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The Cubicle Fuzzy Loop : A Fuzzing-Based
Extension for the Cubicle Model Checker

Sylvain Conchon and Alexandrina Korneva

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
91190, Gif-sur-Yvette, France.

Abstract. This paper presents the Cubicle Fuzzy Loop (CFL), a fuzzing-
based extension for Cubicle, a model checker for parameterized systems.
To prove safety, Cubicle generates invariants, making use of forward ex-
ploration strategies like BFS or DFS on finite model instances. How-
ever, these standard algorithms are quickly faced with the state explo-
sion problem due to Cubicle’s purely nondeterministic semantics. This
causes them to struggle at discovering critical states, hindering invariant
generation.
CFL replaces this approach with a powerful DFS-like algorithm inspired
by fuzzing. Cubicle’s purely nondeterministic execution loop is modified
to provide feedback on newly discovered states and visited transitions.
This feedback is used by CFL to construct schedulers that guide the
model exploration. Not only does this provide Cubicle with a bigger
variety of states for generating invariants, it also quickly identifies unsafe
models. As a bonus, it adds testing capabilities to Cubicle, such as the
ability to detect deadlocks.
Our first experiments have yielded promising results. CFL effectively
allows Cubicle to generate crucial invariants, useful to handle hierarchical
systems, while also being able to trap bad states and deadlocks in hard-
to-reach areas of such models.

Keywords: Fuzzing techniques · Model Checking · Parameterized Sys-
tems

1 Introduction

Cubicle [5, 3] is a model checker for verifying safety properties of array-based sys-
tems. This is a syntactically restricted class of parametrized transition systems
with states represented as arrays indexed by an arbitrary number of processes
(or nodes) [6]. Distributed protocols, cache coherence, and mutual exclusion al-
gorithms are typical examples of such systems.

Cubicle is based on the Model Checking Modulo Theory (MCMT) frame-
work [7] where states and transitions are both represented as formulas in a par-
ticular fragment of first-order logic. To verify safety, Cubicle checks that unsafe
states are not reachable using a symbolic backward reachability analysis: start-
ing from a user-defined formula describing unsafe states, it iteratively computes
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its pre-image closure (understood as unreachable states), making use of an SMT
back-end for termination and safety tests.

In order to speed up safety proofs, Cubicle supports invariant synthesis [4].
For that, it first computes a set M of reachable states using a forward explo-
ration for a finite instance of the system (with a fixed number of processes).
The current strategies implemented in Cubicle for this forward search are BFS
and DFS (users can choose which strategy to use). Then, Cubicle performs a
backward reachability analysis of the parameterized system. At each loop iter-
ation, Cubicle computes an over-approximation of pre-images and checks that
they represent states that are not inM. All these approximations, which can be
seen as candidate invariants, are model checked together with the original safety
property. Sometimes approximations can be too coarse, leading to false positives
known as spurious traces. When these occur, Cubicle is forced to backtrack in
order to ensure completeness.

The strength of this method lies in the fact that finite instances are generally
good oracles for guiding the choice of approximations, as they can be seen as
concentrated knowledge of the system. However, the method only works if the
set M is sufficiently large and contains crucial system states. If this is not the
case, Cubicle will backtrack very often during its backward analysis, which will
likely prevent it from completing its proof.

Unfortunately, the space of states M to be visited for a finite instance can
grow exponentially, even for a small number of processes. This is the case, for
example, for hierarchical systems such as cache coherence algorithms, where it
is necessary to explore execution traces deep enough to visit significant states.
For such systems, Cubicle’s current exploration strategies are either unable to
go deep enough into the system (BFS), or unable to explore subtle interleavings
of component executions (DFS). In both cases, Cubicle is forced to backtrack
often during its backward analysis.

In this paper, we describe an algorithm for a new forward exploration strat-
egy for Cubicle inspired by fuzzing techniques [11, 9, 8]. This strategy not only
makes it possible to explore very deep traces, but also to discover extremely
rare events in a system, such as synchronization points resulting from highly
improbable interleavings. The relevance of the states visited by this approach
is such that it enables Cubicle to deduce invariants for systems that previously
ranged from difficult to impossible to analyze. Furthermore, not only does this
new exploration technique provide Cubicle with a bigger variety of states for
inferring invariants, it also quickly identifies unsafe models. As a bonus, it adds
testing capabilities to Cubicle, such as the ability to detect deadlocks.

