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Abstract—Offloading high-demanding applications to the edge
provides better quality of experience (QoE) for users with
limited hardware devices. However, to maintain a competitive
QOoE, infrastructure, and service providers must adapt to users’
different mobility patterns, which can be challenging, especially
for location-based services (LBS). Another issue that needs to
be tackled is the increasing demand for user privacy protec-
tion. With less (accurate) information regarding user location,
preferences, and usage patterns, forecasting the performance
of offloading mechanisms becomes even more challenging. This
work discusses the impacts of users’ privacy and mobility when
offloading to the edge. Different privacy and mobility scenarios
are simulated and discussed to shed light on the trade-offs (e.g.,
privacy protection at the cost of increased latency) among privacy
protection, mobility, and offloading performance.

Index Terms—offloading, MEC, mobility, privacy.

I. INTRODUCTION

Mobile devices have undergone a significant transformation
from small devices with limited capacity to mobile mini-
computers, leading to exponential growth in the mobile appli-
cation markets. However, with this growth comes a sharp in-
crease in application needs in terms of computational resources
from applications such as virtual reality (VR), augmented
reality (AR), and interactive games [1], which even our modern
mobile terminals cannot well fulfill.

To tackle this issue, edge computing was proposed as a
technology in which computational resources are moved to
the Edge of the network to reduce latency and guarantee the
quality of service [2]. Thus, users may run their applications
on the Edge using offloading techniques. This combination
provides the user equipment (UEs) with reduced CPU usage,
extended battery life, support for more robust and sophisticated
applications, and potentially unlimited storage [3].

One challenge that offloading algorithms face is related to
user mobility [4]. Users who run their applications on the Edge
can move freely in the city, which may significantly affect some
applications. Thus, adapting to the users’ mobility patterns
becomes a challenge as Multi-access Edge Computing (MEC)
providers want to keep users’ Quality of Experience (QoE)
while also dealing with the stress of mobility on their infras-
tructure through complex operations, e.g., task reallocation.

Another issue that operators and service providers have
recently faced is that users are becoming increasingly aware
and concerned about their privacy. As such, governments in
various parts of the world responded to this concern with data
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Figure 1: Precise vs. approximate location on Android 12.

protection and privacy regulations, e.g., RGPD! in Europe and
LGPD? in Brazil. For example, as illustrated by Figure 1,
Android 12, released in 2021, changed how user location is
accessed, and now users can choose between providing their
precise locations or approximate ones.

Privacy concern is an issue for operators and service
providers because they need to keep users’ privacy and adapt
and improve their techniques, e.g., offloading techniques, to
maintain competitive performance. In most cases, the more
accurate the information you have about the user (e.g., his
location), the easier it becomes to predict and anticipate user
demand. Yet, most prior studies have evaluated Edge offloading
without any consideration of location privacy, especially in
complex scenarios composed of multiple applications, each
one with distinct requirements, as well as heterogeneous
mobility patterns (reflecting, for instance, different mobility
types), while analyzing how each of these factors (and com-
binations of them) may affect the offloading performance.

Our goal is to fill this gap by investigating the impact of
user mobility and privacy when offloading to the Edge in
multi-application and multi-mobility scenarios. To that end,
we employ a combination of state-of-the-art techniques/tools
related to mobility and privacy to simulate a large set of
scenarios with different user privacy and mobility patterns.
As such, our goal is not to propose a new privacy or security
technique but rather to offer insights (e.g., how slow mobility
types can suffer more with privacy than fast ones) into the

thttps://eur-lex.europa.eu/eli/reg/2016/679/0j
2https://www.gov.br/cidadania/pt-br/acesso-a-informacao/lgpd



trade-offs between user privacy, mobility, and computational
offloading performance.

The rest of the paper is structured as follows. Section II
presents related work. Section III describes the system model
and problem description. Sections IV and V discuss our
evaluation methodology and main results, respectively, while
Section VI offers conclusions and directions for future work.

