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The primary purpose of this article is to provide an explicit interpretation of Ramanujan's Partition Congruences, namely, p(5n + 4) ≡ 0 (mod 5), p(7n + 5) ≡ 0 (mod 7) and, p(11n + 6) ≡ 0 (mod 11), p(n) being the partition function corresponding to any positive integer n, in terms of their corresponding Cranks using various combinatorial arguments implemented by Dyson, Atkin, Swinnerton-Dyer and later by Andrews and, Garvan to justify all the necessary concepts pertaining to this topic.

In addition to introducing readers to the Theory of Partitions, as well as defining formally the notion of q-Series and Ramanujan's Theta Function, we shall further deduce a rough estimate for p(n), a priori applying the so called Jacobi Triple Product Identity and Euler Pentagonal Theorem, and subsequently, providing a thorough explanation for the special case, when n ≡ 4 (mod 5). Important to mention that, a whole section in this article has been dedicated towards gaining an detailed understanding of Rank of a partition and Crank of a Vector Partition, both introduced by Dyson, due to its significance and relevance to our study. Furthermore, in the later half of the text, we shall indeed prove our main result with the help of an important property of the partition function M (m, j, n) corresponding to any positive integer n with crank congruent to m modulo j. Exclusively, in the final section, rigorous derivations have been provided individually for each case to facilitate the motivated readers of this paper with a better understanding of this subject. Moreover, adequate references have been included, considering the broader aspect of research in this area.

1 Theory of Partitions

Introduction

The theory of partitions first came to the foray when German mathematician Gottfried Leibniz (1646 -1716) wrote a letter (1674) to Jacob Bernoulli seeking explanations about the sum of divulsion of integers. He observed that, there are 3 partitions of 3 ( namely : 3, 2+1 and 1+1+1

) and five partitions of 4 ( namely : 4, 3 + 1 and 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1 ). Later on, the concept of partitions were generalized for arbitrary positive integers based on this very notion introduced by Leibniz. The following excerpt can be found in the book Combinatorics:

Ancient & Modern [1, Chapt. 9],

"While Leibniz appears to have been the earliest to consider the partitioning of integers into sums, Euler was the frst person to make truly deep discoveries. J. J.

Sylvester was the next researcher to amke major contributions, followed by Fabian Franklin. The 20 th Century saw an explosion of research with contributions from L. J. Rogers, G. H. Hardy, Percy MacMahon, Srinivasa Ramanujan and Hans Rademacher."

-George E. Andrews.

Formal Definition

We can formally define a partition a follows: Definition 1.2.1. (Partition) Given n ∈ N, we define λ to be a partition of n, if λ is of the form,

λ := { (t 1 , t 2 , ....., t r ) | t i ≥ t i+1 , ∀ i = 1(1)r -1 , t i ∈ N , ∀ i = 1(1)r , r i=1 t i = n}
and we denote it as λ ⊢ n. Each t i is called summand/part. Remark 1.2.1. We denote the number of partitions of n by p(n).

Example 1.2.2. For example, 2+1 ⊢ 3, 5+3+2 ⊢ 10 denotes partitions of 3 and 10 respectively.

A more pertinent question may pop up in a curious mind, Are there infinitely many integers n such that, p(n) is prime ? Subham De 2 IIT Delhi, India
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Unsurprisingly, the problem is not as trivial as it seems and is still open.

There are certain aspects of partitions which mathematicians were intrigued about studying.

For example, one can try to deduce any estimate or even an exact formula for the partition function p(n). Moreover, we can also pursue further research to obtain any criteria for n such that, p(n) is divisible by a specific prime number, or, the proportion of such n for which p(n) is divisible by a particular integer, or even the behaviour of p(n) if certain additional conditions are imposed.

Philippe Naudè asked Euler in a letter to him, to solve the problem of dividing a given integer n into certain number of partitions, denoted by m. To be more specific, Naudè inquired about the number of partitions of 50 into 7 distinct parts. Even after several efforts, the correct answer of 522 possibilities coudn't be derived by bruteforce calculations, and thereby listing all the possiblities. Hence, Euler came up with an alternate way of solving these problems by introducing the notion of Generating Functions.

Suppose, D(m, n) denotes the number of partitions of n into m distinct parts. Furthermore, we choose q ( called the base ), such that, |q| < 1. Then, we can deduce the following identity,

m,n≥0 D(m, n)z m q n = ∞ j=1 (1 + zq j ) (1.1)
For every such j, we index the distinct parts as (i 1 , i 2 , ....., i j ). Hence, R.H.S. of (1.1) will be equal to,

(1 + zq) ∞ j=1 1 + (zq)q j Consequently, m,n≥0 D(m, n)z m q n = (1 + zq) m,n≥0 D(m, n)z m q n+m (1.2)
Comparing co-efficients of z m q n on both sides,

