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Abstract

Detecting spoof faces is crucial in ensuring the robust-
ness of face-based identity recognition and access control
systems, as faces can be captured easily without the user’s
cooperation in uncontrolled environments. Several deep
models have been proposed for this task, achieving high
levels of accuracy but at a high computational cost. Con-
sidering the very good results obtained by lightweight deep
networks on different computer vision tasks, in this work
we explore the effectiveness of this kind of architectures for
face anti-spoofing. Specifically, we asses the performance
of three lightweight face models on two challenging bench-
mark databases. The conducted experiments indicate that
face anti-spoofing solutions based on lightweight face mod-
els are able to achieve comparable accuracy results to those
obtained by state-of-the-art very deep models, with a signif-
icantly lower computational complexity.

1. Introduction
Face recognition is one of the most used biometric tech-

niques, with many practical and commercial applications
including access control, forensics, and human-computer
interactions [2]. Some systems require an interactive cap-
ture of the user’s face, for example in check-in and mo-
bile payment applications. However, if an impostor steals
or replicates the registered user’s face image, the system’s
security may be compromised. For those reasons, face anti-
spoofing (FAS) has been in the focus of both academy and
industry [5], aiming at detecting fake faces created using
various spoofing attack methods, such as 3D masks, printed
photographs, or video.

Several FAS methods have been proposed in the litera-
ture. The traditional ones used handcrafted features, such

as texture, color, or shape. These methods are prone to
fail in various scenarios, such as when the spoof video is
of high quality, or the attacker creates a mask with realistic
texture and shape. Recently, deep learning-based methods
have emerged as a robust solution to these issues. How-
ever, most of the Convolutional Neural Networks (CNNs)
designed for face anti-spoofing demand significant compu-
tational resources. A well-designed FAS network architec-
ture is vital for real-time applications, especially for those
intended for use in mobile and wearable devices [33].

Some studies evaluate the performance of different
CNNs for face anti-spoofing [34, 53], but to the best of our
knowledge, none of them have included lightweight mod-
els on their analysis, nor the computational complexity of
the evaluated models is considered. Moreover, different
competitions and databases have been released to boost re-
search progress on face anti-spoofing [21,24,41,50]. These
challenges have focused on specific problems that affect the
accuracy of the methods such as multi-modal information
[22], cross-ethnicity [20], 3D mask attack [23] and surveil-
lance scenarios [9], however less constrains have been im-
posed to model’s compactness and efficiency.

In this paper, we aim at studying the effectiveness of
lightweight deep network architectures to enable the future
development of accurate and efficient face anti-spoofing so-
lutions in embedded and mobile devices. Specifically, we
selected three state-of-the-art lightweight models that have
showed to be well-suitable for different computer vision
tasks resulting in very low computational cost. The main
contributions of this work are summarized below:

• We investigate the effectiveness of lightweight deep
networks for face anti-spoofing scenarios.

• We provide an extensive experimental evaluation on
challenging unseen benchmarks and cross-dataset con-
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ditions, which serves as a baseline for future research
directions towards solving the efficient deployment of
FAS solutions.

• We show the advantages of using lightweight archi-
tectures for efficient FAS deployment by comparing
their computational complexity with state-of-the-art
FAS methods.

The remainder of this paper is organized as follows. Sec-
tion 2 takes an overview of recent FAS methods as well as
existing lightweight deep networks. In Section 3, we ex-
plain the methodology used for applying lightweight archi-
tectures on FAS scenarios. Section 4 presents an extensive
experimental evaluation with the selected lightweight mod-
els on FAS datasets. Finally, Section 5 summarizes the con-
clusions of this work.

2. Related work
In this section, we provide an overview on the

state-of-the-art Face Anti-Spoofing (FAS) approaches and
Lightweight Deep Networks focused on improving effi-
ciency run-time performance.

