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A NEW CHARACTERIZATION FOR THE
LUCAS-CARMICHAEL INTEGERS AND SUMS OF

BASE-p DIGITS

SRIDHAR TAMILVANAN (1) AND SUBRAMANI MUTHUKRISHNAN (2)

Abstract. In this paper, we prove a necessary and sufficient con-
dition for the Lucas-Carmichael integers in terms of the sum of
base-p digits. We also study some interesting properties of such
integers. Finally, we prove that there are infinitely many Lucas-
Carmichael integers assuming the prime k-tuples conjecture.

1. Introduction

The classical Fermat’s little theorem states that if p is a prime num-
ber, then any positive integer a satisfies ap ≡ a (mod p). In particular,
if a is not divisible by p, we have ap−1 ≡ 1 (mod p). However, the
converse of Fermat’s little theorem is not true. For an example, 561
is the least composite integer that satisfies a560 ≡ 1 (mod 561) for ev-
ery positive integer a with gcd(a, 561) = 1. Such integers are called
Carmichael integers. In general, we have the following definition:

Definition 1.1. A composite positive integer m is called a Carmichael
number if the congruence am−1 ≡ 1 (mod m) holds for all integers a
co-prime to m.

In 1899, A. Korselt [4] observed an important criterion for Carmichael
numbers.

Theorem 1.1. (Korselt’s criterion). A composite number m is a
Carmichael number if and only if m is square-free and every prime
divisor p of m satisfies p− 1 | m− 1.

Later, R. D. Carmichael [2, 3] proved a few interesting properties for
Carmichael numbers.

Theorem 1.2. (R. D. Carmichael). Every Carmichael number m is
odd, square-free and has at least three prime factors. If p and q are
prime divisors of m, then

(i) p− 1 | m− 1, (ii) p− 1 | m
p
− 1 and (iii) p ∤ q − 1.
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In 1994, W. R. Alford, Andrew Granville, and Carl Pomerance [6]
solved the long-standing conjecture that the set of all Carmichael num-
bers is infinite. More precisely, they showed that if C(x) denotes the
number of Carmichael numbers less than x, then C(x) > x2/7 for suf-
ficiently large x.

Recently, B. C. Kellner and J. Sondow [7] derived a new characteriza-
tion for Carmichael numbers as follows: For a positive integerm, denote
Sp(m) as the sum of the base-p digits of m. Then, m is a Carmichael
number if and only if it is square-free and each of its prime factors p sat-
isfies Sp(m) ≥ p and Sp(m) ≡ 1 (mod p− 1). In particular, a primary
Carmichael number m is a Carmichael number that satisfies Sp(m) = p
for every prime factor p of m. B. C. Kellner and J. Sondow [7] counted
the Carmichael numbers and primary Carmichael numbers up to 1010.
In 2022, Wagstaff [1] proved that the prime k-tuples conjecture implies
that there are infinitely many primary Carmichael numbers.

In this paper, we study a variation of Carmichael numbers motivated
by Gordon’s primality testing algorithm [9] as explained below. An
elliptic curve E over Q is a smooth projective curve that satisfies the
Weierstrass equation

E : Y 2 = X3 + aX + b,

where a, b ∈ Q and discriminant ∆ = 4a3 + 27b2 ̸= 0. For an elliptic
curve E with complex multiplication by Q(

√
−d), let P ∈ E(Q) be a

rational point of infinite order and m be a positive integer such that

gcd(m, 6∆) = 1 with
(

−d
m

)
= −1, where

(
−d
m

)
is the Jacobi symbol. If

m is a prime, then

[m+ 1]P ≡ O (mod m).

If m satisfies the above congruence, then m is a probable prime by
Gordon’s primality test. Also, m is a composite number when m does
not satisfy the above congruence relation.

Definition 1.2. Let m be a composite number and E be a CM -elliptic
curve. If m satisfies the Gordon primality test, then m is called an E-
elliptic Carmichael number. A composite integer m is said to be an
elliptic Carmichael number if m is an E-elliptic Carmichael number for
every CM -elliptic curve E.

