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Abstract—Vehicular Ad hoc Networks (VANETs) offer a
promising approach to enhancing road safety. Cooperative
Awareness Messages (CAM) is an essential service in VANETs,
allowing vehicles to transmit radio beacons containing their
positions and velocities. These messages inform nearby vehicles
about the traffic situation. This paper focuses on Extended Coop-
erative Awareness Messages (ECAM), which include additional
information about nearby vehicles. ECAM beacons consist of a
vehicle’s speed, position, and data on the positions and velocities
of other vehicles in its vicinity. This comprehensive information
enables nearby vehicles to understand the traffic situation and
take appropriate actions to prevent potential collisions. Stud-
ies demonstrate that ECAM has the potential to significantly
improve road safety by providing comprehensive and up-to-
date traffic information. This paper uses stochastic geometry to
evaluate different versions of ECAM services and compare the
results with simple simulations. The evaluation assumes random
vehicle placement using a homogeneous Poisson Point Process
and models the ECAM service using the Matern Point Process.

Index Terms—VANET - CAM - ECAM - Stochastic Geometry
- Poisson Point Process

I. INTRODUCTION

Vehicular Ad hoc NETworks (VANETs) [13] [14] is a key
component of Intelligent Transportation Systems (ITS). They
can ensure connectivity between vehicles with or without a
fixed network infrastructure. In a VANET, vehicles cooperate
to collect and share information with each other, the road
infrastructure, and other vulnerable road users. Vehicle-to-
vehicle communications have the potential to make a sig-
nificant contribution to overall traffic control by improving
road safety. Two types of messages can be sent: i.) Coopera-
tive Awareness Messages (CAMs) [12] and ii.) Decentralized
Emergency Notification Messages (DENMs). CAM Messages
are periodic and usually sent in broadcast and at one hop.
They carry the vehicles’ positions and velocities to warn other
vehicles and prevent collisions. DENM messages are used
when a dangerous event is detected. These messages are thus
aperiodic and usually relayed on a few hops.

In dense vehicular networks, CAM messages are typically
transmitted at a frequency of 10 Hz, resulting in a substantial
amount of data on the radio channel. One approach to address
this bandwidth challenge is to adjust the frequency of CAM
messages based on the network’s density. However, reducing
the message frequency may not always be optimal, as it could

lead to an increased risk of accidents when vehicle density
rises. An alternative solution involves employing additional
detection techniques, such as sensors or visible light communi-
cation units, to gather information about neighboring vehicles,
including their speed and position. By incorporating this extra
information, vehicles can send Extended CAM messages that
encompass their own speed and position and that of nearby
vehicles [1], [2]. Despite Extended CAM messages containing
more data than simple CAM messages, they help conserve
bandwidth by avoiding the constant overhead present in each
message.

This paper explores the optimal design of the Extended
Car Awareness Message Service and emphasizes the critical
role of vehicle selection, referred to as cluster heads, in
the protocol’s optimization. Three different approaches are
considered in this study. The first approach is a completely
random selection aimed at achieving network-wide coverage.
The second approach is a greedy algorithm where cluster heads
are selected based on the number of neighbors they can cover.
This selection process is repeated until all vehicles in the
network are covered by at least one cluster head. The third
approach utilizes a scheme derived from the Matern hard-core
selection process, a classical stochastic geometry point pro-
cess. We compare the performance of these three techniques
along with the optimal selection algorithm, providing insights
into their effectiveness. This comparative analysis aims to
identify the most efficient approach for building the Extended
Car Awareness Message Service.

The remainder of this paper is organized as follows: Section
II provides a comprehensive review of studies that focus on the
optimization of bandwidth for VANET safety services. Section
III presents the selection of nodes sending ECAM messages as
an optimization problem namely a binary ILP (Integer Linear
Programming) problem.

Section IV introduces the three algorithms that we propose
for this optimization. In Section V, we present the simulation
results and analyze their impact on performance. Finally,
Section VI concludes the paper and outlines potential future
work and development in this field.



II. RELATED STUDIES

In Vehicular Ad hoc Networks (VANETs), safety services
provided by Cooperative Awareness Messages (CAMs) or
Decentralized Environmental Notification Messages (DENMs)
are highly influenced by the vehicle density within the net-
work. The density of the vehicles and the channel bandwidth
used by the safety services increase simultaneously if no mit-
igation technique is used. In this section, we examine various
solutions that effectively manage and control the bandwidth
consumption of safety applications as the vehicle density on
the roads increases.

