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In this paper, we present regularizing effect for continuous and bounded by below viscosity solution u of a Hamitlon-Jacobi equation on a moving in time domain. The boundary is described by a time-dependent function b. For each time t > 0, we consider two different Hamiltonians before and after the junction point b(t) and a flux limited condition at b(t). Our regularizing effect result is established by showing that the solution u satisfies in the viscosity sense ut + b ′ (t)ux ≥ -η(t) where η is a locally bounded function. As a consequence, we conclude that u is locally Lipschitz continuous.

Introduction

The expression "regularizing effect" refers to the fact that for t > 0, the solution of a non-linear PDE is more regular than it was at t = 0. Numerous publications, like [START_REF] Barles | Regularity results for first order Hamilton-Jacobi equations[END_REF][START_REF] Barles | On the regularizing effect for unbounded solutions of firstorder Hamilton-Jacobi equations[END_REF][START_REF] Lions | Regularizing effects for first-order Hamilton-Jacobi equations[END_REF][START_REF]New regularity results for Hamilton-Jacobi equations and long time behavior of pathwise (stochastic) viscosity solutions[END_REF][START_REF] Barles | On the large time behavior of solutions of Hamilton-Jacobi equations[END_REF]] investigated these effects within the framework of first order continuous Hamilton-Jacobi equations. In these works, the regularizing effect is obtained for Hamiltonian H satisfying that (H p • p -H)(p) is large when |p| is large or when H(p) is large.

There are many works on the Hamilton-Jacobi equations with discontinuous (in space) Hamiltonian posed on a network. The first results were obtained by Schieborn [START_REF] Schieborn | Viscosity solutions of Hamilton-Jacobi equations of Eikonal type on ramified spaces[END_REF] for the eikonal equation. A few years later, these results were extended in [START_REF] Schieborn | Viscosity solutions of Eikonal equations on topological networks[END_REF][START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF][START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF]. For example, Achdou, Camilli, Cutrì and Tchou [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF] study a control problem over network. Imbert, Monneau and Zidani [START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF] show a uniqueness result, as well as stability and existence of solution of a Hamilton-Jacobi equation posed on a junction applied to road traffic models. In [START_REF] Barles | A Bellman approach for two-domains optimal control problems in RˆN[END_REF][START_REF]A Bellman Approach for Regional Optimal Control Problems in RˆN[END_REF], the authors study finite horizon control problems with regular dynamics and costs on each side of a hyperplane but discontinuous when crossing the hyperplane. Thereafter, Imbert and Monneau [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF][START_REF] Imbert | Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case[END_REF], as well as Barles, Briani, Chasseigne and Imbert [START_REF] Barles | Flux-limited and classical viscosity solutions for regional control problems[END_REF] showed very general uniqueness results under weakened hypotheses (quasi-convex Hamiltonians). Then, Lions and Souganidis [START_REF] Lions | Viscosity solutions for junctions: well posedness and stability[END_REF][START_REF]Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions[END_REF] obtained a uniqueness result by proposing a simpler proof than the previous ones, valid for Hamiltonians that are not necessarily convex. More precisely, in [START_REF]Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions[END_REF] they obtain a uniqueness result for Kirchoff conditions at the junction and show that these conditions generalize the conditions with a flux limiter function. For additional interesting works, we refer the reader to [START_REF] Siconolfi | Time-dependent Hamilton-Jacobi equations on networks[END_REF][START_REF] Achdou | Effective transmission conditions for Hamilton-Jacobi equations defined on two domains separated by an oscillatory interface[END_REF][START_REF]Effective transmission conditions for second-order elliptic equations on networks in the limit of thin domains[END_REF]. Finally, we cannot forget the interesting and self contained book [START_REF]An illustrated guide of the modern approches of Hamilton-Jacobi equations and control problems with discontinuities[END_REF] written by Barles and Chasseigne which contains almost everything a reader want to know about discontinuous Hamilton-Jacobi equations.

The goal of this paper is to study regularizing effect for a discontinuous Hamilton-Jacobi equation with a moving in time boundary (1.3). The equation was introduced and studied in [START_REF] Forcadel | A comparison principle for hamilton-jacobi equation with moving in time boundary[END_REF] and it was shown that (1.3) is the Hamilton-Jacobi formulation of the "bus" model presented in [START_REF] Lebacque | Introducing buses into first-order macroscopic traffic flow models[END_REF]. The bus is represented by the function b which is a moving constraint and u x = -ρ where ρ is the density of cars. For more details on the derivation of (1.3), the reader can refer to Section 2 in [START_REF] Forcadel | A comparison principle for hamilton-jacobi equation with moving in time boundary[END_REF]. Several results were obtained in [START_REF] Forcadel | A comparison principle for hamilton-jacobi equation with moving in time boundary[END_REF] like the comparison principle, the existence of viscosity solution and the reduction of the set of test function. In this paper, we want to develop regularizing results for (1.3). Up to our knowledge, this work is the second one studying regularizing effect for discontinuous Hamilton-Jacobi equations. The first one was [START_REF] Khatib | Regularizing effect for unbounded fluxlimited viscosity solutions of a discontinuous hamilton-jacobi equation on junction[END_REF] in which the junction point is fix.

We consider regularizing effect for a Hamilton-Jacobi equation posed on a moving in time domain. More precisely, the equation is posed in two intervals of the real axis whose boundary (called "junction point") moves in time. The junction point is described by a function b ∈ C 1 (R + ) and we set

B 1 (t) = (t, x) ∈ R + × R, s.t. x < b(t) ,
(1.1)

B 2 (t) = (t, x) ∈ R + × R, s.t. x > b(t) . (1.2)
This means that for each t ∈ R + , the point b(t) is the junction point. Our Hamilton-Jacobi equation is discontinuous since we will consider two different equations on the sets B 1 and B 2 .

In this work, we consider a continuous bounded by below viscosity solution of the following Hamilton-Jacobi with a moving in time boundary introduced in [START_REF] Forcadel | A comparison principle for hamilton-jacobi equation with moving in time boundary[END_REF] and given by 

       u t (t, x) + H 1 (u x (t, x)) = 0 if (t, x) ∈ B 1 (t)
where for i ∈ {1, 2}, the Hamiltonian H i satisfies the following assumptions:

       H i ∈ C(R), H i is superlinear, i.e., lim |p|→+∞ H i (p) |p| ,
for all t ∈ R + , the Hamiltonian Hi (t, p) = H i (p) -b ′ (t)p is quasi-convex in p.

For t ∈ R + and p = (p 1 , p 2 ) ∈ R 2 , the flux limiter function F A is defined by

F A (t, p) = max A(t), H+ 1 (t, p 1 ), H- 2 (t, p 2 ) (1.4)
where H+ 1 (t, •) (resp. H-2 (t, •)) is the non-decreasing (resp. non-increasing) part of H1 (t, •) (resp. H2 (t, •)). The function A is called the "flux limiter" and we assume that A is bounded and A ∈ C((0, +∞)). Moreover, we suppose that for t ∈ (0, +∞),

A(t) ≥ max i∈{1,2} min p∈R Hi (t, p).
In addition, we denote by

u - x (t, b (t)) = lim (t,x)→(t,b(t)) x<b(t) u x (t, x), u + x (t, b (t)) = lim (t,x)→(t,b(t)) x>b(t) u x (t, x).
Additional assumptions (H) are required to obtain a regularizing effect. These assumptions are satisfied for example for Hamiltonians,

H i (p) = |p| mi (1.5)
where m i > 1 for i ∈ {1, 2} and for a function b satisfying the following 0 ≤ b ′ (t) and b ′ (t), b ′′ (t) are bounded on (0, T 0 ).

(1.6)

The goal of this paper is to provide a regularizing effect for (1.3) by estimating first u t . As a consequence, we have a local Lipschitz regularity in space. More precisely, let u be a continuous and non-negative solution of (1.3). Our goal is to prove that there exists t * > 0 and a locally bounded function η such that for (t, x) ∈ (0, t * ) × R, we have (t,x) in the viscosity sense.

u t + b ′ (t)u x ≥ -η(t)e u
(1.7)

As consequence of (1.7), we can prove that u is locally Lipschtiz continuous in R × (0, t * ) (see Proposition 2.6 ). In fact, formally, we have

H i (u x ) = -u t ≤ η(t)e u(t,x) + b ′ (t)u x for x ∈ B i (t).
Knowing that η(t)e u(t,x) is bounded inside a ball, and using the super-linearity of H i , we can prove that the term u x is bounded. We start our work considering the assumption: for i ∈ {1, 2}, we have To exploit (1.8) via a doubling variables argument, we will use the exponential transform,

((H i ) p • p -H i )(p)
v = -e -u .
This new function is a solution of

       v t + G 1 (v, v x ) = 0 if (t, x) ∈ B 1 (t), v t + G 2 (v, v x ) = 0 if (t, x) ∈ B 2 (t), d dt v(t, b(t)) + G A (t, v, v - x (t, b(t)), v + x (t, b(t))) = 0 if (t, x) ∈ (0, +∞) × {b(t)} (1.9) 
where

   G i (v, p) = (-v)H i - p v , p ∈ R, G A (t, v, p 1 , p 2 ) = (-v) max A(t), H+ 1 t, - p 1 v , H- 2 t, - p 2 v , p = (p 1 , p 2 ) ∈ R 2 .
From now on, we continue our work considering the equation (1.9). It's clear that (1.7) is equivalent to

v t + b ′ (t)v x ≥ -η(t) in the viscosity sense (1.10)
and assumption (1.8) implies that ( Gi ) v (t, v, p) is positive and large when Gi (t, v, p) is positive and large (1.11) with Gi (t, v, p) = G i (v, p) -b ′ (t)p. Assumption (1.8) (or its consequence (1.11)) is similar to classical assumption in the framework of regularizing effect for continous Hamitlon-Jacobi equations (see for example the assumptions in [START_REF] Barles | On the regularizing effect for unbounded solutions of firstorder Hamilton-Jacobi equations[END_REF]). However, in our discontinuous case, we need additional assumptions to obtain our regularizing result. The main difficulty we will face is that when writing the viscosity inequalities near the junction point, we can have two inequalities with two different Hamiltonians (G 1 and G 2 or G i and G A ).