Ekstrom et al. [10] computed the following smallest elliptic Carmichael
number:

617730918224831720922772642603971311 = p(2p+ 1)(3p+ 2),

where p = 468686771783. Also, they proved the following Elliptic
Carmichael condition.
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Theorem 1.3. (Elliptic Carmichael Condition). Let m be a square-
free, composite positive integer with an odd number of prime factors.
Moreover, let α = 8 · 3 · 7 · 11 · 19 · 43 · 67 · 163. Then m is an elliptic
Carmichael number if for each prime p | m, we have α | p+1 and p+1
| m+ 1.

Observing the above elliptic Carmichael condition, the following Korselt-
like criterion has been noted: p + 1 | m + 1 whenever p | m, and thus
the Lucas-Carmichael integers have been defined.

Definition 1.3. A Lucas-Carmichael integer is a square-free positive
composite integer m such that p+ 1 | m+ 1 whenever p | m.

In 2018, Thomas Wright [8] proved that there are infinitely many
Lucas-Carmichael integers. In fact, he showed that if N (X) denotes
the number of elliptic Carmichael numbers up to X, then there exists
a constant K > 0 such that

N (X) ≫ (X)
K

(log log logX)2 .

In this paper, we derive a new characterization for the Lucas-Carmichael
integers and prove that there are infinitely many Lucas-Carmichael in-
tegers assuming the prime k-tuples conjecture.

2. Preliminaries

We start with interesting and elementary results.

Lemma 2.1. Let m,n be two positive integers with n > m. Then
Sm+1(n+ 1) ≡ n+ 1 (mod m).

Proof. We write the integer n + 1 with respect to the base m + 1 as
follows:

n+ 1 = n0 + n1(m+ 1) + n2(m+ 1)2 + n3(m+ 1)3 + · · · , (1)

where 0 ≤ ni < m+ 1 for all i.

Since (m + 1)k ≡ 1 (mod m) for all positive integer k and from the
equation (1), it follows that Sm+1(n+ 1) ≡ n+ 1 (mod m). □

Corollary 2.1. Let n ≥ 1 be an integer. Then

Sd+1(n+ 1) ≡ 1 (mod d)

for all divisors d of n.

Proof. Let d be a divisor of n. By Lemma 2.1, Sd+1(n + 1) ≡ n + 1
(mod d), we have Sd+1(n+ 1) ≡ 1 (mod d). □
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3. Lucas-Carmichael integers

In this section, we prove a necessary and sufficient condition for
Lucas-Carmichael integers and also prove a few interesting properties
of such integers.

Proposition 3.1. An integer n > 1 is a Lucas-Carmichael integer if
and only if n is square-free and Sp+2(n+2) ≡ 1 (mod p+1) for every
prime divisor p of n. That is,

LC =
{
n ∈ S : p | n =⇒ Sp+2(n+ 2) ≡ 1 (mod p+ 1)

}
.

Here, LC and S denote the set of all Lucas-Carmichael integers and
positive square-free integers, respectively.

Proof. Let n > 1 be a Lucas-Carmichael integer. Clearly, n is square-
free, and by Corollary 2.1, Sp+2(n + 2) ≡ 1 (mod p + 1) whenever p
divides n.

Now, we prove the converse part. Assume that n is a square-free integer
satisfying

Sp+2(n+ 2) ≡ 1 (mod p+ 1) (2)

for all prime divisors p of n.

By Lemma 2.1, we have

Sp+2(n+ 2) ≡ n+ 2 (mod p+ 1). (3)

Combining equations (2) and (3), it is clear that p + 1 divides n + 1
whenever p divides n. □

Proposition 3.2. Every Lucas-Carmichael integer n is odd with at
least three prime factors, and p+1 | n

p
− 1 for every prime p divides n.

Proof. Since p+ 1 divides n+ 1, n+ 1 is even, and thus n is odd.

Suppose that there is a Lucas-Carmichael integer n with exactly two
prime factors p and q. Assume that p > q.

Since p+ 1 divides n+ 1, let

k :=
n+ 1

p+ 1
=

pq + 1

p+ 1
∈ N.

Then,

k =
pq − p+ p+ 1

p+ 1

=
p(q − 1) + (p+ 1)

p+ 1

=
p(q − 1)

p+ 1
+ 1.
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This implies that p + 1 divides q − 1, but it is not possible. Hence, n
has at least three prime factors.

