 , data(γ 2)⟩. An abstract configuration is a pair σ = ⟨st(σ), data(σ)⟩ ∈ 2 Q × D Reg such that st(σ) ̸ = ∅. The set of initial configurations is Init a := {⟨S, d dim 0 ⟩ | S ⊆ Q 0 }.
Given a concrete configuration γ, the projection abst(γ) is the abstract configuration ⟨supp(γ), data(γ)⟩. Let Σ := 2 Q × D Reg denote the set of abstract configurations. For σ, σ ′ ∈ Σ, σ ′ is the successor of σ when there exists δ = (q, a, q ′) ∈ ∆ such that q ∈ st(γ), either st(γ

′) = st(γ) ∪ {q ′ } or st(γ ′) = (st(γ) \ {q}) ∪ {q ′ }, and: if a = read α (d) then data(γ)(rg[α]) = d and data(σ) = data(σ ′), and if a = write α (d) then data(σ ′)(rg[α]) = d and for all α ′ ̸ = α, data(σ ′)(rg[α ′]) = data(σ)(rg[α ′]).
Again, we denote such a step by

σ δ -→ σ ′ or σ - → σ ′ . Note that one could equivalently define σ δ -→ σ ′ by: σ δ -→ σ ′ ⇐⇒ ∃γ, γ ′ ∈ Γ, γ δ -→ γ ′ and abst(γ) = σ, abst(γ ′) = σ ′ .
This notion of abstraction is classical in parameterized verification of systems with identical anonymous agents that enjoy monotonicity properties. Note, however, that this semantics is non-deterministic: one could have σ ′′ ̸ = σ ′ such that σ δ -→ σ ′ and σ δ -→ σ ′′ . This alternative corresponds to whether all processes in q take the transition (st(γ ′) = (st(γ) \ {q}) ∪ {q ′ }) or only some (st(γ ′) = st(γ) ∪ {q ′ }). We define abstract executions similarly to concrete ones, and denote them using ρ. We also define the reachability set Reach a (A) and the notion of coverability as in the concrete case. This abstraction is sound and complete for PRP: ▶ Proposition 7 (Soundness and completeness of the abstraction). For all S ⊆ Q, ⃗ d ∈ D Reg :

(∃γ ∈ Reach c (Init c) : supp(γ)=S, data(γ)= ⃗ d) ⇐⇒ (∃σ ∈ Reach a (Init a) : st(σ)=S, data(σ)= ⃗ d).
XX:6

Checking PRPs on Parameterized Shared-Memory Systems

The intuition of the proof is the following: any concrete configuration can easily be lifted into an abstract one. Conversely, any abstract execution may be simulated in the concrete semantics for a sufficiently large number of processes by using the copycat property.

Given a presence constraint ϕ and σ ∈ Σ, we define whether σ satisfies ϕ, written σ |= ϕ, in a natural way. Given a concrete configuration γ, one has γ |= ϕ if and only if abst(γ) |= ϕ. Indeed, γ and abst(γ) have the same populated states and register values. Therefore, there exists γ ∈ Reach c (Init c) such that γ |= ϕ if and only if there exists σ ∈ Reach a (Init a) such that σ |= ϕ: one can consider PRP directly in the abstract semantics.

Complexity Results for Roundless Register Protocols

In this section, we provide complexity results for the presence reachability problems defined above in the general case and in some restricted cases. Throughout the rest of the section, all configurations and executions are implicitly abstract.

NP-Completeness of the General Case

First, all problems defined in the previous section are NP-complete.

▶ Proposition 8. COVER, TARGET, DNF-PRP and PRP for roundless register protocols are all NP-complete.

Proof. First, we prove that all four problems are in NP. It suffices to prove it for PRP, as the three other problems reduce to it. Let ρ : σ 0 * -→ σ an abstract execution, we simply prove the existence of ρ ′ : σ 0 * -→ σ of length at most 4|Q|. To obtain ρ ′ from ρ, we iteratively: remove any read step that is non-deserting and does not cover a new location, remove any write step that is non-deserting, does not populate a new state and whose written symbol is never read, make non-deserting any deserting step whose source state is populated again later in ρ.

In ρ ′ , at most |Q| steps populate a new state and at most |Q| steps are deserting. This implies that there are at most 2|Q| read steps, therefore, at most 2|Q| write steps whose written value is actually read. In total, this bounds the number of steps by 4|Q|. In particular, for PRP, we can look for an execution of length less than 4|Q| which can be guessed in polynomial time.

We now prove NP-hardness of COVER, as it reduces to the three other problems.

The proof is by a reduction from 3-SAT. Consider a 3-CNF formula ϕ = m i=1 l i,1 ∨l i,2 ∨l i,3 over n variables x 1 , . . . , x n where, for all

i ∈ [1, m], for all k ∈ [1, 3], l i,k ∈ {x j , ¬x j | j ∈ [1, n]}.
We define a roundless register protocol P SAT (ϕ) with a distinguished state q f which is coverable if and only if ϕ is satisfiable. In P SAT (ϕ), one has D = {d 0 , T} and dim = 2n, there are two registers for each variable x i , rg(x i) and rg(¬x i). The protocol is represented on Figure 2.

While any register may be set to T thanks to the loops on q 0 , a register set to T can never be set back to d 0 . l is considered true if rg(l) is set to T while rg(¬l) still has value d 0 .

Suppose that the instance of 3-SAT is positive, i.e., ϕ is satisfiable by some assignment ν. Consider an execution that writes T exactly to all rg(l) with l true in ν. For each clause, one of the three literals is true in ν. Therefore the execution may cover C i ? for all i so it may cover q f and the instance of COVER is positive. Conversely, if the instance COVER is positive, there exists an execution ρ : σ 0

q 0 C 1 ? C 2 ?
. . .

C m ? q f Test(l 1,1)
Test(l 1,2)

Test(l 1,3)
Test(l m,1)

Test(l m,2)
Test(l m,3)

Test(l) := ∀j ∈ [1, n] write rg(x j) (T) write rg(¬x j) (T) ∀j ∈ [1, n] read rg(l) (T) read rg(¬l) (d 0)
Figure 2 The protocol P SAT (ϕ) for NP-hardness of COVER.

otherwise. Given a litteral l, ρ may only go through Test(l) if ν(l) is true; because ρ covers q f , this proves that ν |= ϕ. ◀ ▶ Remark 9. In [START_REF] Esparza | Parameterized verification of asynchronous shared-memory systems[END_REF], the authors prove NP-completeness of COVER in a similar model, but with a leader: in the NP-hardness reduction, the leader make non-determinstic decisions about the values of the variable. This argument does not hold in the leaderless case.

Interesting Restrictions

Although all the problems defined above are NP-complete, they are sometimes tractable under appropriate restrictions on the protocols. We will consider two restrictions on the protocols. The first one is having dim = 1, i.e., a single register. The second restriction is the uninitialized case where processes are not allowed to read the initial value d 0 from the registers. Formally, a protocol P is uninitialized if its set of transitions ∆ does not contain an action reading symbol d 0 : in uninitialized protocols, it is structurally impossible to read from an unwritten register. One might object that forbidding transitions that read d 0 contradicts the intuition that, when a process reads from a register, it does not know whether the value is initial or not; one could settle the issue by considering that reading d 0 sends processes to a sink state. The uninitialized setting tends to yield better complexity than the general, initialized case, see for example [START_REF] Parosh | Parameterized verification under TSO is PSPACE-complete[END_REF]Section 7].

Of course, for PRP, the formula itself always makes the problem NP-hard.

▶ Proposition 10. PRP for roundless register protocols is NP-hard even with dim = 1 and the register uninitialized.

Tractability of COVER and DNF-PRP under Restrictions

In this subsection, we prove that COVER is solvable in PTIME when the protocol is uninitialized or when dim is fixed and that DNF-PRP is solvable is PTIME when dim = 1.

In [START_REF] Esparza | Parameterized verification of asynchronous shared-memory systems[END_REF]Theorem 9.2], uninitialized COVER is proved to be PTIME-complete; their approach, based on languages, is quite different from the one presented here. Our approach, similar to the one presented in [9, Algorithm 1] in the setting of reconfigurable broadcast networks, is to compute the set of coverable states using a simple saturation technique, a fixed-point computation over the set of states.

