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Abstract—Environment and demographic dynamics are
strongly linked. However, relevant data to study this interaction
may be scarce especially in sub-Saharan Africa where it is not
always possible to perform such studies with a high temporal
frequency. Satellite imagery, when linked to demographic data,
can be a significant asset to estimate missing data as it covers
every country with both high spatial and temporal resolution.
We aim to take advantage of satellite data to characterize the
environment in inter-tropical areas. This environment is regulated
by the changing of two seasons that are essential to consider.
We introduce a semi-supervised domain adaptation strategy for
neural networks based on seasonal changes. This strategy can be
used to produce land cover maps in regions of the world where
limited labeled datasets are available. We apply this method to
produce environmental indicators and link them to malaria rates
from the Malaria Indicator Survey of Burkina Faso. We show
that malaria rates are correlated not only to urbanisation but
also to the environmental characterisation of studied areas.

Index Terms—Semi supervised domain adaptation, deep learn-
ing, contrastive learning, demography, land cover, health, malaria

I. INTRODUCTION

Demographic studies often provide approximate geo-
locations of interviewed households which allows to link
demographic data to their corresponding environment using
derived spatial data. Demographic analysis would gain from
comprehensive environmental descriptors. The Local Climate
Zones (LCZ) classification scheme (Figure 1) can be used
to describe the environment based on the surface structures,
their material and human activity. It was originally designed
for global-scale heat island detection, without cultural consid-
eration [1]. This standardized descriptor can be predicted at
large scale using remote sensing images and can be linked to
various demographic studies. LCZ mapping from single and
multi sources spatial features is an active research topic. The
So2Sat dataset is a large-scale dataset of 32× 32 Sentinel-
1 and Sentinel-2 images from various parts of the world for
training deep neural networks [2]. LCZ maps of 1642 cities
have been generated using this dataset for urban studies [4]
with a resolution of 320m. A Global LCZ map [3] was
produced with a 100m resolution built from 46 spatial features,
processed with random forest algorithms. Using the method
developed in [13] and random forests classifiers, [12] links
LCZ to Malaria prevalence in sub-Saharan cities. Considering
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Fig. 1. Local Climates Zones classes

local environmental characteristics for demographic analysis
requires generating accurate maps of the country under study
during the period of the survey. Mapping methods should also
be robust to local environmental specifics and not require
additional labeled data. In sub-Saharan countries, models
should produce accurate maps during wet and dry seasons,
that can occur several times in a year.

Semi-Supervised Domain Adaptation (SSDA) is meant to
benefit from the increasing amount of unlabeled data. SSDA
methods aim to reduce the divergence between a source
domain (with labeled data) and a target domain (without
labeled data) which have different distributions. Among them,
consistency regularization techniques force a model to predict
the same class for an image from the target dataset and
its perturbations. Recent developments took advantage of the
contrastive loss instance representation learning for reducing
the domain gap [14]. Such techniques are well suited for
remote sensing applications where global datasets have already
been created [6], [7] and data is produced on a regular
basis. This contribution aims to provide a training strategy to
produce LCZ maps of every part of the world, using Sentinel-
2 products, without additional annotated data. To this end,
we introduce a seasonal-SSDA (s-SSDA) approach combining
supervised and contrastive learning to extract useful global
and more specific local features using unlabeled data. The
model is expected to transfer spatial features learnt from the
source dataset as well as being robust to the target seasonal
variations. The generated LCZ maps can provide useful data to
contextualise localised demographic information. As a study
case, we mapped the whole of Burkina Faso to link LCZ en-
vironmental descriptors to demographic indicators through the
Malaria Indicator Survey (MIS) of 2017-2018 [15]. We show
that the proposed s-SSDA improves the performances of LCZ
mapping. With these results, we characterized studied areas
according to their urbanization rate, their LCZ characterisation
and their malaria rates.



II. METHOD

We define a neural network F (.) as our LCZ classifier
which takes as input an image x and returns a vector s =
[s1, s2, ..., s17]

T of prediction scores for each LCZ class. The
prediction of the model is the class with the highest score.
As mentioned in section I, existing global datasets may need
to be supplemented by additional data related the country
under study. This method aims to take advantage of existing
labeled datasets and of the large amount of unlabeled Sentinel-
2 images to produce maps at the country-level. We define
DS = (xi, yi)i∈J1,nSK as the labeled dataset where xi is a
Sentinel-2 image, yi its associated label and nS the number
of the samples in the dataset. The proposed method is based
on seasonal perturbations to make the model robust to these
seasonal changes. Then, we supplement DS with an unlabeled
dataset DT = (zs1i , zs2i )i∈J1,nT K made of nT pairs of images
zs1i , zs2i from the same area at different seasons s1 and s2.
These two datasets are combined using a SSDA approach and
contrastive learning.