Now, we prove that p + 1 | n
p
− 1 for every prime p divides n. Let

n = p1p2 · · · pr, r ≥ 3 be a Lucas-Carmichael integer. Since pi + 1
divides n+ 1 for all i,

ki :=
n+ 1

pi + 1
=

p1p2 · · · pr + 1

pi + 1
∈ N.

Let ni =
n
pi

and we write

ki =
p1p2 · · · pr + ni − ni + 1

pi + 1

=
ni(pi + 1)− (ni − 1)

pi + 1

= ni −
(ni − 1)

pi + 1
.

Therefore, (ni−1)
pi+1

= ni − ki ∈ Z. That is, pi + 1 divides ni − 1. This

completes the proof. □

Corollary 3.1. Every prime factor p of a Lucas-Carmichael integer n
is strictly less than

√
n.

Proof. By Proposition 3.2, we have p < n
p
for every prime factor p of

n. This implies that p <
√
n. □

Proposition 3.3. If n = mqr is a Lucas-Carmichael integer where
m ∈ N and q, r are primes with q < r. Then q < 3m2 and r < 3m3.

Proof. Since q and r are prime divisors of a Lucas-Carmichael integer
n, we have q + 1 | n+ 1 and r + 1 | n+ 1.

That is,

mqr ≡ −mr ≡ −1 (mod q+1) and mqr ≡ −mq ≡ −1 (mod r+1).

Now, we define

C =
mq − 1

r + 1
and D =

mr − 1

q + 1
.

Since mq − 1 < mr − 1 < mr +m, we have C < m.

As r − q ≥ 1, we have m − 1 < m ≤ m(r − q). This implies that
m+mq < mr + 1. Then

mq +m− q − 1 < mr + 1− q − 1

m(q + 1)− (q + 1) = mr − q < mr − 1

(m− 1)(q + 1) < mr − 1

m− 1 <
mr − 1

q + 1
= D.
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Therefore, we have 1 ≤ C < m ≤ D. Now we consider:

D(q + 1) = mr − 1

= m
(mq − 1

C
− 1
)
− 1

=
m2q −m−mC − C

C
CD(q + 1) = m2q −m−mC − C

= m2q +m2 −m2 −m−mC − C

(CD −m2)(q + 1) = −m2 −m−mC − C < 0.

This implies that,

0 < (m2 − CD)(q + 1) = m2 +m+mC + C

q + 1 ≤ m2 +m(C + 1) + C.

Since C < m, we obtain that q + 1 < m2 +m2 +m < 3m2 and hence
q < 3m2.

Next, we prove the other inequality. Consider,

r + 1 =
mq − 1

C
<

m(q + 1)

C
<

m(3m2))

C
< 3m3.

and hence the inequality r < 3m3 holds. □

In the following section, we explicitly describe a class of Lucas-Carmichael
integers.

4. Some general forms of Lucas-Carmichael integers

Recall that, from Proposition 3.1, an integer n is a Lucas-Carmichael
integer if and only if p+1 divides Sp+2(n+2)−1 whenever p divides n. In
this section, we study some general forms of Lucas-Carmichael integers
with an odd number of prime factors. Also, we define the degree of
a Lucas-Carmichael integer and prove some interesting results on the
degree of such integers.

Definition 4.1. An integer n ∈ LC is called a primary Lucas-Carmichael
integer if Sp+2(n+ 2) = p+ 2 for every prime p divides n, and the set
of all such integers is denoted by LC

′.

Definition 4.2. Let n be a Lucas-Carmichael integer and

α := max
p|n

{
Sp+2(n+ 2)− 1

p+ 1

}
.

The integer α is called the degree of n.
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We note that primary Lucas-Carmichael integers have a degree of 1.

Now, we prove that there are infinitely many Lucas-Carmichael integers
assuming the prime k-tuples conjecture (defined below).

The Prime k-tuples Conjecture. Let a1, . . . , ak be positive integers,
and let b1, . . . , bk be nonzero integers. For m ≥ 1, define f(m) =∏k

i=1(aim+bi). Let P (x) denote the number of positive integers m ≤ x
for which aim + bi is prime for each i = 1, . . . , k. The Prime k-tuples
Conjecture states that if no prime divides f(m) for every m, then there
exists c > 0 such that P (x) ∼ cx

logkx
as x → ∞.