To summarize, we make the following contributions:

1. We define the Cubicle Fuzzy Loop (CFL), a new (forward) exploration al-
gorithm for Cubicle based on fuzzing techniques, for which we present and
discuss different heuristics.

2. We have implemented CFL in a new prototype version of Cubicle. We are
experimentally evaluating the benefits of CFL on representative examples of
highly concurrent and hierarchical systems.
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3. Finally, we demonstrate experimentally that CFL can be easily extended to
detect deadlocks, which is not possible with the current version of Cubicle.

The rest of the paper is organized as follows: In Section 2, we recall the back-
ward reachability algorithm of Cubicle and its (candidate) invariant inference
mechanism. In Section 3, we illustrate how CFL works on a simple example that
is representative of systems that are difficult for Cubicle to analyze. We formalize
CFL in Section 4. We show and discuss experimental results in Section 5. We
conclude and present related works in Section 6.

2 Backgound on Cubicle

Cubicle is based on MCMT, a declarative framework for parameterized systems
in which (sets of) states, transitions and properties are expressed in a particular
fragment of first order logic with enumerative data types. Systems expressible
in this framework are called array-based transition systems, because their states
can be seen as a set of unbounded arrays (denoted by capital letters X,Y, . . .)
whose indexes range over elements of a parameterized domain, called proc, of
process identifiers (denoted by i, j, ...). Given an array variable X and a process
variable i, we write X[i] for an array access of X at index i. Systems may also
contain variables but, from a theoretical point of view, a variable is seen as an
array with the same value in all its cells. Arrays may contain integers or real
numbers, booleans (or constructors from an enumerative user-defined datatype),
or process identifiers.

A parameterized array-based system S is defined by a triplet (X , I, τ) where
X is a set of array symbols, I is a formula describing the initial states of the
system and τ is a set of (possibly quantified) formulas, called transitions, relating
states of S. The formula I is a universal conjunction of literals of the form
∀i.

∧
n `n which characterizes the values for some array entries. Each literal `n

is a comparison (=, 6=, <, ≤) between two terms. A term can be a constant
(integer, boolean, real, constructor), a process variable (i), an array access X[i]. A
transition t ∈ τ is represented by a formula parameterized by the set of variables
before and after the transition (X and X ′) and prefixed by the existentially
quantified process variables involved in the transition:

t(X ,X ′) = ∃i. ∆(i) ∧ γ(i,X )
∧

∧
X′∈X ′

∀k.
∧
n (Cn(i, k,X )⇒ X′[k] = vn(i, k,X ))

where ∆(i) is the conjunction of all disequations between the variables in i, the
formula γ(i,X ) is a conjunction of literals that represents the transition’s guard,
i.e. the conditions that must be met for the transition to be triggered and the
conjunction

∧
n (Cn(i, k,X )⇒ X′[k] = vn(i, k,X )) represents the updated value

of each array X defined by a case-split expression, where each conjunction of
literals Cn(i, k,X ) and term vn(i, k,X ) may depend on i, k and X .

In Fig. 1, we give an example of an array-based system implementing a simple,
slightly modified, Dekker mutual exclusion algorithm. The system keeps track
of the status S[i] of a process i. A process can have one of three statuses:
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– Idle: the process is not doing anything in particular
– Want: the process has requested access to the critical section
– Crit: the process has been granted access to the critical section

As denoted by the formula Init in Fig. 1, the status of every process i is Idle in
the initial state of the system. There is also a variable Turn, keeping track of who
among those who’ve requested access can enter the critical section (the content
of Turn is not specified in the Init formula). The three transitions Req, Enter and
Exit describe the behavior of any process i. For example, transition Enter should
be read as: if there exists a process i such that S[i] = Want and Turn = i, then
the new value of the array S, called S’, is S[i← Crit] which succinctly denotes
an array equal to S, except for cell i, which is now equal to Crit.

