
HAL Id: hal-04393963
https://hal.science/hal-04393963v1

Preprint submitted on 15 Jan 2024 (v1), last revised 29 Jan 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Magnetic control of WEST plasmas through deep
reinforcement learning

S Kerboua-Benlarbi, R Nouailletas, Blaise Faugeras, E Nardon, P Moreau

To cite this version:
S Kerboua-Benlarbi, R Nouailletas, Blaise Faugeras, E Nardon, P Moreau. Magnetic control of WEST
plasmas through deep reinforcement learning. 2023. �hal-04393963v1�

https://hal.science/hal-04393963v1
https://hal.archives-ouvertes.fr


TRANSACTIONS ON PLASMA SCIENCE, SPECIAL ISSUE FOR SOFE, SEPTEMBER 2023 1

Magnetic control of WEST plasmas through deep
reinforcement learning

S. Kerboua-Benlarbi, R. Nouailletas, B. Faugeras, E. Nardon, P. Moreau

Abstract—Tokamaks require magnetic control across a wide
range of plasma scenarios. The coupled behavior of plasma
dynamics makes deep learning a suitable candidate for efficient
control in order to fulfil these high-dimensional and non-linear
situations. For example, on TCV, deep reinforcement learning
has already been used for tracking of the plasma’s magnetic
equilibrium [1]. In this work, we apply such methods to the
WEST tokamak, to address control of the plasma’s shape,
position, and current, in several relevant configurations. To this
end, we developed a distributed framework to train an actor-
critic agent on a C++ free boundary equilibrium code called
NICE, in which resistive diffusion allows a more representative
evolution of current profile throughout the simulation. The inter-
face between components was done through UDS protocols for
fast, asynchronous and reliable communication. The implemented
tool handles feedback control of quantities of interest, with results
showing flexibility of the method regarding the use of different
training environments.

Index Terms—Reinforcement learning, Neural networks,
Plasma control, Distributed computing.

I. INTRODUCTION

MAGNETIC control plays a crucial role in maintaining
the stability and performance of plasma’s confinement

within tokamaks. Control systems actively adjust the voltages
applied to the poloidal field coils (PFC), precisely manipu-
lating magnetic fields within the said devices. Such process
allows to control quantities intrinsically linked to plasma’s
behaviour, like position, shape and current, through the use
of advanced real-time algorithms. Scientists rely on these
tools to study the effects of various configurations on plasma
dynamics, such as elongated shapes and their related vertical
instabilities[21, 17, 24, 4]. Hence, there is a essential need for
flexibility and adaptability of control systems without which
no proper plasma could be produced.

WEST is a full tungsten environment superconducting toka-
mak with a divertor configuration located in France [8, 10]. On
such machine, tracking of plasma’s shape, position and current
is achieved through linear feedback control [14, 15]. Several
single-input-single-output PIDs are traditionally built to reg-
ulate the said quantities, all of which must be independently
designed to not interfere with each other. Plasma’s shape and
position can not be observed directly, and are instead inferred
in real-time from magnetic sensors using reconstruction codes
[16, 2]. This overall setup requires substantial engineering
effort whenever target configurations undergo variations, and
show limits with respect to the coupled behaviour of plasma
dynamics. Indeed, linear control laws are suitable for main-
taining stability in a narrow operating range within known

scenarios, but nonlinear control may be required for more
advanced exploration.

Reinforcement Learning (RL) [22] is a machine learning
paradigm emerging as an innovative approach to real-time
control. An environment is designed as a representation of
the physical plant, its state denoted as st at each timestep
t. An agent receives a set of measured observations which
are function of this state, ot = o(st), and a reward rt.
In return, it sends control signals known as actions at to
the environment, according to a control policy π(ot) = at
mapping state space S to action space A. Accordingly to its
transition function, the environment evolves to a new state
denoted as st+1 = s(st, at). More precisely, the reward signal
rt = r(st, at, st+1) is a real-valued function designed by
humans which indicates whether last action at in state st was
in line with the overall control objectives. The sequence of
triplets {st, rt, at} is repeated until a terminal condition is
reached, which corresponds to a situation that we must avoid
within the environment (coils currents saturation, undesired
plasma position transient, etc). An episode is then formed and
the environment is reset to its initial conditions. The goal of RL
is then to make the agent learn an optimal policy π∗ : S → A
which maximizes the discounted cumulative reward over the
course of an episode:

π∗ = argmax
π

E[
T∑

k=0

γkrt+k+1] (1)

with discount factor γ ∈ [0, 1] working as a penalization
term for long-term rewards.

