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Abstract

In this research, we delve into the intricate interplay between algebraic structures and

geometric properties in the context of morphisms in affine spaces. Specifically, we focus on a

morphism ϕ : An → An defined by polynomials (f1, f2, . . . , fn) and investigate the conditions

under which ϕ becomes an automorphism. We provide a comprehensive interpretation of the

Jacobian matrix J(ϕ), a fundamental tool in understanding local behavior, emphasizing its

role in capturing the local sensitivity of each component of ϕ to changes in the variables. We

investigate the implications of having a non-zero constant Jacobian determinant, establishing

its pivotal role in ensuring both injectivity and surjectivity of ϕ. The connectedness of

the affine space An proves to be a crucial factor, allowing us to combine local inverses

obtained from the Implicit Function Theorem to construct a global inverse for ϕ. Beyond

the theoretical framework, our research opens up exciting avenues for future exploration.

We propose directions for generalizing these results to more abstract spaces, investigating

morphisms defined by non-polynomial functions, and exploring applications in computer

science, cryptography, and algebraic geometry.In conclusion, our study contributes to the rich

tapestry of mathematical structures, revealing the profound connections between algebraic

properties and geometric structures in the realm of morphisms and automorphisms.

Keywords and Phrases: Automorphisms, Affine Spaces, Jacobian Matrix, Jacobian

Determinant, Morphisms Defined by Polynomials, Implicit Function Theorem, Local Invert-
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2 PRELIMINARIES

1 Motivation

In the realm of algebraic geometry and differential geometry, understanding the properties of

morphisms between affine spaces An is a central topic of investigation. Specifically, the question

of when a morphism becomes an automorphism, a bijective map preserving the structure of the

space, has garnered significant attention.

This research delves into the conditions under which a morphism ϕ : An → An defined by

polynomials achieves automorphism. The key focus lies on the role of the Jacobian determinant

associated with ϕ, a measure of local invertibility, in determining the global behavior of the

morphism.

The study of automorphisms in affine spaces carries intrinsic importance in both theoretical

and applied mathematics. Automorphisms provide insights into the symmetries and transfor-

mations inherent in algebraic structures. Understanding the conditions for automorphism not

only enriches the theoretical foundations of geometry but also has implications in areas such as

computer-aided design, cryptography, and optimization.

The primary objective of this research is to establish a comprehensive framework for charac-

terizing automorphisms in An. Specifically, we aim to prove that if the Jacobian determinant of

a morphism ϕ is a non-zero constant polynomial, then ϕ is indeed an automorphism.

2 Preliminaries

Definition 2.0.1. (Affine space) Affine space An is a geometric space consisting of n-tuples of

elements from a field A. It lacks a fixed origin and is characterized by its translational symmetry.

Definition 2.0.2. (Morphisms in An) A morphism ϕ : An → An is a function that preserves

the structure of An. In the context of this research, ϕ is defined by a set of n polynomials.

An Automorphism is a bijective morphism from An to itself.

Definition 2.0.3. (Jacobian Matrix J(ϕ)) The Jacobian Matrix J(ϕ) is a crucial tool in

understanding the local linearization of ϕ at a given point. For a morphism ϕ = (f1, f2, . . . , fn),

where each fi is a polynomial, the Jacobian matrix is defined as:

J(ϕ) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn
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2 PRELIMINARIES

Each entry in the matrix represents the partial derivative of the corresponding polynomial

with respect to the corresponding variable. The Jacobian matrix provides valuable information

about how the morphism ϕ behaves locally. More precisely, the entry ∂fi
∂xj

represents the rate at

which the i-th component of ϕ changes concerning the j-th variable, ∀ i, j = 1(1)n.

Remark 2.0.1. The Jacobian matrix provides crucial information about the local behavior of ϕ

and serves as the foundation for understanding its invertibility.

Remark 2.0.2. Geometrically, the Jacobian matrix at a point provides the linear transformation

that best approximates the local behavior of ϕ near that point.

Definition 2.0.4. (Jacobian Determinant det(J(ϕ))) A priori given the Jacobian matrix J(ϕ),

its corresponding determinant det(J(ϕ)) is defined as:

det(J(ϕ)) =

∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

∣∣∣∣∣∣∣∣∣∣∣
Remark 2.0.3. The Jacobian determinant is a key measure of how much ϕ distorts local volumes

in An. A non-zero determinant indicates that the local transformation is not collapsing points

and is, therefore, invertible.