Fig. 1. Modified Dekker mutual exclusion algorithm

Safety properties to be verified on array-based systems are expressed in their
negated form as formulas that represent unsafe states. Each unsafe formula ϕ(X )
must be a cube, i.e., have the form ∃k.(∆(k)∧

∧
m `m(k,X )), where each literal

`m(k,X ) may depend on k and array symbols in X . For example, the Unsafe
formula in Fig. 1 describes the bad states of the Dekker algorithm, which cor-
respond to states where two distinct processes have been granted access to the
critical section simultaneously.

For a state formula ϕ and a transition t ∈ τ , let pret(ϕ) be the formula
describing the set of states from which a ϕ-state can be reached in one t-step.
The pre-image of a formula ϕ(X ) by a transition t is given by:

pret(ϕ)(X ) = ∃X ′. t(X ,X ′) ∧ ϕ(X ′)

The pre-image closure of ϕ w.r.t a set of transitions τ , denoted by Pre∗τ (ϕ), is
defined as follows:

Pre0
τ (ϕ) , ϕ

Prenτ (ϕ) ,
⋃
{pret(ψ) | ψ ∈ Pren−1τ (ϕ), t ∈ τ}

Pre∗τ (ϕ) ,
⋃
k∈N Prekτ (ϕ)
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and the pre-image of a set of formulas V is defined by Pre∗τ (V ) =
⋃
ϕ∈V Pre∗τ (ϕ).

We also write Preτ (ϕ) for Pre1
τ (ϕ).

Given an array-based parameterized system S = (X , I, τ) and a set of un-
safe states represented by a cube U , we say that U is reachable if and only if
Pre∗τ (V ) ∧ I satisfiable. In order to decide if U is reachable or not, Cubicle
implements the symbolic backward reachability loop Bwd(S, U, dmax, k) given in
Algorithm 1. This function takes as input a parameterized system S, a cube
U , and two integers dmax and k. It starts by initializing a variableM with the
set FWD(dmax, k) of reachable states constructed by a forward exploration of the
reachability graph for k processes starting in a state defined by the formula
I(#1) ∧ · · · ∧ I(#k) and limited to depth dmax. FWD is not fixed and can be any
user-chosen forward exploration strategy (BFS, DFS, etc).

Algorithm 1: Cubicle backward reachability loop
1 function Bwd(S, U, dmax, k) : begin
2 M := FWD(dmax,k);
3 V := ∅;
4 push(Q,U);
5 while not_empty(Q) do
6 ϕ := pop(Q);
7 if ϕ ∧ I satisfiable then
8 return unsafe

9 else if ϕ 2 V then
10 V := V ∪ {ϕ};
11 ψ := Approx(ϕ);
12 if M 6|= ψ then
13 push(Q,Preτ (ψ))

14 else
15 push(Q,Preτ (ϕ))

16 return safe

Then, Bwd(S, U, dmax, k) computes the pre-image closure of U by maintaining
two collections of states:

– Q contains the (unsafe) states to visit (it is initialized with U)
– V is filled with the visited states (initially empty)

Each iteration of the loop performs the following operations:

1. (pop) retrieve and remove a formula ϕ from Q
2. (safety test) check the satisfiability of ϕ ∧ I, i.e. determine if the states

described by ϕ intersect with the initial states I. If so, the system is declared
as unsafe
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3. (fixpoint test) check if ϕ |= V is valid, i.e. determine if the states described
by ϕ have already been visited. If so, discard ϕ and go back to 1

4. (over-approximate) call function Approx to find an over-approximation of ϕ.
5. (oracle test and pre-image) if ψ represents states that are not inM (check

the validity ofM 6|= ψ), then compute the pre-image Preτ (ψ) of ψ and add
these new (set of) states to Q. Otherwise, compute the pre-image Preτ (ϕ)
of ϕ and add the result to Q.

If Q is empty at step 1, then all of the state space has been explored and the
system is declared safe. Note that the (non-trivial) fixpoint and safety tests are
discharged to an embedded SMT solver. Notice that the correctness of Bwd does
not depend on the content ofM, which thus acts as an oracle and only impacts
the completeness of the algorithm.