II. RELATED WORK

Prior work mostly related to our effort tackles (combinations
of) aspects related to user privacy, mobility, multi-application
scenarios, edge computing, and offloading. However, many of
them only considered a few of these aspects. For example,
in [5], authors discussed the privacy issues of task offloading
with MEC from two perspectives, location privacy, and usage
privacy. The authors proposed a Markov decision process
to improve latency and energy consumption while keeping
pre-specified levels of privacy, but no mobility analysis was
offered. Authors in [6] focused on minimizing offloading
latency considering user mobility and movement for AR users
but did not consider privacy. In turn, authors in [7] focused on
task offloading in a scenario of unmanned aerial vehicles with
limited energy and computing capacities. The paper focused on
privacy but from a computation offloading preference leakage
perspective, not focusing on user location privacy.

In contrast, two recent studies have jointly explored most
of those aspects. In [8], the authors proposed a mobility and
privacy-aware offloading meta-heuristic method for a particu-
lar scenario, namely, AR applications that deal with patients’
private information in healthcare systems. Instead, we here
consider scenarios where requests from diverse applications
compete to be able to offload their requests. In [9], the authors
focused on the privacy leakage issue of MEC offloading,
assuming an honest-but-curious server as we do in this paper.
They proposed a computational offloading mechanism that
provides user privacy while minimizing the total computation
cost. However, their work considered homogeneous user mo-
bility patterns, whereas we explored different mobility classes,
which, as will be discussed, significantly impact the results.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

Let us consider a MEC environment composed of a set 8 =
{1,2,...,B} of base stations (BSs) and a set M ={1,2,...,M}
of MEC Hosts (MHs), as illustrated in Figure 2. Any BS can
reach and offload user applications to any MH of choice. Each
BS i (MH /) has a throughput capacity of 7,55 (7M*). We
consider a set U ={1,2,...,U} of users, each one modeled
by a mobility type, an application, and a privacy level. The
user mobility type can be car passenger, bus passenger, or
pedestrian. The application can be video streaming, AR, or
VR. Finally, the privacy level can be none, medium, or
high. Each application has particular requirements in terms
of network resources, which are expressed as:

o A’ the throughput demand (i.e., demanded traffic vol-
ume), measured in megabits per second (Mbps).

o A': the latency demand (i.e., maximum accepted la-
tency), measured in milliseconds (ms).

Figure 2: System overview.

The throughput demand is met if there are enough network
resources available at the selected MH j (i.e., ’7;M H > A"
and if the throughput between the UE and the BS the user is
associated to is greater or equal than the throughput demand.
The throughput between UE-BS is computed using Shannon’s
capacity formula [10]. If the total throughput from the UEs
connected to BS i exceeds 7:33, BS i’s capacity is distributed
among them following the proportional fairness method [11].

The latency demand is met if the latency between the BS
the user is associated with and the MH selected to handle
his request is less than or equal to the latency demand. The
latency between BS-MH in this work is calculated based on
the distance between the BS and the MH.

This work assumes that the UE is always associated with the
closest (Euclidean distance) BS. Once the UE is associated, it
requests the network provider to offload an application. The
network provider will then report the UE’s position to the
MEC provider, which, in turn, will assign the closest MH to
the BS the UE is associated with to handle the user’s request,
i.e., offload the application. Finally, if the requirements of the
user’s application are met, it is offloaded to the MEC system,
consuming A’ resources from the MH ; it was allocated to.

Figure 3 illustrates how we model privacy in our system.
We assume the existence of two infrastructure entities: i) the
network provider; responsible for the BSs, communication,
routing, etc., and ii) the MEC provider; responsible for the
MH computational resources. We aim to protect user location
from the MEC provider’s perspective, as trying to mask (or
fake) the user’s real location from the network provider is a
different challenge since the UE is associated with a BS3.