RL is becoming increasingly popular among plasma control
research. For example, RL has been used for vertical stabi-
lization [6], for control of βn [9, 3], to build feedforward
trajectories of plasma β [11], or even for safety factor profile
control [23]. Recent works [5, 7] designed and optimized a
RL-based system which achieved "full" magnetic control of
the Tokamak à Configuration Variable (TCV). The learned
policy output voltages for all 19 magnetic control coils, by
observing TCV’s raw magnetic measurements (38 magnetic
probes and flux loops), demonstrating the capability for RL-
based systems to tackle a various set of plasma configurations.
These examples highlight an explicit shift of focus from
controllers designed with à priori constraints on how control
should be performed on the plant, to controllers learning by
trial-and-error to act on the system based on what should be
achieved. By leveraging neural networks as powerful function
approximators, deep RL’s advantages stem from its ability to:
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Fig. 1: Cross-section of WEST with its PFCs configuration.

• to fulfil these high dimensional, uncertain and non-linear
systems

• avoid the need for reconstruction codes
• explore possible strategies in order to make the control

policy more flexible in contrast with the fixed heuristics
of classical control

While both need tuning of a set of parameters (gains,
reward function), RL is particularly valuable in situations
where classical control methods may fall short due to the stated
challenges.

In this paper, we apply such methods to the WEST use-case
(Figure 1), to address tracking of plasma’s shape, position, and
current in a relevant baseline scenario.

The main objective of this article is to describe the devel-
oped framework, in which domain knowledge of the agent
is structured with resistive diffusion inside the simulation,
while working on specific reward engineering to account for
objectives of interest. Next sections will be organized as fol-
lows. First, we will describe how the simulated environment is
implemented, then followed by details on how the framework
was designed to allow efficient execution of the training loop.
The nominal training scenario will then be presented, notably
details about the environment’s initial conditions, state and
reward’s specification. Finally, validation and analysis of the
learned policy will be performed, before concluding on the
study and its perspectives.

II. A GENERAL DISTRIBUTED FRAMEWORK FOR WEST

A. The NICE environment

The NICE code [16] is a C++ free-boundary equilibrium
code solving the Grad-Shafranov equation, a non-linear 2D
elliptic partial differential equation of the magnetic flux ψ in
time and space in tokamaks:

−∆∗ψ = Rp′(ψ) +
1

µ0R
ff ′(ψ) (2)

with magnetic permeability µ0, radius R, pressure p(ψ),
flux function f(ψ) = RBϕ. Given prescribed p(ψ) and f ′(ψ),
we solve it for ψ such that ψ → 0 as (R,Z) → ∞.

One could augment the model described by (2) with resistive
diffusion [18] in order to model the dynamics of plasma’s
magnetic flux profiles. It will help the controller learn to better

control plasma’s characteristics such as Ip, which variations
are modeled differently than alternative methods. Indeed, a
lumped-circuit equation [5], or a 0D flux consumption model
[15] could be of interest, but the use of the present extension
shows significant benefits:

• it influences how the current density distributes within
the plasma;

• it accounts for how the magnetic field lines evolve over
time as they diffuse. This is crucial for better simulation
of the plasma’s magnetic configuration changes during
different phases of a discharge;

• it leads to a more representative evolution of the total
plasma current Ip:

Ip :=

∫
P

(
Rp′(ψ) +

1

µ0R
ff ′(ψ)

)
drdz (3)

with P defining plasma domain.

Overall, it provides a more complete and physically accurate
representation of the plasma’s behavior. Hence, the set of
information sent to the agent is more in line with reality.
Finally, with considerations on time, given active coils voltages
Va(t), we solve for ψ(t) and active coils currents Ia(t).
This forward evolution mode computes the environment’s
state at each new training step within one episode. Moreover,
power supply and diagnostic models are implemented, to give
an accurate representation of the plasma control system on
WEST.