A. Contrastive learning

Contrastive learning is a machine learning technique used to
teach a model features from a dataset without any labelling. At
each step, the model is taught to group together similar images
(two similar images are a positive pair) into the latent space
by increasing similarity within positive pairs, and decreasing
similarity within negative pairs though the contrastive loss:

Li,j = − log
exp(sim(F (zi), F (zj))/τ)∑2N

k=1,k ̸=i exp(sim(F (zi), F (zk))/τ)
(1)

where N is the size of the batch, sim(·, ·) is a similarity
measure, τ is the temperature, (i, j) ∈ J1, NK2, (zl)l∈J1,2NK
samples from the batch, and (zi, zj) a positive pair.

B. Semi-supervised domain adaptation

SSDA is based on two datasets extracted from two different
domains, referred as the labeled source dataset DS and the
unlabeled target dataset DT . The deep learning model F (.)
will be optimized for image classification according to two
simultaneous yet different processes, using DS and DT . The
first process is a regular supervised training on DS in which
a supervised loss LS (here the cross-entropy) should be
minimized. The regularization process is similar to [9] and
[10], originally used for self-supervised learning. The model
is fed with images from the same area but different seasons,
referred as zs1i and zs2i . zs2i can be considered as a seasonal
perturbations of zs1i . The regularization term is computed
using the contrastive loss between the output of the model
for zs1i and zs2i , where sim is the Cosine similarity.

LT = − log
exp(sim(F (zs1i ), F (zs2i ))/τ)∑2N

k=1,k ̸=i exp(sim(F (zs1i ), F (zs2k ))/τ)
(2)

The total loss used for back-propagation is a weighted sum
of the supervised and unsupervised losses. The process is il-

Fig. 2. Training procedure

lustrated in figure Figure 2. With the regularization coefficient
α ∈ [0, 1]:

L = α× LS + (1− α)× LT (3)

C. Temporal regularization using Markov chains

The high availability of Sentinel-2 images enables taking
into account years prior to the year of interest to ensure a
consistent temporal continuity in the LCZ predictions. By
assuming that LCZ classification follow a Markov process,
maps from the different years and seasons can be linked using
a Markov chain. Let’s define:

• IN ∈ R32×32 be the prediction of F (.) at time N .
• LCZN the LCZ class (cN ∈ J1, 17K) of the patch at time

N .
• M ∈ R17×17 a matrix where mi,j∈J1,17K2 is the coefficient

of M at row i and column j. mi,j is the probability in the
1st Markov process to go from LCZN−1 = i to LCZN =
j, (i, j) ∈ J1, 17K2. These probabilities have been set
empirically according to observed changes in the region
of interest during previous years.

If (LCZN ) follows a 1st order Markov process. Then, for
all N:

P (LCZN = cN ) = mcN−1,cN × P (LCZN−1 = cN−1) (4)

The probability of a given input to belong to the LCZ class
according to the model predictions at time N is cN is p =
P (LCZN = cN |IN ). Then, according to the Bayes theorem:

p =
P (IN |LCZN = cN )

P (IN )
×mcN−1,cN×P (LCZN−1 = cN−1)

(5)
Where P (IN |LCZN = cN ) is the output of the model.

III. EXPERIMENTS AND RESULTS

A. Training datasets

The Sentinel-2 images from So2Sat dataset is used as a
source dataset DS . Sub-Saharan countries have several dry and
rainy seasons in a year that may not be included in So2Sat
dataset. Land cover, especially for vegetation, may greatly vary
according to this seasonal change. To build positive pairs for
the contrastive loss, we adopt a strategy similar to [10]: an
image of a region of interest at time t +∆t is considered as
a temporal perturbation of an image of this specific region at



Fig. 3. Resulting LCZ map of Burkina faso and zoom on Ouagadougou (left:
Supervised model, middle: s-SSDA + Markov model, right: OpenStreetMap)
for February 2018. Legend is shown in Figure 1.

time t. Burkina Faso experiences one dry and one wet season
each year. To create the target dataset DT , regions of interest
(ROIs) such as cities, lakes, industries or national parks have
been selected over Burkina Faso. Images of ROIs are extracted
at two different times: January to March 2022 for the dry
season, and late August to November 2021 for the wet season.
Input images are created by splitting ROIs from both date into
32 × 32 × 10 patches (height × width × spectral bands) to
match the So2Sat template. This selection process results in
225K pair of patches used during unsupervised training.

B. Experimental settings

In this paper, we use Resnet-50 [5] as our classifier. The
model was first trained on the entire So2Sat dataset. This pre-
training is used to initialize weights for the semi-supervised
training step. We used Adam optimizer with a learning rate
of 0.001. We set the batch size to 256 for both the supervised
and unsupervised phases, the temperature for the contrastive
loss τ to 0.5 and the regularization term α to 0.9.