In Figure 3, we represent two different MH selections, a
non-private selection and a private selection. A non-private
selection, illustrated by the pedestrian in the center of the
circle, occurs when the user is not concerned with his location
privacy (privacy level set to none). In this case, the network
provider will report the user’s real location to the MEC
provider, and the MEC provider will assign MHI, which
corresponds to the closest MH to the BS to which the user
is connected. MH1 will then handle the user’s request.

A private selection, in turn, occurs when the user is con-
cerned about his location privacy, which corresponds to a
privacy level set to medium or high. In this case, the network

3Even though there are works that consider the network and MEC provider
being only one entity, this assumption is not in the scope of this work.
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Figure 3: Privacy overview.

provider knows the user’s real location. Yet, it will apply geo-
indistinguishability [12], a state-of-the-art technique based on
differential privacy, to generate a fake location, represented
by the pedestrian near the circle’s edge (see further discussion
below). The network provider reports to the MEC provider the
user’s fake location (not the real one). The MEC provider, in
turn, will assume the user is connected to the BS at the bottom
of the figure and will assign MH2 to it, as it is the closest MH
to that particular BS. MH2 will then handle the user’s request.
Hence, the user will gain privacy but he may lose performance
as his application may no longer be offloaded to the MH that
is closest to the BS he is actually connected to. This may
affect application latency, resulting in QoE degradation or even
failing the application demands, leading to a denied request.

To check if the application latency demand is met, the MEC
provider asks the network provider to measure the latency
between the selected MH and the BS to which the user is
connected. The application is offloaded if the obtained latency
is less than or equal to the application demand. We note that
the MEC provider could ask the network provider to measure
the latency between the selected MH to all BSs to gain more
information about the user’s real location. Yet, it would be
cost-inefficient to do that for every user request in a large-
scale environment. Also, to efficiently guarantee user location
privacy, we assume an honest-but-curious adversary [9], [13],
meaning that the MEC provider will not deviate from the
defined protocol, even though it attempts to learn all possible
information from legitimately received requests.

As mentioned, we here use geo-indistinguishability to pro-
vide location privacy for the user by producing a new (fake)
location. Figure 4 illustrates how this method works. Consider
a tourist in Toronto, visiting the Royal Ontario Museum, who
intends to offload his application or do any kind of LBS
request. The tourist, concerned with his privacy, does not wish
to share his precise location (represented by a red point).
Instead, he will share an approximate (fake) location. Geo-
indistinguishability works by defining a circle centered around
the user’s real location and uniformly selecting a new/fake
location inside this circle. The circle’s radius is computed
based on parameter £. Smaller values of ¢ result in greater
circle’s radius. The new location selection is uniform across
the circle. Thus a bigger circle around the user will cover
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Figure 4: Geo-indistinguishability mechanism representation,
inspired by [12].

more locations, lowering the probability that real and fake
locations are close to each other. Thus, greater privacy levels
are achieved by using smaller € values as these lead to greater
noise added to fake the user’s real position.

Given that the relationship between £ and privacy is in-
versely proportional, € = co is a baseline in this mechanism,
and it represents the user’s real position, i.e., if € = oo, then
privacy is non-existent. In Figure 4, five different ¢ values are
presented, each one next to the circle it generated, such that
€ > &4 > €3 > & > £]. As illustrated, with a larger value
of &, e.g., €4, geo-indistinguishability has fewer locations to
assign a new (fake) position for the tourist, mainly outside of
the museum or in nearby streets. In contrast, a smaller value of
g, e.g., €3, can generate fake positions that €4 could not, such
as the University of Toronto or the Toronto Public Library.

IV. EVALUATION METHODOLOGY

This section defines our evaluation methodology by in-
troducing the main parameters used to build our evaluation
scenarios. Recall that our goal is to tackle the question: What
are the impacts of user privacy and mobility when offloading
to the edge? Thus, our parameters, summarized in Tables I
and II, relate to mobility, privacy, and (edge) infrastructure
and computational resources.

