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Abstract

Offloading high-demanding applications to the edge provides better quality of experience (QoE) for users
with limited hardware devices. However, to maintain a competitive QoE, infrastructure, and service providers
must adapt to users’ different mobility patterns, which can be challenging, especially for location-based services
(LBS). Another issue that needs to be tackled is the increasing demand for user privacy protection. With less
(accurate) information regarding user location, preferences, and usage patterns, forecasting the performance of
offloading mechanisms becomes even more challenging. This work discusses the impacts of users’ privacy and
mobility when offloading to the edge. Different privacy and mobility scenarios are simulated and discussed to
shed light on the trade-offs (e.g., privacy protection at the cost of increased latency) among privacy protection,
mobility, and offloading performance.
Keywords: Offloading, MEC, mobility, privacy.
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1 Introduction
Mobile devices have undergone a significant transformation from small devices with limited capacity to mobile
mini-computers, leading to exponential growth in the mobile application markets. However, with this growth
comes a sharp increase in application needs in terms of computational resources from applications such as virtual
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reality (VR), augmented reality (AR), and interactive games [3], which even our modern mobile terminals cannot
well fulfill.

To tackle this issue, edge computing was proposed as a technology in which computational resources are
moved to the Edge of the network to reduce latency and guarantee the quality of service [2]. Thus, users may
run their applications on the Edge using offloading techniques. This combination provides the user equipment
(UEs) with reduced CPU usage, extended battery life, support for more robust and sophisticated applications, and
potentially unlimited storage [17].

One challenge that offloading algorithms face is related to user mobility [16]. Users who run their applications
on the Edge can move freely in the city, which may significantly affect some applications. Thus, adapting to the
users’ mobility patterns becomes a challenge as Multi-access Edge Computing (MEC) providers want to keep
users’ Quality of Experience (QoE) while also dealing with the stress of mobility on their infrastructure through
complex operations, e.g., task reallocation.

Figure 1: Precise vs. approximate location on Android 12.
Another issue that operators and service providers have recently faced is that users are becoming increasingly

aware and concerned about their privacy. As such, governments in various parts of the world responded to this
concern with data protection and privacy regulations, e.g., RGPD1 in Europe and LGPD2 in Brazil. For example,
as illustrated by Figure 1, Android 12, released in 2021, changed how user location is accessed, and now users can
choose between providing their precise locations or approximate ones.

Privacy concern is an issue for operators and service providers because they need to keep users’ privacy and
adapt and improve their techniques, e.g., offloading techniques, to maintain competitive performance. In most
cases, the more accurate the information you have about the user (e.g., his location), the easier it becomes to predict
and anticipate user demand. Yet, most prior studies have evaluated Edge offloading without any consideration
of location privacy, especially in complex scenarios composed of multiple applications, each one with distinct
requirements, as well as heterogeneous mobility patterns (reflecting, for instance, different mobility types), while
analyzing how each of these factors (and combinations of them) may affect the offloading performance.

Our goal is to fill this gap by investigating the impact of user mobility and privacy when offloading to the
Edge in multi-application and multi-mobility scenarios. To that end, we employ a combination of state-of-the-art
techniques/tools related to mobility and privacy to simulate a large set of scenarios with different user privacy
and mobility patterns. As such, our goal is not to propose a new privacy or security technique but rather to offer
insights (e.g., how slow mobility types can suffer more with privacy than fast ones) into the trade-offs between
user privacy, mobility, and computational offloading performance.

The rest of the paper is structured as follows. Section 2 presents related work. Section 3 describes the system
model and problem description. Sections 4 and 5 discuss our evaluation methodology and main results, respec-
tively, while Section 6 offers conclusions and directions for future work.