2.1. Face anti-Spoofing

There is a large number of FAS methods described in lit-
erature. They can be broadly categorized into two types:
those that rely on specific hardware/sensors and those that
use only RGB cameras. The approaches that incorpo-
rate specific hardware may use structured-light 3D sensors,
Time of Flight (ToF) sensors, Near-infrared (NIR) sensors,
thermal sensors, or other aides that considerably enhance
the accuracy of this task [3]. 3D sensors, for example, can
distinguish a genuine 3D face from a 2D photo by analyzing
depth maps [3]. NIR sensors, on the other hand, can detect
video replay attacks as electronic displays appear uniformly
dark when exposed to NIR illumination. While these tech-
niques offer great accuracy, they are not commonly used in
practical applications because they typically require costly
sensors or are integrated into other devices [33].

Earlier approaches that do not require any specific hard-
ware, were mainly designed for printed photo attacks and
were based on handcrafted features such as speeded-up
robust features (SURF), histogram of oriented gradients
(HoG), local binary patterns (LBPs), among others to ex-
tract discriminative features that were used by a trained bi-
nary classifier to distinguish between live faces and spoof
faces [47]. Robust input spaces like color and frequency
spectrum were also explored, as well as the inclusion of
temporal cues from eyes or lips, to improve spoof detection
performance [42], or the use of remote PhotoPlethysmoG-
raphy (rPPG) for measuring facial micro-intensity changes
corresponding to blood pulse [25].

In recent years, deep learning-based FAS methods have
become the most common choice as feature extractors,
achieving state-of-the-art performance in most of large-
scale face-anti-spoofing benchmarks [40]. The first attempt
to use Convolutional Neural Networks (CNNs) to detect
spoofing attacks was proposed in [45]. The method uti-
lized a one-path AlexNet to learn distinctive features be-
tween genuine and fake faces. Later in 2016, the first end-
to-end framework for face anti-spoofing was proposed, also
based on one-path AlexNet [36]. Since then, various archi-
tectures have been developed for detecting photo and video
replay attacks [34, 43]. One of the most prevalent CNN ar-
chitectures used in face anti-spoofing is ResNet, which can
learn powerful feature representations of facial images [34].
However, designing neural networks in advance is still quite
challenging. Hence, there is a recent trend towards auto-
matically designing neural networks [49]. Unfortunately,
most of these methods use computationally expensive mod-
els that are unsuitable for real-time FAS applications.

Few works consider lightweight CNNs for efficient de-
ployment of FAS models. In [48], the authors propose
a method called Auto-FAS, intending to discover well-
suitable lightweight networks for mobile-level face anti-
spoofing. In Auto-FAS, a special search space is designed to
restrict the model’s size, and pixel-wise binary supervision
is used to improve the model’s performance. Thus, the de-
velopment of FAS solutions based on lightweight network
architectures still deserves more attention.

2.2. Lightweight deep networks

To overcome the challenge of computational complexity,
many works have proposed efficient and lightweight archi-
tectures for various computer vision tasks. Common so-
lutions involve quantizing weights and/or activations of a
baseline CNN model into lower-bit representations [17], or
pruning unimportant filters based on FLOPs [10]. Other
methods directly hand-craft more efficient mobile architec-
tures. One such example is SqueezeNet [16], which em-
ploys lower-cost 1×1 convolutions to reduce the number of
parameters and filter sizes. MobileNet [14] heavily utilizes
depthwise separable convolution to minimize computation
density. ShuffleNets [28, 51] use low-cost group convolu-
tion and channel shuffling. More recently, MobileNetV2 [?]
set a new benchmark for lightweight models in image clas-
sification by introducing inverted residuals and linear bot-
tlenecks, while MicroNet [19] is one of the most compact
and energy-efficient convolutional networks developed thus
far by using Micro-Factorized convolutions. However, de-
signing hand-crafted models requires significant human ef-
fort due to the potentially vast design space.

Reinforcement learning has been one of the most used
approach to automate architecture design and efficiently
search for competitive accuracy. Due to the exponential
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growth of a fully configurable search space, initial efforts
focused on cell level structure search with the same cell be-
ing reused in all layers [37, 55]. More recent methods at-
tempt to optimize multiple objectives, such as model size
and accuracy, while searching for light CNNs [8,15,39,54].
Among these methods, MnasNet [39], was built upon the
MobileNetV2 structure by introducing lightweight attention
modules based on squeeze and excitation into the bottleneck
structure. Then, a combination of these layers was used as
building blocks on MobileNetv3, in order to build a most
effective model [13].

