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Abstract

Mono- and multimetallic nanoparticles are extensively studied in various fields due

to their tunable physicochemical properties and potential for replacing expensive metals

with more abundant and affordable ones. The chemical structure, i.e. the spatial distri-

bution of elements inside nanoparticles, plays a crucial role in defining their properties,

particularly in catalytic processes. However, accurately determining the spatial chemi-

cal distribution within sub-10 nm bimetallic nanoparticles remains a challenge. In this

1



study, we have used scanning transmission electron microscopy associated with energy-

dispersive spectroscopy to acquire hyperspectral images of gold-silver alloy nanopar-

ticles in the 3-10 nm size range. We have quantified the chemical composition as a

function of radial position; Ag enrichment towards the nanoparticle surface is robustly

confirmed by statistical analysis, error bars, and non-overlapping 3-sigma uncertainty

intervals at the nanoparticle center and surface. Two complementary machine learning

analyses (Principal Component Analysis, PCA and, Non-negative Matrix Factoriza-

tion, NMF) reveal that our experiments contain latent information on subtle compo-

sition variations inside the particles. The proposed data analysis procedures have also

been validated by simulated datasets. These findings pave the way for more precise

structural and chemical investigations of alloys on the nanoscale.
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1 Introduction

Mono- and Multimetallic nanoparticles play an important role in fundamental and applied

research. The possibility of combining several metallic elements permits the fine-tuning of

physicochemical properties and, at the same time, the replacement of sparse and expensive

metals (Pt, Pd, Rh, Au. . . ) with more abundant and cheaper ones (Cu, Ag...).1–3 This has

been extensively studied in plasmonics, where nanoalloys allow controlling the Surface Plas-

mon Resonance over a wide spectral range4,5 or in catalysis, where alloying can significantly

increase selectivity, sensitivity and activity of the catalysts.6–8

One additional parameter that has to be taken into account to optimize nanoparticle

properties is the chemical structure, i.e. the spatial distribution of elements inside each
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nanoparticle. Their physicochemical properties depend, sometimes strongly, on whether

the metals mix randomly or segregate into abrupt/gradual core-shell or Janus-type struc-

tures, and if chemically ordered structures are adopted.1–3 This is particularly important in

catalytic behavior, where adsorption and bond activation depend not only on surface and

subsurface elements but also on those further away from the surface.9 It is thus of high

importance to be able to experimentally determine, on a quantitative level, the chemical

structure inside bimetallic nanoparticles (BNPs). This has already been achieved for com-

parably large particles,10,11 but not yet in the size range below 10 nm. Such small BNPs are

of particular interest for their (quantum) size effects and increased catalytic activity, but the

low signal level represents a serious challenge to assess quantitative chemical composition

with high spatial resolution.12 Detailed analyses concerning thermodynamic properties such

as miscibility and diffusion or catalytic processes require quantitative and spatially resolved

information.13,14

Scanning transmission electron microscopes (STEMs) represent one of the most pow-

erful and popular tools to gather information on the physical and chemical properties of

individual nanosystems on the nanometer and atomic level.15 Concerning chemical analysis,

X-ray energy-dispersive spectroscopy (EDS) is an easy-to-use method to reveal chemical el-

ements present in the sample.16 The association of STEM nm-wide electron probe and EDS

allows the recording of so-called hyperspectral images,17 where an entire analytical X-ray

spectrum can be acquired at each image pixel. The HSI approach generates huge 3D or 4D

datasets18 that are a very rich source of information. However, it is often extremely difficult

to disentangle the spatial and spectral contributions of the different physical and chemical

factors.

Retrieving a maximum of information from such an entangled data set requires the use of

advanced statistical algorithms, such as machine learning (ML) tools, which exploit redun-

dancies and can reveal non-apparent correlations;19 in this way, they can extract information

that is inaccessible by traditional methods.20
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Here we will tackle the challenging case of the chemical characterization of sub-10 nm

nanoparticles made from a bimetallic alloy. The full understanding of the system requires

the determination of chemical composition as a function of NP diameter as a) the increased

surface-to-volume ratio may influence the equilibrium structures of the particles leading to

size-dependent chemical properties and b) the predominant role of the surface in nanoparti-

cles might induce complex phenomena such as chemical gradients which are not possible in

macroscopic equilibrium phase diagrams of an alloy. This last issue can be induced for ground

state structures either by surface energy minimization or by enhanced chemical reactivity

with the environment. Meta-stable BNPs moreover display various chemical structures,

strongly dependent on their formation and/or reaction history.