When registers are initialized, the saturation technique breaks down as it may be that some states are coverable but not in the same execution, as they require registers to lose their initial value in different orders (see the notion of first-write order developed in [START_REF] Bertrand | Parameterized safety verification of round-based shared-memory systems[END_REF] for more development on this in a round-based setting). However, in the initialized case with a fixed number of registers, one can iterate over every such order and COVER is tractable as well.

▶ Proposition 11. COVER for roundless register protocols is PTIME-complete either when the registers are uninitialized or when dim is fixed.

For DNF-PRP, we provide a PTIME algorithm in the more restrictive case of dim = 1.

▶ Proposition 12. DNF-PRP for roundless register protocols with dim = 1 is in PTIME.

Proof sketch. We give here the proof for TARGET. See Appendix A.4 for the proof and pseudocode for DNF-PRP. Our algorithm shares similarities with [12, page 41] for broadcast protocols, although it is more complex because of the persistence of symbols in the register.

First, we have a polynomial reduction from initialized TARGET with dim = 1 to uninitialized TARGET with dim = 1. It proceeds as follows. Consider the graph G = (Q, E) when (q 1 , q 2) ∈ E when there exists (q 1 , read(d 0), q 2) ∈ ∆. Let I ⊆ Q the set of states that are reachable in G from Q 0 . The reduction simply replaces Q 0 by I as set of initial states.

Any (abstract) execution ρ :

σ 0 * -→ ⟨q f , d f ⟩, called synchronizing execution, can be rearranged into ρ + : σ 0 * -→ ⟨S, d⟩ and ρ -: ⟨S, d⟩ * -→ ⟨q f , d f ⟩
where S contains all states that appear in ρ. Additionally, we can make ρ -start with a write action (there is a transition in ρ that writes d). To obtain the decomposition, ρ + mimics ρ but does not empty any state, and ρ -mimics ρ but from a configuration with more states. We compute the maximum such set S by iteratively deleting states that cannot appear in any synchronizing execution. Let

C(P) := max{S ⊆ Q | ∃d ∈ D, ∃σ 0 ∈ Init a , σ 0 * -→ ⟨S, d⟩} BC(P) := max{S ⊆ Q | ∀d ∈ D, ∃d f ∈ D, ⟨S, d⟩ * -→ ⟨q f , d f ⟩}
Both maxima exist as the sets are non-empty (Q 0 is included in the first set and q f is in the second set) and they are stable by union (concatenate the corresponding executions). Intuitively, C(P) corresponds to the set of coverable sets, and BC(P) to the set of backward coverable states. In the decomposition ρ + : σ 0 * -→ ⟨S, d⟩, ρ -: ⟨S, d⟩ * -→ ⟨q f , d f ⟩, ρ + is a witness that S ⊆ C(P) and ρ -that S ⊆ BC(P) (because ρ -starts with a write action, for every

d ′ ∈ D one has ⟨S, d ′ ⟩ * -→ ⟨q f , d f ⟩).
C(P) and BC(P) can be computed in polynomial time. For C(P), we use a saturation technique. For BC(P), we work backwards: a symbol is read before it is written. We start with S := {q f }. Until a fixpoint for S is reached, we do the following. We iterate on D, trying to pick the symbol that was in the register before S could be reached. For each d ∈ D, we saturate S with backward transitions reading d, then check if d can be written by a transition ending in S. If not, we backtrack by removing states that were just added.

The algorithm iteratively removes from P states that are not in C(P) ∩ BC(P). Indeed, states that are not in C(P) ∩ BC(P) cannot appear in any synchronizing execution. If it ends up with Q(P) = ∅, then there is no synchronizing execution and the algorithm rejects. If it ends up with C(P) = BC(P) = Q(P) ̸ = ∅, then applying the definitions of C(P) and BC(P) gives a synchronizing execution, and the algorithm accepts. ◀

It is unknown whether the previous result still holds when dim is fixed to a value greater than 1. The case dim = 1 is particularly easy because writing to the register completely erases its content.

Unlike COVER, TARGET and therefore DNF-PRP are not tractable under the uninitialized hypothesis. For TARGET, one cannot add fresh processes at no cost, since the fresh processes would eventually have to get to q f . For example, if a register r can only be written from a given state q, the last process to leave q will fix the value in register r.

▶ Proposition 13. TARGET for uninitialized roundless register protocols is NP-hard.

Round-based Register Protocols

We now extend the previous model to a round-based setting. The model and semantics are the same as in [START_REF] Bertrand | Parameterized safety verification of round-based shared-memory systems[END_REF], however we consider a more general problem than COVER. Thus, the abstract semantics developed here differs from [START_REF] Bertrand | Parameterized safety verification of round-based shared-memory systems[END_REF].

Definitions

In round-based settings, there is a fresh set of dim registers at each round, and each process has its own private round value that starts at 0 and never decreases. Processes may only read from and write to registers of nearby rounds.

▶ Definition 14 (Round-based register protocols). A round-based register protocol is a tuple

P = ⟨Q, Q 0 , dim, D, d 0 , v, ∆⟩ where Q is a finite set of states with a distinguished subset of initial states Q 0 ⊆ Q; dim ∈ N
; ∆ ⊆ Q × A × Q is the set of transitions, where A = {read -i α (d) | i ∈ [0, v], α ∈ [1, dim], d ∈ D} ∪ {write α (d) | α ∈ [1, dim], d ∈ D \ {d 0 }} ∪ {Inc} is the set of actions.
Read actions specify the round of the register: read -i α (d) means, for a process at round k, "read d from register α of round k-i". A process at round k may only write to the registers of round k. The Inc action increments the round of a process.

Let rg k [α] denote the register α of round k. The set of registers of round k is written Reg k , and we let Reg = k∈N Reg k . The size of a protocol is

|P| = |Q| + |D| + |∆| + v + dim.
A given process is described by its state and round, formalized by a pair (q, k) ∈ Q × N called location. Let Loc := Q × N denote the set of locations. A concrete configuration describes the number of processes in each location along with the value of each register. Formally, a concrete configuration is a pair ⟨µ, ⃗ d⟩ with µ ∈ N Loc such that 0 < (q,k)∈Loc µ(q, k) < ∞ and ⃗ d ∈ D Reg . For γ = ⟨µ, ⃗ d⟩, we write loc(γ) := µ and data(γ) := ⃗ d. Again, we write Γ for the set of concrete configurations. The set of initial configurations is

Init c := {γ ∈ Γ | data(γ) = d Reg 0 and ∀(q, k) / ∈ Q 0 × {0}, loc(γ)(q, k) = 0}.
XX:10 Checking PRPs on Parameterized Shared-Memory Systems A move is a pair θ ∈ ∆ × N: move (δ, k) expresses that transition δ is taken by a process at round k; we write Moves := ∆ × N for the set of all moves. A move θ has effect on round k when θ is at round k or θ is an increment at round k-1. We define a step as follows: for θ = ((q, a, q ′), k) ∈ Moves, γ θ -→ γ ′ when (q, k) ∈ loc(γ) and:

q0 A B C D E q f Inc write(a) read -1 (d0) read -1 (a) write(b) read -1 (b) read 0 (d0) read 0 (b)
if a = read -i α (d), loc(γ ′) = (loc(γ) ⊖ {(q, k)}) ⊕ {(q ′ , k)}, data(γ)(rg k-i [α]) = d and data(γ ′) = data(γ); if a = write α (d), loc(γ ′) = (loc(γ) ⊖ {(q, k)}) ⊕ {(q ′ , k)}, data(γ ′)(rg k [α]) = d and for all r ̸ = rg k [α], data(γ ′)(r) = data(γ)(r); if a = Inc, loc(γ ′) = (loc(γ) ⊖ {(q, k)}) ⊕ {(q ′ , k+1)} and data(γ ′) = data(γ).
A step is at round k when the corresponding move is of the form (δ, k). Note that action read -i α (d) is only possible for processes at rounds k ≥ i. The notions of execution, of reachability and of coverability are defined as in the roundless case.