One approach to address the congestion challenge in vehicu-
lar networks is to dynamically adjust the packet data rate based
on the density of vehicles. [3] propose a congestion control
algorithm called Data Rate Decentralized Congestion Control
(DR-DCC). This algorithm operates within the ETSI DCC
(Decentralized Channel Control) framework [4] and focuses
on selecting the optimal data rate at different vehicle densities
to mitigate congestion and support various safety applications.
The study demonstrates that DR-DCC outperforms schemes
based on transmission power control by achieving better Inter
Reception Time (IRT). However, due to higher data rates, DR-
DCC faces a penalty in transmission range selection in highly
dense traffic. It maintains good IRT performance within the
critical range of 150 meters. Furthermore, [3] compares DR-
DCC with another algorithm called Transmission Power DCC
(TP-DCC). The results show that DR-DCC performs better,
providing shorter IRT than TP-DCC for the same transmission
range. This highlights the efficiency of DR-DCC in reducing
congestion and enhancing safety communication.

In another work [8], the authors try to reduce congestion
through transmission rate control. This scheme relies on the
channel’s busy-time as a metric to estimate the traffic density
and the number of vehicle nodes in the vicinity.

Another approach to mitigate congestion in vehicular net-
works is to dynamically adjust the transmission power based
on the density of vehicles. [5] present a solution that incor-
porates a dynamic packet reception model and an adaptive
transmission power control mechanism. They aim to reduce
congestion and enhance the packet reception rate using the
Model Predictive Control (MPC) approach [6]. The proposed
solution recognizes that altering the transmission power in
CSMA networks can have a similar effect to optimizing the
carrier-sense threshold [17]. By leveraging this understanding,
the adaptive transmission power control mechanism adapts the
transmission power based on the vehicle density, aiming to
alleviate congestion and enhance overall network performance.

In this work [7], first, the authors design a dynamic packet
reception model and then estimate the vehicle density using the
velocity and vehicle flow rate. Based on these two factors, they
build an adaptive power control algorithm. Using extensive
simulations, the authors show that this mechanism can improve
the congestion in a vehicular network.

In [9], a Distributed Fair Power Adjustment scheme is
proposed to address congestion on the control channel in

vehicular networks. This scheme utilizes a dynamic control
strategy that adjusts the transmission power of beacons for
safety applications based on the node density. By decreasing
the transmission power and limiting the neighborhood area
of nodes, the algorithm effectively reduces congestion on the
radio channel.

Similarly, [10] proposes a two-level transmission power
scheme named the bi-beacon scheme to reduce the collision
rate. The transmission Power Control scheme uses two dif-
ferent transmission ranges decided by the vehicle’s speed for
disseminating the beacons. The vehicles alternately transmit
long-range and short-range beacons with an equal generation
rate. Moreover, the authors used a contention window control
scheme to minimize collision in a dense vehicle environment.
In [11], a protocol selects a minimum CAM transmission
power to keep the vehicles connected within a Cooperative
Safety Zone. In this algorithm, the distance between the
source vehicle and its nearest neighbors, called critical nodes,
determines the transmission power. Moreover, Cooperative
piggybacking has been used to extend awareness beyond the
safety zone in the network.

In contrast to the previous studies that focused on varying
data rates or transmission power to reduce channel load
and improve CAM transmission in the neighborhood, we
propose in a previous study an alternative solution based on
cooperative transmission [1], [2]. This solution keeps the data
rate and transmission power unchanged. The concept leverages
the vehicle’s embedded sensors to capture information about
their surrounding vehicles. Dedicated vehicles then transmit
Extended CAMs, which have their own speed and position
and incorporate the speeds and positions of the surrounding
vehicles. By leveraging cooperative transmission and sharing
this additional information, the objective is to enhance the
overall awareness of neighboring vehicles and improve CAM
transmission’s effectiveness without modifying data rates or
the transmission power. This approach allows for a collabora-
tive and cooperative exchange of critical information, thereby
contributing to safer and more efficient communication within
the vehicular network.

III. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

As introduced before, this paper aims to explore the optimal
design of the Extended Car Awareness Message Service and
emphasizes the critical role of vehicle selection, noted as
vehicle cluster heads. Basically, to optimize the operation
of the ECAM, it is crucial to make intelligent selections of
the nodes responsible for broadcasting their own information
and that of their detected neighboring vehicles. By making
intelligent vehicles selection, we can further minimize the
number of messages transmitted over the radio channel while
ensuring or maximizing the level of awareness that each
vehicle has of its surrounding environment. In the following,
we start by formulating the optimization problem behind such
optimization problem, and then we propose three vehicles
selection algorithms to send the ECAM in the next section.



ECAM: vehicle cluster heads selection optimization problem

This section proposes formulating the vehicle cluster head
selection in ECAM as an optimization problem. The idea is to
find the minimum number of nodes to transmit the ECAM to
allow total coverage. This leads to the fact that all the nodes
are informed of the position and the speed of any other nodes
within their communication radius.