Several of the above lightweight mobile architectures
have been modified in order to enhance their ability to
discriminate and generalize for face recognition purposes
[6, 29, 44]. These specific models have been explored on
different face recognition scenarios, such as image and
video FR [32], cross-pose FR [4], low-resolution FR [30]
and masked FR [31]. However, very few works consider
lightweight CNNs for face anti-spoofing as an option for
maintaining accuracy performance while improving effi-
ciency in real-world scenarios.

3. Methodology
In this section, we present the lightweight architectures

selected in this study, as well as some implementation de-
tails for applying them in FAS scenarios.

3.1. Baseline architectures

We have implemented three state-of-the-art lightweight
deep models for face anti-spoofing: ShuffleNetv2 [28], Mo-
bileNetv3 [13] and MicroNet [19].

ShuffleNetv2 [28] is a popular hand-craft efficient mo-
bile architecture, whose design is guided by the evalua-
tion of a direct metric (e.g., speed) instead of indirect ones
(e.g., FLOPs) on the target platform. It is inspired by
ShuffleNetv1 [51], which utilised pointwise group convolu-
tions, bottleneck-like structures, and a channel shuffle oper-
ation. Based on some practical guidelines, a simple operator
called channel split was introduced by the authors, allow-
ing to maintain a large number and equally wide channels
with neither dense convolution nor too many groups. Simi-
lar to ShuffleNetv1, the number of channels in each block is
scaled to generate ShuffleNetv2 networks for four different
levels of complexities marked as 0.5×, 1×, 1.5× and 2×.

MobileNetv3 [13] is a convolutional neural network
specifically designed for mobile phone CPUs. It combines
platform-aware network architecture search and the Ne-
tAdapt algorithm [46] to effectively find optimized mod-
els for a given hardware platform. In addition, the net-
work design includes the incorporation of an squeeze-and-

excitation block into the core architecture and the redesign
of some of the expensive layers. MobileNetV3 is defined as
two models: MobileNetV3-Large and MobileNetV3-Small
for different multipliers like 0.35, 0.5, 0.75, 1.0 and 1.25.
These models are targeted at high and low resource use
cases, respectively.

MicroNet [19] is an efficient lightweight CNN architec-
ture manually designed for improving accuracy at the ex-
tremely low FLOPs. It is based on Micro-Factorized con-
volution, which factorizes a convolution matrix into low
rank matrices, to integrate sparse connectivity into convolu-
tion. Four handcrafted models (M0, M1, M2, M3) of differ-
ent computational cost (4M, 6M, 12M, 21M MAdds) were
proposed without using network architecture search. All
these models consist of three Micro-Blocks that combine
Micro-Factorized pointwise and depthwise convolutions in
different ways but following the same pattern (stem layer
→ Micro-Block-A → Micro-Block-B → Micro-Block-C)
from low to high layers. In addition, a new dynamic activa-
tion function, named Dynamic Shift Max (DY-Shift-Max),
is proposed to improve the non-linearities of the network by
fusing channels with dynamic coefficients.

3.2. Implementation details

All the lightweight models take face images as the input
with a resolution size of 224 × 224. To avoid the contri-
bution of the context information from the liveness back-
ground area such as paper edges or mobile phone borders,
we extract the bounding box of face regions as preprocess-
ing stage. First, face detection and landmark localization
are performed by RetinaFace algorithm [7]. The detected
faces are aligned by using five landmark points and then,
we used square bounding boxes from the aligned crop faces
in order to maintain the aspect ratio of the image, and pre-
serving any significant features. These square bounding
boxes are obtained by expanding the bounding boxes re-
turned by RetinaFace, ensuring the size of resulting square
face regions do not grow more than 20% of RetinaFace re-
gion sizes. Thus, any forgery boundaries from spoof face
samples are included in the obtained square face regions.
Finally, in order to fulfill with the input resolution size of
lightweight networks, the square bounding boxes are re-
sized to 224× 224.

For the experiments, we use ShuffleNetv2 with a com-
plexity level of 2×, MobileNetv3-Large with multiplier of
1.25 and MicroNet-M3. For all models, we replace the last
layer with a new fully-connected layer making it suitable
for binary classification.