One of the most widely studied bimetallic systems is AuAg, due to its suitability for fun-

damental studies with the high resistivity against oxidation and good signal level in imaging

techniques.11,13,14,21 At the same time, its physico-chemical properties make it particularly

interesting for plasmonics, bio-applications22 or catalysis.23–25

We have studied chemical composition gradients inside individual AuAg alloy nanopar-

ticles in the 3-10 nm diameter range using quantitative chemical composition measurement

based on STEM-EDS. The particles have been produced by physical methods (gas aggrega-

tion, figure 1a))26,27 and they are surfactant-free. The quantitative chemical composition of

each individual BNP was obtained by applying the Cliff-Lorimer28 approach and standard

error propagation29 on EDS counts obtained by azimuthal integration. Our results reveal

an Ag surface enrichment as a result of measured radial gradients. The statistical validity

of the detected composition modifications has been confirmed using two machine learning

tools (Principal Component Analysis - PCA30,31 and Non-negative Matrix Factorization –

NMF32,33). We emphasize that, in this work, ML methods have been exploited to reveal

that experiments carry latent information on chemical composition variation inside BNPs,

which confirms the statistical significance and sensitivity of the experimental measurements

and described data analysis.
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2 Results and Discussions

Figure 1b) shows EDS data and Figure 1c) displays typical high-angle annular dark-field

scanning transmission electron microscopy (HAADF-STEM) results from bimetallic NPs

generated in a gas aggregation source (a typical size distribution can be found in previous

work on this system34). The atomic structure of AuAg NPs obtained under the very same

conditions is already described elsewhere35 and here we will focus only on their chemical

composition gradient studied by STEM EDS. The HAADF-STEM contrast is related to the

atomic number (Z) and thickness of the material traversed by the electron beam. This imag-

ing mode is extremely useful because Au and Ag have significant atomic number differences

(ZAu = 79 and ZAg = 47), indicating that brighter areas should show higher Au content,

while slightly darker areas suggest Ag richer regions, see figure 1c). The NP images in Figure

1 suggest that the alloy particles are not chemically homogeneous and should be formed by

an Ag-rich surface due to a core-shell structure or a radial chemical gradient.

The chemical maps for Au and Ag derived from the HSIs are presented in figure 2; it is

easily observable by the eye that most of the particles show a diameter that is slightly bigger

in the Ag chemical map than in the Au one (see EDS line profiles in Supporting Figure S1).

In general terms, the EDS counting level is rather low (few EDS counts per pixel), preventing

any precise and accurate quantification by conventional EDS-STEM approaches.

At this point, we must remember that the full understanding of nanomaterials and the

correct modeling of their chemical and physical properties requires quantitative and re-

producible interpretation of imaging, diffraction, or spectroscopic studies,20,36,37 following

rigorous error analysis to generate meaningful and reproducible measurements and interpre-

tations.38–40 With this idea in mind, we have carefully designed an experimental study to

get a very high counting level (several thousand counts) from individual sub-10 nm NPs.

We will dedicate the next paragraph to evaluating the quantitative chemical composition

of individual NPs and of eventual segregation or chemical gradients inside them. The EDS

counting level of our experiments attained IAu ∼ 3000 for a ∼ 6 nm diameter NP, which
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Figure 1: a) Schematic illustration of the gas aggregation cluster source, see Materials and
Methods for details. Typical STEM experimental results obtained for the AuAg BNPs: b)
EDS spectrum from a∼5 nm NP generated by the addition of all the spectra in the NP region.
Note that the Au peak maximum exceeds 400 counts (integrated total intensity IAu, NP ∼
2000 cts). c) HAADF image of particles around 5 nm in diameter, showing a brighter core
and lower intensity at the outer shell, suggesting an Ag-rich surface. d) Intensity profile
obtained along the line in the right BNP in c). The dashed lines help identify the brighter-
darker contrast areas in the BNP image.
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Figure 2: Comparison of ADF-STEM and elemental Ag and Au maps of different nanoparti-
cles (maps include non-zero pixels with net counts > 5). Note that most of the NPs display
a larger size in the Ag map than in the Au one, suggesting a tendency to surface Ag enrich-
ment (see line profiles in Supporting Figure S1).

7



yields a composition error bar around σCAu
∼ 0.01 in atom fraction. Here probe size and

pixel size have been optimized for the aim of the paper, obtaining chemical concentrations

with small uncertainty intervals in few-nanometer-size nanoparticles. Experiments must ful-

fill a compromise of beam size, beam current, sample drift, and dwell time to get a high

x-ray counting level and avoid sample damage. The ensemble of these limiting conditions

has led us to experiments with a 0.59 nm pixel size, so no atomic details or atom column

EDS is contained in the data set.

The chemical maps shown in Figure 2 have been numerically processed to automatically

identify NPs and quantify their EDS signal. First, we have determined the NP center by

using a cross-correlation between each ADF image (or EDS map) and an ideal circular NP

contrast (top-hat type, 1 inside the disk, 0 outside it, see NP identification results in figure

S2). The local maxima of the correlation function can be automatically indexed in the

image, and they represent the NP centers. This procedure is similar to the ones utilized

in the detection and evaluation of diffraction spots in electron diffraction studies.15,41 It is

important to mention that identical results are obtained on particle centers when we use the

total x-ray count image (simple addition of Au and Ag elemental maps).