1https://eur-lex.europa.eu/eli/reg/2016/679/oj
2https://www.gov.br/cidadania/pt-br/acesso-a-informacao/lgpd
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2 Related work
Prior work mostly related to our effort tackles (combinations of) aspects related to user privacy, mobility, multi-
application scenarios, edge computing, and offloading. However, many of them only considered a few of these
aspects. For example, in [5], authors discussed the privacy issues of task offloading with MEC from two perspec-
tives, location privacy, and usage privacy. The authors proposed a Markov decision process to improve latency and
energy consumption while keeping pre-specified levels of privacy, but no mobility analysis was offered. Authors
in [14] focused on minimizing offloading latency considering user mobility and movement for AR users but did
not consider privacy. In turn, authors in [15] focused on task offloading in a scenario of unmanned aerial vehicles
with limited energy and computing capacities. The paper focused on privacy but from a computation offloading
preference leakage perspective, not focusing on user location privacy.

In contrast, two recent studies have jointly explored most of those aspects. In [10], the authors proposed a
mobility and privacy-aware offloading meta-heuristic method for a particular scenario, namely, AR applications
that deal with patients’ private information in healthcare systems. Instead, we here consider scenarios where re-
quests from diverse applications compete to be able to offload their requests. In [8], the authors focused on the
privacy leakage issue of MEC offloading, assuming an honest-but-curious server as we do in this paper. They
proposed a computational offloading mechanism that provides user privacy while minimizing the total computa-
tion cost. However, their work considered homogeneous user mobility patterns, whereas we explored different
mobility classes, which, as will be discussed, significantly impact the results.

3 System model and problem description
Let us consider a MEC environment composed of a set B = {1,2, ...,B} of base stations (BSs) and a set M =
{1,2, ...,M} of MEC Hosts (MHs), as illustrated in Figure 2. Any BS can reach and offload user applications to any
MH of choice. Each BS i (MH j) has a throughput capacity of T BS

i (T MH
j ). We consider a set U = {1,2, ...,U}

of users, each one modeled by a mobility type, an application, and a privacy level. The user mobility type can
be car passenger, bus passenger, or pedestrian. The application can be video streaming, AR, or VR. Finally, the
privacy level can be none, medium, or high. Each application has particular requirements in terms of network
resources, which are expressed as:

BS1 BS3
BS2

Base stations

MH2

MH1

MEC Hosts

Users

Figure 2: System overview.

• A t : the throughput demand (i.e., demanded traffic volume), measured in megabits per second (Mbps).

• A l : the latency demand (i.e., maximum accepted latency), measured in milliseconds (ms).

The throughput demand is met if there are enough network resources available at the selected MH j (i.e.,
T MH

j ≥ A t ) and if the throughput between the UE and the BS the user is associated to is greater or equal than
the throughput demand. The throughput between UE-BS is computed using Shannon’s capacity formula [13]. If
the total throughput from the UEs connected to BS i exceeds T BS

i , BS i’s capacity is distributed among them
following the proportional fairness method [6].
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The latency demand is met if the latency between the BS the user is associated with and the MH selected
to handle his request is less than or equal to the latency demand. The latency between BS-MH in this work is
calculated based on the distance between the BS and the MH.

This work assumes that the UE is always associated with the closest (Euclidean distance) BS. Once the UE is
associated, it requests the network provider to offload an application. The network provider will then report the
UE’s position to the MEC provider, which, in turn, will assign the closest MH to the BS the UE is associated with
to handle the user’s request, i.e., offload the application. Finally, if the requirements of the user’s application are
met, it is offloaded to the MEC system, consuming A t resources from the MH j it was allocated to.

Figure 3 illustrates how we model privacy in our system. We assume the existence of two infrastructure en-
tities: i) the network provider; responsible for the BSs, communication, routing, etc., and ii) the MEC provider;
responsible for the MH computational resources. We aim to protect user location from the MEC provider’s per-
spective, as trying to mask (or fake) the user’s real location from the network provider is a different challenge
since the UE is associated with a BS3.

MH2

MH1
Closest  

MH

Geo-indistinguishability area

Closest  
MH

Real  
location

Fake 
location

Non-private 
selection (MH1)

Private 
selection  

(MH2)

BS1

BS2

Figure 3: Privacy overview.

