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In brief

Current methods to analyze spatially

resolved transcriptomics (SrT)

underexploit their spatial signature.

Inspired by contextual pixel classification

strategies applied to image analysis,

Moehlin et al. developed MULTILAYER, a

tool able to stratify SrT into functionally

relevant molecular substructures.

MULTILAYER proved enhanced

performance on various SrT, including

those of high resolution.
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3Lead contact

*Correspondence: mmendoza@genoscope.cns.fr
https://doi.org/10.1016/j.cels.2021.04.008
SUMMARY
Spatially resolved transcriptomics (SrT) can investigate organ or tissue architecture from the angle of gene
programs that define their molecular complexity. However, computational methods to analyze SrT data
underexploit their spatial signature. Inspired by contextual pixel classification strategies applied to image
analysis, we developed MULTILAYER to stratify maps into functionally relevant molecular substructures.
MULTILAYER applies agglomerative clustering within contiguous locally defined transcriptomes (gene
expression elements or ‘‘gexels’’) combined with community detection methods for graphical partitioning.
MULTILAYER resolves molecular tissue substructures within a variety of SrT data with superior performance
to commonly used dimensionality reduction strategies and still detects differentially expressed genes on par
with existing methods.
MULTILAYER can process high-resolution as well as multiple SrT data in a comparative mode, anticipating
future needs in the field. MULTILAYER provides a digital image perspective for SrT analysis and opens the
door to contextual gexel classification strategies for developing self-supervised molecular diagnosis so-
lutions.
A record of this paper’s transparent peer review process is included in the supplemental information.
INTRODUCTION

One of the current challenges of systems biology is the study of

complex living systems by evaluation of the various gene pro-

grams that define organ/tissue architecture. Indeed, accessing

the gene programs in tissues has, until recently, been performed

by global (bulk) gene expression analyses but recent advances in

single-cell transcriptomics has made it possible to move from an

‘‘average view’’ toward single-cell gene-program readouts (Birn-

baum, 2018). However, cell dissociation by enzymatic methods,

necessary for single-cell assays, tends to modify transcriptional

patterns (van den Brink et al., 2017), it destroys at least a fraction

of the cells that compose the tissue and does not conserve tis-

sue architecture.

Recent developments in spatially resolved transcriptomics

(SrT) (Liu et al., 2020; Rodriques et al., 2019; Ståhl et al., 2016)

have made it possible to circumvent the aforementioned tech-

nical issues related to single-cell assays, notably the capacity

to conserve the spatial architecture, essential for heterogeneous

tissue analysis. These strategies, based on the use of physical

supports (DNA arrays [Rodriques et al., 2019; Ståhl et al.,

2016] or microfluidic channels [Liu et al., 2020]) to capture local

gene expression signatures (mRNA transcriptome) from tissue
Cell Systems 12, 1–
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sections, behave like a digital camera, making it possible to

obtain a ‘‘digital’’ view of the molecular programs of the tissue.

Although several computational solutions are available to

process SrT (Bergenstråhle et al., 2020; Fernández Navarro

et al., 2019), their analytical pipelines tend to reuse strategies

applied to single-cell transcriptomics, namely to consider

each of the captured local transcriptomes as independent

units during their comparison. Specifically, the use of dimen-

sionality reduction strategies combined with clustering meth-

odologies have become the proven analytical path to decrease

noise and facilitate data visualization within single-cell tran-

scriptomics assays (Sun et al., 2019). This being said, recent

benchmark studies demonstrated that the choice of the

dimensionality reduction (e.g., PCA, t-SNE, and UMAP) and

clustering methodology (e.g., K-means and hierarchical), along

with their associated parameters, can give rise to divergent

cell-type classifications (Becht et al., 2018; Feng et al., 2020;

Raimundo et al., 2020; Sun et al., 2019), arguing for the

cautious use of such methodologies (Kiselev et al., 2019).