▶ Example 15. Consider the round-based protocol P from Figure 4, with dim = 1, v = 1, Q 0 = {q 0 } and D = {d 0 , a, b}. In this protocol, state q f cannot be covered. By contradiction, consider an execution π : γ 0 * -→ γ with γ 0 ∈ Init c and loc(γ)(q f , k) > 0 fo some k ∈ N. We have that, at some point in π, (E, k) is populated and b is in rg [k]. Therefore, some process went from (A, k) to (B, k), which implies that rg[k] lost value d 0 before rg[k-1]; this in turn implies that π does not send any process to (E, k) which is a contradiction. ◀

Since round-based register protocols enjoy the same monotonicity properties as roundless register protocols, we define the same non-counting abstraction. Note that this abstraction differs from the one in [START_REF] Bertrand | Parameterized safety verification of round-based shared-memory systems[END_REF] which was designed specifically for COVER. The set of abstract configurations is Σ := 2 Loc × D Reg ; the abstract semantics are defined as in Subsection 2.3. Again, σ δ -→ σ if and only if there exist γ, γ ′ ∈ Γ, γ δ -→ γ ′ and abst(γ) = σ, abst(γ ′) = σ ′ . All the properties of Subsection 2.3 apply to round-based abstract semantics. In particular, we have the soundness and completeness of the abstraction: ▶ Proposition 16 (Soundness and completeness of the abstraction). For all L ⊆ Loc, ⃗ d ∈ D Reg :

(∃γ ∈ Reach c (Init c) : supp(γ)=L, data(γ)= ⃗ d) ⇐⇒ (∃σ ∈ Reach a (Init a) : loc(σ)=L, data(σ)= ⃗ d).

Presence Reachability Problem

COVER is extended to round-based protocols by asking whether some reachable configuration has a process on q f on some round k, and TARGET by asking whether some reachable configuration has no process on states q ̸ = q f on any round k. Formally, one asks whether there exists γ ∈ Reach c (Init c) such that γ |= ψ where ψ ="∃k ∈ N, (q, k) ∈ loc(γ)" for COVER and ψ ="∀k ∈ N, ∀q ̸ = q f , (q, k) / ∈ loc(γ)" for TARGET. We will now extend roundless PRP to round-based PRP, where the formula is allowed to have non-nested quantification over rounds.

Presence constraints are first-order formulas (quantifying over the rounds) without any nested quantifiers. See Appendix B.1 for the full definition.

▶ Example 17. "(∃k (q 2 , k) populated) ∨ (∀k ((q 0 , k+2) populated) ∧ rg 1 [1] contains a)" is an example of presence constraint. Let γ := ((q 0 , 0) ⊕ (q 1 , 1), d Reg 0) with q 0 ̸ = q 1 , dim = 1. One has γ |= (rg 0 [1] contains d 0) ∧ (∃k (q 1 , k+1) populated) but γ ̸ |= ∀k (((q 0 , k) populated) ∨ ¬((q 1 , k) populated)). ◀ We define
:= ((E, 2) populated) ∧ [∀k, (rg[k + 1] contains b) ∨ (rg[k + 1] contains d 0)
], then (P, ψ ′′) is positive: a witness execution sends a process to (B, 1), writes a to rg[0] then b to rg [START_REF] Parosh | Parameterized verification under TSO is PSPACE-complete[END_REF] and finally sends a process from (q 0 , 2) to (E, 2). ◀

COVER and TARGET for round-based register protocols are special cases of PRP. The following lower bound hence applies to all these problems: ▶ Proposition 19 [START_REF] Bertrand | Parameterized safety verification of round-based shared-memory systems[END_REF]Theorem 23]). COVER for round-based register protocols is PSPACEhard, even in the uninitialized case with v = 0 and dim = 1.

Note that, in the round-based setting, dim = 1 means one register per round, therefore still an unbounded number of registers. v = 0 means that a process can only interact with registers of its current round. The previous proposition implies that all problems considered in Figure 3 are PSPACE-hard when working with round-based protocols. In [START_REF] Bertrand | Parameterized safety verification of round-based shared-memory systems[END_REF], COVER for round-based register protocols is shown to be PSPACE-complete. In the rest of this paper, we establish that the more general round-based PRP lies in the same complexity class:

▶ Theorem 20. Round-based PRP is PSPACE-complete.

A Polynomial-Space Algorithm for Round-Based PRP

In this section, we provide a polynomial-space algorithm for round-based PRP. Thanks to Savitch's theorem, it suffices to find a non-deterministic polynomial-space algorithm. To do so, one wants to guess an execution that reaches a configuration satisfying the presence constraint. However, as shown in [6, Proposition 13], one may need, at a given point along such an execution, the number of active rounds to be exponential (an active round being informally a round on which something has already happened and something else is yet to happen). Thus, storing the execution step by step in polynomial space seems hard; instead, our algorithm will guess the execution round by round. To do this, we define the notion of footprint, which represents the projection of an execution onto a narrow window of rounds. Thanks to Proposition 7, round-based PRP can be studied directly in the abstraction. In the rest of the paper, all configurations and executions are implicitly abstract.

The integer constants in the presence constraint ψ are encoded in unary, like the visibility range v. These two hypotheses are reasonable since practical examples typically use constants of small value (e.g., 1). Under these hypotheses, we obtain a polynomial spatial bound on the size of footprints of a well-chosen witness execution, which in turn gives a polynomial spatial bound for the algorithm:

▶ Proposition 23. Algorithm 1 works in space O(|ψ| 3 + |Q| 2 (v+1) 2 log(dim |D|)).
Finally, we need to discuss the termination of the algorithm. According to the pigeonhole principle, after an exponential number of iterations, the elements stored in memory repeat from a previous iteration and we can stop the computation. One can thus use a counter, encoded in polynomial space, to count iterations and return a decision when the counter reaches its largest value. Thanks to the space bounds from Proposition 23, correctness from Proposition 22 and the stopping criterion, our algorithm decides round-based PRP in non-deterministic polynomial space, proving Theorem 20.

Technical appendix

A Roundless Register Protocols

Recall that the abstract semantics is non-deterministic due to the choice between st(γ ′) = (st(γ) \ {q}) ∪ {q ′ } and st(γ ′) = st(γ) ∪ {q ′ }. The first case is called deserting, and the latter non-deserting. A deserting step corresponds in the concrete semantics to all processes in q taking the transition at once. Moreover, given a transition (q, a, q ′), state q is called the source and state q ′ is called the destination of the transition, and similarly for a step.

A.1 Proof of Proposition 6

▶ Lemma 6 (Copycat). Consider γ 1 , γ 2 , q 2 such that γ 1 * -→ γ 2 , q 2 ∈ supp(γ 2). There exists q 1 ∈ supp(γ 1) s.t. ⟨st(γ 1) ⊕ q 1 , data(γ 1)⟩ * -→ ⟨st(γ 2) ⊕ q 2 , data(γ 2)⟩.
Proof. We prove the result by induction on the length of the execution. If the execution is of length 0 then one simply considers q 1 := q 2 . Let π : γ 1 * -→ γ 2 and suppose that the property is true for all executions of length |π| -

1. Decompose π into γ 1 * -→ γ 3 δ -→ γ 2 .
If q 2 is not the destination of δ, then q 2 ∈ supp(γ 3) and we directly apply the induction hypothesis on γ 1 * -→ γ 3 and q 2 then conclude by taking δ to get to ⟨st(γ 2) ⊕ q 2 , data(γ 2)⟩. Assume that q 2 is the destination of δ; let q 3 the source of δ. We have q 3 ∈ supp(γ 3), so we apply the induction hypothesis on γ 1 * -→ γ 3 and q 3 : we obtain that there exists

q 1 ∈ supp(γ 1) such that ⟨st(γ 1) ⊕ q 1 , data(γ 3)⟩ * -→ ⟨st(γ 3) ⊕ q 3 , data(γ 2)⟩ Moreover, we have ⟨st(γ 3) ⊕ q 3 , data(γ 2)⟩ δ -→ ⟨st(γ 2) ⊕ q 3 , data(γ 2)⟩ δ -→ ⟨st(γ 2) ⊕ q 2 ,
data(γ 2)⟩. Indeed, if δ is a read transition then the symbol is still in the register in γ 2 and may be read again, and if δ is write transition, then writing again a symbol to a register does not change its content. ◀

A.2 Proof of Proposition 7

▶ Proposition 7 (Soundness and completeness of the abstraction). For all S ⊆ Q, ⃗ d ∈ D Reg :

(∃γ ∈ Reach c (Init c) : supp(γ)=S, data(γ)= ⃗ d) ⇐⇒ (∃σ ∈ Reach a (Init a) : st(σ)=S, data(σ)= ⃗ d).
First, the following lemma states that any concrete execution can easily be transformed into an abstract one.