Let us consider that we have a set of vehicle nodes (N ) in
an area A. We associate to each node a sensing range denoted
by si, i ∈ N . We also denote by Si the set of nodes within the
sensing range of a node i. In ECAM, each node periodically
sends a message that transmits its position and the positions
of all nodes that belong to its sensing range (set of nodes j,
∀j ∈ Si). This message is received by all the nodes in the
communication range of a node i, which we denote by ri. We
also denote by Ri the set of nodes within the communication
range of i and receive any message it sends.

The objective is that all the nodes have to be aware of
the positions of all nodes that belong to their communication
ranges. Basically, we need to find the minimum number
of nodes that should transmit their ECAM message while
ensuring that all the nodes are aware of the nodes that belong
to their communication range. Let’s consider a binary variable,
noted as xi, that indicates whether a node i transmits its
ECAM message. This means that xi = 1 if the node i has
to transmit its ECAM message, 0 otherwise.

We also define that a node j is aware of the existence of
a node k using a second binary variable, noted as yij,k. This
variable indicates if a node j is informed by the existence (i.e.
the position) of node k, by node i. Basically, yij,k = 1 if the
ECAM message transmitted by the node i informs the node
j about the position of the node k and the node k belongs
to both the sensing range of node i and the communication
range of node j, 0 otherwise. yij,k is also equal to 1 in the
case where the i = k, which means that the node transmitting
its ECAM (here node i) is also informing the node j about its
position. Finally, yij,k is also equal to 1 for all nodes k that
belong to their sensing range (∀i ∈ Rj) since all nodes are
aware of the nodes that are within their sensing range, thanks
to the embedded sensors. According to the last definition, we
can easily formulate our problem as a Binary ILP problem as
follows:

minimize

N∑
i=1

xi

subject to

N∑
i=1

yij,k · xi ≥ 1, ∀j ∈ N, ∀k ∈ Rj ,

xi ∈ {0, 1}, ∀i ∈ N,

yij,k ∈ {0, 1}, ∀i ∈ N, ∀j ∈ N, ∀k ∈ Rj

While the previous formulation enables the selection of
vehicles responsible for transmitting ECAM messages, it re-
quires executing such a solution in a fully centralized manner.
Nevertheless, such centralization comes with high costs in

terms of computation and communication, which contradicts
our objective of reducing the radio channel load. Hence, it is
crucial to develop distributed solutions capable of achieving
performance levels as close to the optimal solution.

IV. PROPOSALS

In the following, we propose three different algorithms.
The first algorithm is a greedy algorithm, which is also a
centralized algorithm. We iteratively select the nodes that
cover the maximum number of neighbors. We proceed with
selection until all the nodes are covered. The second one
is a random selection of the vehicles until all the network
nodes are covered. Finally, the last algorithm uses the Matern
selection process used in stochastic geometry. The idea is to
give a random mark to all the network nodes. There will be
an auto-selection of the node with the smallest mark. The last
two algorithms are fully decentralized. In the following, we
describe in detail each of the algorithms.

A. Greedy vehicle selection method
For the greedy algorithm, the steps that follow each of the

vehicles are: First, compute the number of neighbors of every
node in the network. Second, select the node which has the
largest number of neighbors. Third, remove this node and its
neighbors. These three steps must be repeated until no more
vehicles are covered by the ECAM messages.

We have to notice that this algorithm is centralized. Thus, it
is difficult to run it for real. We can think of this algorithm as
a basic algorithm to evaluate the improvement obtained from
the ECAM scheme.

B. Random vehicle selection method
For this distributed approach, each vehicle randomly

chooses to send its ECAM in its neighborhood with a given
probability q. As soon as a node receives an ECAM mention-
ing its speed and position its stops sending its CAM. This
algorithm gradually increases the number of nodes sending
extended ECAMs and the whole network finishes being com-
pletely covered.

C. Matern vehicle selection method
This algorithm is fully distributed. All the nodes in the

network receive a random mark, a real number between 0 and
1. The idea is to select one node such as in its neighborhood
this node has the largest mark. When the algorithm starts,
all the nodes send their ECAMs. These ECAMs carry their
random marks. If a node receives an ECAM sent by a node
that has a larger random mark, the former node stops sending
its ECAM.

This algorithm implements the Matern hard core selection
process [15]. Interestingly, when the vehicle follows a ho-
mogeneous Poisson point process, it is easy to compute the
probability that a node is retained in the Matern process. If
we denote by λ the intensity of the Poisson process and we
denote by l the sensing range, the probability that a node is
retained is:

pr =
1− exp(−2λl)

2λl
(1)
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Fig. 1: A selection of sending vehicles with the ECAM
- Matern algorithm. Vehicle C is not covered since D is
eliminated by C

Fig. 2: Comparison between all ECAM algorithms

This algorithm is designed to mimic greedy selection.
However, we can not be sure that all the nodes will be covered
by the algorithm. For instance, in Figure 1, two nodes (node
A and node B ) are selected as they carry the largest mark in
their neighborhoods. However, node C in-between node A and
node B is eliminated by node D, and node D is eliminated
by node A. Thus node C is not covered since it should be by
node D itself eliminated.