D(m, n) = D(m, n -m) + D(m -1, n -m) (1.3)
2 Introduction to q-Series and Theta Functions Definition 2.0.1. (q-Series) We define, (a) n := (a; q) :=

n-1 k=0 (1 -aq k ) , n ≥ 1. Subham De 3 IIT Delhi, India 2 INTRODUCTION TO Q-SERIES AND THETA FUNCTIONS (a) ∞ := (a; q) := ∞ k=0 (1 -aq k ) , |q| < 1.
Using analogous definition of (a; q) n for negative integers n, we can extend the definition of q-Series to the form,

(a; q) n = (a; q) ∞ (aq n ; q) ∞ (2.1) Definition 2.0.2. (Ramanujan's Theta Function) Ramanujan's General Theta Function f (a, b) is defined by, f (a, b) := ∞ n=-∞ a n(n+1)/2 b n(n-1)/2 , |ab| < 1. (2.2)
Ramanujan introduced notations for three special cases applying definition (2.0.2).

φ(q) := f (q, q) = ∞ n=-∞ q n 2 = (-q; q 2 ) 2 ∞ (q 2 ; q 2 ) ∞ (2.3) ψ(q) := f (q, q 3 ) = ∞ n=0 q n(n+1)/2 = (q 2 ; q 2 ) ∞ (q; q 2 ) ∞ (2.4) f (-q) := f (-q, -q 2 ) = ∞ n=-∞
(-1) n q n(3n-1)/2 = (q; q) ∞ (2.5)

Moreover, Ramanujan introduced another function beside other three Theta Functions defined above.

χ(q) := (-q; q 2 ) ∞ (2.6)
It can be verified that, χ is not a Theta Function. The expressions in R.H.S. of (2.3), (2.4),

(2.5) follows from the Jacobi-Triple Product Identity.

Theorem 2.0.1. ( Jacobi-Triple Product Identity ) For z = 0 and |q| < 1 , ∞ n=-∞ z n q n 2 = (-zq; q 2 ) ∞ - q z ; q 2 ∞ (q 2 ; q 2 ) ∞
Combining theorem(2.0.1) and (2.5), we obtain the following result.

Theorem 2.0.2. (Euler's Pentagonal Theorem)

∞ n=-∞ (-1) n q n(3n-1)/2 = ∞ n=-∞ (-1) n q n(3n+1)/2 = (q; q) ∞ (2.7)
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3 An Estimate for the Partition Function p(n)

A priori from Theorem(2.0.2), we can in fact conclude about the following recurrence relation which eventually leads us to approximate the value of p(n).

Corollary 3.0.1. For brevity, for every integer j, we set, w j = j(3j-1)

2

. Then,

p(n) = 0<w j ≤n (-1) j+1 p(n -w j ) (3.1)
Ramanujan established in this paper [2] where, j ≥ 1 and, δ l,j denotes the l j th reciprocal modulo 24.

Watson provided the proofs of (3.5) and (3.6) [START_REF] Watson | Ramaujans Vermutung über Zerfällungsanzahlen[END_REF], whereas, Hirschhorn and Hunt derived (3.5) [ interested readers can look up [START_REF] Hirschhorn | A simple proof of the Ramanujan conjecture for powers of 5[END_REF] ]. Using similar techniques, garvan established the statement of (3.6) in his article [START_REF] Garvan | A simple proof of Watson's partition congruences for powers of 7[END_REF]. More notably, the congruence (3.7) was established by Atkin [ Ref. [START_REF] Atkin | Proof of a conjecture of Ramanujan[END_REF] ]. [START_REF] Hirschhorn | A simple proof of the Ramanujan conjecture for powers of 5[END_REF] Ramanujan's Congruence, p(5n + 4) ≡ 0 ( mod 5 )

In this section, we intend to provide a detailed version of the proof of the Ramanujan's Congruence (3.2), a priori using the properties and fundamental results pertinent to the q-Series and Theta Functions described in section 4 of this article.

It can also be observed as an adaptation of the proof proposed by Ramanujan in his papers [2] We shall be needing the following result in order to understand the proof.

Theorem 4.0.2. (Jacobi's Identity)

∞ n=0 (-1) n (2n + 1)q n(n+1)/2 = (q; q) 3 ∞ (4.1)
Proof. (Proof of Theorem (4.0.1))

A priori from definition of q-Series, we obtain, q(q; q) 4 ∞ .

(q 5 ; q 5 ) ∞ (q; q) 5 ∞ = q. (q 5 ; q 5 ) ∞ (q; q) ∞ = (q

5 ; q 5 ) ∞ ∞ m=0 p(m)q m+1 (4.2)
Hence, a simple application of Binomial Theorem yields,

(q; q) 5 ∞ ≡ (q 5 ; q 5 ) ∞ ( mod 5 ) 
In other words, (q; q) 5 ∞ (q 5 ; q 5 ) ∞ ≡ 1 ( mod 5 ) (4.3)

From (4.2) and ( 4.3), we can conclude,

(q; q) 4 ∞ ≡ (q 5 ; q 5 ) ∞ ∞ m=0 p(m)q m+1 ( mod 5 ) (4.4)
Thus it only suffices to show that, the co-efficients of q 5n+5 on the L.H.S. of (4.4) are multiples of 5.

