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In this paper, we prove a necessary and sufficient condition for the Lucas-Carmichael integers in terms of the sum of base-p digits. We also study some interesting properties of such integers. Finally, we prove that there are infinitely many Lucas-Carmichael integers assuming the prime k-tuples conjecture.

Introduction

The classical Fermat's little theorem states that if p is a prime number, then any positive integer a satisfies a p ≡ a (mod p). In particular, if a is not divisible by p, we have a p-1 ≡ 1 (mod p). However, the converse of Fermat's little theorem is not true. For an example, 561 is the least composite integer that satisfies a 560 ≡ 1 (mod 561) for every positive integer a with gcd(a, 561) = 1. Such integers are called Carmichael integers. In general, we have the following definition: Definition 1.1. A composite positive integer m is called a Carmichael number if the congruence a m-1 ≡ 1 (mod m) holds for all integers a co-prime to m.

In 1899, A. Korselt [START_REF] Korselt | Problème chinois[END_REF] observed an important criterion for Carmichael numbers.

Theorem 1.1. (Korselt's criterion). A composite number m is a Carmichael number if and only if m is square-free and every prime divisor p of m satisfies p -1 | m -1.

Later, R. D. Carmichael [START_REF] Carmichael | Note on a new number theory function[END_REF][START_REF] Carmichael | On composite numbers P which satisfy the Fermat congruence a P -1 ≡ 1 (mod P )[END_REF] proved a few interesting properties for Carmichael numbers. Theorem 1.2. (R. D. Carmichael). Every Carmichael number m is odd, square-free and has at least three prime factors. If p and q are prime divisors of m, then

(i) p -1 | m -1, (ii) p -1 | m p - 1 
and (iii) p ∤ q -1.

In 1994, W. R. Alford, Andrew Granville, and Carl Pomerance [START_REF] Alford | There are infinitely many Carmichael numbers[END_REF] solved the long-standing conjecture that the set of all Carmichael numbers is infinite. More precisely, they showed that if C(x) denotes the number of Carmichael numbers less than x, then C(x) > x 2/7 for sufficiently large x.

Recently, B. C. Kellner and J. Sondow [START_REF] Kellner | On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits[END_REF] derived a new characterization for Carmichael numbers as follows: For a positive integer m, denote S p (m) as the sum of the base-p digits of m. Then, m is a Carmichael number if and only if it is square-free and each of its prime factors p satisfies S p (m) ≥ p and S p (m) ≡ 1 (mod p -1). In particular, a primary Carmichael number m is a Carmichael number that satisfies S p (m) = p for every prime factor p of m. B. C. Kellner and J. Sondow [START_REF] Kellner | On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits[END_REF] counted the Carmichael numbers and primary Carmichael numbers up to 10 10 . In 2022, Wagstaff [START_REF] Samuel | Primary Carmichael Numbers[END_REF] proved that the prime k-tuples conjecture implies that there are infinitely many primary Carmichael numbers.

In this paper, we study a variation of Carmichael numbers motivated by Gordon's primality testing algorithm [START_REF] Gordon | Pseudoprimes on elliptic curves[END_REF] as explained below. An elliptic curve E over Q is a smooth projective curve that satisfies the Weierstrass equation If m satisfies the above congruence, then m is a probable prime by Gordon's primality test. Also, m is a composite number when m does not satisfy the above congruence relation. In 2018, Thomas Wright [START_REF] Wright | There are infinitely many elliptic Carmichael numbers[END_REF] proved that there are infinitely many Lucas-Carmichael integers. In fact, he showed that if N (X) denotes the number of elliptic Carmichael numbers up to X, then there exists a constant K > 0 such that

E : Y 2 = X 3 + aX + b,
N (X) ≫ (X) K (log log log X) 2 .
In this paper, we derive a new characterization for the Lucas-Carmichael integers and prove that there are infinitely many Lucas-Carmichael integers assuming the prime k-tuples conjecture.

Preliminaries

We start with interesting and elementary results. Proof. We write the integer n + 1 with respect to the base m + 1 as follows:

n + 1 = n 0 + n 1 (m + 1) + n 2 (m + 1) 2 + n 3 (m + 1) 3 + • • • , (1)
where 0 ≤ n i < m + 1 for all i.