▶ Lemma A.1. Let γ, γ ′ ∈ Γ and π : γ * -→ γ ′ . There exists ρ : abst(γ) * -→ abst(γ ′).
Proof. By induction, it suffices to prove it for one step; suppose that γ δ -→ γ ′ . Let (q, a, q ′) := δ; if q ∈ st(γ ′), then we consider the non-deserting abstract step with transition δ, otherwise we consider the deserting step with transition δ. Either way, we have abst(γ) δ -→ abst(γ ′). ◀ Conversely, from an abstract execution, for a large enough number of processes, using the copycat property one can build a concrete execution with the same final states and data.

▶ Lemma A.2. Let σ, σ ′ ∈ Σ and ρ : σ * -→ σ ′ . There exist γ, γ ′ such that abst(γ) = σ, abst(γ ′) = σ ′ and π : γ * -→ γ ′ .
Proof. The proof is by induction on the number of steps in π. If π has 0 steps, then σ = σ ′ and suffices to consider γ = γ ′ := ⟨ q∈st(σ) q, data(σ)⟩.

XX:16 Checking PRPs on Parameterized Shared-Memory Systems

Assume that ρ : σ 1 * -→ σ 2 δ -→ σ 3 and that the property is true for executions shorter than ρ. By induction hypothesis, there exists π : γ 1 * -→ γ 2 such that abst(γ 1) = σ 1 , abst(γ 2) = σ 2 . There exists γ 3 such that γ 2 δ -→ γ 3 ; however, it could be that γ 3 does not have a process on the source state of δ while σ 3 does. In that case, we modify π to put an additional process on the source state of δ by using the copycat property and increasing the number of processes by one. ◀ Lemmas A.1 and A.2 together prove Proposition 7.

A.3 Proof of Proposition 11

▶ Proposition 11. COVER for roundless register protocols is PTIME-complete either when the registers are uninitialized or when dim is fixed.

A.3.1 PTIME when the Registers are Uninitialized

The algorithm computes the set of coverable states using a fixpoint technique called saturation.

The algorithm starts with S := {Q 0 }, then iteratively adds to S all states q 2 for which there exist q 1 ∈ S and an action a ∈ A such that (q 1 , a, q 2) ∈ ∆ and:

either a = write α (d) with d ∈ D, or a = read α (d) with α, d s.t. there exist q 3 , q 4 ∈ S, (q 3 , write α (d), q 4) ∈ ∆.

We prove that, when a fixpoint is reached, S is exactly the set of coverable states. First, any coverable state is added to S by the algorithm, by induction in the number of steps of the execution. Conversely, we show by induction in the number of iterations of the algorithm that any state added to S is coverable. For the first case, if (q 1 , write α (d), q 2) ∈ ∆ and q 1 is coverable then clearly q 2 is coverable. For the second case, suppose that we have an execution ρ covering S ⊆ Q, and that there exist q 2 ∈ Q, q 1 , q 3 , q 4 ∈ S, d ∈ D \ {d 0 }, α ∈ [1, dim] such that (q 1 , read α (d), q 2), (q 3 , write α (d), q 4) ∈ ∆. Because we have an unlimited supply of processes, we use the copycat property to put an extra process on q 3 then make that process write d to rg[α] again, so that a process in state q 1 may read d from register rg[α] and get to q 2 , which is therefore coverable.

A.3.2 PTIME when the Number of Registers dim is Fixed

The first write to a register is an irreversible action, as d 0 cannot be written again. For that reason, we cannot work with a single saturation phase like in the uninitialized case. We iterate over all possible orders in which registers are first written to (see first-write orders in [6, Definition 15]).

For a given such order r 1 , . . . , r m (m ≤ dim), we proceed using m + 1 successive saturation phases, numbered from i = 0 to m. The algorithm starts with S = {Q 0 }. During saturation phase i, the algorithm saturates S by iteratively adding all states q 2 such that: there exists q 1 ∈ S with (q 1 , read r (d 0), q 2) and r / ∈ {r 1 , . . . , r i }, there exists q 1 ∈ S with (q 1 , write rj (d), q 2), j ≤ i, there exists q 1 ∈ S with (q 1 , read rj (d), q 2), j ≤ i, and d may be written to r j using a transition whose source is in S.

First, if there exists an execution covering q f , then it writes to registers for the first time in some order r 1 , . . . , r m . When the algorithm considers this first-write order, the set of states computed includes q f . Conversely, suppose that the algorithm finds that q f is covered for some first-write order r 1 , . . . , r m . Observe that, if two executions share a first-write order r 1 , . . . , r m then they may be merged into a common execution [START_REF] Bertrand | Parameterized safety verification of round-based shared-memory systems[END_REF]Lemma 17]. Therefore, all the states computed by the algorithm may be covered in a single, big execution and q f is coverable.

A.3.3 PTIME-hardness

The proof is similar to the one presented in [9, Proposition 1] for broadcast protocols. It uses a LOGSPACE-reduction for the Circuit Value Problem, which is PTIME-complete for LOGSPACE reductions [START_REF] Ladner | The circuit value problem is log space complete for P[END_REF]. This problem consists in determining the output value of an acyclic Boolean circuit with given input values and Boolean gates that can be negations ¬, disjunctions ∨ and conjunctions ∧.

Consider an instance of the Circuit Value Problem, we write V for the set of input, intermediate and output values of the circuit. A gate is represented as a tuple of the form (¬, i, o), (∨, i 1 , i 2 , o) or (∧, i 1 , i 2 , o) where i, i 1 , i 2 ∈ V denote input(s) and o ∈ V the output of the gate. We construct an instance (P CVP , q f) of COVER with dim = 1. In D, we have d 0 (which is never read) along with, for every v ∈ V , symbols v = T and v = F, denoting that v is respectively true and false. First, P CVP has a part containing a state in Q 0 from which one may write the symbols corresponding to the assignment of the input values of the circuit. Moreover, for every gate of the circuit, there is a part of the protocol corresponding to this gate, which has a state in Q 0 from which a process may read the values of the inputs and write the corresponding value of the output. A depiction for gate (∧, i 1 , i 2 , o) may be found in Figure 5. Lastly, state q f is the destination of the transition writing the symbol corresponding to the output variable of the circuit having the desired value, so that q f is coverable if and only if this desired value is indeed the output value of the circuit.

read(i 1 = F) read(i 2 = F) write(o = F) read(i 1 = T) read(i 2 = T) write(o = T)
Figure 5 Part of the protocol P CVP that corresponds to gate (∧, i1, i2, o)

A.4 Proof of Proposition 12

▶ Proposition 12. DNF-PRP for roundless register protocols with dim = 1 is in PTIME.

We here prove the result in the general case of Proposition 12. We first prove that it suffices to prove the result for uninitialized protocols.

▶ Lemma A.3. There exists a polynomial-time reduction from initialized DNF-PRP with

dim = 1 to uninitialized DNF-PRP with dim = 1.
Proof. Let P = ⟨Q, Q 0 , 1, D, d 0 , ∆⟩ a roundless register protocol with a single register. Any execution will be composed of two phases: the phase where the register has value d 0 and no write transition is taken and the phase where the register no longer has value d 0 and write transitions may be taken. The reduction relies on the observation that, in the first phase, only transitions labeled by read(d 0) may be taken, and processes do not interact during this phase. Therefore, we can consider as initial any state that may be covered from Q 0 with a path of transitions all labeled by read(d 0).