The next processing step defined a threshold value of the ADF intensity to determine the

particle radius, assuming a circular shape of the spheroidal BNPs in the 2D projection. The

chemical composition of individual BNPs has been evaluated by adding the EDS counts from

all pixels inside the determined circular region around the BNP center in order to perform

a full chemical composition analysis with error bars. The HSI used for the present study

(Figure 2) contains 19 particles and the corresponding relative chemical composition as a

function of size is shown in Figure S3, with a mean composition of CAg = 0.513 ± 0.003.

Note that the fact that the smallest BNP displays a significantly higher proportion of Ag

is consistent with our previous work34 and can be attributed to the BNP formation in the

source. In this study, however, we will not address this point in detail and we will focus on

the distribution of chemical elements inside individual BNPs.
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The challenging step of obtaining reliable measurements of possible composition varia-

tions inside the BNPs is motivated by ADF images and EDS maps Figures 1, 2 and intensity

line profiles in Supporting Figure S1), which suggest an Ag surface enrichment. However,

the analysis of intensity profiles of only a few pixels in width (as usually extracted from

chemical maps) will hardly attain the minimal counting level for a reliable assessment of

quantitative chemical composition variations.

To verify the radial symmetry of the elemental distribution in the NP (or, in other words,

the spheroidal homogeneous morphology of BNPs), we have calculated the center of mass of

Au and of Ag EDS intensity for each NP region. These centers of mass and the geometrical

center derived previously by cross-correlation show an excellent agreement. They differ by

less than a tenth of a pixel for the majority of NPs and less than a third of a pixel for the

smaller ones. This analysis confirms unambiguously that the 2D projection of the BNPs

shows circularly symmetrical Au and Ag EDS signal distributions for each particle and that

structures such as Janus can be excluded.

Based on this radial symmetry, we can now perform an azimuthal integration in order

to improve the signal-to-noise level. For this, we have integrated EDS counts for all pixels

at the same distance from the BNP center in order to generate radial intensity profiles (the

profiles have been generated as a histogram of EDS counts with histogram step 0.5 nm).

Note that even though the projected metal thickness close to the BNP surface is small, the

higher number of pixels at large radii compensates efficiently for this decrease in signal per

pixel.

Figure 3a displays the result of applying this procedure to the biggest NP in the HSI

(∼7 nm in diameter, marked with an arrow in Figure 2, and indexed as NP#0 in Figure

S2). We can clearly observe that the central region of the NP shows an Au intensity which

is higher than the one for Ag. In contrast, the Ag intensity becomes slightly larger than

Au close to the NP surface, confirming qualitatively a surface Ag segregation. We can then

normalize the radial intensity by dividing it by the number of pixels at each radial value,

9



thus generating the average spectral counts for each radial distance, Figure 3b. The shape

of the radial intensity profiles is consistent with a spherical shape for the analyzed NP. We

note that the generated EDS counting level at all radial positions is actually very good for

such a small BNP,36,37 as counting values enable us to get an error bar for (CAg or CAu) of

approximately 0.01 in atomic fraction for each radial distance r.

It is essential to emphasize that we have attained an analytical quality of EDS that yields

a measurable chemical composition difference between the center and surface of the NP.

This conclusion is physically valid and robust because it has been achieved following strict

measurement methods and error criteria (CAg, center = 0.46± 0.01, CAg, surface = 0.60± 0.02,

for this 7 nm alloy NP; see Supporting Table S1 for the complete list of radial concentration

values). In fact, the 3-sigma uncertainty intervals of both measurements do not overlap.

To provide a statistically valid analysis, we have measured the chemical composition

profiles for all particles in the HSI. We have observed a similar tendency of Ag enrichment

going from the NP center to the edge confirming surface segregation for the ensemble of

analyzed NPs (see Figure S4). However, for smaller NPs, the uncertainty intervals between

concentration at the center and surface may superpose due to the larger error bars related

to their lower signal levels.

There are many examples in the literature where Ag enrichment at the surface of AuAg al-

loy NPs is reported. Whether this partial segregation is intrinsic to the alloy at the nanoscale

or induced by chemical interface effects, notably oxidation, is still highly controversial.13,42–44

The quantitative assessment of composition variations in nanomaterials by STEM-EDS is

quite a challenging task, not only due to low signal levels but also due to assumptions included

in models (ex. neglecting absorption effects, etc.)15,16 and possible sample modifications

during electron beam irradiation.45,46 The measurement of chemical gradients is associated

with subtle intensity changes in pixel intensity inside the NP.

To verify the robustness of our results on sub-10 nm BNPs, we have applied unsupervised

machine learning (ML) methods (PCA30,31 and NMF32,33) to verify if the algorithms can de-
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Figure 3: a) Azimuthal integration of EDS intensity for one individual nanoparticle (marked
with an arrow in Figure 2). The plot shows the total elemental signal for each radial position
(0.5 nm step size). b) Radial intensity profile normalized by the number of pixels contributing
to each radius. c) Quantitative chemical composition analysis (including error bars) showing
the Ag surface segregation; the azimuthally integrated radial ADF intensity profile is also
displayed, saturated in the central region of the nanoparticle. The vertical dashed line
indicates the estimated NP radius.
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tect latent information on radial composition variations in our data. A positive answer to

this question provides a qualitative, but nevertheless strong and direct statistical verifica-

tion that obtained radial composition changes represent actual information contained in the

EDS spectra. This work does not aim to compare quantification procedures between the

conventional Cliff-Lorimer approach and Machine Learning tools used for denoising. It is

very important to note that in denoised reconstruction, the spectra in the dataset do not

represent independent measurements and are fully correlated measurements; this leads to a

complex evaluation of error bars and accuracy.36,37 There is no well-accepted procedure to

calculate uncertainty after denoising, so we have decided to derive a quantitative chemical

analysis using only the raw data without any denoising and applying well-established and

widely recognized methods to evaluate error bars using partial derivatives.