Since (m + 1) k ≡ 1 (mod m) for all positive integer k and from the equation ( 1), it follows that S m+1 (n + 1) ≡ n + 1 (mod m). □ Corollary 2.1. Let n ≥ 1 be an integer. Then

S d+1 (n + 1) ≡ 1 (mod d)
for all divisors d of n.

Proof. Let d be a divisor of n. By Lemma 2.1, S d+1 (n + 1) ≡ n + 1 (mod d), we have S d+1 (n + 1) ≡ 1 (mod d). □

Lucas-Carmichael integers

In this section, we prove a necessary and sufficient condition for Lucas-Carmichael integers and also prove a few interesting properties of such integers. Proposition 3.1. An integer n > 1 is a Lucas-Carmichael integer if and only if n is square-free and S p+2 (n + 2) ≡ 1 (mod p + 1) for every prime divisor p of n. That is,

L C = n ∈ S : p | n =⇒ S p+2 (n + 2) ≡ 1 (mod p + 1) .
Here, L C and S denote the set of all Lucas-Carmichael integers and positive square-free integers, respectively.

Proof. Let n > 1 be a Lucas-Carmichael integer. Clearly, n is squarefree, and by Corollary 2.1, S p+2 (n + 2) ≡ 1 (mod p + 1) whenever p divides n. Now, we prove the converse part. Assume that n is a square-free integer satisfying

S p+2 (n + 2) ≡ 1 (mod p + 1) (2) 
for all prime divisors p of n.

By Lemma 2.1, we have S p+2 (n + 2) ≡ n + 2 (mod p + 1).
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Combining equations ( 2) and (3), it is clear that p + 1 divides n + 1 whenever p divides n. □ Proposition 3.2. Every Lucas-Carmichael integer n is odd with at least three prime factors, and p + 1 | n p -1 for every prime p divides n. Proof. Since p + 1 divides n + 1, n + 1 is even, and thus n is odd.

Suppose that there is a Lucas-Carmichael integer n with exactly two prime factors p and q. Assume that p > q.

Since p + 1 divides n + 1, let

k := n + 1 p + 1 = pq + 1 p + 1 ∈ N.
Then,

k = pq -p + p + 1 p + 1 = p(q -1) + (p + 1) p + 1 = p(q -1) p + 1 + 1.
This implies that p + 1 divides q -1, but it is not possible. Hence, n has at least three prime factors. Now, we prove that p + 1 | n p -1 for every prime p divides n. Let n = p 1 p 2 • • • p r , r ≥ 3 be a Lucas-Carmichael integer. Since p i + 1 divides n + 1 for all i,

k i := n + 1 p i + 1 = p 1 p 2 • • • p r + 1 p i + 1 ∈ N.
Let n i = n p i and we write

k i = p 1 p 2 • • • p r + n i -n i + 1 p i + 1 = n i (p i + 1) -(n i -1) p i + 1 = n i - (n i -1) p i + 1 .
Therefore, (n i -1) If n = mqr is a Lucas-Carmichael integer where m ∈ N and q, r are primes with q < r. Then q < 3m 2 and r < 3m 3 .

p i +1 = n i -k i ∈ Z. That is, p i + 1 divides n i -1.
Proof. Since q and r are prime divisors of a Lucas-Carmichael integer n, we have q + 1 | n + 1 and r

+ 1 | n + 1.
That is, mqr ≡ -mr ≡ -1 (mod q + 1) and mqr ≡ -mq ≡ -1 (mod r + 1).

Now, we define

C = mq -1 r + 1 and D = mr -1 q + 1 .
Since mq -1 < mr -1 < mr + m, we have C < m.