Consider the graph G = (Q, E) whose vertices are the states of the system and whose edges are the transitions labeled by read(d 0): (q 1 , q 2) ∈ E if and only if (q 1 , read(d 0), q 2) ∈ ∆. Let

Q ′ 0 := {q ∈ Q | ∃m ≥ 0, ∃q 0 ∈ Q 0 , ∃q 1 , . . . , q m-1 , q m = q ∈ Q, ∀i ∈ [0, m -1]
, (q i , q i+1) ∈ E} the set of states reachable from Q 0 in G. Q ′ 0 can trivially be computed in polynomial time. Additionally, let ∆ ′ := ∆ \ {(q, read(d 0), q ′) | q, q ′ ∈ Q}. The reduction maps P to the protocol P ′ = ⟨Q, Q ′ 0 , 1, D, d 0 , ∆ ′ ⟩. We now prove that (P, ψ) is a positive instance of DNF-PRP if and only if (P ′ , ψ) is. First, suppose that, in P, there exists ρ : σ 0 * -→ σ such that σ |= ψ. We decompose ρ into ρ p : σ 0 * -→ σ 1 and ρ s : σ 1 * -→ σ where data(σ 1)(r) = d 0 and ρ s either is the empty execution or starts with a write transition. ρ p only uses transitions labeled by read(d 0) therefore, for every q ∈ st(σ 1), there exists a path in G from Q 0 to q; this proves that st(σ 1) ⊆ Q ′ 0 and therefore that σ 1 is initial for P ′ , moreover ρ s does not use transitions labeled by read(d 0) hence ρ s is a witness that (P ′ , ψ) is positive.

Suppose now that (P ′ , ψ) is positive. There exists ρ : Let C a clause in ψ. C is a conjunction of literals, hence it may be seen as a set of atomic propositions that the configuration reached has to satisfy. Let Q + (C) be the set of states that need to be populated in the final configuration, Q -(C) the states that need to not be populated, and D ok (C) the symbols that are allowed in the final configuration. -→ ⟨S, d f ⟩ is obtained by turning into non-deserting all deserting steps in ρ, so that all states covered in ρ appear in S. For the second execution, we claim that there exists ρ ′ : ⟨S, d f ⟩ for all n ≥ 1, the n-th configuration in ρ ′ has the same register value as and more states than the n-th configuration in ρ. This in fact proves that S f ⊆ S ′ f . Moreover, for every q ∈ S \ S f , since q / ∈ S f the last step in ρ about step q has q as source and is deserting, hence q is also deserted in ρ ′ which shows that S ′ f ⊆ S f . In the end, ρ ′ goes from ⟨S, d f ⟩ to ⟨S f , d f ⟩ which concludes the proof. ◀

σ 0 * -→ σ with σ |= ψ. For every q ∈ st(σ 0) \ Q 0 , there exists f (q) ∈ Q 0 such that q is reachable from f (q) in G. Let S := (st(σ 0) ∩ Q 0) ∪ f (st(σ 0) \ Q 0), we have S ⊆ Q 0 . We have that ⟨S, d 0 ⟩ * -→
if Q + (C) ⊆ S ⊆ Q \ Q -(C) and d ∈ D ok (C). Let F(C) := {S ⊆ Q | Q + (C) ⊆ S ⊆ Q \ Q -(C)}
We define the following two sets:

C(P) := max{S ⊆ Q | ∃σ 0 ∈ Init a , ∃d ∈ D, σ 0 * -→ ⟨S, d⟩}, BC(P, C) = max{S ⊆ Q | ∀d ∈ D, ∃d f ∈ D ok (C), ∃S f ∈ F(C), ⟨S, d⟩ * -→ ⟨S f , d f ⟩}.
where the max is for inclusion of sets. Note that for S ⊆ Q, it is equivalent that S satisfies the condition ∀d ∈ D, . . . in the second set and that there exists a witness execution that starts with a write and therefore is applicable from any ⟨S, d⟩ with d ∈ D. By convention, we consider that max(∅) = ∅, i.e., if

Q 0 = ∅ then C(P, C) = ∅ and if Q -(P, C) = Q then BC(P, C) = ∅.
We first prove that both maxima are well-defined because the sets considered are stable under union. Let σ 0 , σ ′ 0 ∈ Init a , ρ :

σ 0 * -→ ⟨S, d⟩, ρ ′ : σ ′ 0 * -→ ⟨S ′ , d ′ ⟩.
We show that we can merge ρ and ρ ′ into a single execution ⟨st(σ

0) ∪ st(σ ′ 0), d 0 ⟩ * -→ ⟨S ∪ S ′ , d ′ ⟩.
By mimicking ρ (without deserting states from st(σ ′ 0)), we obtain an execution ⟨st(σ

0)∪st(σ ′ 0), d 0 ⟩ * -→ ⟨S ∪st(σ ′ 0), d⟩. By mimicking ρ ′ , we obtain an execution ⟨S ∪ st(σ ′ 0), d⟩ * -→ ⟨S ∪ S ′ , d ′ ⟩ (because P is uninitialized, ρ ′ starts with a write). Therefore S ∪ S ′ is in the set {S ⊆ Q | ∃σ 0 ∈ Init a , ∃d ∈ D, σ 0 * -→ ⟨S, d⟩}, proving that it is closed under union.
For BC(P, C), we suppose that we have S, S ′ ⊆ Q that satisfy the condition of the set, and we prove that S ∪ S ′ does as well. Let d ∈ D. By hypothesis on S applied with d,

there exist S f , d f such that ⟨S, d⟩ * -→ ⟨S f , d f ⟩, and therefore ⟨S ∪ S ′ , d⟩ * -→ ⟨S f ∪ S ′ , d f ⟩. By hypothesis on S ′ applied with d f , there exist S ′ f , d f ′ such that ⟨S ′ , d f ⟩ * -→ ⟨S ′ f , d f ′ ⟩. Therefore we also have ⟨S f ∪ S ′ , d f ⟩ * -→ ⟨S f ∪ S ′ f , d f ′ ⟩
, which combined with the previous execution provides a witness that S ∪ S ′ is in the set. Algorithm 2 provides functions computing C(P, C) and BC(C, P) along with the function solving DNF-PRP when the protocol is uninitialized and dim = 1.

First, we prove that Compute_C(P) returns C(P). By induction, any state added in S in Compute_C(P) are in C(P). Indeed, any state that can be covered from a state in C(P) using a write transition is in C(P). Similarly, any state that can be covered from a state in C(P) using a read transition which symbol may be written from C(P) is in C(P): first write the corresponding value then read it (all states of C(P) can be covered in a single, common execution). Conversely, for any execution ρ : σ 0 * -→ σ, every state appearing in ρ is added to S. Observe that any execution may be split into phases, where a phase starts with a step writing a symbol then performs some number (possibly zero) of steps reading the symbol. We therefore process by induction on the number of such phases. The initialization comes from st(σ 0) ⊆ Q 0 . Let d the symbol of the last phase in ρ, and suppose that all states appearing before this last phase are added to S. The write transition of the phase is detected at line 11 of the iteration and the corresponding destination state is added to S. This write transition is now a witness for d at line 12, allowing every read transition appearing in the phase to be detected in this iteration.

We now claim that Compute_BC(P, C) returns BC(P, C). If S satisfies the condition in BC(P, C) then one can go from ⟨S, * ⟩ to a configuration satisfies the clause with an execution starting with a write. Again, this execution may be split into phases, each phase being composed of a write of a symbol followed by some reads of this symbol. The symbol of the last phase must be in D ok as the last configuration satisfies C. Therefore, by induction, // copy of P that will be modified

4 Until Q(P C) reaches a fixpoint do 5 Q(P C) Q(P C) ∩ C(P C) ∩ BC(P C , C) ; // modifies P C 6 if Q + (C) ⊆ Q(P C) ̸ = ∅ then Accept; 7
Reject ;

8 Function Compute_C(P):

9 S Q 0 ;
10 Until S reaches a fixpoint do 11 S S ∪ {q ′ | ∃q ∈ S, ∃d ∈ D, (q, write(d), q ′) ∈ ∆} ;

12 S S ∪ {q ′ | ∃q, q 1 , q 2 ∈ S, ∃d, (q, read(d), q ′) ∈ ∆, (q 1 , write(d), q 2) ∈ ∆} ; 13 return S ;

14 Function Compute_BC(P, C): XX:21

15 if PreviousSymbol(Q \ Q -(C), D ok) ̸ = "Not found" then S PreviousSymbol(Q \ Q -(C), D ok);
T T ∪ {q ∈ Q | ∃q ′ ∈ T, (q, read(d), q ′) ∈ ∆} ; 27 if there exist q ∈ Q, q ′ ∈ T s.t. (q, write(d), q ′) ∈ ∆ then
q 0 C 1 ? C 2 ?
. . .