A detailed study of PCA processing of EDS HSI of bimetallic AuAg particles has been

recently reported by our group.36,37 In PCA, the raw EDS data are decomposed into a num-

ber of orthogonal eigenvectors or components, referred to as loadings, that encode the data

information. The correlation between the spectra associated with a certain pixel and a par-

ticular component shows up as a significant amplitude (score) for that component. For this

rather simple case, it is possible to interpret the information carried by the relevant principal

components.36,37,47 A maximum variance, associated with the first loading (PCA#1), rep-

resents the background and spurious peaks (ex. copper grid, carbon substrate, etc.) in the

EDS spectra. This component shows negligible intensity at the spectral Au or Ag peak posi-

tions and it is straightforward to conclude that it does not carry any information about the

BNPs. The second loading (PCA#2) represents the mean EDS intensity correlated with the

BNPs and it provides the average chemical composition of the particles. The third loading

(PCA#3) yields an unphysical profile where Au and Ag EDS peaks show signals of different

signs (Figure 4a). It thus describes composition variations within the analyzed region. This

is expressed in Equations 1 and 2, where si,n represent the score from component PCA#n

at pixel I, and InX represent the intensity of EDS peaks for element X at pixel i. In other
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words, we must observe an anti-correlation between Au and Ag counts. This explains why

PCA#3 displays a negative Ag peak and provides a tool to reproduce changes in the IAg/IAu

intensity ratio and the chemical composition directly deduced from it.

IPCA
Au,i = si,PCA#2 IPCA#2

Au + si,PCA#3 |IPCA#3
Au | (1)

IPCA
Ag,i = si,PCA#2 IPCA#2

Ag − si,PCA#3 |IPCA#3
Ag | (2)

The efficient detection of the PCA#3 loading in our EDS STEM experiment is a very

important fact because it is a direct confirmation that latent information on composition

variation is present and detectable in our data, i.e. that our BNPs cannot be homogeneously

alloyed. We must emphasize that PCA#3 detection is not attained very easily when studying

NPs; this is strongly related to the high quality of our EDS measurements, mainly attributed

to a very high counting level, much higher than frequently obtained for qualitative chem-

ical maps. Higher order components than PCA#3 carry only noise, as already discussed

elsewhere.36,37

The above discussion has addressed the information contained in PCA loadings through

their spectral profile (ex. EDS peak occurrence and sign). It is important to emphasize that

the resulting component scores are worthy of careful analysis and may contain a wealth of

useful information. Potapov & Lubk47 inferred the amount of information carried by PCA

components by generating scatter plots relating scores from all image pixels. When the point

clouds display some structure or anisotropy, the components carry potentially meaningful

information, while a symmetric round cloud reveals that these components contain mostly

uncorrelated noise (see Moreira et al36,37 for PCA score plots from EDS HSI measured for

AuAg BNPs).

The strength and efficiency of this approach can be clearly visualized in Figure 4a, where

we display the scatter plot correlating scores from components PCA#2 (average composition)

and PCA#3 (composition variation). The horizontal axis (si,PCA#2) indicates the intensity of

13



Figure 4: Machine Learning analysis of the HSI of bimetallic nanoparticles. a) Comparison
of Au and Ag EDS peak profiles from PCA components #2 and #3 (remark that the signal
of Ag EDS peak is negative for PCA#3); at the bottom, a scatter plot shows the correlation
of scores. b) Comparison of components NMF#2 and NMF#3 in the Au and Ag EDS peak
regions and the scatter plot correlating scores of NMF#2 and NMF#3. The elongated and
curved shape of scatter clouds indicates a nonlinear relation between scores in vertical and
horizontal axes. Both ML results directly suggest an Ag enrichment for the thinnest sample
regions (NP edges or surfaces,) or smaller particles (see text for explanations). The black
line in the scatter plots represents a polynomial fit to experimental points, in order to allow
an easy eye recognition of the average non-linear relation between the scores. In a), the curve
corresponding to PCA#2 is shifted upwards to facilitate visualization. The dashed lines are
the zeros for each component. The same goes for b), where NMF#2 is also shifted.
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both IAg and IAu, so we can associate this axis, in a first approximation, to sample thickness

at the pixel position. The vertical axis (PCA#3) represents the composition variation (Au

enrichment in upward direction; note that for PCA#3 the Ag peak is negative). The cloud

displays a curved shape displaying a gradual upward inclination as a function of increasing