To be able to deal with the difficulties near the junction point, we will first prove a gradient upper bound (resp. lower bound) on B 1 (t) (resp. B 2 (t)). More precisely, we will prove that there exists η 1 , η 2 such that

v(t, x) -v(t, y) ≤ η 1 (t)(x -y) if 0 < t < t * and x, y ∈ B 1 (t) with x > y, v(t, x) -v(t, y) ≥ -η 2 (t)(x -y) if 0 < t < t * and x, y ∈ B 2 (t) with x > y.
(1.12)

To prove (1.12), we mainly use that 

(( G1 ) v (v,
   v x ≤ η 1 (t) < q + 1 (t) inf t∈(0,t * ) e -u(t,b(t)) for (t, x) ∈ (0, t * ) × B 1 (t), v x ≥ -η 2 (t) > q - 2 (t) inf t∈(0,t * ) e -u(t,b(t)) for (t, x) ∈ (0, t * ) × B 2 (t) (1.14) 
where q + 1 , q - 2 are defined by

H+ 1 (t, q + 1 (t)) = η(t), H- 2 (t, q - 2 (t)) = η(t)
and H+ 1 (t, •) (resp. H-2 (t, •)) is the non-decreasing (resp. non-increasing) part of H1 (t, •) (resp. H2 (t, •)). Inequality (1.14), joint to the idea of studying the sign of the derivative of d 2 (x, y) used in the proof of the comparison principle in [START_REF] Barles | Flux-limited and classical viscosity solutions for regional control problems[END_REF] will allow us to obtain (1.10). More precisely, we will exploit (1.14) to deal with the cases x = b(t), y ∈ B i (t) and x, y ∈ B i (t).

Organization of the paper Section 2 is composed of three subsections: in the first one, we state the assumptions (H) imposed on the Hamiltonians. In the second one, we give examples of Hamiltonians satisfying assumptions (H) and in the third subsection, we give the main result (Theorem 2.5) of this paper. In section 3, first, using the variable change v = -e -u , we obtain a new Hamilton-Jacobi formulation and we derive properties of the new Hamiltonians. In section 4, we prove two lemmas which are useful to prove our main result near the moving junction. In section 5, we give the detailed proof of Theorem 3.3. In the last section, as application of Theorem 2.5, we show that our solution is locally Lipschitz.

Assumptions on the Hamiltonians, examples of Hamiltonians and main results

Assumptions (H)

Our assumptions depend on the solution itself which is a bit awkward. However, we will show that for a general class of Hamiltonians, our assumptions will be satisfied for any solution. For a continuous and non-negative viscosity solution u of (1.3), we assume that there exists T 0 > 0 such that: 

(H0) the function b ∈ C 1 (0, T 0 )
     h i is non increasing on (-∞, p - hi ), h i is constant on [p - hi , p + hi ], h i is non decreasing on (p + hi , +∞). (2.4) 
Moreover, we assume that p - i and p + i are continuous and bounded in (0, T 0 ).

(H2)

We assume that there exists c 0 ≥ 0 such that • for all i ∈ {1, ..., N }, the function H i is locally Lipschitz continuous in a neighborhood of the set {p; h i (p) ≥ c 0 }.

• There exists a continuous, positive and increasing function ϕ defined on (c 0 , +∞) such that for some B > c 0 , +∞ B 1 sϕ(s) ds < +∞ and for i ∈ {1, 2} and for almost all t ∈ (0, T 0 ) and p ∈ R, we have

(( Hi ) p • p -Hi )(t, p) = ((H i ) p • p -H i )(p) ≥ ϕ(h i (p)) a.e. in {p; h i (p) ≥ c 0 }. ( 2 

.5)

• There exists κ > 0 such that for i ∈ {1, 2} and for almost all t ∈ (0, T 0 ) and p ∈ R, we have

|( Hi ) p (t, p)| ≤ κ • (( Hi ) p • p -Hi )(t, p) a.e. in {p; h i (p) ≥ c 0 }. (2.6) 
• For i ∈ {1, 2} and for almost all t ∈ (0, T 0 ) and p ∈ R, we have

|b ′′ (t)p| = |( Hi ) t (t, p)| ≤ ψ Hi (t, p) ( Hi ) p • p -Hi (t, p) a.e in {p; h i (p) ≥ c 0 } (2.7)
where ψ is defined in (2.9).

As consequence of (H2), the function F : (c 0 , +∞) → (0, F (c 0 )) defined by

F (τ ) = 2 ∞ τ dσ σϕ(σ)
is decreasing and invertible. We define for s ∈ (0, F (c 0 )) the function η(s) = F -1 (s). We can easily check that the following hold:

   η ′ (s) = - η(s)ϕ(η(s))
2 η is decreasing, positive and η(0 + ) = +∞.

(2.8) Moreover, x → 2x + ϕ(2x) is increasing from (c 0 , +∞) to (2c 0 + ϕ(2c 0 ), +∞). We consider its inverse function denoted by ψ. We have that

ψ(2x + ϕ(2x)) = x for x ∈ (c 0 , +∞).
(2.9) (H3) We assume that there exists a constant c 1 satisfying

c 1 ≥ max(0, p + h1 ) (2.10) such that
• there exists a continuous, positive and decreasing function ϕ 1 defined on (c 1 , +∞) such that for some

B 1 > c 1 , +∞ B1 1 sϕ 1 (s) ds < +∞
and for almost all t ∈ (0, T 0 ) and p ∈ R,

(( H1 ) p • p -H1 )(t, p) ≥ ϕ 1 (p) a.e. in {p ≥ c 1 }. (2.11) 
• There exists κ 1 > 0 such that

|( H1 ) p (t, p)| ≤ κ 1 • (( H1 ) p • p -H1 )(t, p) a.e. in {p ≥ c 1 }.
(2.12)

• If C u p ≥ c 1 , then h 1 (p) ≥ c 0 and ϕ(h 1 (p))h 1 (p) < ϕ 1 (C u p)h ′ 1 (p)p (2.13) 
where

C u = inf t∈(0,T0) e -u(t,b(t)) > 0. (2.14)
As consequence of (H3), the function

F 1 : (c 1 , +∞) → (0, F 1 (c 1 )) defined by F 1 (τ ) = 2 ∞ τ dσ σϕ 1 (σ) (2.15)
is decreasing and invertible. We define for s ∈ (0, F 1 (c 1 )) the function η 1 (s) = F -1 1 (s). We can easily check that the following hold:

   η ′ 1 (s) = - η 1 (s)ϕ 1 (η 1 (s)) 2 η 1 is decreasing, positive and η 1 (0 + ) = +∞.
(2.16) (H4) We assume that there exists a constant c 2 satisfying

c 2 ≥ max(0, -p - h2 ) (2.17) such that
• there exists a continuous, positive and decreasing function ϕ 2 defined on (-∞, -c 2 ) such that for some

B 2 > c 2 , +∞ B2 1 sϕ 2 (-s) ds < +∞ (2.18)
and for almost all t ∈ (0, T 0 ) and p ∈ R,

(( H2 ) p • p -H2 )(t, p) ≥ ϕ 2 (p) a.e. in {p ≤ -c 2 }. ( 2 

.19)

• There exists κ 2 > 0 such that

|( H2 ) p (t, p)| ≤ κ 2 • (( H2 ) p • p -H2 )(t, p) a.e. in {p ≤ -c 2 }. (2.20) • If C u p ≤ -c 2 , then h 2 (p) ≥ c 0 and ϕ(h 2 (p))h 2 (p) < ϕ 2 (C u p)h ′ 2 (p)p. (2.21)
As consequence of (H4), the function

F 2 : (c 2 , +∞) → (0, F 2 (c 2 )) defined by F 2 (τ ) = 2 ∞ τ dσ σϕ 2 (-σ)
is decreasing and invertible. We define for s ∈ (0,

F 2 (c 2 )) the function η 2 (s) = F -1
2 (s). We can easily check that the following hold:

   η ′ 2 (s) = - η 2 (s)ϕ 2 (-η 2 (s)) 2 η 2 is decreasing, positive and η 2 (0 + ) = +∞.
(2.22) Remark 2.1. It's possible to simplify the assumptions in the following way: in addition to (H0)-(H1)-(H2), and the constants c 1 and c 2 as defined in (2.10) and (2.17), we can assume that there exist

C 1 , C 2 ∈ (0, 1) such that if C u p ≥ c 1 , then h 1 (C u p) ≥ c 0 and C 1 ϕ(h 1 (p))h 1 (p) < ϕ(h 1 (C u p))h ′ 1 (p)p and if C u p ≤ -c 2 , then h 2 (C u p) ≥ c 0 and C 2 ϕ(h 2 (p))h 2 (p) < ϕ(h 2 (C u p))h ′ 2 (p)p.
(2.23)

Let us now show how using (2.23), we can obtain (H3) and (H4). We define the new function φ

on (c 0 , +∞) by φ(p) = min(C 1 , C 2 )ϕ(p).