We simulated different user mobility patterns by considering
three mobility types: car passengers, bus passengers, and
pedestrians. To that end, we used SUMO (Simulation of Urban
MObility)*, a widely used mobility simulator. We simulated 30
different runs with SUMO following the Manhattan Mobility
Model>, each time with a different seed. Each run lasts for 1
hour, with a temporal resolution of 1 second, and considers
a squared area of 4 km?> (2 km x 2 km). We used the
population density reported in [14], i.e., 312.5 users/km?,
resulting in a total of 1,250 users, which were distributed into
the three mobility types as follows: 400 car passengers, 400
bus passengers, and 450 pedestrians. We assume that each car
has one passenger and each bus has 10 passengers, generating
a total of 440 vehicles in the area (400 cars and 40 buses).

4https://www.eclipse.org/sumo/
Shttps://sumo.dlr.de/docs/Tutorials/Manhattan.html



Table I: Simulation parameters.

Runs | Area | Users | Car pas. | Bus pas. | Pedes. | BSs | MHs | BS capacity | MH capacity | Privacy levels
30 4 km? | 1250 400 400 450 475 95 10 Gbps 10.41 Gbps | &€ = o0, 0.1, 0.01
Table II: Applications parameters.
Application | Bandwidth req. | Latency req. | % of cars pas. using | % of bus pas. using | % of pedes. using
Video 70 Mbps 10 ms 70% 70% 70%
AR 100 Mbps 30 ms 15% 15% 30%
VR 132 Mbps 14 ms 15% 15% -

To quantify and position BSs and MHs in the simulated area,
we used Homogeneous Poisson point processes (HPPP), as
done in [14]. Specifically, we set the HPPP intensity parameter
A to 118.75, as reported for ‘Urban Area 1’ in [14], leading
to 475 BSs, and used 4=23.75 to generate and position 95
MHs in the simulated area. We assumed that each BS i has
a capacity ‘7;35 of 10 Gbps, as reported by 3GPP [15], and
each MH j has a capacity of ‘7;MH of 10.41 Gbps [16].

We defined three user privacy levels by varying the ¢
parameter used by the geo-indistinguishability method. As
discussed, the smaller the value of &, the more private the
user’s (real) position becomes. The first level, referred to as
none, corresponds to & = oo, the case when the user chooses
not to have location privacy (user’s real and fake positions are
the same). It is used here as a baseline for comparison. The
other two levels, i.e., medium and high, are defined by setting
€ = 0.1 and € = 0.01 respectively, following a prior study on
location privacy in the edge [17].

To make our evaluation more realistic, we also considered
the throughput and latency requirements of three different
types of applications: video streaming, augmented reality
(AR), and virtual reality (VR), as presented in Table II. The
video streaming and AR requirements were obtained from
[16], whereas those for VR were obtained from [18], both
focusing on 5G scenarios. Following Cisco® and Ericsson?
forecasts for network traffic in the following years, we defined
that 70% of the users are consuming a video streaming
application. We distributed the rest of the traffic (30%) evenly
between AR and VR. We assume that the VR application does
not fit the pedestrian mobility type since they cannot be fully
aware of their surroundings if they use a VR headset while
walking. Thus, we set that the pedestrians can only use a video
streaming or AR application, while other mobility types can
use any of the three applications.

We conducted several experiments covering three user
mobility patterns, three application types, and three privacy
protection scenarios. In short, given an input privacy level
(€ =00,0.1 or 0.01), we ran 30 simulations (by varying the
seed) with user population (mobility patterns and applications)
as described above, producing a total of 90 different experi-

Shttps://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

7https://www.ericsson.com/en/mobility-report/reports/november-
2019/mobile-traffic-by-application-category

Table III: Impact of privacy on acceptance of requests: fraction
of requests in each category and 95% confidence intervals.

Always offloaded Privacy dependent Never offloaded

56.37% +0.06 30.03% +0.07 13.58% +0.10

ments. As discussed next, our results present very narrow 95%
confidence intervals, suggesting high accuracy.