PCA#2 scores. An increasing PCA#3 score (si,PCA#3) means a stronger Au signal and less

Ag counts (Equations 1 and 2, see Figure 4a). In addition, negative PCA#3 scores enhance

Ag intensity (signal at contribution of Ag peak, product si,PCA#3 IPCA#3
Ag becomes positive)

and diminish the Au signal (product si,PCA#3 I
PCA#3
Au ) becomes negative. This occurs for the

smaller PCA#2 scores (thinner region) or located at the particle border (see PCA#2 and

PCA#3 score radial profiles in Figure S5, which confirm that negative PCA#2 scores occur

close to NP surface). This simple analysis of pixel-by-pixel score correlations immediately

unveils the information carried by the PCA components: Ag enrichment for thinnest sample

regions (pixels located at BNP edges in their 2D projection).

There are several different methods for unsupervised machine learning, each with its ad-

vantages and drawbacks. PCA, as described above, is well suited for first data treatment,

as its algorithm easily converges. It is useful for the establishment of the number of in-

dependent components necessary for the correct description of the data and for a recently

suggested alternative error propagation after the denoising process.36,37 A second, widely

used technique is Non-negative Matrix Factorization (NMF), which is especially attractive

for blind-source-separation, as all loadings and scores will be non-negative, which in principle

represents better most physical measurements and also it should help to generate a better

interpretation of latent factors.48

The application of NMF processing requires that the number of components be defined

in advance; based on PCA analysis, we conclude three necessary NMF components. The

loading information bears some resemblance to PCA results, with the exception that all

loadings (spectral information) and scores will be positive, as expected for this method (see

Figure 4b). The intensity estimation involves just products or additions of positive numbers
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(Eqs. 3 and 4). In this case, the equations for loadings and scores are written as:

INMF
Au,i = si,NMF#2 INMF#2

Au + si,NMF#3 INMF#3
Au (3)

INMF
Ag,i = si,NMF#2 INMF#2

Ag + si,NMF#3 INMF#3
Ag (4)

Analyzing the information content of different NMF components, we find that the first one

(NMF#1) again contains negligible information on the particles. The second NMF loading

(NMF#2) contains a major Au peak and a minor Ag one, while NMF#3 includes a very

strong dominant Ag peak. The NMF#3 component describes changes in the IAg/IAu ratio

by mainly adding Ag counts, with negligible effect on the Au intensity. The ML procedures

reveal a small peak in the 2.3 keV region, close to the Au Mα line (it appears positive in

PCA#3 and negative in NMF#3 components). Neither PCA nor NMF consider EDS peaks

in a specific way such as energy position, width, or relative intensity, so these unexpected

ML results are not associated with specific EDS data treatments or fitting. It is important to

note that this energy region is difficult to interpret from the x-ray spectroscopy perspective.49

The main peak from sulfur (S) is expected at this precise energy, and it could be expected

in chemically synthesized NPs using thiol as a passivating agent. This explanation can be

ruled out because our samples have been produced by physical synthesis, without chemical

passivation. Another possible explanation, which we consider to be the best to explain the

ML anomalous peak at 2.3 KeV, is a sum peak due to the simultaneous detection of Si

and O photons (1.74 keV + 0.53 keV ∼ 2.3 keV). In this case, the Si photon is due to a

process known as self-fluorescence in the EDS detector made from a silicon crystal.49 How

this spurious EDS signal is recognized and revealed by ML tools is somewhat difficult to

predict. Therefore, these peaks do not have a physical origin in the nanoparticle sample but

instead are due to the EDS detection process.

An identical analysis of score correlation (Figure 4b) can also be applied to the NMF

data. Again, we observe a nonlinear behavior (elongated and curved point cloud). The

16



relative weight of the NMF#3 component (additional Ag signal) diminishes gradually as the

NMF#2 score (or Au signal) increases. If the NMF#2 scores (horizontal axis) are interpreted

as before (thickness or NP diameter indicator), this again shows that the relative weight of

the Ag signal decreases for increasing Au intensity (left to right in NMF#2 scores) and it

points out an Ag depletion for thicker regions (Au enrichment at the NP core or, in other

terms Ag enrichment at the surface; this might also point out Ag enrichment for smaller

particles). As for PCA, the NMF results provide qualitative support and statistical validity

of conclusions on chemical composition variations revealed by the quantitative EDS chemical

analysis.

The two blind source separation methods, PCA and NMF, translate the information con-

tent in the EDS HSI into two quite different encoding procedures but the two different ML

approaches have both detected and identified the same tendency or latent information in the

EDS signals. It is important to mention that the input matrix of ML data represents just a

list of the spectra, pixel by pixel, and absolutely no information about their spatial location.

In this way, there is no possibility of any biased interpretation of the spectral characteristics

of pixels located at the center or close to the surface of the nanoparticle. In strict terms, the

scatter plots in Figure 4 confirm the statistical validity in relation to IAg/IAu and its varia-

tion pixel by pixel without any assumption or model on the numerical algorithms used for

nanoparticle identification or NP diameter estimation or chemical composition calculation.