3 Motivation

Cubicle’s current forward exploration strategies are extremely efficient, but have
their limitations. In this section we show how and where Cubicle struggles.

If we consider real-life concurrent systems and how they are built, there are
three prevailing features: (i) pipeline parallelism, (ii) synchronization barriers,
and (iii) nondeterminism. Pipeline parallelism breaks up a task into a sequence
of sub-tasks, where each one can be treated concurrently by the system. This is
done to improve performance by leveraging parallel processing. It complicates
system models, because it not only adds depth, since each sub-task becomes
an independent transition, it also introduces more interleavings to check. Syn-
chronization barriers are necessary to coordinate the multiple processes in a
concurrent system. For example processes may be required to be in a certain
configuration before gaining access to specific parts of the system. These condi-
tions can be very precise, which can lead to them appearing rarely. Last but not
least, nondeterminism is inherent to concurrent systems- processes can behave
independently or run tasks in parallel, and the order in which they do this can
differ from execution to execution, which again adds multiple branchings to a
model.

We condense these features into a specific pattern, shown in Fig. 2. There we
can see an initial node (at the top) with multiple arrows leading from it. This is
to simulate branching and nondeterminism, since a process at that stage would
be able to choose any of the arrows. After branching, we insert the pipeline -
multiple transitions to represent a task. This adds depth to our models. Note
that at any point, when a process gets finished with a sub-task, it can decide
to either continue forward to the next task, or go back. All of this culminates
with a synchronization barrier that demands processes behave a certain way to
be activated. It is important to note that while we constructed our pattern in
this order, in real life the elements can appear wherever and however often they
want. This pattern can also repeat itself, leading to hierarchical systems.

The problem is that this specific pattern and its repetition, so prevalent in
concurrent systems, is exactly at the root of Cubicle’s limitations. We converted
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Fig. 2. Concurrent systems pattern

our pattern to Cubicle types and transitions, shown in Fig. 3. The branch tran-
sitions are to give a process initial choices. The transitions pipeline and task
simulate breaking up one task into multiple sub-tasks. Note that these transi-
tions can be repeated many times to complicate the system. We give an example
synchronization barrier transition sync. This transitions’s guard can easily range
from simple to more complex. When faced with this pattern, both of Cubicle’s
forward strategies face difficulties. BFS will be forced to run through every pos-
sible branching before being able to go down a level. The more branchings there
are, combined with an elevated number of processes, the longer BFS has to spend
checking every one. And as we stated, this pattern can repeat itself, so the inter-
esting part of the system might be below the synchronization barrier, but BFS
will visit countless states before it even gets close to it. DFS handles this specific
problem better than BFS, as it privileges depth. But complicated interleavings
and algorithms that do not loop slow it down and lower its efficiency.

For example, we take the previous pattern and create a model for three
processes. We give a process four initial branch transitions (i.e. k = 4 in Fig. 3),
as well as four tasks decomposed into three sub-tasks each (i.e. m = 3 and n = 4
in Fig. 3) and set a synchronization barrier that forces each of the three process
to be doing different tasks in order to be activated. We let BFS and DFS each
explore 1 000 000 states to see how often they visit the synchronization barrier.
This is important because activating the barrier means having access to the
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Fig. 3. Pattern as Cubicle transitions

potentially interesting transitions behind it. For 1 000 000 visited states, both
BFS and DFS visited the sync transition two times.

We turn to fuzzing techniques to mitigate this problem. CFL’s goal is to
tackle this pattern by basically abandoning exhaustivity and skipping around
the system. CFL abandons exhaustivity because it does not try to methodically
explore every single path in the system - it tries to diversify the state space as
much as possible. The reason it skips around the system is that anytime a state
is visited by CFL, this state becomes an eligible initial state from which CFL can
explore. This means that CFL has a higher chance of directly accessing crucial
states and exploring from them. If we let CFL explore 1 000 000 states for the
above example, it visits the sync transition approximately 150 times.

4 Fuzzing Cubicle

In this section we discuss and formalize CFL, detailing how we draw from fuzzing
to create a new exploration strategy for Cubicle.