Remark 2.0.4. In the context of our research, the focus is on the case where the Jacobian

determinant is a non-zero constant polynomial. This condition ensures a consistent measure of

invertibility across all points in An.

Therefore, one can indeed infer from the above definitions that, det(J(ϕ)) ̸= 0 ensures that

ϕ is injective, preventing distinct points from mapping to the same point.

Furthermore, the non-singularity of det(J(ϕ), combined with the connectedness of An,

ensures surjectivity by allowing the construction of a global inverse.

Theorem 2.0.5. (Implicit Function Theorem (IFT)) In the context of the Affine n-space An, the

non-zero constant Jacobian determinant ensures that the Jacobian matrix J(ϕ) is non-singular

everywhere in An. By the Implicit Function Theorem, this non-singularity implies local

invertibility of ϕ at every point.

The connectedness of An is crucial for ensuring the existence of a global inverse for ϕ. This

allows the combination of local inverses obtained through the IFT.
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4 PROOF OF THE PROBLEM

3 Statement of the Problem

In this section, we provide a formal statement of the problem and outline the conditions under

which a morphism ϕ : An → An defined by polynomials becomes an automorphism.

3.1 Problem Formulation

Consider the affine space An with coordinates (x1, x2, . . . , xn). Let ϕ : An → An be a morphism

defined by a set of polynomials (f1, f2, . . . , fn), where each fi is a polynomial in the variables

x1, x2, . . . , xn. The morphism is given by:

ϕ(x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn))

A priori the definition of the corresponding Jacobian determinant det(J(ϕ)) allows us to

infer that it is in fact a polynomial function in the variables x1, x2, . . . , xn.

3.2 Objective

We aim to prove that if det(J(ϕ)) is a non-zero constant polynomial, then ϕ is an automorphism

on An. In other words, under the given conditions, ϕ is a bijective map that preserves the

structure of An.

3.3 Key Conditions

The main conditions for establishing the automorphism property are:

1. The Jacobian determinant det(J(ϕ)) is a non-zero constant polynomial.

2. The polynomials f1, f2, . . . , fn defining ϕ are well-defined and regular.

These conditions ensure that the morphism ϕ exhibits both injective and surjective properties,

making it an automorphism.

4 Proof of the Problem

We will provide a detailed proof covering injectivity, surjectivity, and the implications of the

non-zero constant Jacobian determinant.
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4.1 Injectivity

Suppose there exist two distinct points, a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in An such

that ϕ(a) = ϕ(b). Consider the vector, v = b− a.

For each component i ∈ {1, 2, ....., n}, the equality fi(a+ v) = fi(a) implies:

fi(a+ v) = fi(a) (4.1)

fi(a1 + v1, a2 + v2, . . . , an + vn) = fi(a1, a2, . . . , an)

Now, consider the Taylor Expansion of fi around a:

fi(a+ v) = fi(a) +
n∑

j=1

∂fi
∂xj

(a)vj + higher-order terms

Substituting this into the equation (4.1), we get:

fi(a) +
n∑

j=1

∂fi
∂xj

(a)vj + higher-order terms = fi(a)

The higher-order terms vanish, and we are left with:

n∑
j=1

∂fi
∂xj

(a)vj = 0

This is equivalent to the dot product of the gradient vector ∇fi(a) and v:

∇fi(a) · v = 0

The non-zero constant Jacobian determinant implies that the gradients ∇fi(a) are linearly

independent. Therefore, v = 0, and consequently, a = b.

Therefore, ϕ is injective.

4.2 Surjectivity

To establish surjectivity, we appeal to the Implicit Function Theorem (IFT). The non-zero

constant Jacobian determinant ensures that the Jacobian matrix J(ϕ) is non-singular everywhere

in An. According to the IFT, this non-singularity implies local invertibility of ϕ at every point.

Since An is connected, local inverses can be combined to form a global inverse for ϕ. This is

a consequence of the connectedness property, allowing the smooth patching together of local

inverses.
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Hence, ϕ is surjective.