In Figure 3, we represent two different MH selections, a non-private selection and a private selection. A non-
private selection, illustrated by the pedestrian in the center of the circle, occurs when the user is not concerned
with his location privacy (privacy level set to none). In this case, the network provider will report the user’s real
location to the MEC provider, and the MEC provider will assign MH1, which corresponds to the closest MH to
the BS to which the user is connected. MH1 will then handle the user’s request.

A private selection, in turn, occurs when the user is concerned about his location privacy, which corresponds
to a privacy level set to medium or high. In this case, the network provider knows the user’s real location. Yet,
it will apply geo-indistinguishability [4], a state-of-the-art technique based on differential privacy, to generate a
fake location, represented by the pedestrian near the circle’s edge (see further discussion below). The network
provider reports to the MEC provider the user’s fake location (not the real one). The MEC provider, in turn, will
assume the user is connected to the BS at the bottom of the figure and will assign MH2 to it, as it is the closest
MH to that particular BS. MH2 will then handle the user’s request. Hence, the user will gain privacy but he may
lose performance as his application may no longer be offloaded to the MH that is closest to the BS he is actually
connected to. This may affect application latency, resulting in QoE degradation or even failing the application
demands, leading to a denied request.

To check if the application latency demand is met, the MEC provider asks the network provider to measure
the latency between the selected MH and the BS to which the user is connected. The application is offloaded if
the obtained latency is less than or equal to the application demand. We note that the MEC provider could ask the
network provider to measure the latency between the selected MH to all BSs to gain more information about the
user’s real location. Yet, it would be cost-inefficient to do that for every user request in a large-scale environment.
Also, to efficiently guarantee user location privacy, we assume an honest-but-curious adversary [8, 9], meaning

3Even though there are works that consider the network and MEC provider being only one entity, this assumption is not in the scope of this
work.
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Figure 4: Geo-indistinguishability mechanism representation, inspired by [4].

Table 1: Simulation parameters.
Runs Area Users Car

pas.
Bus
pas.

Pedes. BSs MHs BS capac-
ity

MH ca-
pacity

Privacy
levels

30 4 km2 1250 400 400 450 475 95 10 Gbps 10.41
Gbps

ε = ∞, 0.1,
0.01

that the MEC provider will not deviate from the defined protocol, even though it attempts to learn all possible
information from legitimately received requests.

As mentioned, we here use geo-indistinguishability to provide location privacy for the user by producing a
new (fake) location. Figure 4 illustrates how this method works. Consider a tourist in Toronto, visiting the Royal
Ontario Museum, who intends to offload his application or do any kind of LBS request. The tourist, concerned
with his privacy, does not wish to share his precise location (represented by a red point). Instead, he will share an
approximate (fake) location. Geo-indistinguishability works by defining a circle centered around the user’s real
location and uniformly selecting a new/fake location inside this circle. The circle’s radius is computed based on
parameter ε . Smaller values of ε result in greater circle’s radius. The new location selection is uniform across
the circle. Thus a bigger circle around the user will cover more locations, lowering the probability that real and
fake locations are close to each other. Thus, greater privacy levels are achieved by using smaller ε values as these
lead to greater noise added to fake the user’s real position.

Given that the relationship between ε and privacy is inversely proportional, ε = ∞ is a baseline in this mecha-
nism, and it represents the user’s real position, i.e., if ε = ∞, then privacy is non-existent. In Figure 4, five different
ε values are presented, each one next to the circle it generated, such that ε∞ > ε4 > ε3 > ε2 > ε1. As illustrated,
with a larger value of ε , e.g., ε4, geo-indistinguishability has fewer locations to assign a new (fake) position for the
tourist, mainly outside of the museum or in nearby streets. In contrast, a smaller value of ε , e.g., ε3, can generate
fake positions that ε4 could not, such as the University of Toronto or the Toronto Public Library.

4 Evaluation methodology
This section defines our evaluation methodology by introducing the main parameters used to build our evaluation
scenarios. Recall that our goal is to tackle the question: What are the impacts of user privacy and mobility when
offloading to the edge? Thus, our parameters, summarized in Tables 1 and 2, relate to mobility, privacy, and (edge)
infrastructure and computational resources.