Chernick [5] called polynomial of the form f(m) is universal if it satisfies
the congruence relations f(m) ≡ 1 (mod aim + bi − 1) for every i =
1, 2, . . . , k, where m ∈ Z, k ≥ 3 and k is odd. Further, Chernick [5]
proved that for any integers k ≥ 4 and m ≥ 1 such that 2k−4 divides
m,

Uk(m) = (6m+ 1)(12m+ 1)
k−2∏
i=1

(9 · 2im+ 1)

is a Carmichael number if each of the k factors is prime. We call Uk(m)
a Chernick polynomial.

Lemma 4.1. Let m be a positive integer, and p = 6m−1, q = 12m−1,
r = 18m− 1 and U ′

3(m) = n = pqr. Then

n+ 2 = 5(p+ 2)3 + (p− 27)(p+ 2)2 + 45(p+ 2) + (p− 20)

n+ 2 = (9m− 5)(q + 2)2 + (9m+ 11)(q + 2) + (6m− 5)

n+ 2 = (4m− 2)(r + 2)2 + (6m+ 5)(r + 2) + (8m− 2).

Proof. We rewrite n+ 2 with the base p+ 2 as follows:

n+ 2 = (216m2 − 102m+ 23)(p+ 2)− 22

= (36m− 23)(p+ 2)2 + 46(p+ 2)− 22

= 5(p+ 2)3 + (p− 27)(p+ 2)2 + 46(p+ 2)− 22

= 5(p+ 2)3 + (p− 27)(p+ 2)2 + 45(p+ 2) + (p− 20).

Similarly, we can write n+ 2 with the base q + 2 as follows:

n+ 2 = (108m2 − 42m)(q + 2) + (78m+ 1)

= 9m(q + 2)2 − 5(q + 2)2 + (9m+ 11)(q + 2) + (6m− 5)

= (9m− 5)(q + 2)2 + (9m+ 11)(q + 2) + (6m− 5).

Next, we can also write n+ 2 with the base r + 2 as follows:

n+ 2 = (72m2 − 26m)(r + 2) + (62m+ 1)

= 4m(r + 2)2 − 2(r + 2)2 + (6m+ 5)(r + 2) + (8m− 2)

= (4m− 2)(r + 2)2 + (6m+ 5)(r + 2) + (8m− 2).
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□

Corollary 4.1. Assuming the same hypotheses as Lemma 4.1 with
m ≥ 8, we have Sp+2(n + 2) = 2p + 3, Sq+2(n + 2) = 2q + 3 and
Sr+2(n+ 2) = r + 2.

Proof. Since p ≥ 47 as m ≥ 8, the coefficients of n + 2 in the first
equation in Lemma 4.1 are lie between 0 and p + 1, so we have n + 2
with base p+2. Thus, Sp+2(n+2) = 5+(p−27)+45+(p−20) = 2p+3.

Similary, the coefficients of n+ 2 = (9m− 5)(q + 2)2 + (9m+ 11)(q +
2) + (6m− 5) are between 0 and q + 1, we have Sq+2(n + 2) = (9m−
5) + (9m+ 11) + (6m− 5) = 24m+ 1 = 2q + 3.

Also, the coefficients of n+2 = (4m−2)(r+2)2+(6m+5)(r+2)+(8m−2)
are between 0 and r+1, we have Sr+2(n+2) = (4m− 2)+ (6m+5)+
(8m− 2) = 18m+ 1 = r + 2. □

Theorem 4.1. The prime k-tuples conjecture implies that there are in-
finitely many Lucas-Carmichael integers of degree 2 with exactly three
prime factors.

Proof. By the prime k-tuples conjecture, there are infinitely many pos-
itive integers m such that U ′

3(m) has three distinct prime factors. Ap-
plying the Corollary 4.1, each of these numbers U ′

3(m) for m ≥ 8 is a
Lucas-Carmichael integer of degree 2. □

Theorem 4.2. Every Lucas-Carmichael integer n with exactly three
prime factors is of the form (2hr1 − 1)(2hr2 − 1)(2hr3 − 1), where h is
a positive integer and r′is are pairwise co-prime integers.