As r -q ≥ 1, we have m -1 < m ≤ m(r -q). This implies that m + mq < mr + 1. Then

mq + m -q -1 < mr + 1 -q -1 m(q + 1) -(q + 1) = mr -q < mr -1 (m -1)(q + 1) < mr -1 m -1 < mr -1 q + 1 = D.
Therefore, we have 1 ≤ C < m ≤ D. Now we consider:

D(q + 1) = mr -1 = m mq -1 C -1 -1 = m 2 q -m -mC -C C CD(q + 1) = m 2 q -m -mC -C = m 2 q + m 2 -m 2 -m -mC -C (CD -m 2 )(q + 1) = -m 2 -m -mC -C < 0. This implies that, 0 < (m 2 -CD)(q + 1) = m 2 + m + mC + C q + 1 ≤ m 2 + m(C + 1) + C.
Since C < m, we obtain that q + 1 < m 2 + m 2 + m < 3m 2 and hence q < 3m 2 .

Next, we prove the other inequality. Consider,

r + 1 = mq -1 C < m(q + 1) C < m(3m 2 )) C < 3m 3 .
and hence the inequality r < 3m 3 holds. □

In the following section, we explicitly describe a class of Lucas-Carmichael integers.

Some general forms of Lucas-Carmichael integers

Recall that, from Proposition 3.1, an integer n is a Lucas-Carmichael integer if and only if p+1 divides S p+2 (n+2)-1 whenever p divides n. In this section, we study some general forms of Lucas-Carmichael integers with an odd number of prime factors. Also, we define the degree of a Lucas-Carmichael integer and prove some interesting results on the degree of such integers. The integer α is called the degree of n.

We note that primary Lucas-Carmichael integers have a degree of 1. Now, we prove that there are infinitely many Lucas-Carmichael integers assuming the prime k-tuples conjecture (defined below).

The Prime k-tuples Conjecture. Let a 1 , . . . , a k be positive integers, and let b 1 , . . . , b k be nonzero integers. For m ≥ 1, define f (m) = k i=1 (a i m + b i ). Let P (x) denote the number of positive integers m ≤ x for which a i m + b i is prime for each i = 1, . . . , k. The Prime k-tuples Conjecture states that if no prime divides f (m) for every m, then there exists c > 0 such that P (x) ∼ cx log k x as x → ∞. Chernick [START_REF] Chernick | On Fermat's simple theorem[END_REF] called polynomial of the form f (m) is universal if it satisfies the congruence relations f (m) ≡ 1 (mod a i m + b i -1) for every i = 1, 2, . . . , k, where m ∈ Z, k ≥ 3 and k is odd. Further, Chernick [START_REF] Chernick | On Fermat's simple theorem[END_REF] proved that for any integers k ≥ 4 and m ≥ 1 such that 2 k-4 divides m,

U k (m) = (6m + 1)(12m + 1) k-2 i=1 (9 • 2 i m + 1)
is a Carmichael number if each of the k factors is prime. We call U k (m) a Chernick polynomial. n + 2 = (9m -5)(q + 2) 2 + (9m + 11)(q + 2) + (6m -5)

n + 2 = (4m -2)(r + 2) 2 + (6m + 5)(r + 2) + (8m -2).
Proof. We rewrite n + 2 with the base p + 2 as follows:

n + 2 = (216m 2 -102m + 23)(p + 2) -22 = (36m -23)(p + 2) 2 + 46(p + 2) -22 = 5(p + 2) 3 + (p -27)(p + 2) 2 + 46(p + 2) -22 = 5(p + 2) 3 + (p -27)(p + 2) 2 + 45(p + 2) + (p -20).
Similarly, we can write n + 2 with the base q + 2 as follows:

n + 2 = (108m 2 -42m)(q + 2) + (78m + 1) = 9m(q + 2) 2 -5(q + 2) 2 + (9m + 11)(q + 2) + (6m -5) = (9m -5)(q + 2) 2 + (9m + 11)(q + 2) + (6m -5).
Next, we can also write n + 2 with the base r + 2 as follows: Similary, the coefficients of n + 2 = (9m -5)(q + 2) 2 + (9m + 11)(q + 2) + (6m -5) are between 0 and q + 1, we have S q+2 (n + 2) = (9m -5) + (9m + 11) + (6m -5) = 24m + 1 = 2q + 3. Also, the coefficients of n+2 = (4m-2)(r+2) 2 +(6m+5)(r+2)+(8m-2) are between 0 and r + 1, we have

n + 2 = (72m 2 -26m)(r + 2) + (62m + 1) = 4m(r + 2) 2 -2(r + 2) 2 + (6m + 5)(r + 2) + (8m -2) = (4m -2)(r + 2) 2 + (6m + 5)(r + 2) + (8m -2).
S r+2 (n + 2) = (4m -2) + (6m + 5) + (8m -2) = 18m + 1 = r + 2.
Theorem 4.1. The prime k-tuples conjecture implies that there are infinitely many Lucas-Carmichael integers of degree 2 with exactly three prime factors.