A priori from the statements of Euler Pentagonal Theorem (2.0.2) and Jacobi's Identity (4.0.2), (4.4) can also be interpreted as,

q(q; q) 4 ∞ = q(q; q) ∞ (q; q) 3 ∞ = q ∞ j=-∞ (-1) j q j(3j+1)/2 ∞ k=0 (-1) k (2k + 1)q k(k+2)/2 = ∞ j=-∞ ∞ k=0 (-1) j+k (2k + 1)q 1+j( 3j+1 2 )+k( k+1 2 ) (4.5) Subham De 6 IIT Delhi, India 4 RAMANUJAN'S CONGRUENCE, p(5n + 4) ≡ 0 ( mod 5 )
Our objetcive is to determine when the exponents on the R.H.S. are multiples of 5. Observe that,

2(j + 1) 2 + (2k + 1) 2 = 8{1 + 1 2 j(3j + 1) + 1 2 k(k + 1)} -10j 2 -5 Therefore, {1 + j 3j+1 2 + k k+1 2 } is a multiple of 5 iff, 2(j + 1) 2 + (2k + 1) 2 ≡ 0 ( mod 5 ) (4.6)
Equivalently, 2(j + 1) 2 ≡ 0 , 2 or, 3 ( mod 5 ) and,

(2k + 1) 2 ≡ 0 , 1 or, 4 ( mod 5 ) 
thus, (4.6) is true iff, 2(j + 1) 2 ≡ 0 ( mod 5 ) and, (2k + 1) 2 ≡ 0 ( mod 5 )

In particular, we shall have, (2k + 1) ≡ 0 ( mod 5 ), which, by (4.5), further implies that, the co-efficient of q 5n+5 ( where, n > 0 ) in the term q(q; q) 4 ∞ is a multiple of 5. The co-efficient of q 5n+5 on the R.H.S. of (4.4) is therefore, also a multiple of 5, i.e., p(5n + 4) is a multiple of 5, and our result is proved. 

), we can further study

Ramanujan's work [2], as cited in [8, pp. 34]. It can be observed that, the proof follows from a beautiful identity. As mentioned by Ramanujan, throughout the whole course of the proof, we denote J k (q), k = 1, 2 as the power series with integral powers & integral co-efficients, not necessarily identical at each appearance. The precise identities of J 1 (q) and J 2 (q) are not pertinent to the proof. Subham De 8 IIT Delhi, India 

9 9 -1 = 8 3 4 + 2 + 2 + 1 4 -4 = 0 8 + 1 8 -2 = 6 1 4 + 2 + 1 3 -1 7 + 2 7 -2 = 5 0 4 + 1 5 -2 7 + 1 + 1 7 -3 = 4 4 3 3 0 6 + 3 6 -2 = 4 4 3 + 3 + 2 + 1 -1 6 + 2 + 1 6 -3 = 3 3 3 + 3 + 1 3 -2 6 + 1 3 6 -4 = 2 2 3 + 2 3 -1 5 + 4 5 -2 = 3 3 3 + 2 + 2 + 1 + 1 -2 5 + 3 + 1 5 -3 = 2 2 3 + 2 + 1 4 -3 5 + 2 + 2 5 -3 = 2 2 3 + 1 6 -4 5 + 2 + 1 + 1 5 -4 = 1 1 2 4 + 1 -3 4 + 4 + 1 4 -3 = 1 1 2 + 2 + 1 5 -5 4 + 3 + 2 4 -3 = 1 1 2 + 1 7 -6 4 + 3 + 1 + 1 4 -4 = 0 0 1 9 -8
Consequently, we obtain the following classification of partitions of 9 corresponding to their respective ranks provided in the table below. 

a = 0 a = 1 a = 2 a = 3 a = 4 4 + 2 + 2 + 1 8 + 1 6 + 1 3 9 4 + 2 + 1 3 7 + 2 3 + 1 6 5 + 3 + 1 4 + 1 5 7 + 1 + 1 3 3 5 + 2 + 2 + 1 3 + 2 + 1 4 6 + 2 + 1 6 + 3 5 + 1 4 2 3 + 1 3 5 + 2 + 2 3 + 3 + 1 3 3 + 2 + 2 + 1 2 + 2 + 1 5 4 + 4 + 1 2 4 + 1 5 + 4 3 + 2 + 2 + 2 4 + 3 + 1 + 1 4 + 3 + 2 1 9 3 + 2 + 2 + 1 + 1 2 + 1 7
Where, we followed the notation, Important to note that, these conjectures were later derived by Atkin and Swinnerton-Dyer [START_REF] Atkin | Some properties of partitions[END_REF] . Although their proof is analytic, and relies significantly on the properties of modular functions, we must admit that, no such combinatorial proof is known as such. All we can comment in combinatorial context about the rank are the following.

a b := a + a + • • • a b-times . Furthermore, Dyson ( 
Theorem 5.1.7. The following holds for every chosen positive integer n .