B. Communication protocols

While NICE is written in C++, optimized deep learning
libraries benefit from the use of Python, e.g. TensorFlow
[12]. Therefore, there is a need for a proper communication
protocol, to let these building bricks from different languages
interact with each other. Several communication tools could
have been used, each one of them with its advantages and
drawbacks. To choose properly between these options, one
must take into account the specifications of a RL training
loop for plasma control. Given the computing timescales
of NICE, communication must be fast and reliable, so that
training duration would be optimized without modifying in
depth the numerical solver, and to avoid loosing any valuable
information in the observational data.

Such needs confirm sockets as suitable platforms to connect
these logical components, not only considering their flexibility,
but also because of the vast set of involved protocols. A first
attempt relied on TCP protocols which helped in creating
a development routine for further extensions. Unix domain
sockets (UDS) prove to be a valuable enhancement, analyzing
how transfer is observed with sending times kept at 14 mi-
croseconds in average (compared to TCP’s 49 microseconds)
between the agent set up as a server, and the environment
as a client, with serialized structures weighting approximately
6ko for states. By this mean, time taken for communication
is almost 4 times faster than within previous procedure.
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Fig. 2: Framework’s overview. Diagnostics and power supply
model take into account bias, delays and offsets.

C. Overview

From previous considerations, a general framework based
on [5, 13] has been developed in order to build the interaction
loop inherent to RL setups. The agent’s architecture is based
on actor-critic models [20], which is here turned into a dis-
tributed configuration. The interaction loop can be described
as follows:

• A learner worker contains policy and critic stored neural
networks (NN). It uses information gathered within a
replay buffer, which works as a dataset filled in an online
manner, to optimize weights of said NNs;

• Actor threads works independently from each other. Each
thread spans a client-server interface, in which a policy
network interacts with its own instance of NICE, sending
relevant tuples to the replay buffer asynchronously;

• Each actor updates its control policy by copying weights
periodically from the learner stored policy, retrieving the
best behaviour obtained so far.

This results in a fast and reliable, multi-language and
multi-threaded framework, running numerous instances of the
NICE environment in parallel to learn a control policy in
Python. Graphical processing units (GPU) were intensively
used to increase computing performance of learner steps. But
policy networks were all restricted to CPU, in order to lower
simulation to reality gaps, i.e. transfer of the control policy to
the plasma control system. Every aspect of the framework then
ensures a correct representation of the real control system, so
that training can put the agent in the most realistic conditions
with regards to the machine’s usual operation.

D. Nominal experiment

The objective was to follow a defined plasma trajectory in
limiter configuration, and maintain an initial Ip over periods
of 350 milliseconds, with a simulation timestep set to 10−3

second. This duration was chosen to follow typical transition
times on WEST, while shorter intervals made convergence of

the algorithm difficult to reach. Figure 2 gives an overview
of the interaction loop, which was tested against this baseline
configuration.

The NICE environment is initialized to a limited shaped
plasma, extracted from a recent discharge, with plasma’s
resistivity η and the non-inductive current density Jni set as
fixed parameters. An inverse problem is solved at each new
training episode, to get optimized currents from the initial
shape. This procedure ensures a stable starting point for the
simulation, so that training can be performed with realistic
outputs, and smooth convergence. The error tolerance on the
residual of Newton solver was set to 1e − 5 instead of the
usual value of 1e−10, to speedup training without significant
loose of accuracy in NICE outputs. The state’s environment
was defined as:

s(t) = {y(t), Ia(t),m(t)} (4)

with y(t) the plasma equilibrium information, Ia(t) the
currents in the active control coils, and m(t) the raw mag-
netic measurements. Termination is triggered if thresholds are
reached on active coils currents or safety factor, to avoid any
damage on the device.

Rewards are computed from s(t), with target references
tr(t) linearly interpolated from a set of snapshots extracted
from experimental data, in order to make sure that the relevant
scenario exists within the operational domain of the device.
The chosen reward is a normalized combination of error
signals, each one of them focusing on a specific sub-task of
magnetic control (shape, plasma current, etc).
For a description of each component’s weight and parameters,
please refer to table I.