Proof. Let n = p1p2p3 be a Lucas-Carmichael integer with three prime
factors. Write pi = rik− 1, where k is the g.c.d. of pi+1 for i = 1, 2, 3.
Since n is a Lucas-Carmichael integer, we have

(r1k − 1)(r2k − 1)(r3k − 1) ≡ −1 (mod pi + 1)

for i = 1, 2, 3. This implies that,

(r1r2r3)k
3−(r1r2+r1r3+r2r3)k

2+(r1+r2+r3)k−1 ≡ −1 (mod rik).

By simplifying the above congruence, we obtain

−(r1r2 + r1r3 + r2r3)k + (r1 + r2 + r3) ≡ 0 (mod ri).

For 1 ≤ i ̸= j ≤ 3, if ri and rj have a common factor, then the third one
does, and it contradicts our assumption. Hence, the ri’s are pairwise
co-prime. Suppose k is odd, then ri’s are even as pi’s are odd. Since k
is the g.c.d. of pi + 1, this is not possible. Therefore, k must be even,
and the theorem follows. □
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Theorem 4.3. Let F ′
l be a Lucas-Carmichael integer with exactly l-

odd number of prime factors p1, p2, . . . , pl. Let k1 be the g.c.d. of pi+1
and ri = pi+1

k1
. Also, let R be the l.c.m. of ri, i = 1, 2, . . . , l. Then

U ′
l (m) =

∏l
i=1(riRm+ pi) satisfies the congruence relation

U ′
l (m) ≡ −1 (mod riRm+ pi + 1)

for i = 1, 2, . . . , l.

Proof. Since F ′
l =

∏l
i=1(rik1 − 1) is a Lucas-Carmichael integer and l

is odd, we have
∏l

i=1(rik1 − 1) ≡ −1 (mod rik1) for i = 1, 2, . . . , l.

This implies that ∏l
i=1(rik1 − 1) + 1

k1
≡ 0 (mod ri)

for i = 1, 2, . . . , l.
Therefore, ∏l

i=1(rik1 − 1) + 1

k1
≡ 0 (mod R).

We observe that, any k ≡ k1 (mod R) is also a solution for the above
congruence. Write k = Rm+k1 and substitute this k for k1, we obtain∏l

i=1(ri(Rm+ k1)− 1) + 1

k
≡ 0 (mod R).

Since pi = rik − 1 and rik = riRm+ rik1 = riRm+ pi + 1, we have

l∏
i=1

(riRm+ pi) + 1 ≡ 0 (mod rik)

and

U ′
l (m) =

l∏
i=1

(riRm+ pi) ≡ −1 (mod riRm+ pi + 1)

for every i ranges over 1 to l. □

Remark: Since U ′
l (m) =

∏l
i=1(riRm + pi) satisfies the congruence

relation
U ′
l (m) ≡ −1 (mod riRm+ pi + 1)

for i = 1, 2, . . . , l, the integer U ′
l (m) is a Lucas-Carmichael integer for

every m for which each of the l factors is a prime.

We illustrate Theorem 4.3 with the examples below.

Example 4.1. Let F ′
5 = 588455 be a Lucas-Carmichael integer. Then,

we have k1 = 2, r1 = 3, r2 = 4, r3 = 9, r4 = 12, r5 = 22 and R = 396.
Let U ′

5(m) = n = p1p2p3p4p5, where p1 = 1188m+ 5, p2 = 1584m+ 7,
p3 = 3564m + 17, p4 = 4752m + 23 and p5 = 8712m + 43. Then,
by Theorem 4.3, we have U ′

5(m) ≡ −1 (mod 396ri + pi + 1) for every
i = 1, 2, 3, 4, 5.
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Now, we prove that there are infinitely many Lucas-Carmichael integers
of degree 4 with exactly five prime factors.