C. LCZ map generation and ablation study

We collected Sentinel-2 tiles (bands at 10m and 20m
resolution) over Burkina Faso for early 2018 and early 2017
with a cloud percentage under 5%. After training our model
with the training strategy described in section II, we performed
a LCZ classification on each of the Sentinel tiles followed
by a Markov Chain. The resulting map (resolution 320m×
320m upsampled to the image resolution, 10m×10m), in
Figure 3, is a concatenation of the generated tiles using the
Markov Chain. Houses surrounded by vegetation may not
be detectable, especially if building materials are light and
similar to the environment (e.g. wood). In that case, the type
of environment structure does not change and remains very
rural. Such ambiguities may not occur for larger villages
and cities. To validate our method, we collected 4 early
2018 Sentinel-2 images and cropped them over Ouagadougou,
Bobo-Dioulasso, Fada-Ngourma and Ouahigouya. We gridded
these resulting images according to 32 × 32 pixels areas

TABLE I
VALIDATION RESULTS ON 494 MANUALLY LABELED PATCHES.

OA AA IoU
Supervised baseline 0.245 0.270 0.175

s-SSDA 0.427 0.402 0.278
s-SSDA + Markov 0.561 0.538 0.389

and labeled them using very high resolution satellite images.
Overall accuracy (OA), Average accuracy (AA) and Intersec-
tion over Union (IoU) for a model trained only on So2Sat,
a model trained using the s-SSDA method and its regulation
using a Markov chain are shown in Table I. Both s-SSDA
models outperforms the supervised baseline in our validation
set. In addition to increasing the results metrics, the temporal
regularization adds continuity.

IV. APPLICATION: MALARIA INDICATOR

A. Malaria data

The objective of the MIS 2017-2018 was to estimate
basic demographic and health indicators about malaria and
knowledge related to this disease. Interviewed households
were sampled so that results on malaria prevalence for 6-
59 months old children are representative for each of the
17 study areas. As a result, 252 Enumeration Zones (EZs)
were selected. 245 EZs were visited and the remaining 7
EZs could not be visited for safety reasons. In total, 6322
households were visited. Malaria rapid tests, giving results
in 15 minutes were performed on children with the consent
of their legal representatives. When positives, more reliable
tests in laboratory were done to confirm the rapid test results
and determine the specific parasite involved. We computed the
malaria rate of each EZ by dividing the number of positive 6-
59 months old children by the total number of 6-59 months
old children.

B. Linking EZs to Local Climates Zones

Besides general information about each EZ, the survey
provides the geo-location of their centroids, with a random
offset added for confidentiality reasons. This displacement
is randomly generated so that it is within a circle of 2
kilometers radius for urban areas, and 5 kilometers for rural
EZs except for 1% of them with an offset that can reach
under 10 kilometers. Within the 245 visited EZs, 224 were
accurately geo-located and used to conduct the following
study. Although approximate, these centroids provided with
MIS data can be used to link EZs, and thus households, to
their local environment using the LCZ classification, as shown
in Figure 3. Each geo-location is associated to a squared area
of S pixels (Sx10m x Sx10m squares). S is intentionally small
against the offset considering values in a small area near the
coordinates does not alter the results [11]. We set S = 64
which corresponds to a ground resolution of 640mx640m. We
characterise the environment by the counts (in the 10m×10m
resolution map) of each LCZ class within this area.



Fig. 4. Mean LCZ distribution of clusters with clusters indices from Figure 1

Fig. 5. Malaria rates and Built population index of each cluster of EZs

C. Linking malaria to Local Climates Zones

To study the link between malaria and LCZ, we first grouped
EZs in clusters according to their LCZ distributions. Mean
distributions for these clusters are shown in Figure 4. They
represent different types of environment, with distributions
gradually shifting from rural areas to urban classes. Cluster 1
is mostly made of bush/scrub and scattered tree areas without
urban areas. Cluster 2 is dominated by bush/scrub, sparsely
built areas and few low plants. Cluster 3 is halfway between
urban and rural areas with sparsely built areas, compact low-
rise, open low-rise and also bush/scrub. Cluster 4 is mostly
made of urban areas with high densities, and few rural classes.
We secondly linked theses clusters with their associated
malaria rates computed using MIS data. Figure 5 shows the
distribution of malaria rates within each cluster of EZs, with
their corresponding Built population index provided by the
MIS survey. The Built population index is produced by the
Global Human Settlement Layer (GHSL) from satellite image
texture, morphology and patterns [8]. It is the ratio of occupied
footprint, in each cell. As expected when only considering
LCZ distributions, clusters represent different environmen-
tal structures with different urbanisation rates. Interestingly,
malaria rates are not equivalent for different clusters in both
urban and rural areas. Bush/scrub areas have similar but
lower malaria rates than mixed vegetation areas. The LCZ
classification enables distinguishing different types of areas
where the propagation of malaria is higher.

V. CONCLUSION

In this paper, we introduce a seasonal-SSDA strategy for
mapping sub-Saharan countries using the Local Climate Zones
classification scheme. This strategy is based on one supervised
phase using the So2Sat dataset for training the model to
classify LCZ, and a second strategy using consistency regular-

ization using unlabeled images from 2 different seasons (wet
and dry) and the contrastive loss. Produced maps are regu-
larized using a Markov chain to ensure temporal continuity.
This strategy enables generating maps at any time to match
them with demographic surveys period. Finally, we linked the
produced Burkina Faso’s LCZ map of early 2018 and malaria
rates. Our results allow to differentiate several environmental
structures according to their malaria rates.
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