We simulated different user mobility patterns by considering three mobility types: car passengers, bus pas-
sengers, and pedestrians. To that end, we used SUMO (Simulation of Urban MObility)4, a widely used mobility
simulator. We simulated 30 different runs with SUMO following the Manhattan Mobility Model5, each time with

4https://www.eclipse.org/sumo/
5https://sumo.dlr.de/docs/Tutorials/Manhattan.html
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Table 2: Applications parameters.
Application Bandwidth

req.
Latency req. % of cars pas.

using
% of bus pas.
using

% of pedes. us-
ing

Video 70 Mbps 10 ms 70% 70% 70%
AR 100 Mbps 30 ms 15% 15% 30%
VR 132 Mbps 14 ms 15% 15% -

a different seed. Each run lasts for 1 hour, with a temporal resolution of 1 second, and considers a squared area
of 4 km2 (2 km × 2 km). We used the population density reported in [18], i.e., 312.5 users/km2, resulting in a
total of 1,250 users, which were distributed into the three mobility types as follows: 400 car passengers, 400 bus
passengers, and 450 pedestrians. We assume that each car has one passenger and each bus has 10 passengers,
generating a total of 440 vehicles in the area (400 cars and 40 buses).

To quantify and position BSs and MHs in the simulated area, we used Homogeneous Poisson point processes
(HPPP), as done in [18]. Specifically, we set the HPPP intensity parameter λ to 118.75, as reported for ‘Urban
Area 1’ in [18], leading to 475 BSs, and used λ=23.75 to generate and position 95 MHs in the simulated area. We
assumed that each BS i has a capacity T BS

i of 10 Gbps, as reported by 3GPP [1], and each MH j has a capacity
of T MH

j of 10.41 Gbps [12].
We defined three user privacy levels by varying the ε parameter used by the geo-indistinguishability method.

As discussed, the smaller the value of ε , the more private the user’s (real) position becomes. The first level,
referred to as none, corresponds to ε = ∞, the case when the user chooses not to have location privacy (user’s real
and fake positions are the same). It is used here as a baseline for comparison. The other two levels, i.e., medium
and high, are defined by setting ε = 0.1 and ε = 0.01 respectively, following a prior study on location privacy in
the edge [11].

To make our evaluation more realistic, we also considered the throughput and latency requirements of three
different types of applications: video streaming, augmented reality (AR), and virtual reality (VR), as presented in
Table 2. The video streaming and AR requirements were obtained from [12], whereas those for VR were obtained
from [7], both focusing on 5G scenarios. Following Cisco6 and Ericsson7 forecasts for network traffic in the
following years, we defined that 70% of the users are consuming a video streaming application. We distributed
the rest of the traffic (30%) evenly between AR and VR. We assume that the VR application does not fit the
pedestrian mobility type since they cannot be fully aware of their surroundings if they use a VR headset while
walking. Thus, we set that the pedestrians can only use a video streaming or AR application, while other mobility
types can use any of the three applications.

We conducted several experiments covering three user mobility patterns, three application types, and three
privacy protection scenarios. In short, given an input privacy level (ε = ∞,0.1 or 0.01), we ran 30 simulations
(by varying the seed) with user population (mobility patterns and applications) as described above, producing a
total of 90 different experiments. As discussed next, our results present very narrow 95% confidence intervals,
suggesting high accuracy.

5 Evaluation results
We now discuss our results of the impact of privacy, mobility and application types on the offloading performance.

5.1 Impact of privacy level
We start by evaluating the impact of the privacy level, captured by the value of ε , on the acceptance of requests.
We do so by comparing the outcome of each user request – offload was successful or failed – for each privacy
level (ε equal to ∞, 0.1, and 0.01). Recall that an offload request is successful whenever there is enough resource
at the selected MH and the user application’s bandwidth and latency requirements are met. Considering the
totality of user requests issued during a simulation run, we classify them into one of the three scenarios: Always
offloaded, Privacy dependent, and Never offloaded. The former corresponds to requests that were successful in
all runs, whereas the latter relates to requests that failed in all runs, regardless of the value of ε . Both categories
relate to requests that were not impacted by the particular privacy level adopted. Requests whose outcome varied
depending on the value of ε used fall into the privacy dependent category.