Having established both injectivity and surjectivity, and understanding the implications of

the non-zero constant Jacobian determinant, we conclude that ϕ is a bijective morphism and,

therefore, an Automorphism on An.

Remark 4.2.1. Our analysis focused on the significance of the Jacobian matrix and determinant,

particularly when the determinant is a non-zero constant polynomial.

5 Conclusion

5.1 Observations

The key findings of our investigation can be summarized as follows:

5.1.1 Injectivity and Surjectivity

We established that a non-zero constant Jacobian determinant plays a crucial role in ensuring

both injectivity and surjectivity of the morphism ϕ. The injectivity proof relied on the linearity

of the Jacobian matrix and its connection to the vector v = b− a. Meanwhile, the surjectivity

proof invoked the Implicit Function Theorem, leveraging the non-singularity of the Jacobian

matrix.

5.1.2 Global Invertibility

The connectedness of the affine space An allowed us to combine local inverses obtained from

the Implicit Function Theorem to construct a global inverse for ϕ. This global invertibility is a

fundamental characteristic of automorphisms.

5.1.3 Geometric Interpretation

The Jacobian matrix and determinant provided a geometric interpretation of the local behavior

of ϕ. The Jacobian matrix represented the best linear approximation of ϕ near a given point,

while the determinant measured the distortion of local volumes.
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5.1.4 Non-Zero Constant Jacobian Determinant

The condition of a non-zero constant Jacobian determinant was pivotal in our proof. This

condition ensured a consistent measure of invertibility across all points in An, leading to a robust

automorphism property for ϕ.

5.2 Implications and Future Directions

Our research contributes to the understanding of automorphisms in affine spaces and highlights

the interplay between algebraic structures and geometric properties. The implications of our

findings extend to various branches of mathematics, including algebraic geometry and differential

geometry.

Future research could explore the generalization of these results to more abstract spaces and

investigate the behavior of morphisms defined by different types of functions beyond polynomials.

Additionally, applications in computer science, cryptography, and optimization could benefit

from a deeper understanding of automorphisms in diverse mathematical contexts.

5.3 Final Remarks

In conclusion, our exploration of the automorphism property of ϕ sheds light on the intricate

relationship between algebraic properties and geometric structures. The non-zero constant

Jacobian determinant emerges as a key criterion for the robustness of automorphisms, paving

the way for further inquiries into the rich tapestry of mathematical structures.

6 Future Directions

While our current research has provided valuable insights into the automorphism properties of

the morphism ϕ : An → An, there are several promising directions for future exploration and

study. In this section, we outline potential avenues for further research.

6.1 Generalization to Abstract Spaces

One natural extension is to investigate the generalization of our results to more abstract spaces

beyond the affine space An. Exploring automorphisms in spaces with different topological and

algebraic structures could lead to a deeper understanding of the interplay between morphisms

and the underlying mathematical space.
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6.2 Morphisms Defined by Non-Polynomial Functions

Our current analysis focused on morphisms defined by polynomials. Future research could

explore the behavior of morphisms defined by non-polynomial functions, including transcendental

functions or piecewise-defined functions. Understanding the conditions under which such

morphisms exhibit automorphism properties would expand the scope of our findings.

6.3 Applications in Computer Science and Cryptography

Investigating the practical applications of automorphisms, particularly in computer science and

cryptography, presents an exciting avenue for research. Analyzing how automorphisms can

be utilized in data encryption, optimization algorithms, or error-correcting codes could have

significant implications for real-world problems.

6.4 Connections to Algebraic Geometry

Exploring the connections between automorphisms and algebraic geometry opens up a rich

field of study. Investigating how the algebraic properties of morphisms relate to geometric

properties, such as projective varieties or algebraic curves, could provide a more comprehensive

understanding of the broader mathematical landscape.

6.5 Differential Aspects of Morphisms

Extending our analysis to include differential aspects of morphisms could offer valuable insights.

Considering morphisms with differential structures, such as those involving differential equations

or parametric representations, may reveal new phenomena and contribute to the development of

differential geometry.

6.6 Quantum Automorphisms

A fascinating direction for future research involves exploring automorphisms in the context of

quantum spaces. Investigating how quantum structures interact with morphisms and under-

standing the quantum analogs of automorphisms could contribute to the burgeoning field of

quantum mathematics.
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