V. EVALUATION

To evaluate our algorithms, we assume we have a ten-
kilometer road with 1000 vehicles. These are randomly dis-
tributed on the road. We vary the sensing range from 10 to 40
meters.

In Figure 2, we compare the different ECAM algorithms.
We show the mean number of nodes selected by the algorithms
versus the sensing range of the vehicles. We observe that the
ECAM-opt is very close to the ECAM-Matern algorithm. The
number of selected vehicles is slightly higher for the ECAM-
Greedy algorithm and still higher for the ECAM-Random
algorithm, even if the order of magnitude for all the algorithms
remains the same.

In Figure 3, we compare for the ECAM M1 algorithm the
mean number of nodes selected by the algorithm and the mean
number of nodes selected predicted by the formula of the

1M for Matern

Fig. 3: Comparison between the Matern model and simulation
of the Matern process

Matern model. We observe an excellent matching between the
two approaches. So in the next comparisons, we can use the
analytical formula to evaluate the ECAM M algorithm.

In Figure 4, we evaluate the ECAM Greedy algorithm and
we compare to the ECAM M algorithm. The ECAM Greedy
algorithm saves 57% in the number of CAM transmissions
for a sensing range of 10m, 74% in the number of CAM
transmissions for a sensing range of 20m, 81% in the number
of CAM transmissions for a sensing range of 30m and 85%
in the number of CAM transmissions for a sensing range
of 40m. We observe that the algorithm derived from the
Matern selection process provides results close to those of
the ECAM Greedy algorithm. Therefore, our intuition seems
to be correct that the ECAM M algorithm mimics the ECAM
Greedy algorithm. Thus, the ECAM Matern analytical model
can be an excellent approximation for the performance of the
ECAM Greedy algorithm.

In Figure 5, we evaluate the ECAM Random algorithm
and compare to a shifted version of the ECAM M algorithm.
We show that the ECAM Random algorithm saves 53% in
the number of CAM transmissions for a sensing range of
10m, 70% in the number of CAM transmissions for a sensing
range of 20m, 78% in the number of CAM transmissions for
a sensing range of 30m and 83% in the number of CAM
transmissions for a sensing range of 40m. We also show the
ECAM Random algorithm.

We can also notice that if we use the following formula:

pr =
1− exp(−2λl)

2λl
+ 0.05 (2)

we obtain a very good approximation of the ECAM R algo-
rithm, see Figure 5. This approximation will be valid for every
linear Poisson point process with 1 < λl < 4.

In the following, we wish to study to quantify what is gained
in bandwidth using the ECAM techniques. If we assume that
a resource 1 is necessary to send CAMs we wish to compute



Fig. 4: Comparison between the ECAM greedy and Matern
model

Fig. 5: Comparison between the ECAM random and the
Matern shifted model

the resource x necessary if we use ECAM. For this evaluation,
we take into account the reduction of the number of messages
sent but we also consider that the ECAMs sent are larger
than the usual CAM messages. To carry out this evaluation
we adopt the the structure of the CAM packet presented in
Figure 6 and values for the field length proposed in [16].
The result of this computation is given in Figure 7. For the
ECAM Random algorithm, the fraction used by this algorithm
is between 0.53 and 0.25 when 1 is the bandwidth needed for
the CAM algorithm. For the ECAM Greedy algorithm, the
fraction used by this algorithm is between 0.49 and 0.21 when
1 is the bandwidth needed for the CAM algorithm.

VI. CONCLUSION

VANETs are continuously progressing, bringing benefits
that can improve road safety at multiple levels. CAMs are
messages that carry the nodes’ positions and speed and thus
can be very useful to increase safety in vehicular networks.
But the amount of traffic in terms of the number of packets

Fig. 6: CAM Message with its fields

Fig. 7: Fraction of the bandwidth used for ECAMs. Reference
for CAMs equal to 1

sent can rapidly be high, and optimizations are very useful.
In an ECAM a vehicle sends in addition to its speed and
position the positions and speeds of vehicles within its sensors’
range. In this paper, we have discussed algorithms to select
the vehicles which send these ECAMs. We have shown that
the benefit of these algorithms is important. We have also
proposed an analytical model based on the Matern process
which evaluates the number of vehicles sending ECAMs in the
random and greedy approach. Thus one can easily evaluate the
gain obtained with ECAMs compared with when every vehicle
sends classical CAMs. With reasonable figures, we show that
the gain in bandwidth can be easily evaluated using a model
derived from the Matern selection process. This gain remains
large in normal conditions of utilization.
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