1. N (m, n) = N (-m, n) 2. N (m, j, n) = N (j -m, j, n) 3. N (m, j, n) = ∞ r=-∞ N (m + rq, n) Proof.
(1) follows from the fact that, the operation of conjugation reverses the sign of the rank.

A trivial consequence of the above argument helps us conclude (2). A priori, combining

(2), we obtain (3).

Atkin and Swinnerton-Dyer Similar concepts were incorporated by Atkin and Hussain [START_REF] Atkin | Some properties of partitions (2)[END_REF] to study the case when a = 11, and, O'Brien (1965) [START_REF] O'brien | Some properties of partitions with special reference to primes other than 5, 7 and 11[END_REF] too opted for the same technique to evaluate the case, when a = 13.

Generalization of Dyson's Rank

We must acknowledge the fact that, Atkin 

Successive Ranks of a Partition

Given a partition λ, suppose d i (λ) denotes the number of nodes in the horizontal section of the i th right angle in the graph of λ subtracted by the number of nodes in the vertical section of the same.

Thus, Dyson's rank is equal to d 1 (λ) and, d i (λ) = 0, if λ doesn't have an i th right angle.

Thesed i (λ)'s are termed as the successive ranks of λ.

In his article [START_REF] Atkin | A note on ranks and conjugacy of partitions[END_REF], Atkin provided alternate combinatorial interpretations of (3.2) and (3.3), which are analogous to (5.1) and (5.2) respectively.

We define N * (m, n) to be the number of partitions λ of any chosen n (∈ N) such that,

d 1 (λ) -2d 2 (λ) = m.
Similarly, denote the number of partitions λ ⊢ n such that, d 1 (λ)-2d 2 (λ) ≡ m ( mod j ) by N * (m, j, n).

Therefore, Atkin asserted that, Theorem 5.3.1.

N * (m, 5, 5n + 4) = 1 5 p(5n + 4) , 0 ≤ m ≤ 4 (5.3) N * (m, 7, 7n + 5) = 1 7 p(7n + 5) , 0 ≤ m ≤ 6 (5.4)
Moreover, he claimed that, given an i-conjugacy operation (denoted as C i ) acting on partitions satisfying,

d 1 (C i λ) = d 1 (λ) -2d i (λ)
We can therefore conclude that, 

N * (m, n) = N (m, n) (5.

Cranks of a Partition

The notion of Crank of a partition was first implemented by Dyson [START_REF] Dyson | Some guesses in the theory of partitions[END_REF] when he claimed that, it isn't possible to classify the partition of any integer of the form 11n + 6 in terms of their ranks mod 11, even though Ramanujan's Congruence (3.4) holds true.

His conjecture late on led to the existence of some other significant partition statistic ( called as "crank " ), which indeed provides a combinatorial interpretation of 1 11 p(11n + 6) in similar manner as defined in (5.1) and (5.2). 

µ(λ) := Number of parts of λ (strictly) larger than ω(λ).

We define the crank of λ ( denoted by c(λ) ) as follows :

c(λ) :=        l(λ) if, ω(λ) = 0 µ(λ) -ω(λ) if, ω(λ) > 0.
(5.6)

If we denote the number of partitions of any positive integer n with crank congruent to m mod j as M (m, j, n).

Proposition 5.4.1. We shall have,

M (m, j, n) = M (j -m, j, n)
Dyson [START_REF] Dyson | Some guesses in the theory of partitions[END_REF] further conjectured the following in his article. 

COMBINATORIAL INTERPRETATION FOR RAMANUJAN CONGRUENCES

Garvan proposed a combinatorial interpretation of (3.4) in his paper [ Ref. [START_REF] Garvan | New combinatorial interpretations of Ramanujan's partition congruences mod 5, 7 and 11[END_REF] ]. His deductions doesn't actually serves the purpose of classifying partitions of numbers of the form 11n + 6 according to their cranks mod 11, but rather it illustrates the expression 1 11 p(11n + 6) combinatorially in terms of the crank of the so calledvector partitions.

Construction of Cranks relative to Vector Partitions

Andrews and Garvan [START_REF] Garvan | Generalizations of Dyson's rank[END_REF] [START_REF] Garvan | New combinatorial interpretations of Ramanujan's partition congruences mod 5, 7 and 11[END_REF] derived an explicit method in order to compute cranks relative to vector partitions.

For any partition λ ⊢ n, define, #(λ) to be the number of parts of λ and σ(λ) to be the sum of parts of λ ( or, the number 'λ' is partitioning ).

As per convention, us assume that, #(φ) = σ(φ) = 0 for empty partition φ of 0. Furthermore, we denote,

V := {(λ 1 , λ 2 , λ 3 ) | λ 1 is a partition into distinct parts, λ 2 , λ 3 are unrestricted partitions }
We define elements of V to be the vector partitions. Definition 5.5.1. For every λ ∈ V , suppose, 1. S V := The sum of parts.

2. W V := A weight.

R := crank.