C m ? q f Test(l 1,1) Test(l 1,2) Test(l 1,3) Test(l m,1) Test(l m,2)
Test(l m,3)

Test(x j) Test(¬x j) := := ∀j ∈ [1, n] write rg[j] (T) write rg[j] (F) ∀j ∈ [1, n] read rg[j] (T) read rg[j] (F)
Figure 6 The protocol P SAT (ϕ) for NP-hardness of uninitialized TARGET.

all states appearing in such an execution appear in some PreviousSymbol computation in Compute_BC(P, C), and the states returned include all states of the execution. Conversely, given a computation of Compute_BC(P, C) that returns S, one may by reversed induction build an execution that covers every state in S and ends on a configuration satisfying C. All in all, we have proven that Compute_BC(P, C) computes BC(P, C).

We will now prove that DNFPRP_Oneregister_Uninit of Algorithm 2 solves DNF-PRP for uninitialized protocols with dim = 1. First, suppose that the algorithm accepts during the iteration corresponding to clause C. It ends with a protocol Suppose now that the instance is positive. There exist a clause C in ψ and a witness execution ρ :

P C such that Q + (C) ⊆ Q(P C) =
σ 0 * -→ ⟨S f , d f ⟩ with d f ∈ D ok (C) and S f ∈ F(C).
Let S the set of states appearing in ρ. By induction, we have that S ⊆ C(P C) ∩ BC(P C , C) at every iteration of DNFPRP_Oneregister_Uninit, because ρ remains a witness of both inclusions at every iteration. Moreover, Q + (C) ⊆ S therefore the algorithm accepts.

A.5 Proof of Proposition 13

▶ Proposition 13. TARGET for uninitialized roundless register protocols is NP-hard.

Once again, we provide a reduction from 3-SAT. Consider a 3-CNF formula ϕ =

m i=1 l i,1 ∨ l i,2 ∨ l i,3 over n variables x 1 , . . . , x n where, for all i ∈ [1, m], for all k ∈ [1, 3], l i,k ∈ {x j , ¬x j | j ∈ [1, n]}.
We define an instance of the uninitialized TARGET (P SAT (ϕ), q f) which is positive if and only if ϕ is satisfiable. Let dim := n, i.e., the protocol has a register rg[i] for each i ∈ [1, n]. Each register can have values T and F (along with d 0 which cannot be read nor written). A depiction of the protocol can be found in Figure 6.

Suppose first that ϕ is satisfiable by an assignment ν. For all i ∈ [1, m], there exists k(i) ∈ [START_REF] Parosh | Parameterized verification under TSO is PSPACE-complete[END_REF][START_REF] Balasubramanian | Erratum to parameterized analysis of reconfigurable broadcast networks[END_REF] such that ν(l i,k(i)) = true. Consider the execution that writes symbols according to ν, then deserts q 0 to go to C 1 ?, and one by one deserts all C i ?-s through states Test(l i,k(i)). This execution goes from ⟨q 0 , d Reg 0 ⟩ to ⟨q f , ⃗ d f ⟩ hence the instance of TARGET is positive.

XX:22 Checking PRPs on Parameterized Shared-Memory Systems

Conversely, suppose that there exists such an execution ρ : σ 0 * -→ ⟨q f , ⃗ d⟩. Let ν be the valuation corresponding to the register values when ρ deserts q 0 for the last time. From this point onwards, ρ successively deserts all C i ?, hence for all i ∈ [1, m], there exists k(i) ∈ [START_REF] Parosh | Parameterized verification under TSO is PSPACE-complete[END_REF][START_REF] Balasubramanian | Erratum to parameterized analysis of reconfigurable broadcast networks[END_REF] such that ν(l i,k(i)) = true, proving that ϕ is satisfied by ν.

B

Round-based Register Protocols

B.1 Formal Definition of Atomic Presence Constraints

We first define some more precise notions to refer to parts of presence constraints. A term is of the form m or k+m with m ∈ N and k a free variable. An atomic proposition is either of the form "(q, t) populated" with t a term and q ∈ Q or of the form "rg t [α] contains d" with t a term, α ∈ [1, dim] and d ∈ D. A literal is either an atomic proposition or the negation of an atomic proposition. A proposition is a Boolean combination of atomic propositions that has at most one free variable. An atomic presence constraint is either a closed proposition (no free variables), or of the form "∃k ϕ" or "∀k ϕ" where ϕ is a proposition with k as a free variable. A presence constraint is a Boolean combination of atomic presence constraints.

B.2 Proof of Lemma 21

We prove the following, more general statement.

▶ Lemma B.5. Let K ∈ N, w ≥ v-1, (τ k) k≤K and (T k) k≤K-1 such that: for all k ≤ K, τ k is a footprint on [k-w, k], for all k ≤ K-1, T k is a footprint on [k-w, k+1], for all k ≤ K-1, footprint[k-w, k](T k) = τ k , for all k ≤ K-1, footprint[k-w+1, k+1](T k) = τ k .
There exists an execution ρ such that, for all k ≤ K, footprint[k-w, k](ρ) = τ k .

We start by proving the following lemma:

▶ Lemma B.6. Let w ≥ v, k ∈ N, τ -a footprint on [k-w, k] and τ + a footprint on [k-w+1, k+1] such that footprint[k-w+1, k](τ -) = footprint[k-w+1, k](τ +). There exists T a footprint on [k-w, k+1] such that footprint[k-w, k](T) = τ -and footprint[k-w+1, k+1](T) = τ + . Proof. Let τ com := footprint[k-w+1, k](τ -) = footprint[k-w+1, k](τ +)
. We proceed by induction on the number of steps in τ com . First if τ com is the dummy footprint with no steps, then all steps in τ -are at round k-w and steps in τ + are at round k+1. It suffices to consider T that first copies the behavior of τ -and then the behavior of τ + : steps at round k-w cannot depend on the information of rounds > k-w, and steps at round k+1 cannot depend on the information of rounds < k-w because w ≥ v.

Assume that the property is true if τ com has m steps, and suppose that τ com has m+1 steps. We decompose τ -= t -, θ, s -and τ + = t + , θ, s + where t -and t + coincide on rounds k-w+1 to k and their projection on these rounds has exactly m steps, θ is the move of the m+1-th step of τ com , and s -and s + have no step at rounds k-w+1 to k. By induction hypothesis, there exists t such that footprint[k-w, k](t) = t -and footprint[k-w+1, k+1](t) = t + . By applying the property for m = 0, there exists s such that footprint[k-w, k](s) = s -and footprint[k-w+1, k+1](s) = s + . Letting T := t, θ, s (with θ deserting if and only if it was deserting in τ com) concludes the proof. ◀

We now prove Lemma B.5. We proceed by induction on K. First, if K = 0, footprint τ 0 only has moves at round 0 and may be seen as an execution. Suppose that the property is true for K, and consider (τ k) k≤K+1 , (T k) k≤K satisfying the hypothesis. For all k ≤ K-1, T k and T k+1 both have projection τ k+1 on rounds [k-w+1, k+1], hence thanks to Lemma B.6 applied with w ′ := w+1 and k ′ := k+1, there exists U k on rounds [k-w, k+2] that projects to T k and T k+1 on [k-w, k+1] and [k-w+1, k+2] respectively. By applying the induction hypothesis on (T k) and (U k) with K ′ := K-1, there exists an execution ρ such that, for all k ≤ K, footprint[k-w, k+1](ρ) = T k ; this implies that, for all k ≤ K+1, footprint[k-w, k](ρ) = τ k , concluding the proof of Lemma B.5. Applying Lemma B.5 with w := v-1 gives Lemma 21.

B.3 Technical Details about Algorithm 1

Here, we describe in full details how Algorithm 1 handles the presence constraint. The pseudocode of the three functions used in Algorithm 1 can be found in Algorithm 3.

For ψ a presence constraint, we write APC(ψ) for the set containing all atomic presence constraints in ψ as well as their negations. For ϕ a closed proposition, we write AP(ϕ) for the set of atomic propositions in ϕ. Given a set S of propositions or presence constraints, we write PosOrNeg(S) := S ∪ {¬P | P ∈ S} for the set containing all elements in S and the negations of all elements in S.

B.3.1 Function NDInit (Line 1):

At Line 2, we guess a partial assignment over atomic presence constraints that makes ψ true. Recall that atomic presence constraints either are closed propositions or of the form "∀l ϕ" or "∃l ϕ" with ϕ a proposition that has l as free variable. We see this assignment as a set of atomic presence constraints which, when set to true, make ψ true. Note that negations of atomic presence constraints are atomic presence constraints. All closed atomic propositions refer to constant rounds; guess which ones are true (Line 5). This simplifies all closed propositions in X to either true of false: if any of them is false, we reject (Line 8). We put universally quantified element of X in U (Line 9) and existentially quantified ones in E (Line 10).