Fuzzing is essentially rapidly generating inputs for a program to see how it
reacts. If an input leads to new code coverage, that input is retained and later
mutated to generate new inputs that hopefully lead to more new code coverage.
We retain two key notions – new inputs and mutation – both of which we want
to incorporate into Cubicle. This is not straightforward, because Cubicle directly
contradicts both these notions.
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Cubicle’s models have fixed initial states, meaning that any system explo-
ration starts from there. We cannot randomly generate these states, since we
cannot guarantee reachability. We also cannot take reachable states and mutate
them for the same reasons. To fix the input problem, CFL takes already visited
states and reuses them as the initial state. This guarantees that all initial states
are reachable. It also allows us to diversify the explored state space: any visited
state can become the initial state from which a system exploration is run.

However, setting the initial state isn’t enough. When inputs are mutated in a
fuzzer, the hope is that it will lead to new coverage and/or behavior fast. Simply
setting new initial states in Cubicle does not lead to that if the exploration itself
is not modified. The problem with the DFS and BFS strategies as they are now
in Cubicle is that they are exhaustive and provide no feedback while they run,
whereas we want something that might not provide exhaustivity, but will skip
around the system trying to visit as many interesting new states as possible.
This is why we have decided that since we cannot mutate states, we will mutate
the scheduler, i.e. change exploration tactics while CFL runs. CFL has multiple
exploration techniques, and each time an initial state is chosen, one of these
techniques is run. Before going into detail on the techniques themselves, it is
first necessary to describe how CFL treats states.

In CFL each state s is represented as a CFL node, a record containing the
following fields:

– state: the explicit representation of s where variables (or arrays) are mapped
to their values

– count: the number of times s has been visited
– exit_num: the number of exit transitions from s, i.e. the transitions with

guards evaluating to true in s
– exit_transitions: an explicit representation of the exit transitions from s

(represented by the name of the transitions and their arguments)
– exits_taken: which transitions have not yet been taken from s
– exit_count: how many times each exit transition has been taken.

CFL essentially keeps track of two key pieces of information: a map V of
visited explicit states mapped to their corresponding nodes, and a set P of po-
tential initial fuzzer nodes. Any time a new explicit state is visited its calculated
fuzzer node to is added to P and the mapping of the explicit state to the node
is added to V.

The reason we keep track of exit transitions is because they decide when a
node is no longer an interesting initial candidate. If every potential exit transition
has been taken, then that node can no longer offer any new information and can
be removed from P. The basic algorithm for CFL is given in Algorithm 2.

Initially, V and P start off empty. CFL explores the model for a given number
of processes k. It calculates all possible transitions for all processes on line 3.
For example if the model only contains a transition t(i) and CFL is run with
three processes, T with contain t(#1), t(#2), and t(#3). It does the same for
the unsafe formulas on line 4. The user-declared initial state is instantiated for
k processes on line 5 and is then added to P.
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Algorithm 2: Basic CFL Algorithm

1 V := ∅ ;
2 P := ∅ ;
3 T := init_transitions(k);
4 U := all_unsafes(k);
5 Init := init_system(k);
6 P := P ∪ {Init};
7 while not_empty(P) do
8 n := choose_node(P);
9 explore := choose_strategy();

10 V,P := explore(n, U , T );
11 end

CFL then takes the form of a while loop that runs as long as there are still
potential initial nodes to process in P. During the loop, it first chooses a random
node from P, chooses a random exploration technique (described below), and
applies the technique to the node. Both V and P are modified as a result of this.
When choosing a random exploration technique, CFL has the choice between
six techniques, detailed below.

1. Random exploration: CFL chooses a number of steps and applies random
transitions to the starting node for that many steps.

2. Process sequences: CFL selects a random process, picks a number of steps,
and only moves that process forward for that amount of steps (or until it
can’t anymore)

3. Weighted decision: CFL grades potential steps using the following criteria
– this step will lead me to a never visited state
– this step means taking a transition that has never been taken by anyone

globally
– this step means taking a transition never taken from this node

These criteria are in order of importance - being able to visit a state that
has never been visited will outweigh the rest.

4. Maximizing randomness: a certain percentage of the time, CFL picks steps
that will give the most choices in the next step.