6https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
7https://www.ericsson.com/en/mobility-report/reports/november-2019/mobile-traffic-by-application-category
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Table 3: Impact of privacy on acceptance of requests: fraction of requests in each category and 95% confidence
intervals.

Always offloaded Privacy dependent Never offloaded
56.37%±0.06 30.03%±0.07 13.58%±0.10

 =  = 0.1  = 0.010
20
40
60
80

100
%

 o
f r

eq
ue

st
s High latency between BS and selected MH

Not enough bandwidth between UE and BS
Both

Figure 5: Reasons for request denials for various privacy levels.

Table 3 presents the average fraction of user requests falling in each category, along with 95% confidence
intervals. As shown, most requests (around 56%, on average), were offloaded in all privacy levels. This means
that, in all these cases, regardless of the privacy level chosen (∞, 0.1, or 0.01), the user was always able to
successfully offload his desired application. We delve deeper into this result by breaking down these requests
by application type. We note that over 98% of the requests for AR (the least bandwidth and latency demanding
application) were offloaded in all privacy levels. In contrast, only around 47% of the video requests (the most
demanding in terms of latency) and 31% of the VR requests (the most demanding in terms of bandwidth) were
always offloaded regardless of the privacy level. Thus, as one might expect, privacy has less impact on offloading
requests that impose lower requirements. Yet, we note that even though both application requirements and privacy
needs could be successfully fulfilled for those requests, users still paid a price for privacy as the latency of these
requests did increase for higher levels of protection (as discussed below).

In contrast, around 30% of the requests fell into the Privacy dependent category, implying that the success
of the offload depended on the user’s privacy level. The vast majority of those requests, or 28% of all requests,
were accepted for privacy levels equal to none and medium failing only for privacy level equal to high. Thus, in
total, a user was able to successfully offload his application while still maintaining a medium privacy protection in
roughly 84% of the time (56% + 28% of all requests). A high privacy level, in turn, is more challenging as it more
often leads to request being denied.

We note that around 14% of the requests were never offloaded, regardless of the privacy level (even for no
privacy protection). We then zoom deeper into the reasons why users were not able to offload their applications
in each of the privacy scenarios. Recall that the denial of an offload request may happen because8: 1) the latency
between the BS the UE is associated with and the selected MH is above the application’s latency requirement
(blue bars); 2) the throughput between the UE and the BS is not enough to meet the application’s throughput
requirement (green bars); 3) both latency and throughput requirements are not met (red bars).

As shown in Figure 5, for all privacy levels, the first reason – high latency between BS and MH – dominates all
cases, often occurring for requests to offload video streaming, the most latency demanding application. Moreover,
the fraction of requests denied due to this reason increases with privacy protection. This happens because smaller
ε values imply in greater chance that the MEC operator selects an MH that is farther from the BS the UE is
associated with (true and fake user locations far from each other), resulting in higher latency.

The other two reasons, in turn, occurred with much lower frequency, often for requests to offload the VR
application (with the highest bandwidth demands). We note that the privacy level does not impact the fraction of
requests denied due to lack of throughput between the UE and the BS (reason 2) since there is no privacy from
the network operator’s standpoint (i.e., user’s BS is the same for all privacy levels). Yet, we do observe a small
increase in the fraction of requests denied due to reason 3, i.e., both application requirements are not fulfilled, in
the most private scenario (ε = 0.01). Such increase is mostly due to the longer latency that result from the higher

8We note that, for simulation purposes and given the limited area considered, all requests are always associated with a BS. Thus, request
denials cannot occur due to the lack of coverage by nearby BS.
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Figure 6: Impact of privacy and mobility on the MH selection.
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Figure 7: Impact of privacy and mobility on latency increase.

privacy protection, as discussed above.