It's straightforward to remark that assumption (H2) holds if we replace ϕ by φ. From now on, we continue with assumption (H2) in which we replace ϕ by φ. To obtain assumptions (H3) and (H4), it's sufficient to define the functions

ϕ 1 (p) = ϕ(h 1 (p)) for p ≥ c 1 ϕ 2 (p) = ϕ(h 2 (p)) for p ≤ -c 2 .
(2.24) Remark 2.2. We will use (2.13) and (2.21) to prove the important inequalities (3.6)-(3.7). The necessity of (2.13)-(2.21) is the main reason for us to consider an interval (0, T 0 ). In fact, we need C u > 0. For example, if we take a solution u such that u(t, 0) → +∞ as t → +∞.

In this case, for T 0 = +∞, we have C u = 0 and it's hard to assume (2.13)-(2.21).

Examples of Hamiltonians

We give now examples of Hamiltonians satisfying assumptions (H). Let us first consider the model Hamiltonians defined for i ∈ {1, 2} by

H i (p) = |p| mi with m i > 1. (2.25)
Having in mind the "bus model" (see [START_REF] Forcadel | A comparison principle for hamilton-jacobi equation with moving in time boundary[END_REF]), we assume that b is a moving constraint (like a bus obliging other cars to drive slowly). Hence, we assume that b satisfies the following

0 ≤ b ′ (t) and b ′ (t), b ′′ (t) are bounded on (0, T 0 ). (2.26)
We have

   Hi (t, p) = |p| mi -b ′ (t)p and h i (p) = sup t∈(0,T0)
Hi (t, p) and

(( Hi ) p • p -Hi )(t, p) = ((H i ) p • p -H i )(p) = (m i -1)|p| mi .
Let u be a continuous and non-negative viscosity solution of (1.3). For T 0 > 0, we define

C u = inf t∈(0,T0) e -u(t,b(t)) > 0.
First, let us remark that assumption (H2) is satisfied if we take Therefore, the function η is defined by

c 0 > 0 big
η(s) = 2 K Cs (2.27)
and for i ∈ {1, 2}, the function η i is given by

η i (s) = 2 m i Ks 1 m i . (2.28)
Another example is the following Hamiltonians:

H 1 (p) = e |p| and H 2 (p) = |p| log(1 + |p|)
with b satisfying (2.26). In this case, we have

h 1 (p) = e |p| + max(-ap, 0, ) h 2 (p) = |p| log(1 + |p|) + max(-ap, 0)
where a = max t∈(0,T0) b ′ (t). We define ϕ(s) = C(log(s)) 2 with C < C 2 u . There exists c 0 > 0 big enough such that (H2) is satisfied. In fact, we have

   e |p| (|p| -1) -ϕ(e |p| + max(-ap, 0, )) → +∞ as |p| → +∞ |p| 2 1 + |p| -ϕ(|p| log(1 + |p|) + max(-ap, 0)) → +∞ as |p| → +∞.
In addition, we define the functions

ϕ 1 (s) = (log(h 1 (s))) 2 and ϕ 2 (s) = (log(h 2 (s))) 2 .
We can easily verify that

   e |p| (|p| -1) -ϕ 1 (p) → +∞ as p → +∞ |p| 2 1 + |p| -ϕ 2 (p) → +∞ as p → -∞.
Hence, we deduce that for c 1 , c 

C(log(h i (p))) 2 < (log(h i (C u p))) 2 for i ∈ {1, 2}.
For c i > 0 big enough, the last inequality is true for i ∈ {1, 2} since we have

lim p→+∞ log(h 1 (C u p))) log(h 1 (p)) = C u > C and lim p→-∞ log(h 2 (C u p))) log(h 2 (p)) = 1 > C.

Main results

Before we state the main result of this paper, we first recall the definition of (flux limited) viscosity solution of (1.3). We begin by introducing the class of test functions. For T > 0, we set B = (0, T ) × R. We denote by C 1 (B) the class of test functions. If φ ∈ C 1 (B), then

• φ is continuous.

• For i ∈ {1, 2}, the restriction of φ on each B i is C 1 with B i defined in (1.1). • For i ∈ {1, 2}, the time dependent function φ(t, b(t)) is C 1 in time. Moreover, d dt φ (t, b (t)) = φ + t (t, b (t)) + b ′ (t) φ + x (t, b (t)) = φ - t (t, b (t)) + b ′ (t) φ - x (t, b (t)) . with φ ± t (t, b (t)) = lim (t,x)→(t,b(t)) x-b(t)=0 ± φ t (t, x), φ ± x (t, b (t)) = lim (t,x)→(t,b(t)) x-b(t)=0 ± φ x (t, x).
We [START_REF] Forcadel | A comparison principle for hamilton-jacobi equation with moving in time boundary[END_REF]).] Let u be a real function defined on [0, T ] × R.

i) We say that u is a sub-solution (resp. super-solution) of

(1.3) in [0, T ]×R if u * (0, x) ≤ u 0 (x) (resp. u * (0, x) ≥ u 0 (x))
and if for all test function φ ∈ C 1 (B) touching u * from above (resp. touching u * from below) at (t 0 , x 0 ) ∈ B, we have

   φ t + H i (φ x ) ≤ 0 (resp. ≥ 0) at (t 0 , x 0 ) if (t 0 , x 0 ) ∈ B i (t 0 ) d dt φ (t 0 , b(t 0 )) + F A (t 0 , φ - x (t 0 , x 0 ) , φ + x (t 0 , x 0 )) ≤ 0 (resp. ≥ 0) if x 0 = b (t 0 ).
ii) We say that u is a viscosity solution of (1.3) if u is a sub-solution and a super-solution of (1.3).

Remark 2.4. The definition of a test function can be chosen differently on each branch, that's why C 1 (B) is a natural choice of test functions. It was proved in [START_REF] Forcadel | A comparison principle for hamilton-jacobi equation with moving in time boundary[END_REF] that a comparison principle holds for equation (1.3). This result is strong in the framework of discontinuous Hamilton-Jacobi equations as it's the most challenging problem when choosing the right junction condition. We would like to add that much of useful results were derived when studying equation (1.3): for example, it was proved that the class of test function could be reduced to only one type of functions (see Theorem 3.2 in [START_REF] Forcadel | A comparison principle for hamilton-jacobi equation with moving in time boundary[END_REF]). This result was exploited to prove that (1.3) could be derived from a "bus" macroscopic model (see Theorem 4.1 in [START_REF] Forcadel | A comparison principle for hamilton-jacobi equation with moving in time boundary[END_REF]). In addition, in the aforementioned theorem, it was proved that the existence of A is due to the presence of the moving perturbation in the macroscopic model. The perturbation (the bus) reduces the velocity of drivers and for this reason, A is called flux-limiter.

The main result of this paper is given by the following theorem.

Theorem 2.5. Let u be a continuous, non-negative viscosity solution of (1.3) in the sense of Definition 2.3. We assume that there exists T 0 > 0 such that (H) are satisfied. Then, there exists 0 < t * ≤ T 0 and a continuous function η = η(T 0 ) such that for all t ∈ (0, t * ) and for x ∈ R, we have ,x) in the viscosity sense.

u t (t, x) + b ′ (t)u x (t, x) ≥ -η(t)e u(t
A consequence of this result is the following local Lipschitz continuity of u:

Proposition 2.6. Let u be a continuous, non-negative viscosity solution of (1.3) in the sense of Definition 2.3. We assume that there exists T 0 > 0 such that (H) are satisfied. Then, u is locally Lipschitz continuous on (0, t * ) × R.

A new formulation

Adapting the same strategy in [START_REF] Barles | On the regularizing effect for unbounded solutions of firstorder Hamilton-Jacobi equations[END_REF], we consider the function v(t, x) = -e -u(t,x) . To prove Theorem 2.5, we will prove that for all t ∈ (0, t * ) and x ∈ R, we have

v t + b ′ (t)v x ≥ -η(t) in the viscosity sense.
This is done in Theorem 3.3. In the next subsection, we first write our new Hamilton-Jacobi formulation. Then, we define the time t * and we announce Theorem 3.3.

Viscosity solutions

Let u be a continuous and non-negative viscosity solution of (1.3) in the sense of Definition 2.3. The function v defined by

v(t, x) = -e -u(t,x)
is a continuous viscosity solution of

       v t + G 1 (v, v x ) = 0 if (t, x) ∈ B 1 (t), v t + G 2 (v, v x ) = 0 if (t, x) ∈ B 2 (t), d dt v(t, b(t)) + G A (t, v, v - x (t, b(t)), v + x (t, b(t))) = 0 if (t, x) ∈ (0, +∞) × {b(t)} (3.1) where    G i (v, p) = (-v)H i - p v , p ∈ R, G A (t, v, p 1 , p 2 ) = (-v) max A(t), H+ 1 t, - p 1 v , H- 2 t, - p 2 v , p = (p 1 , p 2 ) ∈ R 2
where Hi is defined in (2.1). The definition of viscosity solutions of (3.1) can be derived from the one of (1.3).

Definition 3.1. Let v : B → R be a continuous function. We say that v is a viscosity sub-solution (resp. super-solution) of (3.1) in B if for any test function φ ∈ C 1 (B) touching v from above (resp. from below) at some point (t 0 , x 0 ) ∈ B, we have

   φ t (t 0 , x 0 ) + G i (v(t 0 , x 0 ), φ x (t 0 , x 0 )) ≤ 0 (resp. ≥ 0) if (t 0 , x 0 ) ∈ B i (t 0 ) d dt φ t (t 0 , b(t 0 )) + G A (t 0 , v(t 0 , x 0 ), φ - x (t 0 , x 0 ), φ + x (t 0 , x 0 )) ≤ 0 (resp. ≥ 0) if x 0 = b(t 0 ). (3.2)
If v is viscosity sub-solution and viscosity super-solution, we say that v is a viscosity solution.