A priori, using the above notations, we define,

S(

-→ λ ) := σ(λ 1 ) + σ(λ 2 ) + σ(λ 3 ).

(5.8)

W( -→ λ ) := (-1) #(λ 1 ) . (5.9) R( -→ λ ) := #(λ 2 ) -#(λ 3 ).
(5.10) Thus, we say that, -→ λ is a vector partition of a positive integer n provided,

S( -→ λ ) = n Example 5.5.1. Consider, -→ λ = (5 + 3 + 2, 2 + 2 + 1, 2 + 1 + 1) . Then, S( -→ λ ) = 19, W( -→ λ ) = -1, R( -→ λ ) = 0.
Consequently, -→ λ is a vector partition of 19.
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Suppose, N V (m, n) denotes the number of vector partitions of n ( counted in accordance to the weight W ) having crank = m.

Hence,

N V (m, n) = -→ λ S( -→ λ )=n R( -→ λ )=m W( -→ λ ) (5.11)
Moreover, assuming that, N V (m, j, n) yields the number of vector partitions of n ( counting in terms of the weight W ) with crank congruent to m mod j.

Therefore, the following result follows.

Proposition 5.5.2.

N V (m, j, n) = ∞ k=-∞ N V (kj + m, n) = -→ λ S( -→ λ )=n R( -→ λ )=m ( mod j ) W( -→ λ )
An application of transformation formula ( interchanging the roles of λ 2 and λ 3 ) helps us assert that, Corollary 5.5.3.

N V (m, n) = N V (-m, n) (5.12) 
We shall prove the above Corollary in the next section.

As a consequence, we conclude, Corollary 5.5.4.

N V (j -m, j, n) = N V (m, j, n) (5.13) 
Lemma 5.5.5. The following identity does indeed illustrate a generating function for

N V (m, n). ∞ m=-∞ ∞ n=0 N V (m, n)z m q n = ∞ n=1 (1 -q n ) (1 -zq n )(1 -z -1 q n ) = (q; q) ∞ (zq; q) ∞ q z ; q ∞ (5.14) Whenever z = 0, |q| < 1 and, |z| < 1 |q| .
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Using similar arguments as in (5.5.6), z = 1 implies that, the L.H.S. of (5.20) reduces to the generating function for p(n). Furthermore, assuming j > 0, we can in fact conclude that, the j th term in the sum on the R.H.S. is equal to, z -j q j-times

1 + 1 + • • • + 1 j i=2 (1 -q i ). ∞ l=j+1 (1 -zq l )
The standard techniques of partition theory [16, Chapt. 1] yields that the above expression surely generates partitions λ with, ω(λ) = j , and the exponent on z can be computed as

µ(λ) -ω(λ) = c(λ) [∵ j > 0]
In turn, we can in fact interpret the expression,

(1 -q) ∞ i=1 (1 -zq i )
with respect to the generating function for the partitions without 1's. Considering conjugate partition, we obtain,

1 ∞ i=1 (1 -zq i )
generates all the partitions with the exponent on z counting the largest part, and for integers larger than 1,

q ∞ i=1 (1 -zq i )
generates partition with at least one 1 appearing again with the exponent on z counting the largest part.

Important to observe that,, this interpretation doesn't hold true for 1, since this is the unique instance in which introducing a 1 into the partitions of (n -1) alters the largest part.

Hence, 1-q (zq)∞ counts (for n > 1) the number of partitions with no 1's and with the exponent of z being the largest part of the partition, suggesting, l(λ) = c(λ).

Subsequently, in the double series expansion of,

1 -q (zq) ∞ + ∞ j=1
q j z -j (q 2 ; q) j-1 (zq j+1 ) ∞ Subham De 16 IIT Delhi, India 6 AN IMPORTANT PROPERTY OF M (m, j, n)

Using the above information, we end up with the following identity,

m∈Z ∞ n=0 N V (m, n)z m q n = m∈Z ∞ n=0 M (m, n)z m q n
Observe that, the co-efficient of (z m q n ) (n > 1) is in fact equal to the number of ordinary partitions λ of n provided, c(λ) = m. Hence the proof is done.

Ultimately, (5.20) implies that, the statement for the theorem (5.5.8) holds true.

Remark 5.5.9. Ardent readers can read [11, pp. 52-53] as reference for further explicit illustrations regarding Crank of Vector partitions.

6 An Important Property of M(m, j, n)

Let, n be any positive integer. Fix a positive integer j. Then, we intend to establish the following relation regarding the number of partitions of any positive integer n with crank congruent to m mod j, usually denoted as M (m, j, n).

Theorem 6.0.1.

M (m, j, n) = M (-m, j, n) (6.1)

for every m = 0, 1, 2, • • • , j -1.

Before we proceed to the proof, it is absolutely imperative to establish following identities for the case when, n > 1 and j > 1. In other words, we intend to divide the whole proof into simpler steps.

Proposition 6.0.2.