Proof. By the prime k-tuples conjecture, there are infinitely many positive integers m such that U ′ 3 (m) has three distinct prime factors. Applying the Corollary 4.1, each of these numbers U ′ 3 (m) for m ≥ 8 is a Lucas-Carmichael integer of degree 2. □ Theorem 4.2. Every Lucas-Carmichael integer n with exactly three prime factors is of the form (2hr 1 -1)(2hr 2 -1)(2hr 3 -1), where h is a positive integer and r ′ i s are pairwise co-prime integers. Proof. Let n = p 1 p 2 p 3 be a Lucas-Carmichael integer with three prime factors. Write p i = r i k -1, where k is the g.c.d. of p i + 1 for i = 1, 2, 3. Since n is a Lucas-Carmichael integer, we have

(r 1 k -1)(r 2 k -1)(r 3 k -1) ≡ -1 (mod p i + 1) for i = 1, 2, 3. This implies that, (r 1 r 2 r 3 )k 3 -(r 1 r 2 +r 1 r 3 +r 2 r 3 )k 2 +(r 1 +r 2 +r 3 )k -1 ≡ -1 (mod r i k).
By simplifying the above congruence, we obtain

-(r 1 r 2 + r 1 r 3 + r 2 r 3 )k + (r 1 + r 2 + r 3 ) ≡ 0 (mod r i ).
For 1 ≤ i ̸ = j ≤ 3, if r i and r j have a common factor, then the third one does, and it contradicts our assumption. Hence, the r i 's are pairwise co-prime. Suppose k is odd, then r i 's are even as p i 's are odd. Since k is the g.c.d. of p i + 1, this is not possible. Therefore, k must be even, and the theorem follows. □ Theorem 4.3. Let F ′ l be a Lucas-Carmichael integer with exactly lodd number of prime factors p 1 , p 2 , . . . , p l . Let k 1 be the g.c.d. of p i + 1 and r i = p i +1 k 1 . Also, let R be the l.c.m. of r i , i = 1, 2, . . . , l. Then U ′ l (m) = l i=1 (r i Rm + p i ) satisfies the congruence relation U ′ l (m) ≡ -1 (mod r i Rm + p i + 1) for i = 1, 2, . . . , l.

Proof. Since F ′ l = l i=1 (r i k 1 -1) is a Lucas-Carmichael integer and l is odd, we have l i=1 (r i k 1 -1) ≡ -1 (mod r i k 1 ) for i = 1, 2, . . . , l. This implies that

l i=1 (r i k 1 -1) + 1 k 1 ≡ 0 (mod r i ) for i = 1, 2, . . . , l. Therefore, l i=1 (r i k 1 -1) + 1 k 1 ≡ 0 (mod R).
We observe that, any k ≡ k 1 (mod R) is also a solution for the above congruence. Write k = Rm + k 1 and substitute this k for k 1 , we obtain

l i=1 (r i (Rm + k 1 ) -1) + 1 k ≡ 0 (mod R).
Since p i = r i k -1 and r i k = r i Rm + r i k 1 = r i Rm + p i + 1, we have l i=1

(r i Rm + p i ) + 1 ≡ 0 (mod r i k)

and

U ′ l (m) = l i=1 (r i Rm + p i ) ≡ -1 (mod r i Rm + p i + 1)
for every i ranges over 1 to l. □ 

Remark: Since U ′ l (m) = l i=1 (r i Rm + p i ) satisfies the congruence relation U ′ l (m) ≡ -1 (mod r i Rm + p i + 1) for i = 1, 2, . . . , l, the integer U ′ l (m)

  where a, b ∈ Q and discriminant ∆ = 4a 3 + 27b 2 ̸ = 0. For an elliptic curve E with complex multiplication by Q( √ -d), let P ∈ E(Q) be a rational point of infinite order and m be a positive integer such that gcd(m, 6∆) = 1 with -d m = -1, where -d m is the Jacobi symbol. If m is a prime, then [m + 1]P ≡ O (mod m).