Lemma 4.2. Let m be a positive integer, and p = 1188m + 5, q =
1584m + 7, r = 3564m + 17, s = 4752m + 23, t = 8712m + 43 and
U ′
5(m) = n = pqrst. Then

n+ 2 = 117(p+ 2)5 + (396m− 875)(p+ 2)4 + (1056m+ 2593)(p+ 2)3

+ (660m− 3771)(p+ 2)2 + (132m+ 2724)(p+ 2) + (132m− 775)

n+ 2 = 27(q + 2)5 +

(
2117016

1584
m− 224

)
(q + 2)4

+

(
1724976

1584
m+ 758

)
(q + 2)3 +

(
2273832

1584
m− 1199

)
(q + 2)2

+ (1287m+ 958)(q + 2) + (1188m− 287)

n+ 2 =

(
6133248

3564
m+ 3

)
(r + 2)4 +

(
2317392

3564
m+ 32

)
(r + 2)3

+

(
574992

3564
m− 65

)
(r + 2)2 +

(
4373424

3564
m+ 78

)
(r + 2)

+

(
12005136

3564
m− 11

)

n+ 2 =

(
2587464

4752
m+ 1

)
(s+ 2)4 +

(
3606768

4752
m+ 13

)
(s+ 2)3

+

(
14662296

4752
m− 10

)
(s+ 2)2 + (1023m+ 38)(s+ 2)

+ (4092m+ 7)

n+ 2 =

(
419904

8712
m

)
(t+ 2)4 +

(
9191232

8712
m+ 6

)
(t+ 2)3

+

(
41885424

8712
m+ 20

)
(t+ 2)2 +

(
31403376

8712
m+ 26

)
(t+ 2)

+

(
68897952

8712
m+ 37

)
.

Corollary 4.2. Assume that the same hypotheses in Lemma 4.2 with
156816 | m. Then, we have Sp+2(n+2) = 2p+3, Sq+2(n+2) = 4q+5,
Sr+2(n+ 2) = 2r + 3, Ss+2(n+ 2) = 2s+ 3 and St+2(n+ 2) = 2t+ 3.
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Theorem 4.4. The prime k-tuples conjecture implies that there are
infinitely many Lucas-Carmichael integers of degree 4 with exactly five
prime factors.

Proof. From the prime k-tuples conjecture, we have infinitely many
positive integers m which are divisible by 156816, and U ′

5(m) has ex-
actly five prime factors. By Corollary 4.2, each of these numbers U ′

5(m)
is a Lucas-Carmichael integer of degree 4. □

Example 4.2. Let F ′
7 = 3512071871 be a Lucas-Carmichael integer.

Then, we have k1 = 2, r1 = 4, r2 = 6, r3 = 9, r4 = 12, r5 = 16, r6 =
27, r7 = 36 and R = 432. Let U ′

7(m) = p1p2p3p4p5p6p7, where p1 =
1728m + 7, p2 = 2592m + 11, p3 = 3888m + 17, p4 = 5184m + 23,
p5 = 6912m + 31, p6 = 11664m + 53, p7 = 15552m + 71 and U ′

7(m) =
n = p1p2p3p4p5p6p7. Then, by Theorem 4.3, we have U ′

7(m) ≡ −1
(mod 432ri + pi + 1) for every i = 1, 2, 3, 4, 5, 6, 7.

Next, we prove that there are infinitely many Lucas-Carmichael inte-
gers of degree 4 with exactly seven prime factors.

Lemma 4.3. Let m be a positive integer, and p = 1728m + 7, q =
2592m + 11, r = 3888m + 17, s = 5184m + 23, t = 6912m + 31,
u = 11664m+ 53, v = 15552m+ 71 and U ′

7(m) = n = pqrstuv. Then

n+ 2 = 2460(p+ 2)7 + (648m− 24487)(p+ 2)6

+ (918m+ 103732)(p+ 2)5 + (1512m− 242426)(p+ 2)4

+ (1026m+ 337790)(p+ 2)3 + (432m− 280653)(p+ 2)2

+ (1512m+ 128798)(p+ 2) + (864m− 25181)

n+ 2 = 143(q + 2)7 + (2592m− 1644)(q + 2)6 + 7965(q + 2)5

+ (1728m− 21163)(q + 2)4 + (720m+ 33401)(q + 2)3

+ (216m− 31287)(q + 2)2 + (2088m+ 16136)(q + 2)