N V (m, n) = N V (-m, n) (6.2)
Proof. A priori for every integer m,

A m (n) = {V ∋ v = (v 1 , v 2 , v 3 ) ⊢ n | c V (v) = m} and, B m (n) = {V ∋ v = (v 1 , v 2 , v 3 ) ⊢ n | c V (v) = -m} Subham De 17 IIT Delhi, India 6 AN IMPORTANT PROPERTY OF M (m, j, n)
Our primary intention is to construct a linear transformation, T : A m (n) -→ B m (n), defined as :

T ((v 1 , v 2 , v 3 )) = (v 1 , v 3 , v 2 ) , ∀ (v 1 , v 2 , v 3 ) ∈ A m (n),
We claim that, T is indeed a bijective map. Consequently, |A m (n)| = |B m (n). Therefore,

N V (m, n) = N V (-m, n
), and we are done.

Our next aim is to study the behavior of the function N V (m, j, n) when we consider the vector partitions with crank congruent to -m as compared to m mod j.

Proposition 6.0.3.

N V (m, j, n) = N V (-m, j, n)
For every n ∈ N.

Proof. A priori from proposition (5.5.2), we obtain,

N V (m, j, n) = k∈Z N V (jk + m, n) = k∈Z N V (-(jk + m), n) ( ref. (6.0.2) ) = k∈Z N V (jk -m, n) = N V (-m, j, n).
Therefore, the proof is done.

Finally, we does in fact have all the necessary tools to justify the result stated in theorem (6.0.1).

Proof. ( Proof of Theorem (6.0.1) )

The case : n = 1 and j = 1 holds trivially, as one can observe,

M (m, j, n) = M (0, 1, 1) = 1 = M (-0, 1, 1) = M (-m, j, n).
Consider the case when, n > 1 and j > 1.

We can deduce,

M (m, j, n) = k∈Z M (jk + m, n) = k∈Z N V (jk + m, n) ( ref. (5.5.8) ) = N m,j,n = N V (-m, j, n) ( ref. (6.0.3) ) = k∈Z N V (jk -m, n) = k∈Z M (jk -m, n) = M (-m, j, n).
This completes the proof.

Subham De 18 IIT Delhi, India Garvan made a significant observation in his article [START_REF] Garvan | New combinatorial interpretations of Ramanujan's partition congruences mod 5, 7 and 11[END_REF] by representing the identities deduced in (5.5.7) in a more compact form.

Theorem 7.1.2. Given a prime number s and r s be the reciprocal of 24 modulo s. Then,

N V (j, s, sn + r s ) = 1 s p(sn + r s ) , 0 ≤ j ≤ s -1 (7.4)
iff, a sn+rs = 0, where, n≥0 a n q n = (q; q) ∞ (ζ s q; q) ∞ (ζ -1 s q; q) ∞ (7.5)

ζ s being the primitive s th root of unity.

Equivalently, one can also study (7.4) in the following manner.

Proposition 7.1.3. Suppose, s be a prime, proving the statement (7.4) is equivalent to estimating the co-efficient of q sn+rs in the product, 

∞ n=1 (1 -q n ) (1 -ζ s q n )(1 -ζ -1 s q n ) ( 7 
∞ m=-∞ ∞ n=0 N V (m, n)ζ m s q n = s-1 k=0 m≡k ( mod s ) ∞ n=0 N V (m, n)ζ m s q n = s-1 k=0 ζ k s ∞ n=0     m≡k ( mod s ) N V (m, n)     q n = s-1 k=0 ζ k s ∞ n=0 N V (k, s, n)q n ( ref. (5.5.2) ) Therefore, (q) ∞ (ζ s q) ∞ (ζ -1 s q) ∞ = s-1 k=0 ζ k s ∞ n=0 N V (k, s, n)q n (7.7)
Important to note that, Conversely, assuming that, the co-efficient of q sn+rs in L.H.S. of (7.7) is 0, it implies, s-1 k=0 N V (k, s, sn + r s )ζ k s = 0 (7.8)

Note that, L.H.S. of (7.8) is indeed a polynomial in ζ s over Z. Subsequently, N V (j, s, ns + r s ) = N V (j + 1, s, ns + r s ) ∀ j = 0, 1, 2, • • • , s -2. (7.9)

A priori using the fact that, s is a prime and the minimal polynomial for ζ s over Q being,

p(x) = 1 + x + • • • + x s-1 = x s -1 x -1
In conclusion, combining (5.15) and (7.9), we obtain, p(sn + r s ) = In the subsequent subsections, we shall establish each of the identities stated in (7.1), (7.2) and (7.3) in order to justify our claim.

7.2 Special Case when s = 5

A priori using (7.1.2), we'll prove that, (7.1) is true. It only suffices to show that, a 5n+4 = 0.