In order to improve both, our understanding of actual BNP chemical structure and also

of the validity of the ML results, we have also analyzed simulated data sets. The aim is

to observe if BNPs with controlled Ag surface segregation will generate similar information

as the one derived from the experimental data. We have constructed 6 nm diameter BNPs

formed of a 4 nm core of composition CAg = 0.3, and a 1 nm-thick shell with composition of

CAg = 0.6. This configuration guarantees that the BNP chemical composition as a whole is

CAg,NP ∼ 0.5, as observed in our experiments. Figures 5 and S6 show that the results of ML

processing of the simulated HSI are in full agreement with our experimental results. Our
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simulated HSI contains an ensemble of particles of identical radius (no size distribution), so

the analysis of score scatter plots as presented in Figure 5 can be directly associated with

sample thickness at the analyzed pixel, simplifying the interpretation. Since the particles

have been simulated with an abrupt core-shell interface and a homogeneous shell of CAg = 0.6

composition, the derived composition profile correctly displays a clear plateau of chemical

composition at the NP surface in the radial profiles. This is, however, in contrast with the

experimental profiles, where the surface shows a constantly rising profile, suggesting that

the bimetallic particles contain a composition gradient across the BNP.

3 Conclusions

We have experimentally measured radial chemical gradients inside individual bimetallic

AuAg alloy NPs between 3 and 7 nm diameter using EDS-STEM and, for most of the BNPs

the uncertainty intervals from chemical concentration particle center and surface do not over-

lap considering 3-sigma criteria, confirming the robust assessment of Ag surface enrichment.

Machine Learning tools (PCA and NMF) have been used to verify if latent information on

radial composition variations is carried by our dataset. This analysis shows that experi-

mental data contains latent information concerning Ag enrichment in the thinnest sample

regions (i.e. BNP surface), confirming qualitatively the detection of chemical concentration

variations in the sample.

To achieve this result, the thorough planning of proposed procedures considers the data

collection, careful EDS intensity analysis associated with rigorous error bar calculations,

and the analysis of raw data and its statistical validation through unsupervised machine

learning procedures and simulated datasets. Furthermore, the proposed procedures and

interpretations are tested with simulated data. These results open the way for more accurate

structural and chemical studies of alloy nanosystems, in particular considering the constant

progress of EDS detector technology and the recent increase of detection solid angles to more
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Figure 5: Chemical analysis results obtained from a simulated HSI (core-shell 6 nm NP).
a) Azimuthal integration of X-ray intensity for an individual nanoparticle showing the total
EDS signal for each radial position. b) Radial intensity profile normalized by the number of
pixels at each radius. c) Quantitative chemical composition analysis (including error bars)
showing the unambiguous detection of an enriched shell. In (c), the total elemental EDS
signal (Au + Ag, RXTot) intensity profile is also displayed, analogous to the ADF profile in
Figure 3c; the vertical dashed line indicates the BNP radius.
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than 4 sR.50 Whether the observed Ag enrichment at the BNP surface is intrinsic to the

nanoalloy or due to oxidation is beyond the scope of this article and will be addressed in a

future publication.

Our study has revealed that ML methods must be carefully chosen as a function of the

underlying scientific question. PCA is usually considered not well suited for EDS due to

the occurrence of unphysical loading profiles (EDS spectra) including negative intensities.

However, in our case study, the physical meaning of the principal components is very clear

and the information contained is extremely useful (average composition from PCA#2 and

composition variations from PCA#3).

NMF processing is more easily accepted due to its ”non-negativity”, where all outputs,

loadings, and scores, must be positive so that they always represent a physical spectrum.

Our NMF decomposition of EDS spectra from AuAg BNPs shows that the intensity ex-

pected in each pixel is related to the coupled contribution of both NMF#2 and NMF#3,

both in the core and close to the surface. This means that none of the NMF components

carries discernible physical information (not even NP average composition, as contained in

PCA#2). A very optimistic expectation of NMF decomposition could be that NMF com-

ponents would discriminate the existence of two different metal phases (core and shell) in

the BNP. Our simulation clearly shows that no such discrimination was observed. Briefly,

it is always important to consider that, depending on the technical/scientific question to be

answered, sometimes PCA may be preferable to NMF to analyze EDS HSI, while sometimes

the complementarity of both reveals an optimum of information.

4 Materials and Methods

4.1 Nanoparticle production

Binary alloy (AuxAg1−x) NPs have been generated using a homemade gas aggregation source

described in detail in references,26,27 figure 1a). Briefly, a hollow cylindrical magnetron is
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used to sputter atoms from a target of a target located on the axis of the cylinder and

made of twisted Au and Ag wires. In-situ time-of-flight mass spectrometry has been used to

measure the BNP mass distribution which follows a log-normal function with ∼ 4 nm mean

average diameter and 3 nm in width.36 Using ion optics, the particles were deposited in “soft

landing” mode on the TEM grid (kinetic energy per atom ∼ 0.05 eV for a 4 nm NP). The

average Au composition in an atomic fraction of the sample is CAu = 0.51±0.01, as obtained

by EDS-TEM from an ensemble of NPs using a large open electron beam (diameter several

microns).

4.2 Electron microscopy: data acquisition and processing

We have used a STEM with 4 silicon drift detectors (SDD) (Titan Themis, Super X Quad

SDD, 0.8 sR, LNNANO-Campinas-Brazil) operating at 80 keV. The EDS HSI acquisition

parameters were 0.59 nm for the pixel size, and a dwell time of ∼200 ms per pixel; the image

size was set to 60× 60 pixels to guarantee the operation of automatic drift correction when

realigning scan regions. To minimize the dose rate, a series of images of the same region was

acquired, and subsequently, individual frames were added (10 scans at 20 ms dwell time).51

For all experiments we have used a low background Be sample holder. Raw EDS spectra

were binned to 512 energy channels to increase the signal-to-noise ratio (SNR), leading to an

EDS channel width of 20 eV. The integrated signal from the Au-Mα and Ag-Lα EDS peaks

has been used to perform chemical composition calculations.

The quantitative analysis of the individual NP chemical composition followed the Cliff-

Lorimer approach28 using experimentally measuredKAB factors (Eq. 5, Cy and Iy, NP, atomic

percentage and X-ray intensity of element y per NP respectively).

CA

CB

= KAB

IA, NP

IB, NP

(5)

The Cliff-Lorimer factor (KAB) has been measured using a thin film of known compo-
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sition, KAgAu = 1.17 ± 0.01. A multilayer thin film was generated by thermal evaporation

onto a substrate using a quartz balance to control the atomic ratio through the film thick-

ness. Estimations of chemical composition and their error bars have taken into account all

quantitative EDS analysis steps applied on a fitted curve of the experimental EDS spectra

(background removal, X-ray peak integration, and composition determination). To calcu-

late error bars, we have considered Poisson noise for all EDS count measurements (EDS

peaks counts and the substracted background); the other source of uncertainty was the Cliff-

Lorimer factor; absorption has been neglected). All EDS, and ML processing steps have

been performed using the open-source Hyperspy Python library.52

4.3 Simulated Datasets

Synthetic HSI data must be a realistic description of actual experimental situations. Different

factors induce modifications of the overall EDS SNR for each pixel, which determines the

ML output.

Firstly, it is important to generate bimetallic NPs (6 nm in diameter) that display the

surface segregation of one chemical element. This has been modeled using a core-shell particle

with abrupt interface, where the center is silver depleted to CAg ∼ 0.3 and the surface layer

(1 nm thick) is Ag enriched (CAg ∼ 0.6). A simple calculation shows that this geometrical

core-shell structure reproduces the experimental BNP composition as CAg ∼ 0.5. Secondly,

the HSI should not contain identical particles, where all pixels inside the NP show the

same noise-free EDS signal before the addition of Poisson noise. This configuration may

generate a different SNR than in an experiment. To avoid this, we have generated an

ensemble of different core-shell NPs with a random distribution of the alloy atoms inside the

particles. In practice, we have considered a spherical volume with fcc atomic arrangement,

and the elemental occupation was determined with a random number generator considering

a binomial probability of occupation at each pixel region based on chemical composition

(example 70% and 30% for Au and Ag atom at core). This yields the number of Au or
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Ag atom in each HSI pixel, and immediately account for variations of thickness (or of the

electron beam path due to spherical shape) in the NP, such that counts diminish from center

to surface pixels. As the simulated HSI pixel step of 0.5 nm is very close to the Au/Ag

lattice parameter of ∼0.4 nm, we have noted that a well-oriented crystal (zone axis along

the electron beam direction) generates a well-defined pattern of atom distribution in the 2D

NP projection. As this pattern could strongly influence ML analysis, we have added a random

2-axes rotation to the NP crystal before calculating its 2D projection. Subsequently, we have

defined the total number of counts per NP and distributed them inside pixels. The EDS

peaks were defined in accordance with experimental width and total counts per pixel. EDS

background was added by the conventional formula for EDS continuous background (Kramers

formula Icm ≈ ipZ [(E0 − Eν) /Eν ], where Icm is the x-ray continuum intensity background

at the at an energy Eν , ip is the incident beam current and Z is the atomic number).53 The

background was scaled to get a Peak-to-Background level in agreement with the experiments.

The particles have been assumed to be deposited on an a-C film and spurious peaks from the

sample environment (C, Fe, Ni, etc.) have been also incorporated into the EDS spectrum

(peak intensities heights were set such that they reproduce measurements). Finally, random

Poisson noise was added to the noise-free X-ray spectra. For the sake of simplicity, our

simulations have employed KAgAu = 1.