5. Limited BFS : runs a very limited depth BFS from the node
6. Unused exit : covers an exit that hasn’t been taken yet

Each technique follows the same basic algorithm, shown in Algorithm 3. It
first picks a random number s of steps (bound can be set by the user) to take
and sets the current step curr to zero. The environment env is set to the chosen
node, and all possible transitions from that node’s explicit state are kept in poss.
Then, while the current number of steps taken is less than the chosen s, each
technique does the following: on line 5, it picks a transition from all possible
transitions according to the current technique. So for example if the current
technique is Process sequences and the chosen process is #1, technique will
return a transition with #1 as an argument.
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Algorithm 3: Basic exploration technique template

1 function explore(n, U , T ) : begin
2 s := random_int(bound); curr := 0; env := n;
3 poss := env.exit_transitions;
4 while curr < s do
5 t := technique(poss);
6 clean_exits(env, t);
7 state := apply_transition(env, t);
8 check_unsafe(state, U);
9 try:

10 env := find(state, V);
11 env.count := env.count+ 1;
12 poss := env.exit_transitions;
13 catch NotFound :
14 poss := all_possible_transitions(state, T );
15 env := init_node(state, poss);
16 V := add(env, state, V);
17 P := P ∪ {env};
18 end
19 end
20 end

CFL cleans the aforementioned exit transitions in the fuzzer node on line
6. For example if t is a transition that’s never been taken, the exits_taken
field will be modified in the node to include t. Then at line 7, the transition is
applied to the node and a new explicit state, state, is calculated. Line 8 checks
state against the unsafe formulas. How this is treated depends on how CFL is
being run. If the algorithm is running for proving safety, then encountering an
unsafe state immediately makes Cubicle return Unsafe. If CFL is running in a
standalone fashion, it only shows a warning, but does not stop. Then (lines 9-18)
the algorithm checks if a mapping from state to a node already exists in V. If
it does, then env is set to the existing node, with only its count being modified
and poss is set to the possible exits from that node. If a mapping doesn’t exist,
then poss is calculated, a fuzzer node is created, a mapping is added to V and
the node is added to P. When a node is initialized, count is set to 1, exit_num
is set to how many transitions are in poss, exit_transitions is set to poss,
exits_taken is empty, and exit_count has 0 for every possible transition.

5 Experimental Results & Discussion

CFL is implemented in Cubicle1. As mentioned in Section 3, there is a specific
recurring pattern in strongly concurrent and hierarchical models. This pattern

1 https://github.com/cubicle-model-checker/cubicle/tree/debugger
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simply serves as a template and we build off of it to test CFL and run our
benchmarks.

We compare several forward exploration strategies with our new CFL heuris-
tic: (i) Cubicle’s existing BFS and DFS strategies, both optimized for speed, (ii)
a random exploration strategy, i.e. one that starts at the intial state and ran-
domly chooses transitions, and (iii) CMurphi, an enumerative model checker [12]
developed on top of Murϕ, only used here to efficiently visit the state space. The
results of this comparison, excluding CMurphi, can be seen in Table 1. We discuss
CMurphi separately further down.

Model Forward Time
BFS DFS Random CFL

States Safe Total
Time States Safe Total

Time States Safe Total
Time States Safe Total

Time

Dekker 10s 466K T.O. - 605K Yes 12.72s 266K Yes 11.74s 120K Yes 10.61s

Germanish 10s 424K T.O. - 593K Yes 12.91s 261K Yes 11.94s 120K Yes 10.78s

Germanish2 10s 315K T.O. - 515K Yes 12.26s 244K Yes 11.92s 115K Yes 10.75s

Germanish4 10s 287K T.O. - 547K Yes 14.54s 186K T.O. - 110K Yes 11s

German 10s 312K T.O. - 547K Yes 16.25s 207K Yes 13.55 107K Yes 12.23s

German_Baukus 10s 359K T.O. - 591L Yes 14.82s 207K Yes 12.93s 105K Yes 12s

German_CTC 50s 1 429K T.O. - 2 010K Yes 62.81s 505K T.O. - 265K Yes 55.17s

German_pfs 10s 416K T.O. - 431K Yes 17.37s 174K Yes 12.69s 100K Yes 13.11s

Szymanski_at 10s 372K T.O. - 534K T.O. - 155K Yes 11.92s 105K Yes 11.60s

Szymanski_na 10s 270K T.O. - 483K T.O. - 270K T.O. - 100K Yes 12.50s

Bakery_lamport 40s 1 565K T.O. - 2038K T.O. - 650K T.O. - 230K Yes 42.59s

Flash_no_data 40s 862K T.O. - 1 048K T.O. - 273K T.O. - 140K Yes 43.32s

Table 1. Comparing CFL with different forward strategies.