Theorem 1 . 3 .

 13 (Elliptic Carmichael Condition). Let m be a squarefree, composite positive integer with an odd number of prime factors. Moreover, let α = 8 • 3 • 7 • 11 • 19 • 43 • 67 • 163. Then m is an elliptic Carmichael number if for each prime p | m, we have α | p + 1 and p + 1 | m + 1. Observing the above elliptic Carmichael condition, the following Korseltlike criterion has been noted: p + 1 | m + 1 whenever p | m, and thus the Lucas-Carmichael integers have been defined. Definition 1.3. A Lucas-Carmichael integer is a square-free positive composite integer m such that p + 1 | m + 1 whenever p | m.

Lemma 2 . 1 .

 21 Let m, n be two positive integers with n > m. Then S m+1 (n + 1) ≡ n + 1 (mod m).

Definition 4 . 1 .Definition 4 . 2 .

 4142 An integer n ∈ L C is called a primary Lucas-Carmichael integer if S p+2 (n + 2) = p + 2 for every prime p divides n, and the set of all such integers is denoted by L C ′ . Let n be a Lucas-Carmichael integer and α := max p|n S p+2 (n + 2) -1 p + 1 .

Lemma 4 . 1 .

 41 Let m be a positive integer, and p = 6m-1, q = 12m-1, r = 18m -1 and U ′ 3 (m) = n = pqr. Then n + 2 = 5(p + 2) 3 + (p -27)(p + 2) 2 + 45(p + 2) + (p -20)

□ Corollary 4 . 1 .

 41 Assuming the same hypotheses as Lemma 4.1 with m ≥ 8, we have S p+2 (n + 2) = 2p + 3, S q+2 (n + 2) = 2q + 3 and S r+2 (n + 2) = r + 2.Proof. Since p ≥ 47 as m ≥ 8, the coefficients of n + 2 in the first equation in Lemma 4.1 are lie between 0 and p + 1, so we have n + 2 with base p+2. Thus, S p+2 (n+2) = 5+(p-27)+45+(p-20) = 2p+3.

  is a Lucas-Carmichael integer for every m for which each of the l factors is a prime.We illustrate Theorem 4.3 with the examples below.

Example 4 . 1 .Lemma 4 . 2 .

 4142 Let F ′ 5 = 588455 be a Lucas-Carmichael integer. Then, we have k 1 = 2, r 1 = 3, r 2 = 4, r 3 = 9, r 4 = 12, r 5 = 22 and R = 396. Let U ′ 5 (m) = n = p 1 p 2 p 3 p 4 p 5 , where p 1 = 1188m + 5, p 2 = 1584m + 7, p 3 = 3564m + 17, p 4 = 4752m + 23 and p 5 = 8712m + 43. Then, by Theorem 4.3, we have U ′ 5 (m) ≡ -1 (mod 396r i + p i + 1) for every i = 1, 2, 3, 4, 5. Now, we prove that there are infinitely many Lucas-Carmichael integers of degree 4 with exactly five prime factors. Let m be a positive integer, and p = 1188m + 5, q = 1584m + 7, r = 3564m + 17, s = 4752m + 23, t = 8712m + 43 and U ′ 5 (m) = n = pqrst. Then n + 2 = 117(p + 2)

Corollary 4 . 3 .

 43 Assume that the same hypotheses in Lemma 4.3 with 373248 | m. Then, we have S p+2 (n + 2) = 4p + 5, S q+2 (n + 2) = 3q + 4, S r+2 (n + 2) = 3r + 4, S s+2 (n + 2) = 3s + 4 S t+2 (n + 2) = 3t + 4, S u+2 (n + 2) = 2u + 3 and S v+2 (n + 2) = 3v + 4.

Theorem 4 . 5 .