Suppose, ζ 5 be the primitive 5 th root of unity. By the Euler Pentagonal Theorem (2.0.2), we obtain, n≥1

(1 -q n ) = n∈Z (-1) n q n(3n-1)/2 = 1 + n≥1 (-1) n q n(3n-1)/2 (1 + q n ), and,

n≥1 (1 -q n )(1 -zq n )(1 -z -1 q n ) = n≥0
(-1) n q n(n+1)/2 z -n 1 -z 2n+1 1 -z

It can be deduced that, n≥0 a n q n = (q; q) ∞ (ζ 5 q; q) ∞ (ζ -1 q; q) ∞ = n∈Z m≥0 (-1) n+m q { n(3n-1) 

Remark 4 . 0 . 3 .

 403 Andrews provided an alternative proof of Theorem (4.0.1). [ Interested readers can read further from Berndt's book [8, pp. 33] ] Remark 4.0.4. As for a third version of the proof of Theorem (4.0.1

Remark 4 .

 4 0.5. Worth mentioning that, we can, in fact, prove Theorem (4.0.1) using the concept of Eisenstein Series and Generating Function for p(n). Curious readers can refer to[8, pp. 102]. Subham De 7 IIT Delhi, India 5 COMBINATORIAL INTERPRETATION FOR RAMANUJAN CONGRUENCES 5 Combinatorial Interpretation for Ramanujan Congruences 5.1 Rank of a Partition Now that, we have already discussed about the partition congruences, p(an + b) ≡ 0 ( mod a ) Where, (a, b) ∈ {(5, 4), (7, 5), (11, 6)}, a more instinctive question which should arise is, Is there any method to classify the partitions of integers of the form (an + b) in a number of groups ? F. J. Dyson first gave an answer to this question in his paper[9], when he established some significant empirical combinatorial results regarding (3.2) and (3.3). He gave rise to the notion of rank of a partition, and defined it as : Definition 5.1.1. (Rank of a Partition) Given any n ∈ N, and λ ⊢ n, suppose, we introduce the following notations : 1. l(λ) := The largest part of λ. 2. #(λ) := Number of parts of λ. Then, the Rank of λ, denoted by r(λ), is defined as, r(λ) := l(λ) -#(λ) Remark 5.1.1. The number of partitions of n (∈ N) with rank m is denoted by N (m, n). Remark 5.1.2. The number of partitions of n with rank congruent to m modulo j is denoted by N (m, j, n). Example 5.1.3. Consider the following example of a partition λ := 5 + 3 + 2 ⊢ 10. Then, from definition, we can n fact deduce that, r(λ) = 5 -3 = 2. Example 5.1.4. As for classifying partitions of 9 according to their respective ranks mdulo 5, one can indeed derive the following table.

5 Example 5 . 1 . 6 .

 5516 1944) conjectured the following.Theorem 5.1.5. Suppose, N (m, j, n) be as defined in (5.1.2). Then, the following holds true. N (m, 5, 5n + 4) = 1 5 p(5n + 4) , 0 ≤ m ≤ 4 (One can in fact verify the result (5.1) from the table (5.1.4) in the example (5.1.4).

[ 12 ]

 12 furtehr provided justifications in support of validity of other conjectures, such as, N (1, 5, 5n + 1) = N (2, 5, 5n + 1) Their intention was to derive generating functions for N (m, a, an + b) -N (l, a, an + b) in special cases like, a = 5, 7 and for all possible values of m, b and l.

[ 15 ]

 15 generalized the definition (5.1.1) of rank provided by Dyson. Geometrically, given any n ∈ N, we can represent any partition of n as a set of nested right angles of nodes. For example, the partition, 5 + 4 + 3 + 3 + 1 ⊢ 16 has the following representation by 3 number of right angles. (These specific diagrams are also known as Ferrers Graph)

Figure 1 :

 1 Figure 1: Ferrers Graph

Definition 5 . 4 . 1 .

 541 ( Crank of a Partition ) Let, λ ⊢ n be any partition of some positive integer n. Suppose, we denote, 1. l(λ) := The largest part of λ. 2. ω(λ) := Number of ones in λ.

Theorem 5 . 4 . 2 . 5

 5425 [START_REF] Dyson | Some guesses in the theory of partitions[END_REF] M (m, 11, 11n + 6) = 1 11 p(11n + 6) , ∀ 0 ≤ m ≤ 10 (

s- 1 k=0N 1 k=0N

 11 V (k, s, sn + r s )ζ k s equals to the co-efficient of q sn+rs in the expression on the L.H.S. of (7.7), i.e., s-V (k, s, sn + r s )ζ k s = N V (0, s, sn + r s )

s- 1 k=0N

 1 V (k, s, sn + r s ) = sN V (0, s, sn + r s ) Hence,(7.4) holds true. Subham De 20 IIT Delhi, India 7 INTERPRETATION OF THE PARTITION CONGRUENCES mod 5, 7 AND 11 IN TERMS OF THEIR CORRESPONDING CRANKS