4. Experimental evaluation
In this section, we show the overall advantages of using

lightweight CNNs for face anti-spoofing and compare the
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obtained results with state-of-the-art methods on different
datasets. In addition, we include ResNet model [12] with
50 layers (ResNet50) as a baseline in all of the experiments.

4.1. Databases

We conduct extensive experiments on two challenging
and large-scale face anti-spoofing datasets: the CelebA-
Spoof [52] and the InsightFace Wild Face Anti-Spoofing
(InsightFace WFAS) [41].

CelebA-Spoof [52] is a large-scale face anti-spoofing
dataset, which contains 625,537 images from 10,177 sub-
jects. Live images are selected from the CelebA dataset
[27], while spoof images are captured from 8 scenes with
more than 10 sensors including phones, pads and personal
computers equipped with different resolutions. Each im-
age in CelebA-Spoof is annotated with 43 rich attributes on
face, illumination, environment and spoof types. There are
four major categories for the spoof type including Print, Pa-
per Cut, Replay and 3D. Figure 1 shows some examples of
the original live and spoof images from the CelebA-Spoof
database.

Live

Print

Paper
Cut

Replay

3D

Figure 1. Examples of original live and spoof type images from
CelebA-Spoof database.

The CelebA-Spoof dataset is splited into training, vali-
dation, and test sets with a ratio of 8:1:1, ensuring that for
all three sets there is no overlap on subjects. This means
that, there is no case of a live image of one certain subject
in the training set while its counterpart spoof image in the
test set.

InsightFace WFAS [41] is a large-scale in-the-wild
dataset recently released at the fourth edition of the Face
Anti-Spoofing Workshop and Challenge@CVPR 2023. It
contains 529,571 live images of 148,169 identities and
853,729 spoof images of 321,751 identities. In the spoof
photos, there are three major categories including 2D Print,
2D Display and 3D PAS Type, and 17 subcategories. In
Figure 2, we show some examples of original images and
spoof images from the three major categories.

Live

2D Print

2D Display

3D

Figure 2. Examples of original live and spoof type images from
InsightFace WFAS database.

For the experiments, the InsightFace WFAS dataset
is divided in train, development and test subsets. For
training there are 205,146 live images and 282,917 spoof
images, while the development and test sets consist of
51,299/88,759 and 273,126/482,053 live/spoof images,
respectively.

4.2. Training setting

We trained the models for 70 epochs on two NVIDIA-
A6000 GPUs using PyTorch. We used the Stochastic Gra-
dient Descent optimizer, with a learning rate value of 0.1
multiplied by 0.2 every at epochs 20 and 40. We also em-
ployed a weight decay of 0.0005 with a momentum of 0.9.
The batch size was adjusted per our memory limitations,
usually set for 1024 batches.

For data augmentation, we performed random horizon-
tal flipping, ISO noise, brightness and contrast, and motion
blur transformations, with probabilities of 0.5, 0.2, 0.3, and
0.2, respectively. The networks were supervised with a soft-
max cross-entropy loss (CE) function.

For training in the CelebA-Spoof database, the pre-
trained weights on ImageNet were used to initialize the
networks, while for InsightFace WFAS dataset, the net-
works are trained from scratch, per the guidelines of the
FAS@CVPR2023 Wild track challenge.
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4.3. Performance metrics

For the intra-dataset testing, we selected the standardized
ISO/IEC 30107-3:2017 metrics [1]: Attack Presentation
Classification Error Rate (APCER), Normal/Bona Fide Pre-
sentation Classification Error Rate (NPCER/BPCER) and
Average Classification Error Rate (ACER). APCER and
BPCER/NPCER are used to measure the classification error
rates on presentation attacks and live samples, respectively:

APCER =
FP

TN + FP
(1)

BPCER =
FN

FN + TP
(2)

The ACER value is calculated as the mean of BPCER
and APCER, evaluating the reliability of intra-dataset per-
formance.