B.3.2 Function NDComputeIteration (Line 11):

The universal atomic presence constraints are checked at every round (Lines 12 to 14), while for each existential atomic presence constraints is checked at a round chosen nondeterministically (Lines 15 to 18). When checking a proposition, we guess which literals make them true, and put these literals in C to be checked later. Moreover, we check at round k all literals in C that are about round k (at Lines 19 and 20). Note that all literals in C are closed formulas hence their terms are constant integers.

B.3.3 Function TestPresenceConstraint (Line 21):

In this functon, we check whether we can stop the execution at round k, leaving all rounds ≥ k+1 untouched. First, we check that E is empty. This means that a round has been guessed for every existential formula that has been in E. Moreover, we check that remaining formulas in C and U would be satisfied at rounds ≥ k+1 if these rounds are left untouched by the execution, which is done in Lines 23 to 25.

XX:25

round l ≥ k+1 at this stage, and we check that ϕ is either of the form "¬((q, l) populated)" or of the form "rg l [α] contains d 0 ". A universal presence constraint ∀l ϕ must be satisfied on arbitrarily large rounds ≥ k+1, and we check that we obtain true by setting in ϕ all "(q, t) populated" to false, "rg t [α] contains d 0 " to true and "rg t The previous lemma proves that all APCs guessed at Line 2 are satisfied by σ. Note that the simplification at Lines 5 and 6 does not change the truth value of APC P . Finally, we have σ |= ψ.

We now prove the converse implication: suppose that there exists ρ : σ 0 * -→ σ with σ |= ψ. Since ρ is a finite execution, there exists K such that σ has no move with effect on rounds > K. We build an accepting computation of the algorithm as follows. First, the computation of the algorithm guesses σ 0 as initial configuration. At Line 2, it guesses APCs P such that σ |= P . At Line 5, it guesses the truth value of closed APs in σ, so that all formulas added to C, E and U are satisfied by σ. In the loop on k, it guesses ρ footprint by footprint. At execution k, the local configuration λ obtained is equal to footprint[k-v, k](σ). Formulas in E and U do not have closed terms, and since quantified terms are of the form l+m with l a free variable, literals added to C at iteration k refer to rounds ≥ k; thanks to Lines 19 to 20, at the end of iteration k, all literals in C are about rounds ≥ k+1. At the end of iteration K (or an earlier iteration), all formulas in C and U are satisfied by σ (which is blank after round K) hence TestPresenceConstraint(E, U, C, λ) succeeds and the computation accepts. This concluded the proof of Proposition 22. We first prove that footprints may be stored in polynomial space.

▶ Lemma B.9. For all σ ∈ Σ, σ ′ ∈ Reach a (σ), there exists ρ : σ * -→ σ ′ s.t., for all k, footprint[k-v, k](ρ) is storable in space O((|Q| 2 (v+1) 2 log(dim |D|))).

More specifically, we will prove that footprint[k-v, k](ρ) is storable in space O((|Q| 2 (v+1) 2 + |Q| (v+1) 2 log(dim |D|))). Similarly to the roundless case, we introduce a notion of normal form. An execution ρ is in normal form if for every step in ρ, one the following conditions is satisfied: the step writes a symbol to a register, and this symbol is later read by another step, or it deserts the source location, or its destination location was not populated before the step and has never been populated before in the execution.

Note that the last two conditions combined imply that a given location is deserted at most once, as it cannot be deserted and then populated again.

▶ Lemma B.10. For all execution ρ : σ * -→ σ ′ , there exists a execution ρ : σ * -→ σ ′ that is in normal form.

Proof. It suffices to iteratively:

remove any read or increment that is non-deserting and does not cover a new location, remove any write that is non-deserting, does not populate a new location and whose written symbol is never read, turn into non-deserting any deserting step that deserts a location which is later populated again. Proof. First, any read or increment step at round k either deserts its source location which is never populated again, or populates its destination (i.e., its destination was not populated before the step). However, each location has at most one step populating the location and one deserting the location. Since steps at round k may only desert locations of round k and populate locations at rounds k and k+1, at most 3|Q| steps at round k either desert or populate a location, among which at most 2|Q| read steps as they may only desert and populate locations of round k. Moreover, any write step at round k that does not populate or desert must be read later, and that has to be by a read step on a round between k and k+v. Since there are at most 2|Q|(v+1) read steps on these rounds, there are at most 2|Q|(v+1) writes at round k that do not populate nor desert, hence in total at most |Q|(2v+5) steps at round k. 12 proves Lemma B.9. Observe that Lemma B.9 is only true under the assumption that we do not store the rounds of a footprint in absolute value but in relative value with respect to k; otherwise the space used would depend on k.

We now prove Proposition 23. Thanks to Proposition B.9, one may store and T in polynomial space. U and E are storable in O(|ψ|), as for every atomic presence constraint ϕ in U and E, either ϕ is present in ψ or its negation ¬ϕ is. Let M be the value of the greatest integer constant in ψ, which is in O(|ψ|) thanks to unary encoding of the terms. A literal can get to C in two different ways: during the initialization (Lines 5 and 6) or while processing a presence constraint from U or E (Lines 14 and 18). There are at most O(|ψ|) literals added to C in the initialization. Consider L a literal that is added to C at Line 14 or Line 18 during the computation of round k. Let r be the round appearing in L. Either r is a constant from ψ, or it was added at iteration k ′ ≤ k, hence r is of the form k ′ + m with m ≤ M . In that case, note that r ≥ k because otherwise the literal would have been removed from C at iteration r. Either way, one has 0 ≤ r -k ≤ M , hence a given element in C is storable in O(|ψ|). Also, elements in C at round k were added to C either at the initialization or at a round in [k-M, k], which bounds the total number of elements in C by O(M |ψ|) = O(|ψ| 2) at any point in the computation, and C is storable in O(|ψ| 3).

Figure 1

 1 Figure 1 An example of a protocol

Figure 4

 4 Figure 4 An example of round-based register protocol

 σ 0 in P by only taking transitions appearing in G. Therefore ⟨S, d 0 ⟩ * -→ σ with σ |= ψ and ⟨S, d 0 ⟩ is initial for P, which proves that (P, ψ) is positive. ◀ Thanks to the previous lemma, we prove Proposition 12 in the uninitialized case. Consider a instance (P, ψ) of DNF-PRP where P is uninitialized and dim = 1. (P, ψ) is positive if and only if (P, C) is positive for some clause C of ψ. Our algorithm hence iterates over all clauses in ψ.

 Formally, Q + (C) := {q | "q populated" ∈ C}, Q -(C) := {q | "¬(q populated)" ∈ C} and D ok (C) := {d ∈ D | "¬(r contains d)" / ∈ C and ∀d ′ ̸ = d, "r contains d ′ " / ∈ C} where r denotes the register. For all ⟨S, d⟩ ∈ Σ, ⟨S, d⟩ |= C if and only

 denote the collection of all sets of states allowed in the final configuration. ▶ Lemma A.4. Any execution ρ : σ 0 * -→ σ with σ 0 ∈ Init a may be decomposed in the following form: σ 0 * -→ ⟨S, d f ⟩ * -→ σ with S containing all states appearing in ρ. Proof. Let ρ : σ 0 * -→ σ; let ⟨S f , d f ⟩ := σ. The execution σ 0 *

1 2 for C clause of ψ do 3 P

 23 Function DNFPRP_Oneregister_Uninit(P): C P ;

16 else return ∅ ; 17 Until S reaches a fixpoint do 18 ifS

 161718 PreviousSymbol(S, D \ {d 0 })̸ ="Not found" then 19 PreviousSymbol(S, D \ {d 0 }) ;

28S T ∪ {q} ; 29 Found True ; 30 if

 2930 Found then return S else return "Not found" ; Algorithm 2 A polynomial-time algorithm for DNF-PRP with dim = 1

 C(P C) ∩ BC(P C , C). In this protocol, there exist σ 0 ∈ Init a and d ∈ D such that σ 0 * -→ ⟨C(P C), d⟩; since C(P C) = BC(P C , C) we also have ⟨C(P C), d⟩ * -→ ⟨S f , d f ⟩ |= C and the instance is positive.