Each reward component c is computed as the difference
between its target value trc(t) and the retrieved one from the
NICE environment vc(t). To get a proper functional reward,

Algorithm 1 Reward calculation pseudo-code
C, set of reward components, TR set of corresponding targets, W
set of corresponding weights.

SOFTPLUS(E)
E ← ξ( E−bad

good−bad
)

E ← σ(E)
return min(max(2 · E, 0), 1)

SMOOTHMAX(R,W )

return
∑

wiRie
αRi∑

wie
αRi

COMPUTE(C)
R← {}
for each c ∈ C do

if c scalar then
E ← |vc(t)− trc(t)|
Rc ← SOFTPLUS(E)

else
Rc ← SMOOTHMAX({Rci}1≤i≤size(c), 1)

end if
APPEND(R,Rc)

end for
return SMOOTHMAX(R,W )
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TABLE I: Reward components description with dimensions. Scaling to [0, 1] range is performed, before combination to a final
scalar value. Alpha is specified for each component if it has multiple targets.

Component Description Good Bad α
LCFS [m] Distance between 32 points from current and target LCFS 0.0 0.04 -1

Magnetic center (r,z) [m] Distance from current and target magnetic center location 0.005 0.05 x
Radius [m] Difference in minor radius 0.002 0.02 x
Elongation Distance between computed and target κ 0.002 0.02 x

Triangularity Distance between computed and target δ 0.005 0.02 x
Ip [kA] Difference in plasma current 0.5 30 x

Final combiner: Smoothmax(α = -0.5)

scaling is applied to each c in order to get intermediate
values between 0 and 1. If the component is made out of
several targets, like shape control using multiple last closed
flux surface (LCFS) reference points, they are combined with
Smoothmax function to get a scalar value within the wanted
interval. The same function is used to combine all reward
components into a final reward value in [0, 1]. Algorithm
1 shows the reward computation more precisely, following
several standards proposed by [5].

Weights in the Smoothmax definition affects the importance
of each reward component, while the α defines focus balance
between components of different control complexities (Figure
3). A negative value will give rewards close to the least
performing component, leaving other ones loosely explored,
while positive values will exclude the said worst components.
Such trade-offs are important, since the closer α gets to 0, the
more all components will be treated equally, e.g. scenarios
like X-point formation where a component on the X-point

(a) α = 0 (b) α = −0.5

(c) α = −1 (d) α = −5

Fig. 3: Smoothmax(r1, r2, α), with r1, r2 scaled reward
components in [0, 1]. Focus is directed towards the worst
component as α → −∞. Such non-linear scaling allows to
refine objectives specification during training.

location would be closely related to an LCFS tracking one. In
our case, weigths are kept at 1 for all components, except for
the LCFS one which is equal to 3. As for the α parameter, we
emphasize all LCFS components almost equally by setting it to
−1, and −0.5 is chosen for the final smoothmax combination.
Indeed, our scenario should consider all objectives "almost"
equally looking for small exploration, since initial conditions
are similar but not that close to targets.

Fig. 4: Softplus behaviour. If the error is smaller than the good
parameter, the reward will saturate to 1. If it is worse than bad,
reward decays to 0. ξ describes scaling "steepness" between
the two anchor points, and is fixed at log(−19) [5].

Good and bad formulation in the Softplus formulation scales
the reward signal according to region of interest in the reward
space (Figure 4). Tight values in both parameters will lead
to higher focus on the component to achieve high related
reward, making it difficult to get valuable signals when the
training scenario involves strong variations and exploration
should occur. On the other hand, smoother values will make
the components easier to satisfy, helping exploration at the
cost of precise control. Considering our baseline, which initial
conditions are similar to the final targets, choosing relatively
tight values is suitable since the region of interest does not
need extensive exploration. Sigmoid and asymptotic scaling
functions were tested but the use of the Softplus function
happened to be more suitable. Reward undergo a final scaling,
so that the maximum cumulated reward for 100 ms equals 10.