Let us now define the time t * .

Definition 3.2 (Definition of t * ). We recall that h

1 c 1 C u ≥ c 0 and that h 2 - c 2 C u ≥ c 0 (see (H3)-(H4)).
Let C be a positive constant satisfying the following:

                     C ≥ max c 0 , h 1 c 1 C u , h 2 - c 2 C u , sup t∈(0,T0) |A(t)| , h 1 (p) ≥ C ⇐⇒ p ≥ max 0, sup t∈(0,T0) p + 1 (t) or p ≤ min 0, inf t∈(0,T0) p - 1 (t) , h 2 (p) ≥ C ⇐⇒ p ≥ max 0, sup t∈(0,T0) p + 2 (t) or p ≤ min 0, inf t∈(0,T0) p - 2 (t) (3.3)
where A(t) is the flux limiter and p - i , p + i are defined in (2.3). The time t * is defined by

t * = min T 0 , η -1 (C), F 1 (c 1 ), F 2 (c 2 ) (3.4)
Theorem 2.5 is a consequence of the following theorem.

Theorem 3.3. Let u be a continuous, non-negative viscosity solution of (1.3) in the sense of Definition 2.3. We assume that there exits T 0 > 0 such that assumptions (H) are satisfied. Then, there exists a function η = η(T 0 ) such that for all t ∈ (0, t * ) (with t * defined in (3.4)) and x ∈ R, the function v = -e -u is a viscosity solution of (3.1) and it satisfies:

v(t, x) -v(s, x + b(s) -b(t)) ≥ -η(s)(t -s) if 0 < s < t < t * and x ∈ R.
In the next subsection, thanks to assumptions (H), we derive properties of the function Gi (t, v, p) = G i (v, p) -b ′ (t)p and we prove (3.6)-(3.7).

Properties of Gi and consequence of (2.13)-(2.21)

For i ∈ {1, 2}, t ∈ (0, t * ) and v ∈ [-1, 0), we define Gi (t, v, p) = G i (v, p) -b ′ (t)p = (-v)H i - p v -b ′ (t)p. (3.5)
Let u be a continuous and non-negative viscosity solution of (1.3) in the sense of Definition 2.3. We assume that there exits T 0 > 0 such that assumptions (H) are satisfied and let v = -e -u . By simple computations, we can check that the function Gi has the following properties.

(G0) Let i ∈ {1, 2}. For all t ∈ (0, t * ), if Gi (t, v, p) ≥ η(t) ≥ c 0 , then by using (2.5), (2.6) and (2.7), we have

     ( Gi ) v (t, v, p) ≥ ϕ( Gi (t, v, p)), |( Gi ) p (t, v, p)| ≤ κ • ( Gi ) v (t, v, p) , |( Gi ) t (t, v, p)| ≤ ψ( Gi (t, v, p))( Gi ) v (t, v, p).
(G1) For all t ∈ (0, t * ), if p ≥ η 1 (t) ≥ c 1 , then by using (2.11) and (2.12), we have that

( G1 ) v (t, v, p) ≥ ϕ 1 (p) and |( G1 ) p (t, v, p)| ≤ κ 1 • ( G1 ) v (t, v, p).
In addition, using that H1 is quasi-convex, we have

( G1 ) p (t, v, p) ≥ 0 for p ≥ η 1 (t) ≥ c 1 .
(G2) For all t ∈ (0, t * ), if p ≤ -η 2 (t) ≤ -c 2 , then by using (2. [START_REF]Effective transmission conditions for second-order elliptic equations on networks in the limit of thin domains[END_REF]) and (2.20), we have that

( G2 ) v (t, v, p) ≥ ϕ 2 (p) and |( G2 ) p (t, v, p)| ≤ κ 2 • ( G2 ) v (t, v, p).
In addition, using that H2 is quasi-convex, we have

( G2 ) p (t, v, p) ≤ 0 for p ≤ -η 2 (t) ≤ -c 2 .
In addition to these properties, we have the following useful consequence:

Consequence of (2.13) and (2.21). For t ∈ (0, t * ), we define

q + 1 (t) = max{p > p + 1 (t); H1 (t, p) = η(t)}, q - 2 (t) = min{p < p - 2 (t); H2 (t, p) = η(t)}.
Then, we have

q + 1 (t) ≥ 0 and η 1 (t) < q + 1 (t)C u (3.6) and q - 2 (t) ≤ 0 and -η 2 (t) > q - 2 (t)C u (3.7)
where η, η 1 and η 2 are defined in (2.8), (2.16) and (2.22) and

C u = inf t∈(0,T0) e -u(t,b(t)) .
Proof. We will only prove (3.6). The proof of (3.7) could be done in the same way. Let us first prove that

q + 1 (t) ≥ 0. (3.8)
Using that h 1 (p) ≥ H1 (t, p), we have

h 1 (q + 1 (t)) ≥ η(t) > η(t * ) ≥ C.
Using the definition of C in (3.3) and the fact that q + 1 (t) > p + 1 (t), we obtain (3.8). Let us now turn to the proof of the second inequality in (3.6). Let q + h1 (t) ≥ p + h1 such that

h 1 (q + h1 (t)) = η(t) (3.9)
We remark that q + h1 (t) exists because for t ∈ (0, t * ),

η(t) > η(t * ) ≥ C ≥ min p∈R h 1 (p).
Let us prove that

q + h1 (t) ≤ q + 1 (t). (3.10)
We remark that

H1 (t, q + h1 (t)) ≤ h 1 (q + h1 (t)) = H1 (t, q + 1 (t)) = η(t). ( 3.11) 
If q + h1 (t) > q - 1 (t), using that H1 (t, •) is non-decreasing on (p + 1 (t), +∞), we will obtain

H1 (t, q + h1 (t)) > η(t)
which contradicts (3.11). Hence, (3.10) is true. We claim that η 1 (t) < q + h1 (t)C u .

(3.12)

Using that

η(t) = h 1 (q + h1 (t)) > η(t * ) ≥ h 1 ( c 1 C u ) with q + h1 (t) ≥ p + h1 , we get q + h1 (t) > c 1 C u .
Therefore, using the inverse of η 1 , (3.12) is equivalent to

t > F 1 (q + h1 (t)C u ). (3.13)
By definition of F 1 (see (2.15)), we have

F 1 (q + h1 (t)C u ) = 2 +∞ q + h 1 (t)Cu dσ σϕ 1 (σ)
.

Setting the variable change σ = q + h1 (s)C u , we obtain

F 1 (q + h1 (t)C u ) = 2 0 t (q + h1 ) ′ (s) q + h1 (s)ϕ 1 (q + h1 (s)C u )
ds.

Deriving the equality h 1 (q + h1 (s)) = η(s), we get

(q + h1 ) ′ (s) = - ϕ(h 1 (q + h1 (s)))h 1 (q + h1 (s)) 2h ′ 1 (q + h1 (s))
.

Replacing the last equality in the integral, we get

F 1 (q + h1 (t)C u ) = t 0 ϕ(h 1 (q + h1 (s)))h 1 (q + h1 (s)) ϕ 1 (q + h1 (s)C u )h ′ 1 (q + h1 (s))q + h1 (s)
ds.

Using assumption (2.13), we get (3.13) and (3.12). Finally, (3.10) and (3.12) imply (3.6).

Remark 3.4. For example, if we consider the Hamiltonians

H1 (t, p) = |p| 2 -b ′ (t)p and H2 (t, p) = |p| 3 -b ′ (t)p
then, using (2.27) and (2.28), we have

η(t) = 2 K Ct , η 1 (t) = 1 Kt 1 2
and η 2 (t) = 2 3 Kt .

Thanks to (3.10), it's sufficient to prove that

η 1 (t) < q + h1 (t)C u for t ∈ (0, t * )
where q + h1 is defined in (3.9). By definition, we have h 1 (p) = p 2 for p ≥ 0 and

q + h1 (t) = (η(t)) 1 2 .
Using that C 2 u > C, it's straightforward to see that (3.6) is satisfied. In fact, we have for t > 0, η 1 (t) < q + h1 (t)C u . Concerning (3.7), we proceed similarly by proving that

-η 2 (t) > q - h2 (t)C u (3.14)
where q - h2 (t) ≤ p - h2 such that

h 2 (q - h2 (t)) = η(t).
We do not need to find the explicit form of q - h2 (t). In fact, instead of (3.14), we can easily check that

-η 2 (t) ≥ - η(t) 3 1 3 C u and q - h2 (t) ≤ - η(t) 3 1 3 . (3.15)
Using that

lim c0→+∞ F (c 0 ) = 0,
we deduce that inequality (3.15) is true for large c 0 > 0 because h 2 is quasi-convex and 

h 2 - η(t) 3 1 3 = η(t) 3 + a (η(t)) 1 3 a < h 2 (q - h2 (t)) = η(t) for t < t * < F (c 0 ), (

Gradient bounds

To prove Theorem 3. (3.4). We define

M = sup t∈(0,T );y<x<b(t) {v(t, x) -v(t, y) -η 1 (t)(x -y)}.
By contradiction, we assume that M > 0. We introduce

M ν,γ = sup t,s∈(0,T );y<x<b(t) v(t, x) -v(s, y) -η 1 (t)(x -y) - (t -s) 2 2ν - γ T -t -α(b(t) -y) - γ b(t) -x .
Since M > 0, we deduce that M ν,γ > 0 for γ, α small enough. Using that -1 ≤ v < 0, we have

0 < M ν,γ ≤ 1 -α(b(t) -y).
This implies that b(t) -y ≤ 1 α < +∞. Moreover, using that M ν,γ is a supremum of a continuous function, we deduce that it's reached at some point (t, s, x, y).