▶ Example B. 7 .B. 4

 74 [α] contains d" to false for d ̸ = d 0 . Consider ϕ 1 := ∀l ((q, l) populated) ∨ (rg l [α] contains d 0) and ϕ 2 := ∀l (rg l [α] contains d) with d ̸ = d 0 . One has ⟨∅, d Reg 0 ⟩ |= phi 1 , but ⟨∅, d Reg 0 ⟩ ̸ |= ϕ 2 . There is no hope of finding a σ ∈ Reach a (Init a) such that σ |= ϕ 2 . ◀ Proof of Correctness of the Algorithm ▶ Proposition 22. (P, ψ) is a positive instance of round-based PRP if and only if there exists an accepting computation of Algorithm 1 on (P, ψ). First, consider a computation of the algorithm that accepts at round K ∈ N. For all k ∈ [0, K], let τ k denote the footprint on [k-v+1, k] guessed by the algorithm during iteration k. By applying Lemma 21, there exist σ 0 ∈ Init a and an execution ρ : σ 0 * -→ σ such that, for all k ≤ K, footprint[k-v+1, k](ρ) = τ k . Moreover, ρ leaves rounds ≥ K untouched. ▶ Lemma B.8. For every formula P that was in U , E or C at any point throughout the computation, one has σ |= P . Proof. Let L be a literal that has been in C at some point. If it was removed from C at Line 20, then C is satisfied by λ hence by σ. If it has remained in C until the end, then it is about round l ≥ K+1 and ⟨∅, d Reg 0 ⟩ |= L, hence σ |= L. Consider "∃l ϕ" that has appeared in E at some point; it was added to E at Line 10. At some iteration k, "∃l ϕ" is removed from E at Line 18. All literals guessed at Line 17 are added to C at Line 18 hence are satisfied by σ, thus σ |= ϕ[l k] and σ |= ∃l ϕ. Similarly, consider "∀l ϕ" that has appeared in U at some point. By the same argument, for all k ≤ K, σ |= ϕ[l k]. Also, thanks to the verification at Lines 23 to 25, for all k ≥ K+1, σ |= ϕ[l k], which proves that σ |= ∃l ϕ. ◀

▶

 Proposition 23. Algorithm 1 works in space O(|ψ| 3 + |Q| 2 (v+1) 2 log(dim |D|)).

◀▶

 Lemma B.11. An execution in normal form has at most |Q|(2v+5) steps on a given round k.

◀ ▶ Lemma B. 12 .

 12 If ρ is in normal form and k ∈ N, then footprint[k-v, k](ρ) is storable in polynomial space O((|Q| 2 (v+1) 2 + |Q| (v+1) 2 log(dim |D|))). This footprint only has steps at rounds k-v to k, hence in total at most (v+1)|Q|(2v+5) steps. Since a move can be stored in O(log(|Q|) + log(D) + log(v) + log(dim)) and a local configuration in O((|Q| + dim log(|D|))(v+1)) (storing the relative round instead of the absolute one), a footprint on [k-v, k] can be stored in polynomial space O((|Q| 2 (v+1) 2 + |Q| (v+1) 2 log(dim |D|))). ◀ Combining Lemmas B.10, B.11 and B.

 The test is expressed under the condition ⟨∅, d Reg 0 ⟩ is technically not a configuration as it has zero processes), and is implemented as follows. Any formula ϕ that is in C at the end of iteration k is about Guess X ⊆ PosOrNeg(APC(ψ)) s.t. ψ is true when all APCs in X are true ;

	1 Function NDInit(E, U, C) :	
		/* Sets containing what needs to be checked: U and E contain
		respectively universally and existentially quantified atomic
		presence constraints, C contains closed literals	*/
	2		
	3	for P in X do	
	4	for ϕ closed atomic proposition in P do
		/* ϕ refers to constant rounds only	*/
		Reg 0 ⟩ ̸ |= ϕ then	
	25	return false ;	// Execution cannot stop at round k

Reg 0 ⟩ |= ϕ (although ⟨∅, d 5 if ϕ guessed to be true then Add ϕ to C ; Replace ϕ by true in P ; 6 else Add ¬ϕ to C ; Replace ϕ by false in P ; 7 if P is a closed proposition then 8 Check that P is true with guessed values of atomic propositions ; 9 if P universal then Add P to U ; 10 if P existential then Add P to E ; 11 Function NDComputeIteration(E, U, C, λ) : 12 for "∀l ϕ" in U do 13 Guess L ⊆ PosOrNeg(AP(ϕ[l k])) s.t. ϕ[l k] is true when all literals in L are true ; 14 Add all literals in L to C ; 15 for "∃l ϕ" in E do 16 if ϕ[l k] guessed to be true then 17 Guess L ⊆ PosOrNeg(AP(ϕ[l k])) s.t. ϕ[l k] is true when all literals in L are true ; 18 Add all literals in L to C ; Remove "∃l ϕ" from E ; 19 for ϕ in C about round k do // ϕ is of the form (negation of) "(q, k) populated", or (negation of) "rg k [α] contains d" 20 Check that ϕ is satisfied in λ ; Remove ϕ from C ; 21 Function TestPresenceConstraint(E, U, C, λ) : 22 if E ̸ = ∅ then return false ; 23 for ϕ ∈ C or "∀l ϕ" in U do 24 if ⟨∅, d

return true ; Algorithm 3 The functions at Line 5, Line 10 and Line 11 of Algorithm 1

Acknowledgements

Many thanks to Nathalie Bertrand, Nicolas Markey and Ocan Sankur for their invaluable advice.

-→ λ ′ if λ = λ ′ ; if θ = ((q, Inc, q ′), j-1) then λ θ -→ λ ′ holds with no condition that (q, j-1) is populated in λ, since j-1 is outside of [j, k]; if θ = ((q, read -b α (d)), l) with l-b < j (read from register of round < j), there is no condition on the content of the register.

A footprint on (rounds) [j, k] corresponds to the projection of an execution on rounds [j, k]. Formally, it is an alternating sequence λ 0 , θ 0 , λ 1 , . . . , θ m-1 , λ m where for all i ∈ [0, m],

written footprint[j, k](ρ), is the footprint on [j, k] obtained from ρ by replacing σ i by λ i = local[j, k](σ i) and then removing all useless steps λ i θ -→ λ i+1 with λ i = λ i+1 (by merging λ i and λ i+1 , so footprint[j, k](ρ) can be shorter than ρ). Similarly, for [j ′ , k ′] ⊇ [j, k] and τ a footprint on [j ′ , k ′], define the projection footprint[j, k](τ) by the footprint obtained by replacing each local configuration in τ by its projection on [j, k] and removing useless steps.

The following result provides a sufficient condition for a sequence of footprints to be seen as projections of a single common execution.

There exists an execution ρ such that, for all k ≤ K, footprint[k-v+1, k](ρ) = τ k .

A Polynomial-Space Algorithm for Round-Based PRP

The algorithms guesses the witness execution footprint by footprint, and stops when the presence constraint is satisfied. Algorithm 1 provides the skeleton of this procedure. For the sake of simplicity, we suppose that v ≥ 1. If v = 0, we artificially increase v to 1.

For all k ∈ N, let τ k be the value of τ at the end of iteration k and T k the value of T guessed at iteration k+1. Thanks to Lemma 21, if the algorithm reaches the end of iteration K then there exists an execution ρ whose projection on

Handling the round-based presence constraint is technical, so we hide it in functions NDInit, NDComputeIteration and TestPresenceConstraint and postpone the details to Appendix B.3. We guess why ψ is true by guessing satisfied atomic propositions of three types: existentially quantified on the round (i.e., of the form "∃k ϕ" where ϕ has no quantifiers and only k as free variable) which we put in E; universally quantified on the round (i.e., of the form "∀k ϕ" where ϕ has no quantifiers and only k as free variable) which we put in U ; with no quantifier (i.e., of the form "ϕ" where ϕ has no quantifiers and no free variables) which we put in C. Formulas in C refer to constant rounds and are checked at these rounds only. Formulas in U are checked at every round. For formulas in E, the algorithm guesses at which round the formula is true. Our algorithm is correct with respect to round-based PRP: