S Kerboua-Benlarbi

R Nouailletas

B Faugeras

E Nardon

P Moreau

Magnetic control of WEST plasmas through deep reinforcement learning

Keywords: Reinforcement learning, Neural networks, Plasma control, Distributed computing

. In this work, we apply such methods to the WEST tokamak, to address control of the plasma's shape, position, and current, in several relevant configurations. To this end, we developed a distributed framework to train an actorcritic agent on a C++ free boundary equilibrium code called NICE, in which resistive diffusion allows a more representative evolution of current profile throughout the simulation. The interface between components was done through UDS protocols for fast, asynchronous and reliable communication. The implemented tool handles feedback control of quantities of interest, with results showing flexibility of the method regarding the use of different training environments.

I. INTRODUCTION

M AGNETIC control plays a crucial role in maintaining the stability and performance of plasma's confinement within tokamaks. Control systems actively adjust the voltages applied to the poloidal field coils (PFC), precisely manipulating magnetic fields within the said devices. Such process allows to control quantities intrinsically linked to plasma's behaviour, like position, shape and current, through the use of advanced real-time algorithms. Scientists rely on these tools to study the effects of various configurations on plasma dynamics, such as elongated shapes and their related vertical instabilities [START_REF] Pesamosca | Improved plasma vertical position control on tcv using model-based optimized controller synthesis[END_REF][START_REF] Gribov | Plasma vertical stabilisation in iter[END_REF][START_REF] Walker | On feedback stabilization of the tokamak plasma vertical instability[END_REF][START_REF] Cunningham | High performance plasma vertical position control system for upgraded mast[END_REF]. Hence, there is a essential need for flexibility and adaptability of control systems without which no proper plasma could be produced.

WEST is a full tungsten environment superconducting tokamak with a divertor configuration located in France [START_REF] Bourdelle | West physics basis[END_REF]9]. On such machine, tracking of plasma's shape, position and current is achieved through linear feedback control [START_REF] Nouailletas | The west plasma control system: Integration, commissioning and operation on first experimental campaigns[END_REF][START_REF] Nouailletas | West plasma control system status[END_REF]. Several single-input-single-output PIDs are traditionally built to regulate the said quantities, all of which must be independently designed to not interfere with each other. Plasma's shape and position can not be observed directly, and are instead inferred in real-time from magnetic sensors using reconstruction codes [START_REF] Faugeras | An overview of the numerical methods for tokamak plasma equilibrium computation implemented in the nice code[END_REF][START_REF] Carpanese | Development of free-boundary equilibrium and transport solvers for simulation and real-time interpretation of tokamak experiments[END_REF]. This overall setup requires substantial engineering effort whenever target configurations undergo variations, and show limits with respect to the coupled behaviour of plasma dynamics. Indeed, linear control laws are suitable for maintaining stability in a narrow operating range within known scenarios, but nonlinear control may be required for more advanced exploration.

Reinforcement Learning (RL) [START_REF] Sutton | Reinforcement learning: An introduction[END_REF] is a machine learning (ML) paradigm emerging as an innovative approach to realtime control. An environment is designed as a representation of the physical plant, its state denoted as s t at each timestep t. An agent receives a set of measured observations which are function of this state, o t = o(s t), and a reward r t . In return, it sends control signals known as actions a t to the environment, according to a control policy π(o t) = a t mapping state space S to action space A. Accordingly to its transition function, the environment evolves to a new state denoted as s t+1 = s(s t , a t). More precisely, the reward signal r t = r(s t , a t , s t+1) is a real-valued function designed by humans which indicates whether last action a t in state s t was in line with the overall control objectives. The sequence of triplets {s t , r t , a t } is repeated until a terminal condition is reached, which corresponds to a situation that we must avoid within the environment (coils currents saturation, undesired plasma position transient, etc). An episode is then formed and the environment is reset to its initial conditions. The goal of RL is then to make the agent learn an optimal policy π * : S → A which maximizes the discounted cumulative reward over the course of an episode:

π * = argmax π E π T k=0 γ k r k (1)
with discount factor γ ∈ [0, 1] working as a penalization term for long-term rewards.

RL is becoming increasingly popular among plasma control research. For example, RL has been used for vertical stabilization [START_REF] Dubbioso | A deep reinforcement learning approach for vertical stabilization of tokamak plasmas[END_REF][START_REF] Tommasi | A rlbased vertical stabilization system for the east tokamak[END_REF], for control of β n [START_REF] Char | Offline model-based reinforcement learning for tokamak control[END_REF], to build feedforward trajectories of plasma β [START_REF] Seo | Feedforward beta control in the KSTAR tokamak by deep reinforcement learning[END_REF], or even for safety factor profile control [START_REF] Wakatsuki | Safety factor profile control with reduced central solenoid flux consumption during plasma current ramp-up phase using a reinforcement learning technique[END_REF]. Recent works [START_REF] Degrave | Magnetic control of tokamak plasmas through deep reinforcement learning[END_REF][START_REF] Tracey | Towards practical reinforcement learning for tokamak magnetic control[END_REF] designed and optimized a RL-based system which achieved advanced magnetic control of the Tokamak à Configuration Variable (TCV). The learned policy output voltages for all 19 magnetic control coils, by observing TCV's raw magnetic measurements (38 magnetic probes and flux loops), demonstrating the capability for RLbased systems to tackle a various set of plasma configurations. These examples highlight an explicit shift of focus from controllers designed with à priori constraints on how control should be performed on the plant, to controllers learning by trial-and-error to act on the system based on what should be achieved. By leveraging neural networks as powerful function approximators, deep RL's advantages stem from its ability to:

• to fulfil these high dimensional, uncertain and non-linear systems • avoid the need for reconstruction codes • explore possible strategies in order to make the control policy more flexible in contrast with the fixed heuristics of classical control While both need tuning of a set of parameters (gains, reward function), RL is particularly valuable in situations where classical control methods may fall short due to the stated challenges. Nevertheless, despite a global interest in the approach, the widespread adoption of ML-based controllers requires careful certification [START_REF] Humphreys | Advancing fusion with machine learning research needs workshop report[END_REF] which could be a short-term show-stopper. Our work falls within such approach, as part of the first studies to explore the viability of deep RL as a powerful asset for tokamak control.

In this paper, we apply such methods to the WEST use-case (Figure 1), to address tracking of plasma's shape, position, and current in a relevant baseline scenario.

The main objective of this article is to describe the developed framework, in which domain knowledge of the agent is structured with resistive diffusion inside the simulation, while working on specific reward engineering to account for objectives of interest. The next section will be organized as follows. First, we will describe in part A how the simulated environment is implemented, then followed by details on how the framework was designed to allow efficient execution of the training loop in both subsections B and C. The nominal training scenario will then be presented in part D through a description of the environment's initial conditions, state and reward's specification. Finally, validation and analysis of the learned policy will be performed in section III, before concluding on the study and its perspectives.

II. A GENERAL DISTRIBUTED FRAMEWORK FOR WEST A. The NICE environment

The NICE code [START_REF] Faugeras | An overview of the numerical methods for tokamak plasma equilibrium computation implemented in the nice code[END_REF] is a C++ free-boundary equilibrium code solving the Grad-Shafranov equation, a non-linear 2D elliptic partial differential equation of the magnetic flux ψ in time and space in tokamaks:

-∆ * ψ = Rp ′ (ψ) + 1 µ 0 R f f ′ (ψ) (2)
with magnetic permeability µ 0 , radius R, pressure p(ψ), flux function f (ψ) = RB ϕ . Given prescribed p(ψ) and f ′ (ψ), we solve it for ψ such that ψ → 0 as (R, Z) → ∞.

This work augment the model described by (2) with resistive diffusion [START_REF] Heumann | A galerkin method for the weak formulation of current diffusion and force balance in tokamak plasmas[END_REF] in order to model the dynamics of plasma's magnetic flux profiles. It helps the controller learn to better control plasma's characteristics such as I p , which is modeled differently in other studies found in the literature. Indeed, a lumped-circuit equation [START_REF] Degrave | Magnetic control of tokamak plasmas through deep reinforcement learning[END_REF], or a 0D flux consumption model [START_REF] Nouailletas | West plasma control system status[END_REF] could be of interest, but the use of the present extension shows significant benefits:

• it influences how the current density distributes within the plasma; • it accounts for how the magnetic field lines evolve over time as they diffuse. This is crucial for better simulation of the plasma's magnetic configuration changes during different phases of a discharge; • it leads to a more representative evolution of the total plasma current I p :

I p := P Rp ′ (ψ) + 1 µ 0 R f f ′ (ψ) drdz (3)
with P defining plasma domain. Overall, it provides a more complete and physically accurate representation of the plasma's behavior. Hence, the set of information sent to the agent is more in line with reality. Finally, with considerations on time, given active coils voltages V a (t), we solve for ψ(t) and active coils currents I a (t). This forward evolution mode computes the environment's state at each new training step within one episode. Moreover, power supply and diagnostic models are implemented, to give an accurate representation of the plasma control system on WEST.

B. Communication protocols

While NICE is written in C++, optimized deep learning libraries benefit from the use of Python, e.g. TensorFlow [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF]. Therefore, there is a need for a proper communication protocol, to let these building bricks from different languages interact with each other. Several communication tools could have been used, each one of them with its advantages and drawbacks. To choose properly between these options, one must take into account the specifications of a RL training loop for plasma control. Given the computing timescales of NICE, communication must be fast and reliable, so that training duration would be optimized without modifying in depth the numerical solver, and to avoid losing any valuable information in the observational data.

Sockets fulfill these needs, providing a flexible platform for connecting these logical components across several possible protocols. A first attempt relied on TCP protocols which helped in creating a development routine for further extensions. Unix domain sockets (UDS) prove to be a valuable enhancement, analyzing how transfer is observed with sending times kept at 14 microseconds in average (compared to TCP's 49 microseconds) between the agent set up as a server, and the environment as a client, with serialized structures weighting approximately 6 ko for states. By this mean, time taken for communication is almost 4 times faster than within previous procedure.

C. Overview

From previous considerations, a general framework based on [START_REF] Degrave | Magnetic control of tokamak plasmas through deep reinforcement learning[END_REF][START_REF] Hoffman | Acme: A research framework for distributed reinforcement learning[END_REF] has been developed in order to build the interaction loop inherent to RL setups. The agent's architecture is based on actor-critic models [START_REF] Konda | Actor-critic algorithms[END_REF], which is here turned into a distributed configuration. The interaction loop can be described as follows:

• A learner worker contains policy and critic stored neural networks (NN). It uses information gathered within a replay buffer, which works as a dataset filled in an online manner, to optimize weights of said NNs; • Actor threads work independently from each other. Each thread spans a client-server interface, in which a policy network interacts with its own instance of NICE, sending relevant tuples to the replay buffer asynchronously; • Each actor updates its control policy by copying weights periodically from the learner stored policy, retrieving the best behaviour obtained so far. This results in a fast and reliable, multi-language and multi-threaded framework, running numerous instances of the NICE environment in parallel to learn a control policy in Python. Graphical processing units (GPU) were intensively used to increase computing performance of learner steps. But policy networks were all restricted to CPU, in order to lower simulation to reality gaps, i.e. transfer of the control policy to the plasma control system. Every aspect of the framework then ensures a correct representation of the real control system, so that training can put the agent in the most realistic conditions with regards to the machine's usual operation.

D. Nominal experiment

The objective was to follow a defined plasma trajectory in limiter configuration, and maintain an initial Ip over periods of 350 milliseconds, with a simulation timestep set to 10 -3 second. This duration was chosen to follow typical transition times on WEST, while shorter intervals made convergence of the algorithm difficult to reach. Figure 2 gives an overview of the interaction loop, which was tested against this baseline configuration.

The NICE environment is initialized to a limited shaped plasma, extracted from a recent discharge, with plasma's resistivity η and the non-inductive current density J ni set as fixed parameters. An inverse problem is solved at each new training episode, to get optimized currents from the initial shape. This procedure ensures a stable starting point for the simulation, so that training can be performed with realistic outputs, and smooth convergence. The error tolerance on the residual of Newton solver was set to 1e -5 instead of the usual value of 1e -10, to speedup training without significant loose of accuracy in NICE outputs. The state's environment was defined as:

s(t) = {y(t), I a (t), m(t)} (4)
with y(t) the plasma equilibrium information, I a (t) the currents in the active control coils, and m(t) the raw magnetic measurements. Termination is triggered if thresholds are reached on active coils currents or safety factor, to avoid any damage on the device.

Rewards are computed from s(t), with target references tr(t) linearly interpolated from a set of snapshots extracted Algorithm 1 Reward calculation pseudo-code C, set of reward components, T R set of corresponding targets, W set of corresponding weights. from experimental data, in order to make sure that the relevant scenario exists within the operational domain of the device. The chosen reward is a normalized combination of error signals, each one of them focusing on a specific sub-task of magnetic control (shape, plasma current, etc). For a description of each component's weight and parameters, please refer to table I. Each reward component c is computed as the difference between its target value tr c (t) and the retrieved one from the NICE environment v c (t). To get a proper functional reward, scaling is applied to each c in order to get intermediate values between 0 and 1. If the component is made out of several targets, like shape control using multiple last closed flux surface (LCFS) reference points, they are combined with Smoothmax function to get a scalar value within the wanted interval. The same function is used to combine all reward components into a final reward value in [0, 1]. Algorithm 1 shows the reward computation more precisely, following several standards proposed by [START_REF] Degrave | Magnetic control of tokamak plasmas through deep reinforcement learning[END_REF].

SOFTPLUS(E)

E ← -ξ(E-good bad-good) E ← σ(E) return min(max(2 • E, 0), 1) SMOOTHMAX(R, W) return w i R i e αR i w i e αR i COMPUTE(C) R ← {} for each c ∈ C do if c
Weights in the Smoothmax definition affects the importance of each reward component, while the α defines focus balance between components of different control complexities (Figure 3). A negative value will give rewards close to the least performing component, leaving other ones loosely explored, while positive values will exclude the said worst components. Such trade-offs are important, since the closer α gets to 0, the more all components will be treated equally, e.g. scenarios like X-point formation where a component on the X-point location would be closely related to an LCFS tracking one. In our case, weigths are kept at 1 for all components, except for the LCFS one which is equal to 3. As for the α parameter, we emphasize all LCFS components almost equally by setting it to -1, and -0.5 is chosen for the final smoothmax combination. Indeed, our scenario should consider all objectives almost equally, looking for small exploration since initial conditions are similar but not that close to targets. Fig. 4: Softplus behaviour. If the error is smaller than the good parameter, the reward will saturate to 1. If it is worse than bad, reward decays to 0. ξ describes scaling steepness between the two anchor points, and is fixed at log(-19) [START_REF] Degrave | Magnetic control of tokamak plasmas through deep reinforcement learning[END_REF].

Good and bad parameters in the Softplus formulation as seen in Algorithm 1, scales the reward signal according to regions of interest in the reward space (Figure 4). Tight values in both parameters will lead to higher focus on the component to achieve high related reward, making it difficult to get valuable signals when the training scenario involves strong variations and exploration should occur. On the other hand, smoother values will make the components easier to satisfy, helping exploration at the cost of precise control. Considering our baseline, which initial conditions are similar to the final targets, choosing relatively tight values is suitable since the region of interest does not need extensive exploration. Sigmoid Fig. 5: Tracking of final reference (in blue) plasma's shape and position is achieved without significant bias regarding observed quantities (in orange), except for I p which is about 2 kA from the setpoint.

and asymptotic scaling functions were tested but the use of the Softplus function happened to be more suitable. Reward undergo a final scaling, so that the maximum cumulative reward for 100 ms equals 10.

The agent is a distributed Maximum à posteriori Policy Optimization agent [START_REF] Abdolmaleki | Maximum a posteriori policy optimisation[END_REF] (MPO) implemented in Python with 95 multi-layered perceptrons and a recurrent learner (Long Short Term Memory -LSTM). NN architectures and weights initialization follow [START_REF] Degrave | Magnetic control of tokamak plasmas through deep reinforcement learning[END_REF] considering that variations from the latter were benchmarked and lead to worse performance, with use of specialized CUDA RNN unroll operations. Sequences were partitioned so that a burn-in phase would take place at each learner step, i.e. part of each input sequence sampled from the replay buffer used to initialize the LSTM core [START_REF] Kapturowski | Recurrent experience replay in distributed reinforcement learning[END_REF]. Adam optimizer was used both in the critic and the actor networks. Specific hyperparameters chosen for NNs definition can be found in table II.

In parallel, plasma current stays within 2 kA from initial conditions. We initially observed numerical instabilities within the resisitive diffusion mode of NICE, causing unrealistic surges of plasma current up to 100 kA in a few milliseconds. This unrealistic behaviour was put in the perspective of other controlled characteristics, and stabilization of the solver was required. Plasma control then becomes more precise, considering that we might still be within a transient phase. Increasing scenario duration is a short-term perspective of this work to check Ip control.

IV. CONCLUSION AND PERSPECTIVES

This study presented a fast, reliable and maintainable multilanguage and multi-GPU framework. It allows training of RL agents, which achieved accurate tracking of plasma's shape and position. Without any reconstruction step, non-linear control was performed thanks to RL principles, demonstrating its usefulness the WEST use-case. Despite lack of efficient plasma current control, several mechanisms are already identified to reduce involved bias. Counting on reward engineering and integral control, the framework will be extended for better convergence of the control policy.

Once the controller will successfully tackle the baseline scenario, the framework will be used to train the agent on more complex tasks, e.g. X-point transitions. NICE will be coupled with a transport model like METIS, to enhance its performance and help initialization of resistive diffusion. Finally, the control policy will be evaluated on a simulator of the WEST plasma control system before deployment on the device.

Fig. 1 :

 1 Fig. 1: Cross-section of WEST with its PFCs configuration.

Fig. 2 :

 2 Fig. 2: Framework's overview. Diagnostics and power supply model take into account bias, delays and offsets.

5 Fig. 3 :

 53 Fig. 3: Smoothmax(r 1 , r 2 , α), with r 1 , r 2 scaled reward components in [0, 1]. Focus is directed towards the worst component as α → -∞. Such non-linear scaling allows to refine objectives specification during training.

TABLE I :

 I Reward components description with dimensions. Scaling to [0, 1] range is performed, before combination to a final scalar value. Alpha is specified for each component if it has multiple targets.

V. ACKNOWLEDGMENTS

The authors would like to thank Federico Felici from the SPC at EPFL, and the Fusion team at DeepMind, for their valuable advice and expertise regarding the use of reinforcement learning for magnetic control. This work has been supported by Capgemini Engineering, and the Provence Alpes Côte d'Azur region.

The framework feeds each policy network with augmented observations o(t) from the replay buffer:

with {m b (t), f l(t)} magnetic probes and flux loops raw measurements, and dm b (t) dt , temporal derivatives of magnetic probes signals. Specifically, they are chosen as pairs measuring the poloidal magnetic field in both tangent and normal directions at given locations. Noise is injected in observations at each timestep from Gaussian laws with parameters identified from WEST plasma discharges database, as well as delays to model real data acquisition from sensors. Predicted voltages supplied to each PFC are sampled from distributions defined by outputs of the control policy. Indeed, the agent predicts a mean and a standard deviation for each of the 11 active coils, thanks to which it explores possible outcomes during training. Once completed, exploration is not needed anymore, and only the mean of each distribution is kept to predict optimal actions. Offsets, bias and delays are part of the power supply model to ensure correct handling of WEST actuators in the real world.

III. TRAINING AND EVALUATION

Training was performed on an hybrid architecture with an NVIDIA ® Tesla™ V100S with 32GB of available memory operating at 1230MHz and several Intel ® Xeon Gold ® at 2.10GHz (80 physical cores). Training time took about 2 days for proper convergence of the algorithm.

Firstly, control of the plasma shape, through the LCFS, is carried out correctly (Figure 5). The mean squared error over all the points of interest decreases substantially when considering the final target shape. It should be noted that the weight placed on the LCFS reward component is greater than those placed on the other components. As for the control of the magnetic centre and κ, it is carried out without producing an excessive stabilization bias.

Nevertheless, there are steady-state errors on the center position. Within the reward, this component considers a wide interval between good and bad parameters. Choosing a stricter interval could be more effective, but despite several tests, a bias is still present and could be explained by how the magnetic center is computed. Indeed, its coordinates are not interpolated, but only taken from the nodes of the mesh. However, it is insufficient to entirely account for the displacements of the point of interest, and another explanation could relate to the lack of proper integral control.