5.2 Impact of mobility type
We now turn our attention to how privacy impact the MH selection for different mobility types. As detailed in
Section 3, the MEC operator selects the MH closer to the BS he thinks the UE is associated with, which might be
right or not. Figure 6 presents the fractions of MH selections that differ from the ideal one (closest to the true BS)
for each mobility type.

Naturally, with no privacy protection (ε = ∞), the selected MH is always ideal. Yet, the fraction of selections
resulting in different MHs increases with the privacy level for all three mobility types, reaching at least 60% for
high privacy. Also, Figure 6 shows that the slowest mobility type (pedestrian) is more impacted by privacy than
the other two types, reaching 70% of non-ideal MH selections for the high privacy level.

Prior work has analyzed the impact of mobile user’s speed on offloading performance under privacy protection
[8], focusing on a single mobility type. Our result suggests that, in addition to speed, different user mobility
patterns, notably where and how the user moves, may also impact offloading with privacy protection. Pedestrians
move only on the sidewalks and crosswalks, while cars and buses move only on the streets. Also, car/bus flow
is influenced by traffic jams and traffic lights, while pedestrians move more freely on the sidewalks, hardly ever
facing traffic lights on crosswalks. Depending on BSs and MHs limitations, MEC selection may be impacted
differently as spatial constraints (sidewalks, crosswalks or streets) of each mobility type can offer an advantage
(or disadvantage) once privacy protection is applied.

Figure 7 shows the latency increase caused by the non-ideal MH selections for each privacy level and mobility
type. As shown, car and bus passengers had similar results as they have similar mobility patterns. However,
pedestrians again suffered more the impact of privacy, with an average latency increase near 220% for high privacy
level. As argued in the previous section, even if the user is able to offload his application, the price of privacy
protection comes in the form of increased latency which, as Figure 7 shows, impacts pedestrian’s mobility patterns
the most.

8



Draft

Car
Video

Car
AR

Car
VR

Bus
Video

Bus
AR

Bus
VR

Pedes.
Video

Pedes.
AR

0
20
40
60
80

100

%
 o

f r
eq

. d
ep

en
de

nt
on

 p
riv

ac
y 

le
ve

l n
on

e

Figure 8: Fraction of requests that succeeded when the privacy level was none but not on both remaining levels.

5.3 Impact of application type
Our last analysis focuses on the user requests that were successful (i.e., user could successfully offload his appli-
cation) when the privacy level was set to none but not on both remaining levels, shedding light into how mobility
and application of choice may impact users who could not achieve their desired privacy level. Figure 8 shows the
fractions of those requests, computed over the total number of requests for each combination of mobility type and
application type. As shown, for all mobility types, requests to the video streaming application, the most demand-
ing in terms of latency, are the most affected by privacy protection. As already argued, the applications’ latency
requirement is more challenging to maintain than the bandwidth requirement, provided that MH capacity does
not saturate. Moreover, once again we observe that pedestrians suffered more than car and bus passengers, em-
phasizing the importance of mobility patterns and how natural spatial constraints on mobility may yield different
offloading performance.

Finally, we make source code and all data used in our experiments (including ∼405 million user requests on
different privacy and mobility scenarios) publicly available for the sake of reproducibility and fostering future
research9.

6 Conclusions and future work
In this work, we analyzed the impacts of users’ privacy and mobility when offloading to the edge. We carried out
a large number of simulations based on multiple real-world scenarios, parameters, and applications, each with a
specific user mobility model and privacy requirement scenario, in order to analyze the impacts that privacy and
mobility can have. Additionally, we made publicly available code and data necessary for replicating our work. As
future work, we plan to test different/adaptive privacy levels based on the UE’s Quality of Service (QoS) and on
the user’s mobility pattern; analyze how different MH selection algorithms from the literature are affected by the
privacy, and explore our findings in the design of novel MH selection algorithms that achieve competitive results
while keeping predefined user privacy levels.
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