Each strategy is run for three processes and has the same amount of time
allocated for its forward exploration, noted in the Forward Time column. We then
compare how many states were visited (States column) and whether Cubicle was
able to prove safety before hitting the timeout criteria (Safe column). The total
time (forward + proof) is noted in the Total Time column for each strategy.
Each example was timed out after 5 minutes. This was chosen due to the time
taken using CFL, as well as the number of proof nodes generated by Cubicle
within those 5 minutes, compared in Table 2. The values underlined and in bold
are where Cubicle was successful in proving safety. We can see that the number
of nodes for the timed out examples is much higher than is necessary for Cubicle
in the cases where it quickly proves safety.

Another problem is that, when it comes to Cubicle, models following patterns
like the one described above are a double-edged sword. When they are safe, a
proof will take a long time, and when they are unsafe, a counter-example might
also take a long time. Both of these things are impacted by the number of states
visited during the forward exploration. More visited states does not necessarily
imply a faster proof, since Cubicle will have to compare its invariant candidates
to every state. The key is visiting fewer, but more important, states. Cubicle
is designed to prove safety, and while it will give a counter-example should the
system be unsafe, this can take an arbitrarily long time in huge systems. The
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Model BFS DFS Random CFL

Dekker 6904 4 4 4

Germanish 889 4 4 4

Germanish2 1770 4 4 4

Germanish4 2415 20 3255 20

German 2862 41 41 41

German_Baukus 2170 41 41 41

German_CTC 1500 61 1231 60

German_pfs 1121 44 44 44

Szymanski_at 2861 174 33 33

Szymanski_na 2061 210 510 43

Bakery_lamport 779 2189 230 16

Flash_no_data 1329 61 1227 37

Table 2. Number of generated proof nodes for each strategy

forward and backward algorithm face the same problem in essence- huge safe
models take too much time to explore forward, and huge unsafe models take too
much time to trace backward. Running a time-and-calculation-heavy proof only
to be hit with an “Unsafe” for trivial reasons is something we want to avoid.
This problem is in the same family as trying to prove safety when the model
deadlocks. When Cubicle says that a model is safe, it is safe - there is no way
to get from the initial state to the unsafe state. However, the reason for that
could be a correctly written model, or a model that deadlocks- it is natural that
an unsafe state is unreachable if the model is incapable of taking any steps.
The inclusion of CFL in Cubicle allows us to tackle both of these problems.
We buried unsafe states deep within our test models and launched CFL against
Cubicle’s normal backward algorithm, without any additional forward strategies
to accelerate invariant finding. The results can be seen in Table 3. Once again
timeout was set to five minutes. Deadlocks were a bit harder to compare - while
it was fairly easy to deadlock our models, it wasn’t simple to pinpoint the specific
state that could be classified as a deadlock. We provide deadlock detection results
for CFL in Table 4 without comparing them to Cubicle.

The reason CMurphi is excluded from Table 1 is due to the fact that we were
unable to find an option that would force CMurphi to run for the allocated time.
For each of our models, CMurphi raised the following error: “Internal Error: Too
many active states.” For the sake of fairness, we rerun CFL, manually setting the
limit for each model to how many states were visited by CMurphi. The results
for this are seen in Table 5.