For cross-test evaluation between CelebA-Spoof and In-
sightFace WFAS, we adopt Half Total Error Rate (HTER),
which is defined in terms of two error rates, False Accep-
tance Rate (FAR) and False Rejection Rate (FRR) as fol-
lows:

HTER =
FAR+ FRR

2
(3)

4.4. Intra-dataset evaluation

In this section, we follow the widely used intra-dataset
evaluation in order to analyze the discrimination ability
of models for face anti-spoofing detection under scenarios
with slight domain shift. As the training and testing data are
from the same datasets, they share similar domain distribu-
tion in terms of the recording environment, subject behav-
ior, etc.

4.4.1 Results on CelebA-Spoof

In Table 1 we report the performance of FAS models trained
and evaluated on the whole training set and testing set of
CelebA-Spoof, respectively. We follow the general “in-
tra” protocol, in which different spoof types, environments
and illumination conditions are used for both training and
testing. Table 1 shows the APCER, BPCER, and ACER
metrics for the selected lightweight models (ShuffleNetv2,
MobileNetv3, and MicroNet), the baseline (ResNet50) and
four models reported in [52] (Auxiliary [26], BASN [18],
AENet, and AENetC,S,G).

We can observed that the best results are obtained by
AENetC,S,G, however, this is somewhat expected since this
method uses the semantic and geometric information from
the annotations in CelebA-Spoof dataset [52]. The results
reported without considering the complementary informa-
tion (AENet) are very similar to the ones obtained by the

Method APCER(%) BPCER(%) ACER(%)

ResNet50 11.64 0.48 6.06
Auxiliary [52] 5.71 1.41 3.56
BASN [52] 4.00 1.10 2.60
AENet [52] 6.10 1.60 3.80
AENetC,S,G [52] 2.29 0.96 1.63

ShuffleNetv2 7.79 1.25 4.52
MobileNetv3 5.46 0.96 3.21
MicroNet 8.31 1.49 4.90

Table 1. Performance comparison on CelebA-Spoof dataset.

lightweight models. In particular, MobileNetv3, outper-
forms this AENet model and the ResNet50 baseline.

4.4.2 Results on InsightFace WFAS

Table 2 presents the performance of lightweight models
trained and tested on InsightFace WFAS dataset. Devel-
opment set is used to select the threshold that is used in the
testing phase. We also include the results of ResNet18 pro-
vided by the authors of this dataset [41]. However, we must
highlight that these results do not provide a fair comparison
since they are based on a different version of the test set that
was not further released. Although ResNet50 achieves the
best results, the lightweight models, and specifically Mo-
bileNetv3, reaches comparable results.

Method APCER(%) BPCER(%) ACER(%)

ResNet18 6.15 8.87 7.51
ResNet50 4.47 10.05 7.26

ShuffleNev2 7.66 9.61 8.64
MobileNetv3 6.20 10.14 8.17
MicroNet 9.31 12.84 11.08

Table 2. Results on Test Set from InsightFace WFAS database.

In Table 3 we show more detailed results for the differ-
ent spoof types existing on the InsightFace WFAS dataset.
It can be seen that the highest errors for all models are
obtained for 3D attacks. The highest gap between the
lightweight models and the baseline is obtained in 2D Print
attacks, and in particular the larger difference is in the Scan-
Photo class.

4.5. Ablation study

To further analyze the performance and explore some de-
tails of selected lightweight models, we conduct various ab-
lation studies.
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2D Print 2D Display 3D

PictureBook ScanPhoto Packaging Cloth TV Computer Doll Wax

ResNet50 2.50 5.51 2.03 0.00 1.23 1.87 8.05 9.00

ShuffleNetv2 6.04 9.75 4.61 2.70 2.20 3.12 10.19 14.92
MobileNetv3 3.85 11.30 2.71 1.35 2.24 2.52 16.71 16.40
MicroNet 7.03 8.84 4.33 0.45 2.36 2.86 15.86 18.54

Table 3. APCER results (%) on the InsightFace WFAS Test Set by spoof category.

4.5.1 Impact of non-linearities

In Table 4, we compare the performance of lightweight
models using three different activation functions ReLU
[35], PReLU [11] and DY-Shift-Max [19] on the Insight-
Face WFAS dataset. We can see that, for ShuffleNetv2 and
MobileNetv3, ReLU and PReLU exhibit very similar per-
formance, being PReLU a little better. In the case of Mi-
croNet, DY-Shift-Max reaches the best ACER value, which
corroborates the effectiveness of authors’ proposal of using
this activation function with their model [19].