4.4 PCA & NMF Processing.

Before processing, we performed a variance stabilization of data through rescaling.54–56 The

so-called scree-plot30,31,57 is used to compare the covariance of each eigenspectum and to

identify the most relevant loading. In the studies reported here, the scree-plots show a clear

profile displaying a well-defined kink allowing the clear identification of three components

whose data variance is higher than noise (see example in Figure 1 in reference36). For the

NMF treatment, three components have been used in the reconstruction, in accordance with

the number of components derived from the PCA scree-plot. It is important to consider that
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the NMF algorithm is non-convex, so the minimization procedures may get trapped in local

minima,58 with each run possibly yielding a different decomposition result as demonstrated

for the analysis of diffraction pattern in 4D-STEM HSI.41 It is always recommendable to

test the algorithm convergence to the same solution by realizing different runs with different

starting values. For the experiments addressed here, the number of components is rather

low (3 NMF components), so we have not found solution variations between runs; however,

this may be critical when many NMF components must be recovered.41
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Figure S1: EDS intensity profiles from the 3 larger NPs in the dataset (horizontal line of
pixels crossing through NP center). Note that in all cases, the Ag intensity at the BNP
border is slightly higher than for Au. Intensity variations in the BNP center are attributed
to Poisson noise (profiles have been renormalized using their maximum count value, indicated
at the top left in each plot).
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Figure S2: NP localization algorithm. A binarized disk (center) corresponding to a circular
particle image is used to perform a cross-correlation with the EDS signal map ((Au + Au)
signal). NP centers are easily identified by a local-maxima finding algorithm applied to the
cross-correlation result. In the right image, the numbers indicate NP indexing and they have
been sorted as a function of cross-correlation function decreasing value (or in other terms,
NP decreasing maximum intensity which we assume a directly correlated with NP diameter).
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Figure S3: Quantitative analysis of the chemical composition of bimetallic alloy NPs as a
function of diameter and composition histogram for the HSI displayed in Figure 2 (total of
19 NPs).
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Table S1: Radial Evolution of chemical composition deduced by quantitative EDS analysis.
Data correspond to the particle indicated as NP#0 in Figure S2 (for this particle the mea-
sured chemical composition was CAg = 0.49± 0.01. EDS intensity and other EDS results on
NP#0 are shown in Figure 3).

Radial position [nm] CAg Error Bar CAg

0.0 0.45 0.04
0.5 0.45 0.02
1.0 0.45 0.01
1.5 0.47 0.01
2.0 0.46 0.01
2.5 0.55 0.01
3.0 0.60 0.02
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Figure S4
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Figure S4: Processing of EDS signal for all NPs detected in the experiment (NP#0 profiles
have been displayed in Figure 3, main text). Radial EDS elemental intensities for Au and
Ag obtained by the azimuthal integration of X-ray intensity are shown on the right; the
radial intensity profiles have been normalized by the number of pixels contributing to each
radius. On the left, we display the radial dependency of measured chemical composition
CAg, (including error bars). We note that all NPs show an increase of Ag content towards
the surface. The black solid line indicates the azimuthally integrated and normalized radial
ADF intensity; the vertical dashed line indicates the estimated NP radius from the analysis
of ADF intensity. For larger particles, the ADF intensity is saturated in the central region
of the nanoparticle.
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Figure S5: Machine learning results obtained by processing the experimental STEM-EDS
HSI; in particular we present results for NP#0 (7.0± 0.5 nm in diameter, chemical compo-
sition CAg, Exp = 0.48 ± 0.01). a) comparison of radial profiles of scores from the two PCA
components carrying information on the BNP chemical composition; note that PCA#3 score
becomes negative close to NP surface, generating an enhancement of Ag content (negative
EDS Ag peak in PCA#3, see Figure 4 in main text). b) Similar plot to (a) for the NMF
analysis; close to the BNP surface the NMF#2 contribution (this component carries mainly
Au counts) decreases drastically. The black solid line indicates the azimuthally integrated
and normalized radial ADF intensity; the vertical dashed line indicates the estimated NP
radius from the analysis of ADF intensity. Here, the ADF intensity is saturated in the cen-
tral region of the nanoparticle.

S-9



Figure S6: Machine learning results obtained by processing a simulated data set of 27
bimetallic NPs (6 nm in diameter and with a nominal Ag concentration of CAg = 0.55,
∼3300 EDS counts for each element Au or Ag). a) BNP were assumed to have a core-shell
structure with the abrupt interface, where the shell is enriched in Ag; a typical simulated
EDS spectrum adding all pixels inside a BNP is displayed at the bottom. b) Map of EDS
intensities for Au Mα and Ag Lα intensities; note that NPs display a larger size in the Ag
map. c) Comparison of PCA components carrying chemical information on the particles
(PCA#2 and PCA#3); scatter plot showing the correlation of components on the simulated
HSI. (weight in the reconstruction). d) NMF results comparing components and scores for
the simulated HSI. ML results show that both PCA and NMF are able to reveal that pix-
els with maximum Au signal (corresponding to NP central positions) tend to deplete the
contribution of component carrying Ag contribution; conversely, the NP shells contain an
enhanced contribution of Ag counts. This is in full agreement with experimental results.
Note that simulated HSIs do not include a BNP size distribution, the Au intensity can be
more easily related to sample thickness at the analyzed pixel. The black line in the scatter
plots (c) and (d) represents a polynomial fit in order to allow an easy eye recognition of the
average non-linear relation between the scores.

S-10


