Patchworking the Log-critical locus of planar curves - Archive ouverte HAL
Article Dans Une Revue Journal für die reine und angewandte Mathematik Année : 2022

Patchworking the Log-critical locus of planar curves

Résumé

Abstract We establish a patchworking theorem à la Viro for the Log-critical locus of algebraic curves in ( ℂ ∗ ) 2 {(\mathbb{C}^{\ast})^{2}} . As an application, we prove the existence of projective curves of arbitrary degree with smooth connected Log-critical locus. To prove our patchworking theorem, we study the behaviour of Log-inflection points along families of curves defined by Viro polynomials. In particular, we prove a generalisation of a theorem of Mikhalkin and the second author on the tropical limit of Log-inflection points.

Dates et versions

hal-04393638 , version 1 (14-01-2024)

Identifiants

Citer

Lionel Lang, Arthur Renaudineau. Patchworking the Log-critical locus of planar curves. Journal für die reine und angewandte Mathematik, 2022, 2022 (792), pp.115-143. ⟨10.1515/crelle-2022-0054⟩. ⟨hal-04393638⟩
4 Consultations
0 Téléchargements

Altmetric

Partager

More