V. EVALUATION RESULTS

We now discuss our results of the impact of privacy,
mobility and application types on the offloading performance.

A. Impact of privacy level

We start by evaluating the impact of the privacy level,
captured by the value of &, on the acceptance of requests. We
do so by comparing the outcome of each user request — offload
was successful or failed — for each privacy level (¢ equal to
oo, 0.1, and 0.01). Recall that an offload request is successful
whenever there is enough resource at the selected MH and
the user application’s bandwidth and latency requirements are
met. Considering the totality of user requests issued during a
simulation run, we classify them into one of the three scenar-
i0s: Always offloaded, Privacy dependent, and Never offloaded.
The former corresponds to requests that were successful in
all runs, whereas the latter relates to requests that failed in
all runs, regardless of the value of €. Both categories relate
to requests that were not impacted by the particular privacy
level adopted. Requests whose outcome varied depending on
the value of ¢ used fall into the privacy dependent category.

Table III presents the average fraction of user requests
falling in each category, along with 95% confidence intervals.
As shown, most requests (around 56%, on average), were
offloaded in all privacy levels. This means that, in all these
cases, regardless of the privacy level chosen (oo, 0.1, or 0.01),
the user was always able to successfully offload his desired
application. We delve deeper into this result by breaking
down these requests by application type. We note that over
98% of the requests for AR (the least bandwidth and latency
demanding application) were offloaded in all privacy levels.
In contrast, only around 47% of the video requests (the most
demanding in terms of latency) and 31% of the VR requests
(the most demanding in terms of bandwidth) were always
offloaded regardless of the privacy level. Thus, as one might
expect, privacy has less impact on offloading requests that



100

I High latency between BS and selected MH
I Not enough bandwidth between UE and BS
I Both

A O ©
===

% of requests

\®]
=

0 £=0.1 £= 001

Figure 5: Reasons for request denials for various privacy levels.

€=

impose lower requirements. Yet, we note that even though
both application requirements and privacy needs could be
successfully fulfilled for those requests, users still paid a price
for privacy as the latency of these requests did increase for
higher levels of protection (as discussed below).

In contrast, around 30% of the requests fell into the Privacy
dependent category, implying that the success of the offload
depended on the user’s privacy level. The vast majority of
those requests, or 28% of all requests, were accepted for
privacy levels equal to none and medium failing only for
privacy level equal to high. Thus, in total, a user was able
to successfully offload his application while still maintaining
a medium privacy protection in roughly 84% of the time (56%
+ 28% of all requests). A high privacy level, in turn, is more
challenging as it more often leads to request being denied.

We note that around 14% of the requests were never
offloaded, regardless of the privacy level (even for no privacy
protection). We then zoom deeper into the reasons why users
were not able to offload their applications in each of the
privacy scenarios. Recall that the denial of an offload request
may happen because?: 1) the latency between the BS the UE is
associated with and the selected MH is above the application’s
latency requirement (blue bars); 2) the throughput between
the UE and the BS is not enough to meet the application’s
throughput requirement (green bars); 3) both latency and
throughput requirements are not met (red bars).

As shown in Figure 5, for all privacy levels, the first reason
— high latency between BS and MH — dominates all cases,
often occurring for requests to offload video streaming, the
most latency demanding application. Moreover, the fraction
of requests denied due to this reason increases with privacy
protection. This happens because smaller & values imply in
greater chance that the MEC operator selects an MH that is
farther from the BS the UE is associated with (true and fake
user locations far from each other), resulting in higher latency.