Step 1: t, s ̸ = 0 and t, s ̸ = T : Using that η 1 (t) → +∞ as t → 0 and γ T -t → +∞ if t → T , we have that t ̸ = 0 and t ̸ = T for all ν > 0. Moreover, we have

(t -s) 2 2ν ≤ 1. (4.1)
Inequality (4.1) implies that |t -s| → 0 as ν → 0. Thus, for ν small enough, we have that s ̸ = 0 and s ̸ = T .

Step 2: x ̸ = b(t) and x > y for ν small enough. Using that

γ b(t) -x → +∞ if b(t) -x → 0,
we get that b(t) -x > 0. Assume that there exists ν → 0 such that we have x = y. This implies that

v(t, x) -v(s, x) > γ T . (4.2)
Using that b(t) -y ≤ 1 α , we deduce that y converges (up to a sub-sequence) as ν → 0. Denoting by t (resp. x) the common limit of t and s (resp. x and y), and taking ν to zero in (4.2), we obtain

v( t, x) -v( t, x) ≥ γ T > 0
which gives a contradiction. Therefore, x > y for ν small enough. Moreover, using that x < b(t), we deduce that for ν small enough, we have y < b(s).

Step 3: Use of the viscosity inequalities. Using the viscosity inequalities, we obtain

     η ′ 1 (t)(x -y) + t -s ν + γ (T -t) 2 -b ′ (t) -α + γ (b(t) -x) 2 + G 1 v(t, x), η 1 (t) + γ (b(t) -x) 2 ≤ 0 t -s ν + G 1 (v(s, y), η 1 (t) + α) ≥ 0.
Using the definition of G1 (see (3.5)), we obtain

     η ′ 1 (t)(x -y) + t -s ν + γ (T -t) 2 + b ′ (t)(α + η 1 (t)) + G1 t, v(t, x), η 1 (t) + γ (b(t) -x) 2 ≤ 0 t -s ν + b ′ (t)(η 1 (t) + α) + G1 (t, v(s, y), η 1 (t) + α) ≥ 0.
This implies

η ′ 1 (t)(x -y) + γ (T -t) 2 + G1 t, v(t, x), η 1 (t) + γ (b(t) -x) 2 -G1 (t, v(s, y), η 1 (t) + α) ≤ 0.
Denoting by t the common limit of t and s and by x (resp. ȳ) the limit of x (resp. y) as ν goes to zero and using the continuity of G1 and v, we obtain after taking ν to zero,

η ′ 1 ( t)(x -ȳ) + γ (T -t) 2 + G1 t, v 1 , η 1 ( t) + γ (b( t) -x) 2 -G1 t, v 2 , η 1 ( t) + α ≤ 0 (4.3)
where v 1 = v( t, x) and v 2 = v( t, ȳ). For σ ∈ [0, 1], we define

ξ σ = ( t, v 2 , η 1 ( t) + α) + σ 0, v 1 -v 2 , γ (b( t) -x) 2 -α .
We argue as if G1 is C 1 (otherwise a standard mollification argument allows to reduce to this case). Using (4.3), we have

η ′ 1 (t)(x -ȳ) + γ (T -t) 2 + 1 0 d dσ G1 (ξ σ )dσ ≤ 0. (4.4)
Step 4: Getting the contradiction. We have that

d dσ G1 (ξ σ ) = ( G1 ) v (ξ σ )(v 1 -v 2 ) + ( G1 ) p (ξ σ ) γ (b( t) -x) 2 -α = I 1 + I 2 + I 3 with        I 1 = 1 2 ( G1 ) v (ξ σ )(v 1 -v 2 ), I 2 = 1 2 ( G1 ) v (ξ σ )(v 1 -v 2 ) -( G1 ) p (ξ σ )α, I 3 = ( G1 ) p (ξ σ ) γ (b( t) -x) 2 .
Bound for I 1 : We recall that

ξ σ = t, v 2 + σ(v 1 -v 2 ), p with p = η 1 ( t) + α + σ γ (b( t) -x) 2 -α .
Using that p ≥ η 1 ( t), we can use (G1) and we have

( G1 ) v (ξ σ ) ≥ ϕ 1 (p) ≥ ϕ 1 (η 1 ( t))
where we use that ϕ 1 is increasing. Using that

v 1 -v 2 > η 1 ( t)(x -ȳ) + γ T - t + α(b( t) -ȳ)
we obtain that

I 1 ≥ 0.
Bound for I 2 : Using again (G1), we have

( G1 ) p (ξ σ ) ≤ κ 1 ( G1 ) v (ξ σ ).
We obtain that

I 2 ≥ 1 2 ( G1 ) v (ξ σ )(v 1 -v 2 ) -κ 1 ( G1 ) v (ξ σ )α ≥ 1 2 ϕ 1 (η 1 ( t))η 1 ( t)(x -ȳ) + ( G1 ) v (ξ σ ) 1 2 α(b( t) -ȳ) + γ 2T -κ 1 α > 1 2 ϕ 1 (η 1 ( t))η 1 ( t)(x -ȳ)
where we use that ( G1 ) v (ξ σ ) > 0 and 1 2 α(b( t) -ȳ) + γ 2T -κα > 0 for α small enough.

Bound for I 3 : Using (G1), we have (G 1 ) p (ξ σ ) ≥ 0 and thus I 3 ≥ 0. Using bounds of I 1 , I 2 and I 3 , we obtain in (4.4)

γ (T -t) 2 + (x -ȳ) η ′ 1 ( t) + 1 2 ϕ 1 (η 1 ( t))η 1 ( t) ≤ 0
which gives a contradiction.

Let us now prove the following lower bound on B 2 .

Lemma 4.2. Let u be a continuous, non-negative viscosity solution of (1.3) in the sense of Definition 2.3. We assume that there exists T 0 > 0 such that (H) are satisfied. The function v = -e -u is a viscosity solution of (3.1) and it satisfies the following: for all t ∈ (0

, t * ), if x > y > b(t) then v(t, x) -v(t, y) ≥ -η 2 (t)(x -y).
Proof of Lemma 4.2. Let T > 0 such that T is arbitary if t * = +∞ and T = t * if t * < +∞ and t * defined in (3.4). We define

M = sup t∈(0,T );x>y>b(t) {v(t, y) -v(t, x) -η 2 (t)(x -y)}.
By contradiction, we assume that M > 0. We introduce

M ν,γ = sup t,s∈(0,T );x>y>b(t) v(t, y) -v(s, x) -η 2 (t)(x -y) - (t -s) 2 2ν - γ T -t -α(x -b(t)) - γ y -b(t) .
Since M > 0, we deduce that M ν,γ > 0 for γ, α small enough. Using that -1 ≤ v < 0, we have

0 < M ν,γ ≤ 1 -α(x -b(t)). This implies that x -b(t) ≤ 1 α < +∞.
Moreover, using that M ν,γ is a supremum of a continuous function, we deduce that it's reached at some point (t, s, x, y).

Step 1: t, s ̸ = 0 and t, s ̸ = T : Using that η 2 (t) → +∞ as t → 0 and γ T -t → +∞ if t → T , we have that t ̸ = 0 and t ̸ = T for all ν > 0. Moreover, we have

(t -s) 2 2ν ≤ 1. (4.5) Inequality (4.5) 
implies that |t -s| → 0 as ν → 0. Thus, for ν small enough, we have that s ̸ = 0 and s ̸ = T .

Step 2: y ̸ = b(t) and x > y for ν small enough.

Using that γ y -b(t) → +∞ if y -b(t) → 0,
we get that y -b(t) > 0. Assume that there exista ν → 0 such that we have x = y. This implies that

v(t, x) -v(s, x) > γ T . ( 4.6) 
Using that x -b(t) ≤ 1 α , we deduce that x converges (up to a sub-sequence) as ν → 0. Denoting by t (resp. x) the common limit of t and s (resp. x and y), and taking ν to zero in (4.6), we obtain

v( t, x) -v( t, x) ≥ γ T > 0
which gives a contradiction. Therefore, x > y for ν small enough. Moreover, using that y > b(t), we deduce that for ν small enough, we have

x > b(s).