 45 The prime k-tuples conjecture implies that there are infinitely many Lucas-Carmichael integers of degree 4 with exactly seven prime factors.Proof. According to the prime k-tuples conjecture, there are infinitely many positive integers m divisible by 373248 for which U ′ 7 (m) has exactly seven prime factors. By Corollary 4.3, each of these numbers U ′ 7 (m) is a Lucas-Carmichael integer of degree 4. □

  Definition 1.2. Let m be a composite number and E be a CM -elliptic curve. If m satisfies the Gordon primality test, then m is called an Eelliptic Carmichael number. A composite integer m is said to be an elliptic Carmichael number if m is an E-elliptic Carmichael number for every CM -elliptic curve E.

	Ekstrom et al. [10] computed the following smallest elliptic Carmichael
	number:
	617730918224831720922772642603971311 = p(2p + 1)(3p + 2),
	where p = 468686771783. Also, they proved the following Elliptic
	Carmichael condition.

  + 2 = (s + 2) 7 + (648m -15)(s + 2) 6 + (1458m + 125)(s + 2) 5 + (1404m -419)(s + 2) 4 + (4086m + 915)(s + 2)3 

			+ (4212m -1090)(s + 2) 2 + (2016m + 758)(s + 2)
			+ (1728m -202)	
	n + 2 =	5 + (396m -875)(p + 2) 4 + (1056m + 2593)(p + 2) 3 + (660m -3771)(p + 2) 2 + (132m + 2724)(p + 2) + (132m -775) 531441 512 m + 2 (t + 2) 6 + 460701 512 m + 26 (t + 2) 5
	n + 2 = 27(q + 2) 5 + + 312795 128 m -82 (t + 2) 4 + 2117016 1584 m -224 (q + 2) 4 1532709 256 m + 256 (t + 2) 3
		+ + + (1287m + 958)(q + 2) + (1188m -287) 1724976 1584 m + 758 (q + 2) 3 + 2273832 811161 512 m -319 (t + 2) 2 + 1590921 m + 267 (t + 2) m -1199 (q + 2) 2 512 1584 + 1453005 256 m -53
	n + 2 = n + 2 =		6133248 3564 32768 729 m(u + 2) 6 + m + 3 (r + 2) 4 + 919552 2317392 3564 729 m + 7 (u + 2) 5 m + 32 (r + 2) 3
	+ + + + + n + 2 = 8m(v + 2) 6 + 574992 3564 m -65 (r + 2) 2 + 793744 729 m -2 (u + 2) 4 + 12005136 1404608 729 m -36 (u + 2) 2 + m -11 3564 n + 2 = 2587464 4752 m + 1 (s + 2) 4 + 4805968 m + 13 729 3606768 4373424 1154864 m + 45 (u + 2) 3 m + 78 (r + 2) 243 3564 5584880 m + 82 (u + 2) 729 4752 m + 13 (s + 2) 3 946 3 m + 1 (v + 2) 5 + 33416 3 m + 50 (v + 2) 4
		+ +	14662296 4752 26998 3 m + 49 (v + 2) 3 + m -10 (s + 2) 2 + (1023m + 38)(s + 2) 13664 3 m + 4 (v + 2) 2
	n + 2 =	+ (4092m + 7) 419904 8712 m (t + 2) 4 + + 31096 3 m + 69 (v + 2) + 9191232 8712 33824 m + 6 (t + 2) 3 3 m + 44 .
		+	41885424 8712	m + 20 (t + 2) 2 +	31403376 8712	m + 26 (t + 2)
		+	68897952 8712	m + 37 .	

Corollary 4.2. Assume that the same hypotheses in Lemma 4.2 with 156816 | m. Then, we have S p+2 (n + 2) = 2p + 3, S q+2 (n + 2) = 4q + 5, S r+2 (n + 2) = 2r + 3, S s+2 (n + 2) = 2s + 3 and S t+2 (n + 2) = 2t + 3.

n
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Next, we prove that there are infinitely many Lucas-Carmichael integers of degree 4 with exactly seven prime factors. n + 2 = 143(q + 2) 7 + (2592m -1644)(q + 2) 6 + 7965(q + 2) 5