+ (432m− 3525)

n+ 2 = 8(r + 2)7 + (1664m− 107)(r + 2)6 +

(
1456

3
m+ 662

)
(r + 2)5

+

(
944

3
m− 2064

)
(r + 2)4 +

(
11152

3
m+ 3829

)
(r + 2)3

+

(
3776

3
m− 4148

)
(r + 2)2 +

(
3376

3
m+ 2482

)
(r + 2)

+

(
9296

3
m− 607

)
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n+ 2 = (s+ 2)7 + (648m− 15)(s+ 2)6 + (1458m+ 125)(s+ 2)5

+ (1404m− 419)(s+ 2)4 + (4086m+ 915)(s+ 2)3

+ (4212m− 1090)(s+ 2)2 + (2016m+ 758)(s+ 2)

+ (1728m− 202)

n+ 2 =

(
531441

512
m+ 2

)
(t+ 2)6 +

(
460701

512
m+ 26

)
(t+ 2)5

+

(
312795

128
m− 82

)
(t+ 2)4 +

(
1532709

256
m+ 256

)
(t+ 2)3

+

(
811161

512
m− 319

)
(t+ 2)2 +

(
1590921

512
m+ 267

)
(t+ 2)

+

(
1453005

256
m− 53

)
n+ 2 =

(
32768

729

)
m(u+ 2)6 +

(
919552

729
m+ 7

)
(u+ 2)5

+

(
793744

729
m− 2

)
(u+ 2)4 +

(
1154864

243
m+ 45

)
(u+ 2)3

+

(
1404608

729
m− 36

)
(u+ 2)2 +

(
5584880

729
m+ 82

)
(u+ 2)

+

(
4805968

729
m+ 13

)
n+ 2 = 8m(v + 2)6 +

(
946

3
m+ 1

)
(v + 2)5 +

(
33416

3
m+ 50

)
(v + 2)4

+

(
26998

3
m+ 49

)
(v + 2)3 +

(
13664

3
m+ 4

)
(v + 2)2

+

(
31096

3
m+ 69

)
(v + 2) +

(
33824

3
m+ 44

)
.

Corollary 4.3. Assume that the same hypotheses in Lemma 4.3 with
373248 | m. Then, we have Sp+2(n+2) = 4p+5, Sq+2(n+2) = 3q+4,
Sr+2(n + 2) = 3r + 4, Ss+2(n + 2) = 3s + 4 St+2(n + 2) = 3t + 4,
Su+2(n+ 2) = 2u+ 3 and Sv+2(n+ 2) = 3v + 4.

Theorem 4.5. The prime k-tuples conjecture implies that there are in-
finitely many Lucas-Carmichael integers of degree 4 with exactly seven
prime factors.

Proof. According to the prime k-tuples conjecture, there are infinitely
many positive integers m divisible by 373248 for which U ′

7(m) has ex-
actly seven prime factors. By Corollary 4.3, each of these numbers
U ′
7(m) is a Lucas-Carmichael integer of degree 4. □



A NEW CHARACTERIZATION FOR THE LUCAS-CARMICHAEL INTEGERSAND SUMS OF BASE-p DIGITS13

Acknowledgements. The second author would like to acknowledge
support from MeitY QCAL. Also, the second author would like to
acknowledge support from ICTP through the associate programme.

References

[1] Samuel S. Wagstaff, Jr. Primary Carmichael Numbers, Integers, 22 (2022).
[2] R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math.

Soc. 16 (1910), 232-238.
[3] R. D. Carmichael, On composite numbers P which satisfy the Fermat congru-

ence aP−1 ≡ 1 (mod P ), Amer. Math. Monthly 19 (1912), 22-27.
[4] A. Korselt, Problème chinois, L’Intermédiaire Math. 6 (1899), 142-143.
[5] J. Chernick, On Fermat’s simple theorem, Bull. Amer. Math. Soc. 45 (1939),

269-274.
[6] W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many

Carmichael numbers, Ann. of Math. (2), 139 (3) (1994), 703-722.
[7] B. C. Kellner and J. Sondow, On Carmichael and polygonal numbers,

Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52,
1-21.

[8] Thomas Wright, There are infinitely many elliptic Carmichael numbers, Bul-
letin of the London Mathematical Society, 50 (2018), 791-800.

[9] D. M. Gordon, Pseudoprimes on elliptic curves, Théorie des nombres (Que-
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