Step 3: Use of the viscosity inequalities. Using the viscosity inequalities, we obtain

     η ′ 2 (t)(x -y) + t -s ν + γ (T -t) 2 + b ′ (t) γ (y -b(t)) 2 -α + G 2 v(t, y), -η 2 (t) - γ (y -b(t)) 2 ≤ 0 t -s ν + G 2 (v(s, x), -η 2 (t) -α) ≥ 0.
Using the definition of G2 (see (3.5)), we obtain

     η ′ 2 (t)(x -y) + t -s ν + γ (T -t) 2 -b ′ (t)(η 2 (t) + α) + G2 t, v(t, y), -η 2 (t) - γ (y -b(t)) 2 ≤ 0 t -s ν -b ′ (t)(η 2 (t) + α) + G2 (t, v(s, x), -η 2 (t) -α) ≥ 0.
This implies

η ′ 2 (t)(x -y) + γ (T -t) 2 + G2 t, v(t, y), -η 2 (t) - γ (y -b(t)) 2 -G2 (t, v(s, x), -η 2 (t) -α)) ≤ 0.
Denoting by t the common limit of t and s and by x (resp. ȳ) the limit of x (resp. y) as ν goes to zero and using the continuity of G2 and v, we obtain after taking ν to zero,

η ′ 2 ( t)(x -ȳ) + γ (T -t) 2 + G2 t, v 1 , -η 2 ( t) - γ (ȳ -b( t)) 2 -G2 t, v 2 , -η 2 ( t) -α ≤ 0 (4.7)
where v 1 = v( t, ȳ) and v 2 = v( t, x). For σ ∈ [0, 1], we define

ξ σ = ( t, v 2 , -η 2 ( t) -α) + σ 0, v 1 -v 2 , - γ (ȳ -b( t)) 2 + α
We argue as if G2 is C 1 (otherwise a standard mollification argument allows to reduce to this case). Using (4.7), we have

η ′ 2 (t)(x -ȳ) + γ (T -t) 2 + 1 0 d dσ G2 (ξ σ )dσ ≤ 0. (4.8) 
Step 4: Getting the contradiction. We have that

d dσ G2 (ξ σ ) = ( G2 ) v (ξ σ )(v 1 -v 2 ) + ( G2 ) p (ξ σ ) - γ (ȳ -b( t)) 2 + α = I 1 + I 2 + I 3 with        I 1 = 1 2 ( G2 ) v (ξ σ )(v 1 -v 2 ), I 2 = 1 2 ( G2 ) v (ξ σ )(v 1 -v 2 ) + ( G2 ) p (ξ σ )α, I 3 = -( G2 ) p (ξ σ ) γ (ȳ -b( t)) 2 .
Bound for I 1 : We recall that

ξ σ = t, , v 2 + σ(v 1 -v 2 ), p with p = -η 2 ( t) -α + σ - γ (ȳ -b( t)) 2 + α .
Using that p ≤ -η 2 ( t), we can use (G2) and we have

( G2 ) v (ξ σ ) ≥ ϕ 2 (p) ≥ ϕ 2 (-η 2 ( t))
where we use that ϕ 2 is decreasing. Using that

v 1 -v 2 > η 2 ( t)(x -ȳ) + γ T - t + α(x -b( t))
we obtain that

I 1 ≥ 0.
Bound for I 2 : Using again (G2), we have

( G2 ) p (ξ σ ) ≥ -κ 2 ( G2 ) v (ξ σ ).
We obtain that

I 2 ≥ 1 2 ( G2 ) v (ξ σ )(v 1 -v 2 ) -κ 2 ( G2 ) v (ξ σ )α ≥ 1 2 ϕ 2 (-η 2 ( t))η 2 ( t)(x -ȳ) + ( G2 ) v (ξ σ ) 1 2 α(x -b( t)) + γ 2T -κ 2 α > 1 2 ϕ 2 (-η 2 ( t))η 2 ( t)(x -ȳ)
where we use that ( G2 ) v (ξ σ ) > 0 and

1 2 α(x -b( t)) + γ 2T -κ 2 α > 0 for α small enough.
Bound for I 3 : Using (G2), we have (G 2 ) p (ξ σ ) ≤ 0 and thus I 3 ≥ 0. Using bounds of I 1 , I 2 and I 3 , we obtain in (4.8)

γ (T -t) 2 + (x -ȳ) η ′ 2 ( t) + 1 2 ϕ 2 (-η 2 ( t))η 2 ( t) ≤ 0
which gives a contradiction.

Proof of Theorem 3.3

We turn now to the proof of Theorem 3.3.

Proof of Theorem 3. We introduce

M = sup 0<s<t<T,x∈R {v(s, x + b(s) -b(t)) -v(t, x) -η(s)(t -s)}.
By contradiction, assume that M > 0. We define

M α = sup 0<s<t<T,x∈R v(s, x + b(s) -b(t)) -v(t, x) -η(s)(t -s) -βη(s) - δ T -t -α(x -b(t)) 2 .
We have that M α ≥ M 2 > 0 for β, δ and α small enough. We classically have that M α is reached at some point (s α , t α , x α ). Using that η(s) → +∞ as s → 0 and δ T -t → +∞ as t → T , we have s α ̸ = 0 and t α ̸ = T . If t α = s α , we get a contradiction using that M α > 0. Till the end of this proof, we will denote

v(s α , x α + b(s α ) -b(t α )) = a and v(t α , x α ) = b.
Case 1: x α = b(t α ). First, let us remark that we also have

y α = x α + b(s α ) -b(t α ) = b(s α ).
For i ∈ {1, 2}, we define the constants λ i and γ i that satisfy the following:

                         λ 1 << 0 and λ 2 >> 0, G- 1 (s α , a, λ 1 ) > η(s α ) -η ′ (s α )(t α -s α + β), G+ 2 (s α , a, λ 2 ) > η(s α ) -η ′ (s α )(t α -s α + β), γ 1 > λ 1 and γ 2 < λ 2 , - γ 1 b ≤ p - 1 (t α ) and - γ 2 b ≥ p + 2 (t α ), G- 1 (t α , b, γ 1 ) < η(t α ), G+ 2 (t α , b, γ 2 ) < η(t α ) (5.1)
where

       G- 1 (t, v, p) = (-v) H- 1 t, p -v , G+ 2 (t, v, p) = (-v) H+ 2 t, p -v
with -1 ≤ v < 0 and H-1 (t, •) is the non-increasing part of H1 (t, •) and H+ 2 (t, •) is the nondecreasing part of H2 (t, •).

For R > 0, let BR (b(t)) (resp. BR (b(s)) ) be the closed ball of center b(t) (resp. b(s)) and of radius R. For ε > 0 small, we define

M α,ε = sup 0<s<t<T,x∈ BR (b(t)),y∈ BR (b(s)) {v(s, y) -v(t, x) -η(s)(t -s) -βη(s) - δ T -t -α(x -b(t)) 2 - (x -y -b(t) + b(s)) 2 2ε -L(s, t, x) -φ(s, y) + Ψ(t, x)} where      L(s, t, x) = (s -s α ) 2 + (t -t α ) 2 + (x -x α ) 2 , φ(s, y) = λ i (y -b(s)) if y ∈ B i (s), Ψ(t, x) = γ i (x -b(t)) if x ∈ B i (t)
with B i defined in (1.1). We have M α,ε ≥ M α > 0 and M α,ε is reached at some point (s, t, x, y). Classically, we have

|x -y -b(t) + b(s)| → 0 as ε → 0.
Denoting by s (resp. t, x) the limit of s (resp. t, x) as ε → 0, we have

M α ≤ M α,ε ≤ M α -L(s, t, x) -φ(s, x -b( t) + b(s)) + Ψ( t, x).
Using that Ψ(t, x) -φ(s, x -b(t) + b(s)) ≤ 0, we obtain that L(s, t, x) = 0 and hence (s, t, x, ȳ) = (s α , t α , x α , y α ) = (s α , t α , b(t α ), b(s α )).

Case 1.1: y ∈ B i (s) and x / ∈ B i (t). Writing the viscosity sub-solution's inequality, we obtain

η ′ (s)(t -s + β) -η(s) + 2(s -s α ) -b ′ (s)(p ε + λ i ) + G i (v(s, y), p ε + λ i ) ≤ 0 with p ε = y -x + b(t) -b(s) ε .
Using the definition of Gi (see (3.5)), we can write

η ′ (s)(t -s + β) -η(s) + 2(s -s α ) + Gi (s, v(s, y), p ε + λ i ) ≤ 0 Case 1.1.1: y ∈ B 1 (s)
. This means that y < b(s) and x ≥ b(t). Hence, we have

p ε < 0. Using that G1 (s, v, p) ≥ G- 1 (s, v, p), p ε + λ 1 < λ 1 we get η ′ (s)(t -s + β) -η(s) + 2(s -s α ) + G-
1 (s, v(s, y), λ 1 ) ≤ 0 Taking ε to zero, we obtain a contradiction using (5.1).

Case 1.1.2: y ∈ B 2 (s). This means that y > b(s) and x ≤ b(t). Hence, we have

p ε > 0. Using that G2 (s, v, p) ≥ G+ 2 (s, v, p), p ε + λ 2 > λ 2 we get η ′ (s)(t -s + β) -η(s) + 2(s -s α ) + G+
2 (s, v(s, y), λ 2 ) ≤ 0 Taking ε to zero, we obtain a contradiction using (5.1).