The agent is a distributed Maximum à posteriori Policy
Optimization agent [1] (MPO) implemented in Python with
95 multi-layered perceptrons and a recurrent learner (Long
Short Term Memory - LSTM). NN architectures and weights
initialization follow [5] considering that variations from the
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Fig. 5: Tracking of reference (in blue) plasma’s shape and position is achieved without significant
bias regarding observed quantities (in orange), except for Ip which is about 2kA from the

setpoint.

latter were benchmarked and lead to worse performance, with
use of specialized CUDA RNN unroll operations. Sequences
were partitioned so that a "burn-in" phase would take place at
each learner step, i.e. part of each input sequence sampled
from the replay buffer used to initialize LSTM core [19].
Adam optimizer was used both in the critic and the actor
networks. Specific hyperparameters chosen for NNs definition
can be found in table II.

TABLE II: MPO’s hyperparameters.

Hyperparameter Chosen value
Batch size 256

Discount factor 0.99
Sequence length for critic 80

Burn-in length critic 15
Actor architecture (256, 256, 256, 256, 22)

Critic architecture (LSTM, MLP) (256 units, 256, 256, 1)

The framework feeds each policy network with augmented
observations o(t) from the replay buffer:

o(t) = {tr(t),mb(t), f l(t), Ia(t),
dmb(t)

dt
} (5)

with {mb(t), f l(t)} magnetic probes and flux loops raw
measurements, and dmb(t)

dt , temporal derivatives of magnetic
probes signals. Specifically, they are chosen as pairs measuring
the poloidal magnetic field in both tangent and normal direc-
tions at given locations. Noise is injected in observations at
each timestep from Gaussian laws with parameters identified
from WEST plasma discharges database, as well as delays to
model real data acquisition from sensors. Predicted voltages
supplied to each PFC are sampled from distributions defined
by outputs of the control policy. Indeed, to favor exploration
throughout learning, mean and standard deviation of each of
the 22 active coil distributions are learnable parameters, and
only the mean is kept at inference. Offsets, bias and delays

are part of the power supply model to ensure correct handling
of WEST actuators in the real world.

III. TRAINING AND EVALUATION

Training was performed on an hybrid architecture with an
NVIDIA® Tesla™ V100S with 32GB of available memory
operating at 1230 MHz and several Intel® Xeon Gold® at
2.10GHz (160 logical « cores »). Training time took about
2 days for proper convergence of the algorithm.

Firstly, control of the plasma shape, through the LCFS, is
carried out correctly (Figure 5). The mean square error over all
the points of interest decreases substantially when considering
the final target shape. It should be noted that the weight placed
on the LCFS reward component is greater than those placed
on the other components. As for the control of the magnetic
centre and κ, it is carried out without producing an excessive
stabilisation bias.

Nevertheless, there are steady-state errors on the center
position. Within the reward, this component considers a wide
interval between good and bad parameters. Choosing a stricter
interval could be more effective, but despite several tests, a bias
is still present and could be explained by how the magnetic
center is computed. Indeed, its coordinates are not interpolated,
but only taken from the nodes of the mesh. However, it is
insufficient to entirely account for the displacements of the
point of interest, and another explanation could relate to the
lack of proper integral control.

In parallel, plasma current stays within 2kA from initial
conditions. We initially observed numerical instabilities within
the resisitive diffusion mode of NICE, causing unrealistic
surges of plasma current up to 100kA in a few milliseconds.
This unrealistic behaviour was put in the perspective of other
controlled characteristics, and stabilization of the solver was
required. Plasma control then becomes more precise, consider-
ing that we might still be within a transient phase. Increasing
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scenario duration is a short-term perspective of this work to
check Ip control.

IV. CONCLUSION AND PERSPECTIVES

This study presented a fast, reliable and maintainable multi-
language and multi-GPU framework. It allows training of
RL agents, which achieved accurate tracking of plasma’s
shape and position. Without any reconstruction step, non-linear
control was performed thanks to RL principles, demonstrating
its usefulness in the WEST use-case. Despite lack of efficient
plasma current control, several mechanisms are already iden-
tified to reduce involved bias. Counting on reward engineering
and integral control, the framework will be extended for better
convergence of the control policy.

Once the controller will successfully tackle the baseline
scenario, the framework will be used to train the agent on
more complex tasks, e.g. X-point transitions. NICE will be
coupled with a transport model like METIS, to enhance NICE
performance, notably which new information will help initial-
ization of resistive diffusion. Finally, the control policy will
be evaluated first on a "flying" simulator before deployment
on WEST.
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