5 (q 5 ; q 5 ) 2 ≡ 2 ≡

 55522 0, 1, 2 ( mod 5 ) and, m(m+1) 0, 1, 3 ( mod 5 ), the power of q is congruent to 4 mod 5 only when, n(3n -1) 2 ≡ 1 ( mod 5 ) , and, m(m + 1) 2 ≡ 3 ( mod 5 )Therefore, we conclude that, m ≡ 2 ( mod 5 ), and so, 2m + 1 ≡ 0 ( mod 5 ). Conse-V (m, j, n) = M (m, j, n) ( ref.(5.5.8) ), we thus conclude, M (i, 5, 5n + 4) = 1 5 p(5n + 4) , 0 ≤ i ≤ 4 as desired. Subham De 21 IIT Delhi, India

  and[7, pp. 201 -213], as mentioned in Berndt's book[8, pp. 31].
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Table 1 :

 1 Ranks of the Partitions of 9

	Partition	Rank	Rank( mod 5 )	Partition	Rank	Rank( mod 5 )

Table 2 :

 2 Partitions

of 9 with Rank ≡ a ( mod 5 )

  7 INTERPRETATION OF THE PARTITION CONGRUENCES mod 5, 7 AND 11 IN TERMS OF THEIR CORRESPONDING CRANKS 7 Interpretation of the Partition Congruences mod 5, 7 and 11In this section, our main objective is to establish the following relations regarding partition congruences mod 5, 7 and 11 in terms of partitions of any positive integer n with crank congruent to m mod j, denoted by M (m, j, n).

	in terms of their corresponding Cranks
	7.1 The Main Result				
	Theorem 7.1.1.				
	M (j, 5, 5n + 4) =	1 5	p(5n + 4) ,	0 ≤ j ≤ 4	(7.1)
	M (j, 7, 7n + 5) =	1 7	p(7n + 5) ,	0 ≤ j ≤ 6	(7.2)
	M (j, 11, 11n + 6) =	1 11	p(11n + 6) ,	0 ≤ j ≤ 10	(7.3)

  Proof. A priori, considering any prime s, our aim is to rewrite(7.6) in terms of N V (k, s, n).

	7 INTERPRETATION OF THE PARTITION CONGRUENCES mod 5, 7 AND 11 IN
		TERMS OF THEIR CORRESPONDING CRANKS
	Following the substitution, z = ζ s into L.H.S. of (5.14),	
	Subham De	19	IIT Delhi, India

.6) 

to be equal to 0, where, ζ s = exp(2πi/s) is the primitive s th root of unity.
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Remark 5.5.6. Putting z = 1 in (5.14) gives,

(5.15)

Apparently, we can thus derive an important relation regarding cranks of vector partitions and the partition function corresponding to integers of the form 5n + 4, 7n + 5 and 11n + 6.

Theorem 5.5.7.

N V (m, 5, 5n + 4) = 1 5 p(5n + 4) (5. [START_REF] Andrews | The Theory of Partitions[END_REF])

N V (m, 7, 7n + 5) = 1 7 p(7n + 5) (5.17)

And,

One may subsequently pose this question :

Does there exists a crank for every ordinary partition ?

A priori from the definition (5.4.1) of crank(s) of a partition, we can infer that, the answer is "yes" indeed.

Its obvious to know comprehend the subsequent result.

Theorem 5.5.8. For every partition, say, λ ⊢ n, given some n ∈ N and with,

Then, N V (m, n) is equal to the number of partitions λ ⊢ n ( as defined in (5.11) ) with crank= m, denoted by M (m, n). In other words,

.19)

Proof. A priori from the definition of q-series (2.0.1) and (5.14),

q j z -j (q 2 ; q) j-1 (zq j+1 ) ∞ (5.22) Subham De 15 IIT Delhi, India TERMS OF THEIR CORRESPONDING CRANKS

Special Case when s = 7

A priori using (7.1.2), we'll show that, (7.2) is satisfied. It only suffices to show that, a 7n+5 = 0.

Suppose, ζ 7 be the primitive 7 th root of unity. A priori implementing similar arguments as in section 7.2, we obtain,

Since, n(n+1) 2 ≡ 0, 1, 3, 6 ( mod 7 ), implies that, the power of q in R.H.S. of (7.10) is in fact congruent to 5 modulo 7 provided,

therefore, n ≡ m ≡ 3 ( mod 7 ) =⇒ 2m + 1 ≡ 0 ( mod 7 ), and, 2n + 1 ≡ 0 ( mod 7 ).

As a consequence, (ζ 2 7 ) 2n+1 -1 = 0 , and, (ζ 3 7 ) 2m+1 -1 = 0 Thus, a 7n+5 = 0. In conclusion,

A priori applying similar arguments as in Case :s = 5, we thus conclude,

as required.

Special Case when s = 11

A priori using (7.1.2), we'll show that, (7.3) is satisfied. It only suffices to show that, a 11n+6 = 0.

Suppose, ζ 11 be the primitive 11 th root of unity. We shall require Winquist's Identity [START_REF] Winquist | An elementary proof of p(11m + 6) ≡ 0 ( mod 11 )[END_REF].

Theorem 7.4.1. (Winquist's Identity) 

Hence, the power of q is indeed congruent to 6 modulo 11 provided, i ≡ 5 ( mod 11 ) and, j ≡ 9 ( mod 11