Method Activation ACER(%)

ShuffleNetv2 ReLU 8.72
PReLU 8.64

DY-Shift-Max 11.42

MobileNetv3 ReLU 8.41
PReLU 8.17

DY-Shift-Max 10.33

MicroNet ReLU 13.86
PReLU 11.67

DY-Shift-Max 11.08

Table 4. Impact of non-linearities on the lightweight FAS models
in the InsightFace WFAS dataset.

4.5.2 Impact of fine-tuning

Table 5 presents the performance of lightweight face mod-
els with and without fine-tuning (FT) on the CelebA-Spoof
dataset. It can be clearly seen that, retraining models from
scratch degrades considerably the performance of models,
especially for the spoof images classification. In contrast,
fine-tuning offers a more accurate option which also re-
quires less computational efforts.

4.6. Cross-dataset evaluation

In order to measure the cross-dataset level domain gener-
alization ability, models trained on one dataset (source do-
main) are then tested on an unseen dataset (shifted target

Method APCER(%) BPCER(%) ACER(%)

ShuffleNetv2 17.77 1.13 9.45
ShuffleNetv2-FT 7.79 1.25 4.52

MobileNetv3 15.24 0.91 8.08
MobileNetv3-FT 5.46 0.96 3.21

MicroNet 13.71 3.29 8.50
MicroNet-FT 8.31 1.49 4.90

Table 5. Performance comparison of using models trained from
scratch and fine-tuning (FT) models on CelebA-Spoof dataset.

domain). Specifically, the cross-dataset testing is conducted
between CelebA-Spoof and InsightFace WFAS databases.
Thus, two evaluation protocols are implemented. In the
first one, the models are trained on CelebA-Spoof and then,
they are tested on InsightFace WFAS, while the second one
consists of training on InsightFace WFAS and testing on
CelebA-Spoof.

Table 6 shows the results from cross-dataset testing. It
can be seen that, for all models, the performance degrades
with respect to those obtained in the intra-dataset evalua-
tions. Nevertheless, lightweight FAS models improve the
HTER results achieved by ResNet50 on the first protocol,
being the MicroNet the best performing one. On the sec-
ond protocol, both ResNet50 and lightweight models obtain
comparable results.

Protocol Model HTER(%)

Trained on CelebA-Spoof ResNet50 44.5
Tested on InsightFace WFAS ShuffleNetv2 43.5

MobileNetv3 38.1
MicroNet 36.2

Trained on InsightFace WFAS ResNet50 29.1
Tested on CelebA-Spoof ShuffleNetv2 29.1

MobileNetv3 30.1
MicroNet 29.2

Table 6. HTER (%) results of cross-dataset testing between
CelebA-Spoof and InsightFace WFAS datasets.

6397



4.7. Visualization

In order to gain a deeper understanding of the character-
istics that impact the classification decisions, we generated
relevancy maps for some live and spoof faces. We adopt the
Gradient-weighted Class Activation Mapping (Grad-CAM)
method [38] that uses the gradient information flowing into
the last convolutional layer of the CNN to assign impor-
tance values to each neuron for a particular decision of in-
terest, without any modification in the network architecture.
In Figures 3 and 4, we show the activated regions for some
sample images of CelebA-Spoof and InsightFace WFAS
databases, respectively. As it can be seen, there are sub-
tle differences between the relevance regions on spoof and
live samples.

Live Print Paper Replay 3D

Original

ShuffleNetv2

MobileNetv3

MicroNet

Figure 3. Grad-CAM for images from the CelebA-Spoof database.

Live Live Spoof Spoof

Original

ShuffleNetv2

MobileNetv3

MicroNet

Figure 4. Grad-CAM for images from the InsightFace WFAS
database.

Figure 5 and Figure 6 show the t-SNE plots of Shuf-
fleNetv2, MobileNetv3 and MicroNet embeddings obtained
from pretrained models on the InsightFace WFAS and
CelebA-Spoof datasets, respectively. The plots were com-
puted using the predicted labels on the InsightFace WFAS
plot and the provided spoof type labels on the CelebA-
Spoof plot, for a subset from the test sets of both databases.
It can be seen that in general, there is an acceptable separa-
bility between spoof and live samples for the three models.
MobileNetV3 shows more complex embedding regions per
class, capturing non-linearities more accurately.