Case 1.2: y = b(s) and x ̸ = b(t). This implies that x ∈ B i with i = 1 or i = 2. Writing the viscosity super-solution's inequality, we obtain

G i (v(t, x), p ε -2α(x -b(t)) -2(x -x α ) + γ i ) -b ′ (t) (p ε -2α(x -b(t)) + γ i ) ≥ η(s) + δ (T -t) 2 + 2(t -t α ) with p ε = -x + b(t) ε .
Using the definition of Gi , we can write

Gi (t, v(t, x), p ε -2α(x -b(t)) -2(x -x α ) + γ i ) ≥ η(s) + δ (T -t) 2 + 2(t -t α ) + 2αb ′ (t)(x -x α ).
(5.2)

Using that Gi (t, v, p) ≤ Hi t, -p v for v ∈ [-1, 0) (see (3.5)), for ε small enough, we have

Hi t, p ε -2α(x -b(t)) -2(x -x α ) + γ i -v(t, x) > η(s) > η(t) (5.3)
where we use that η is decreasing. Using that η(t) > min p∈R h i (p) ≥ min p∈R Hi (t, p), we can define the constants q - i (t) and q + i (t) given by q

+ i (t) = max{p > p + i (t); Hi (t, p) = η(t)} q - i (t) = min{p < p - i (t); Hi (t, p) = η(t)}.
where p - i and p + i are defined in (2.3). Moreover, using (5.3) and the quasi-coercivity of Hi , we have

       p ε -2α(x -b(t)) -2(x -x α ) + γ i -v(t, x) > q + i (t) or p ε -2α(x -b(t)) -2(x -x α ) + γ i -v(t, x) < q - i (t).
( 

p ε -2α(x -b(t)) -2(x -x α ) + γ 1 ≤ η 1 (t) < q + 1 (t)C u ≤ q + 1 (t)(-v(t, b(t)))
where we use that v = -e -u . This implies that for ε small enough, we have

p ε -2α(x -b(t)) -2(x -x α ) + γ 1 < q + 1 (t)(-v(t, x)).
Therefore, we obtain

p ε -2α(x -b(t)) -2(x -x α ) + γ 1 -v(t, x) < q + 1 ( 
t). Using(5.4) , we deduce that

p ε -2α(x -b(t)) -2(x -x α ) + γ 1 -v(t, x) < q - 1 (t). ( 5.5) 
Therefore, this means that (5.3) can be replaced by

H- 1 t, p ε -2α(x -b(t)) -2(x -x α ) + γ 1 -v(t, x) > η(s) > η(t).
(5.6) Using (5.2) and (5.6), we deduce that G-

1 (t, v(t, x), p ε -2α(x -b(t)) -2(x -x α ) + γ 1 ) > η(t).
But using that p ε > 0, we have for ε small enough G-

1 (t, v(t, x), p ε -2α(x -b(t)) -2(x -x α ) + γ 1 ) ≤ G- 1 (t, v(t, x), -2α(x -b(t)) -2(x -x α ) + γ 1 ) < η(t)
where we use (5.1). This gives a contradiction. 

p ε -2α(x -b(t)) -2(x -x α ) + γ 2 ≥ -η 2 (t) > q - 2 (t)C u ≥ q - 2 (t)(-v(t, b(t)))
where we use that v = -e -u . This implies that for ε small enough

p ε -2α(x -b(t)) -2(x -x α ) + γ 2 > q - 2 (t)(-v(t, x)).
Therefore, we obtain

p ε -2α(x -b(t)) -2(x -x α ) + γ 2 -v(t, x) > q - 2 ( 
t). Using (5.4), we deduce that

p ε -2α(x -b(t)) -2(x -x α ) + γ 2 -v(t, x) > q + 2 (t) (5.7)
Therefore, this means that (5.3) can be replaced by

H+ 2 t, p ε -2α(x -b(t)) -2(x -x α ) + γ 2 -v(t, x) > η(s) > η(t).
(5.8) Using (5.2) and (5.8), we deduce that

G+ 2 (t, v(t, x), p ε -2α(x -b(t)) -2(x -x α ) + γ 2 ) > η(t).
But using that p ε < 0, we have for ε small enough

G+ 2 (t, v(t, x), p ε -2α(x -b(t)) -2(x -x α ) + γ 2 ) ≤ G+ 2 (t, v(t, x), -2α(x -b(t)) -2(x -x α ) + γ 2 ) < η(t)
where we use (5.1). This gives a contradiction. 

G A (t, v(t, b(t)), p) ≥ η(s) + δ T 2 + 2(t -t α ) + 2b ′ (t)(b(t) -x α ) ≥ A(t) + δ T 2 + 2(t -t α ) + 2b ′ (t)(b(t) -x α ) with p = (p 1 , p 2 ) = (-2α(x -b(t)) -2(x -x α ) 2 + γ 1 , -2α(x -b(t)) -2(x -x α ) 2 + γ 2 ). This implies max A(t), H+ 1 t, - p 1 v(t, b(t)) , H- 2 t, - p 2 v(t, b(t)) ≥ A(t) + δ T 2 + 2(t -t α ) + 2b ′ (t)(b(t) -x α ).
(5.9)

Taking ε to zero, we obtain a contradiction using (5.1). In fact, using that γ

1 -b ≤ p - 1 (t α ) and γ 2 -b ≥ p + 2 (t α ), we have H+ 1 t α , - γ 1 b = min p∈R H 1 (t α , p) ≤ A(t α ), H- 2 t α , - γ 2 b = min p∈R H 2 (t α , p) ≤ A(t α ).
Therefore (5.9) implies (after taking ε to zero) that

A(t α ) ≥ A(t α ) + δ T 2 .
Case 1.4: y ∈ B i (s) and x ∈ B i (t). Writing the viscosity sub and super-solution's inequalities, we have

η ′ (s)(t -s + β) -η(s) + 2(s -s α ) -b ′ (s)(p ε + λ i ) + G i (v(s, y), p ε + λ i ) ≤ 0 and -η(s) - δ (T -t) 2 -2(t -t α ) -b ′ (t) (-2α(x -b(t)) + p ε + γ i ) + G i (v(t, x), -2α(x -b(t)) + p ε + γ i -2(x -x α ) ≥ 0 where p ε = y -x + b(t) -b(s) ε .
Using the definition of Gi , we can write

η ′ (s)(t -s + β) -η(s) + 2(s -s α ) + Gi (s, v(s, y), p ε + λ i ) ≤ 0 (5.10) and -η(s) - δ (T -t) 2 -2(t -t α ) -2b ′ (t)(x -x α ) + Gi (t, v(t, x), -2α(x -b(t)) + p ε + γ i + 2(x -x α ) ≥ 0 (5.11)
The super-linearity of H i and inequality (5.10) implies that

|p ε + λ i | ≤ C tα,sα,o(α)
and in particular

|p ε | ≤ C tα,sα,o(α) + |λ i |.
We deduce that up to a sub-sequence, lim ε→0 p ε exists and we denote by p = lim ε→0 p ε . Inequalities (5.10) and (5.11) gives after taking ε to zero

δ (T -t α ) 2 + η ′ (s α )(t α -s α + β)) + Gi (s α , a, p + λ i ) -Gi (t α , b, p + γ i ) = δ (T -t α ) 2 + η ′ (s α )(t α -s α + β)) + 1 0 d dσ Gi (ξ σ )dσ ≤ 0 (5.12)
where

ξ σ = (t α + σ(s α -t α ), 0, b + σ(a -b), p + γ i + σ(λ i -γ i )) and σ ∈ [0, 1]. We have that d dσ Gi (ξ σ ) = (s α -t α )( Gi ) t (ξ σ ) + (a -b)( Gi ) v (ξ σ ) + (λ i -γ i )( Gi ) p (ξ σ ) = I 1 + I 2 + I 3 with          I 1 = (s α -t α )( Gi ) t (ξ σ ) + 1 2 (a -b)( Gi ) v (ξ σ ), I 2 = 1 2 (a -b)( Gi ) v (ξ σ ), I 3 = (λ i -γ i )( Gi ) p (ξ σ ).
Our goal is to prove that

I 1 + I 2 + I 3 ≥ ϕ(η(s α )η(s α )) 2 (t α -s α + β).
(5.13)

In fact, if (5.13) is true, then injecting it in (5.12), we obtain

δ (T -t α ) 2 + (t α -s α + β) η ′ (s α ) + η(s α )ϕ(η(s α )) 2 ≤ 0
which gives a contradiction and this ends the proof. To do this, we will prove that First, we will prove (5.14). To do this, we need the following lemma whose proof is postponed.

I
Lemma 5.1. For all σ ∈ [0, 1], we have η(s α ) ≤ Gi (ξ σ ) ≤ η(s α ) + ϕ(η(s α )).

(5.16)

We prove now (5.14). Using (5.16) and (G0), we have

I 1 ≥ (s α -t α )( Gi ) v (ξ σ )ψ(η(s α ) + ϕ(η(s α ))) + 1 2 (a -b)( Gi ) v (ξ σ ) ≥ ( Gi ) v (ξ σ ) ψ(η(s α ) + ϕ(η(s α )))(s α -t α ) + 1 2 (a -b)
≥ ( Gi ) v (ξ σ ) ψ(η(s α ) + ϕ(η(s α )))(s α -t α ) + η(s α )(t α -s α ) 2

≥ 0 (5.17)

where we use that a -b ≥ η(s α )(t α -s α ) and ψ(2x + ϕ(2x)) = x. Concerning I 2 , we use (G0) to obtain

I 2 ≥ 1 2 η(s α )(t α -s α + β)ϕ(η(s α )).
Let us now turn to the proof of (5.15). We distinguish two cases. p - 1 (τ ).

(5.21)

The first inequality (5.20) and the fact that η(t) > C imply that for ε small enough, we have In particular, this implies that p + γ 1 -b ≤ p - 1 (t α + σ(s α -t α )).

Moreover, using that λ 1 < γ 1 , we have

p + γ 1 + σ(λ 1 -γ 1 ) -b -σ(a -b) ≤ p - 1 (t α + σ(s α -t α ))
and therefore ( G1 ) p (ξ σ ) ≤ 0. Hence, I 3 ≥ 0. and therefore ( G2 ) p (ξ σ ) ≥ 0. Hence, I 3 ≥ 0.