The other two reasons, in turn, occurred with much lower
frequency, often for requests to offload the VR application
(with the highest bandwidth demands). We note that the
privacy level does not impact the fraction of requests denied
due to lack of throughput between the UE and the BS (reason
2) since there is no privacy from the network operator’s
standpoint (i.e., user’s BS is the same for all privacy levels).
Yet, we do observe a small increase in the fraction of requests

8We note that, for simulation purposes and given the limited area con-
sidered, all requests are always associated with a BS. Thus, request denials
cannot occur due to the lack of coverage by nearby BS.
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denied due to reason 3, i.e., both application requirements are
not fulfilled, in the most private scenario (¢ = 0.01). Such
increase is mostly due to the longer latency that result from
the higher privacy protection, as discussed above.

B. Impact of mobility type

We now turn our attention to how privacy impact the MH
selection for different mobility types. As detailed in Section III,
the MEC operator selects the MH closer to the BS he thinks
the UE is associated with, which might be right or not. Figure 6
presents the fractions of MH selections that differ from the
ideal one (closest to the true BS) for each mobility type.

Naturally, with no privacy protection (& = o), the selected
MH is always ideal. Yet, the fraction of selections resulting
in different MHs increases with the privacy level for all three
mobility types, reaching at least 60% for high privacy. Also,
Figure 6 shows that the slowest mobility type (pedestrian) is
more impacted by privacy than the other two types, reaching
70% of non-ideal MH selections for the high privacy level.

Prior work has analyzed the impact of mobile user’s speed
on offloading performance under privacy protection [9], focus-
ing on a single mobility type. Our result suggests that, in ad-
dition to speed, different user mobility patterns, notably where
and how the user moves, may also impact offloading with
privacy protection. Pedestrians move only on the sidewalks
and crosswalks, while cars and buses move only on the streets.
Also, car/bus flow is influenced by traffic jams and traffic
lights, while pedestrians move more freely on the sidewalks,
hardly ever facing traffic lights on crosswalks. Depending on
BSs and MHs limitations, MEC selection may be impacted
differently as spatial constraints (sidewalks, crosswalks or
streets) of each mobility type can offer an advantage (or
disadvantage) once privacy protection is applied.

Figure 7 shows the latency increase caused by the non-
ideal MH selections for each privacy level and mobility
type. As shown, car and bus passengers had similar results
as they have similar mobility patterns. However, pedestrians
again suffered more the impact of privacy, with an average
latency increase near 220% for high privacy level. As argued
in the previous section, even if the user is able to offload
his application, the price of privacy protection comes in the
form of increased latency which, as Figure 7 shows, impacts
pedestrian’s mobility patterns the most.

C. Impact of application type

Our last analysis focuses on the user requests that were
successful (i.e., user could successfully offload his applica-
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tion) when the privacy level was set to none but not on
both remaining levels, shedding light into how mobility and
application of choice may impact users who could not achieve
their desired privacy level. Figure 8 shows the fractions of
those requests, computed over the total number of requests for
each combination of mobility type and application type. As
shown, for all mobility types, requests to the video streaming
application, the most demanding in terms of latency, are
the most affected by privacy protection. As already argued,
the applications’ latency requirement is more challenging to
maintain than the bandwidth requirement, provided that MH
capacity does not saturate. Moreover, once again we observe
that pedestrians suffered more than car and bus passengers,
emphasizing the importance of mobility patterns and how
natural spatial constraints on mobility may yield different
offloading performance.

Finally, we make source code and all data used in our
experiments (including ~405 million user requests on different
privacy and mobility scenarios) publicly available for the sake
of reproducibility and fostering future research®.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we analyzed the impacts of users’ privacy
and mobility when offloading to the edge. We carried out
a large number of simulations based on multiple real-world
scenarios, parameters, and applications, each with a specific
user mobility model and privacy requirement scenario, in
order to analyze the impacts that privacy and mobility can
have. Additionally, we made publicly available code and data
necessary for replicating our work. As future work, we plan to
test different/adaptive privacy levels based on the UE’s Quality
of Service (QoS) and on the user’s mobility pattern; analyze
how different MH selection algorithms from the literature are
affected by the privacy, and explore our findings in the design
of novel MH selection algorithms that achieve competitive
results while keeping predefined user privacy levels.
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