4.8. Computational complexity

In this section, we assess the computational complex-
ity of the used lightweight models and compare them with
popular FAS deep models. Specifically, we analyze the
Floating Point Operations Per Second (FLOPs) and model
parameters. From Table 7, we can see that the selected
lightweight architectures exhibit significant computation
improvements, allowing us to reduce the complexity of FAS
solutions. In particular, ShuffleNetv2 has the least number
of parameters, followed by MicroNet which presents an ex-
tremely low GFLOPs value, outperforming the remaining
models by a large margin.

Method GFLOPs Params (M)

ResNet18 1.82 11.18
ResNet50 4.14 25.64
AENet [52] 3.64 42.70
Auxiliary [26] 8.50 2.20
Auto-FAS [48] 0.53 2.70

ShuffleNetv2 0.15 1.57
MobileNetv3 0.38 4.75
MicroNet 0.03 1.82

Table 7. Computational complexity comparison.

4.9. Discussion

From the experimental results obtained on both CelebA-
Spoof and InsightFace WFAS datasets, it can be seen that
FAS methods based on lightweight networks are able to
achieve an accuracy as good as state-of-the-art FAS meth-
ods based on heavier deep models, with a lower computa-
tional complexity. In particular, lightweight models were
able to improve the performance of ResNet50 in most of
evaluated FAS scenarios.

On the other hand, it was shown that PReLU activa-
tion function is the best choice for ShuffleNetv2 and Mo-
bileNetv3, while DY-Shift-Max achieves the best perfor-
mance in the case of MicroNet. In addition, we corroborate
that fine-tuning already pre-trained models offers signifi-
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(a) (b) (c)

Figure 5. T-SNE plots corresponding to the embedding distribution from (a) ShuffleNetv2, (b) MobileNetv3 and (c) MicroNet on the
InsightFace WFAS dataset.

(a) (b) (c)

Figure 6. T-SNE plots corresponding to the embedding distribution from (a) ShuffleNetv2, (b) MobileNetv3 and (c) MicroNet on the
CelebA-Spoof dataset.

cantly better results than retraining the models from scratch.
Even though lightweight FAS models work well on intra-
dataset scenario, cross-dataset performance needs further
improvements.

Taking into account that, just training or fine-tuning
lightweight models for the FAS task was sufficient to
achieve competitive results in challenging benchmarks, fu-
ture improvements can be focus on using this kind of ar-
chitectures as backbone of more complex FAS approaches
including domain generalization or zero/few-shot learning
techniques. Improvements in training methodologies are
also a viable research direction. Exploiting rich attribute
information can lower the error of specific spoof classes;
however, it does not guarantee an improvement on the Av-
erage Classification Error rate.

All the results show that, using lightweight architectures
is promising and reliable to be deployed FAS applications in
mobile devices. In general, MobileNetv3 model offers the
best trade-off between accuracy and efficiency, indicating
its effectiveness in the design of real-time FAS.

5. Conclusion
In this paper, we have shown the effectiveness of

lightweight deep networks for the face anti-spoofing task.

Specifically, assess the performance of three state-of-the-art
lightweight models: ShuffleNetv2, MobileNetv3 and Mi-
croNet, in the challenge and large-scale CelebA-Spoof and
InsightFace WFAS datasets. Experimental results on both
unseen attacks and domains show that, using lightweight
models achieved very competitive results compared with
heavy deep models such as ResNet50. Moreover, we ana-
lyzed the impact on the accuracy of the lightweight mod-
els when applying different activation functions and us-
ing fine-tuned pretrained models instead of trained from
scratch. Regarding the computational complexity of the
lightweight models, they prove to be very suitable in deal-
ing with the current limitations of FAS methods for efficient
deployment. Among the tested lightweight networks, Mo-
bileNetv3 exhibited the best overall performance for FAS
scenarios. We hope that, this work serve as baseline for
further research related to the development of accurate and
efficient face anti-spoofing solutions in mobile devices.
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