Case 2: x α ̸ = b(t α ). In this case, x α ∈ B i (t α ) with i = 1 or i = 2. We then define M α,ε without the function Ψ(y) -φ(x). The supremum M α,ε is reached at some point (s, t, x, y) with x ∈ B i (t) and y ∈ B i (s) for ε small. Writing the viscosity inequalities, we get equation ( 5 

  is positive and large when sup t∈(0,T0) Hi (t, p) is positive and large.(1.8)

2 m i and m = max i=1, 2 m

 22 enough and ϕ(s) i . Secondly, we can easily verify that assumptions (H3) and (H4) are satisfied if we take c 1 , c 2 > 0 big enough and ϕ i (s) = K|s| mi .

Case 1 . 2 . 2 :

 122 y = b(s) and x ∈ B 2 (t). Using successively Lemma 4.2 and (3.7) , we have

Case 1 . 3 :

 13 y = b(s) and x = b(t). Writing the viscosity super-solution's inequality, we obtain

1 +

 1 I 2 ≥ ϕ(η(s α )η(s α )) 2 (t α -s α + β)

  .12) with ξ σ = (t α + σ(s α -t α ), b + σ(a -b), p -σ2α(x α -b(t α )) and σ ∈ [0, 1]. We get that d dσ Gi (ξ σ ) = (s α -t α )( Gi ) t (ξ σ ) + (a -b)( Gi ) v (ξ σ ) -2α(x α -b(t α ))( Gi ) p (ξ σ ) = I 1 + I 2 with    I 1 = (s α -t α )( Gi ) t (ξ σ ) + 1 2 (a -b)( Gi ) v (ξ σ ), I 2 = 1 2 (a -b)( Gi ) v (ξ σ ) -2α(x α -b(t α ))( Gi ) p (ξ σ ).

  p) is large and positive and ( G1 ) p (v, p) ≥ 0) if p is big and positive, (( G2 ) v (v, p) is large and positive and ( G2 ) p (v, p) ≤ 0) if p is small and negative.

(1.13) 

Let us remark that taking Hamiltonians as in (1.5) and b as in (1.6), we could easily check that (1.13) is true. Then, with additional assumptions (see (2.13) and (2.21)), we will prove the following useful inequality: for all i ∈ {1, ..., N } and for (t, x) ∈ (0, t * ) × J * i , we have (in the viscosity sense)

  and b ′ is a lipschitz function. For i ∈ {1, 2}, the Hamiltonian H i is continuous in R. In addition, we assume that H i is super-linear, i.e.,

		lim	H i (p) |p|	= +∞.
	(H1) For i ∈ {1, 2} and for all t ∈ (0, T 0 ), the Hamiltonian Hi defined by
		Hi (t, p) = H i (p) -b ′ (t)p	(2.1)
	is quasi-convex w.r.t. the p variable. In addition, we assume that
		h i (p) = sup	Hi (t, p) < +∞	(2.2)
		t∈(0,T0)
	is quasi-convex. This means that there exists an interval [p -i (t), p + i (t)] such that
	  	Hi (t, •) is non increasing on (-∞, p -i (t)), Hi (t, •) is constant on [p -i (t), p + i (t)],	(2.3)
	 	Hi (t, •) is non decreasing on (p + i (t), +∞)
	and an interval [p -hi , p + hi ] such that	

  recall the definition of the upper and lower semi-continuous envelopes u

	(s,y)→(t,x)	(s,y)→(t,x)	u (s, y) .
	Definition 2.3. [Definition of viscosity solution of (1.3)(see Definition 3.1 in

* and u * of a locally bounded function u on B, u * (t, x) = lim sup u (s, y) and u * (t, x) = lim inf

  Inequalities (3.6)-(3.7) will be used exactly as they are stated and without injecting them in a Gi formulation. To be more precise, at some stage of our proof (see cases 1.2 and 1.4 in the Proof of Theorem 3.3), we need to come back to the initial Hamiltonians H i and at theses steps, we will use (3.6)-(3.7).

see the definition of t * in (3.4)).

Remark 3.5.

  3, we need the following lemmas in which we obtain a gradient upper bound on B 1 (t) and a gradient lower bound on B 2 (t). Let u be a continuous, non-negative viscosity solution of (1.3) in the sense of Definition 2.3. We assume that there exists T 0 > 0 such that (H) are satisfied. The function v = -e -u is a viscosity solution of (3.1) and it satisfies the following: for all t ∈ (0, t

	Lemma 4.1.

* ), if y < x < b(t) then v(t, x) -v(t, y) ≤ η 1 (t)(x -y). Proof of Lemma 4.1. Let T > 0 such that T is arbitary if t * = +∞ and T = t * if t * < +∞ and t * defined in

  B 1 (t). Using successively Lemma 4.1 and (3.6) , we have

.4) Case 1.2.1: y = b(s) and x ∈

  Case 1.4.1: i = 1. Using the super-solution inequality, we have for ε small enoughH1 t, -2α(x -b(t)) + p ε + γ 1 + 2(x -x α )

			-v(t, x)		> η(s) > η(t).	(5.18)
	Arguing as in case 1.2.1 (see (5.5)), we can prove that for ε small enough
	-2α(x -b(t)) + p ε + γ 1 + 2(x -x α ) -v(t, x)	< p -1 (t).	(5.19)
	Passing to the limit as ε → 0 in (5.18) and (5.19), we have	
	H1 t α ,	p + γ 1 -b	> η(t α ) and	p + γ 1 -b	< p -1 (t α ).	(5.20)
	We claim that					
		p + γ 1 -b	≤ inf τ ∈(0,T )		

  Passing to the limit as ε → 0 in(5.22) and (5.23), we have The first inequality (5.24) and the fact that η(t) > C imply that for ε small enough, we have

		H2 t α ,	p + γ 2 -b	> η(t α ) and	p + γ i -b	> p + 2 (t α ).	(5.24)
	We claim that					
				p + γ 2 -b	τ ∈(0,T ) ≥ sup	p + 2 (τ ).	(5.25)
					h 2	p + γ 2 -b	> C
	with					
				h 2 (p) = sup	H2 (t, p).
							t∈(0,T0)
	Using the definition of C in (3.3), we obtain that
	p + γ 2 -b	≥ sup τ ∈(0,T )	p + 2 (τ ) or	p + γ 2 -b	≤ inf τ ∈(0,T )	p -2 (τ ).
	But, from (5.24), we know that	p + γ 2 -b	> p + 2 (t α ). Therefore, we deduce that
				p + γ 2 -b	τ ∈(0,T ) ≥ sup	p + 2 (τ ).
	In particular, this implies that				
				p + γ 2 -b	≥ p + 2 (t
	Case 1.4.2: i = 2. Using the super-solution inequality, we have for ε small enough
	H2 t,	-2α(x -b(t)) + p ε + γ 2 + 2(x -x α ) -v(t, x)	> η(s) > η(t).	(5.22)
					-v(t, x)	> p + 2 (t).	(5.23)

Arguing as in case 1.2.2 (see (5.7)), we can prove that for ε small enough

-2α(x -b(t)) + p ε + γ 2 + 2(x -x α ) α + σ(s α -t α )).

Moreover, using that λ 2 > γ 2 , we have

p + γ 2 + σ(λ 2 -γ 2 ) -b -σ(a -b) ≥ p + 2 (t α + σ(s α -t α ))

We proceed as in case 1.4. The difference comes from the term -2α(x α -b(t α ))( Gi ) p (ξ σ ). Using Lemma 5.1, we can use (G0) and we get

where we use that α(x α -b(t α )) → 0 as α → 0, and δ 2T + 2α(x α -b(t α )) ≥ 0 for α small enough.

We turn now to the proof of Lemma 5.1.

Proof. Firstly, we will show that for σ ∈ [0, 1],

We have

where we use that 1

. By contradiction, assume that there exists σ ∈ [0, 1) such that Gi (ξ σ ) > η(s α ) + ϕ(η(s α )). We define σ = sup{σ ∈ [0, 1] such that Gi (ξ σ ) > η(s α ) + ϕ(η(s α ))} .

By (5.27), we have that σ < 1. By definition of σ, we also have

Using the continuity of Gi , we deduce that there exists σ ∈ (σ, 1] such that for σ ∈ [σ, σ], we have

However, arguing as above, we can prove that

The proof is similar to the above case. We have Gi (ξ 0 ) > η(s α ). We define

Local Lipschitz bound

The proof of Proposition 2.6 is a consequence of the following lemma.

Lemma 6.1. Let z ∈ R and s ∈ (0, t * ) such that z ∈ B i (s) with i ∈ {1, 2}. Let r > 0 be small enough such the ball B r (s) ⊂ (0, t * ) and such that if x, y ∈ B r (z) and t ∈ B r (s), then x, y ∈ B i (t).

There exists a constant K i depending on z, s and r such that for all x, y ∈ B r (z) and for all t ∈ B r (s), we have

Proof of Lemma 6.1. We define

e u(τ,l) .

Defining K i as in (6.2) is possible since H i is super-linear. We will only prove the upper bound since the lower one could be done similarly. We consider the fixed point (t 0 , y) ∈ B r (s) × B r (z). Let ν > 0 and define

We claim that M ≤ 0. Assume by contradiction that M > 0. For δ > 0 small enough, we define

Classically, M δ > 0 for δ small enough and is reached at some point (t, x). If x = y, we get δ z + r < 0. If x = z + r, we get a contradiction using that δ z + r -x → +∞. We deduce that y < x < z + r. On the other hand, using the continuity of u, there exists a constant C r,s,z such that

We deduce that t ∈ B r (s) for ν small enough. Writing the viscosity inequality, we get

Using Theorem 2.5, we have

where we use that Hi (t, q) ≥ Hi (t, p) if q ≥ p ≥ p + i (t). We get a contradiction using the definition of K i . Therefore, M ≤ 0, and taking t = t 0 , we get the desired result.
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