This leads us to the discussion part of this section, namely concerning CFL’s
stability. As you can see in Table 5, the results for CFL all have the form X/Y.
This is due to CFL’s innate randomness. Two executions will not necessarily
have the same results, especially if the allocated time/number of states to visit
is low and the model is large. For example, in Table 5, Dekker was run 10 times,
and all 10 times CFL managed to visit enough states to help Cubicle quickly
prove safety. However, on a model like Germanish4, which is longer and more
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Model Backward CFL

Dekker T.O. 0.3s

Germanish T.O. 0.7s

Germanish2 T.O. 0.2s

Germanish4 T.O. 0.7s

German T.O. 0.4s

German_Baukus T.O. 0.4s

German_CTC T.O. 0.5s

German_pfs T.O. 0.3s

Szymanski_at T.O. 2s

Szymanski_na T.O. 2s

Bakery_lamport T.O. 1.5s

Flash_no_data T.O. 3s

Table 3. Unsafe: backward vs. CFL

Model CFL

Dekker 0.1ms

Germanish 0.5s

Germanish2 0.2s

Germanish4 0.5s

German 0.4s

German_Baukus 0.4s

German_CTC 0.4s

German_pfs 1s

Szymanski_at 2s

Szymanski_na 0.6s

Bakery_lamport 2s

Flash_no_data 4s

Table 4. Deadlock detection
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complex, running CFL 10 times only led to seven quick successes. This is due
to CFL containing a fair amount of randomness in how it chooses execution
strategies.

Model
CMurphi CFL

States Safe States Safe

Dekker 48K T.O. 48K 10/10

Germanish 48K T.O. 48K 10/10

Germanish2 39K T.O. 39K 10/10

Germanish4 39K T.O. 39K 7/10

German 33K T.O. 33K 6/10

German_Baukus 33K T.O. 33K 7/10

German_CTC 24K T.O. 24K 0

German_pfs 33K T.O. 33K 6/10

Szymanski_at 32K T.O. 32K 3/10

Szymanski_na 26K T.O. 26K 2/10

Bakery_lamport 32K T.O. 32K 1/10

Flash_no_data 21K T.O. 21K 3/10

Table 5. Comparison with CMurphi

6 Conclusion and Related Work

In this paper, we presented CFL, an algorithm for a new forward exploration
strategy based on fuzzing for Cubicle. CFL not only serves as an oracle for
Cubicle’s invariant generation algorithm, but also adds new functionalities. We
show that this strategy is effective and capable of tackling a class of models that
Cubicle struggles with. We describe how CFL draws from fuzzing, but is adapted
to Cubicle’s semantics. We show how it uses multiple exploration techniques to
cover the state space as diversely as possible, leading to the discovery of crucial
states needed to terminate proofs. CFL also introduces quick debugging and
deadlock detection to Cubicle, quickly capturing both unsafe and deadlocking
states in complicated models.

There are two immediate lines of future work. The one we are currently
working on is including parameterization. The goal is for CFL to be able to
estimate how many processes it needs to efficiently explore a system. The other
is CFL’s stability. As mentioned earlier, CFL is nondeterministic by nature, and
chooses its exploration techniques randomly. Fine-tuning how these choices are
made could increase CFL’s performance. We also think it is important to extend
CFL and add more techniques, for example allowing processes to die randomly
throughout an exploration. We would also like to incorporate liveness testing into
CFL, since, like with deadlocks, this would add a new functionality to Cubicle.
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Our work is inspired by fuzzing. Fuzzing is a simple technique designed to
quickly explore a program’s execution paths. The idea of mutating and gener-
ating inputs in our case was specifically inspired by AFL [14], a state-of-the-art
fuzzer. Combining model checking with fuzzing is not new. For example, the au-
thors in [13] use it for test case generation. In [10], it serves as the inspiration to
test Linear-time Temporal Logic (LTL) properties for C++ programs. Bounded
model checking (BMC) has been combined with fuzzing in multiple instances.
For example in [2], BMC is used to generate paths that the fuzzer would not have
found on its own. In [1], the authors combine BMC and Gray-Box Fuzzing to
find vulnerabilities in concurrent programs. To our knowledge, no previous works
combine fuzzing with parameterized model checking. Our end-goal also diverges,
the above examples all dealing with actual code, whereas we want to focus on
the model. We consider this to be a new line of research, perfectly suited for Cu-
bicle, since Cubicle’s invariant generation needs a forward exploration strategy
that is not exhaustive (contrary to model checking) but is capable of exploring
the state space efficiently.
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