Although SrT data processed using these strategies are ex-

pected to suffer from the same pitfalls, the spatial information

conserved within their captured local transcriptomes repre-

sents a major under-exploited advantage.
12, May 19, 2021 ª 2021 The Authors. Published by Elsevier Inc. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Themolecular tissue digitalization analyzer (MULTILAYER) workflow compared with dimensionality reduction and clustering stra-

tegies

Spatially resolved transcriptomics (SrT) provide matrices composed of spatial coordinates harboring read counts per gene. Such coordinates are defined as

gexels (gene expression elements), analogous to the pixels that constitute digital images. Similar to other computational tools dedicated to SrT data processing,

MULTILAYER corrects for differences in total read counts per gexel, as such variations are considered to be artifactual (normalization; ‘‘Norm’’). However,

contrary to classical strategies that apply dimensionality reduction and clustering methodologies, normalized matrices are used by MULTILAYER for the

computing of differential gene expression values relative to those for the average expression over the entire tissue. Similar to digital image processing, an

agglomerative strategy is applied to reveal gene patterns defined by contiguous gexels, which are then compared to reveal spatial gene co-expression patterns

expected to host functionally relevant information. A global comparison of all gene co-expression patterns leads to the partitioning of the initial spatial tran-

scriptomics map into functionally relevant spatial community regions, which strongly improves the rendering (and its related biological coherence) relative to the

spatial overlay of the identified clusters from dimensionality reduction strategies.
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Inspired by digital image processing, which relies on contig-

uous pixel aggregation, we describe MULTILAYER, an analytical

strategy dedicated to the processing of SrT readouts by pattern

recognition from contiguous local transcriptomes. Such

captured local transcriptomes are defined herein as gexels

(gene expression elements), analogous to pixels, commonly

described as units composing raster images in digital imaging.

Hence, MULTILAYER processes SrT maps as a digital image,

in which gexel patterns resulting from agglomerative clustering

make it possible to highlight biologically relevant tissue

substructures.

In this study, we compare the performance of MULTILAYER

for the detection of differential gene expression with that of sta-

tistical methods previously applied for the analysis of SrT data.

Then, we demonstrate its capacity to infer biologically relevant

tissue substructures from the implemented gexel pattern recog-

nition module and its enhanced performance relative to dimen-

sionality reduction and clustering strategies on various SrT

data, including the anatomical tissue stratification of a whole

mouse embryo (DBiT-seq) (Liu et al., 2020). Finally, we present

the performance of MULTILAYER for the analysis of high-resolu-

tion SrT data (Slide-seq; Rodriques et al., 2019) as well as for

processing multiple datasets through an automated compara-

tive batch module, anticipating the future needs of this rapidly

evolving field. MULTILAYER is freely available as a stand-alone

computational tool (https://github.com/SysFate/MULTILAYER)
2 Cell Systems 12, 1–12, May 19, 2021
RESULTS

Normalization, differential gene expression, detection
of gene co-expression patterns, and digital tissue
partitioning of SrT data performed by multilayer
MULTILAYER receives SrT matrices composed of spatial coor-

dinates and read counts per gene as input. These matrices are

converted into a grid view on which each spatial coordinate is

associatedwith a gene expression element (or gexel), composed

of read counts per gene for the local transcriptome. Raw SrT

maps show variable total read counts per gexel, potentially

due to technical issues during sample preparation (e.g., uneven

tissue permeabilization, mRNA capture, etc). MULTILAYER

applies quantile normalization (Hansen et al., 2012) across the

gexels to address this problem, generating a uniform total

read-count map over the entire grid. Other computational tools

dedicated to SrT data processing, such as STviewer (Fernández

Navarro et al., 2019), share these primary steps, including read-

count normalization, prior application of dimensionality reduc-

tion, and clustering methodologies (Figure 1).

Under the assumption that the digital tissue map under study

is nonhomogeneous, we aimed to infer changes in gene expres-

sion in a spatial context. MULTILAYER thus computes gene

expression levels per gexel relative to the average gene expres-

sion within the tissue. Analogous to the terminology used in

‘‘bulk’’ gene expression analysis, we describe herein regions

https://github.com/SysFate/MULTILAYER
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Figure 2. The performance of MULTILAYER relative to two statistical approaches dedicated to the detection of spatial gene-expression

patterns

(A) Hematoxylin and eosin staining of breast cancer tissue used for a spatial transcriptomics assay (Ståhl et al., 2016) (left panel) and the processing of its

corresponding data by MULTILAYER.

(B) Comparison between raw and quantile-normalized (Qnorm) read-count maps for the housekeeping gene ACTB and fibronectin 1 (FN1), known to be over-

expressed in breast cancer (Wang et al., 2018).

(C) Number of common overexpressed gene patterns (false discovery rate [FDR] < 0.05) detected by SPARK (Sun et al., 2020), SpatialDE (SPDE; Svensson et al.,

2018), and/or MULTILAYER relative to the number of contiguous gexels per pattern.

(D) Scatter plot displaying the statistical confidence associated with the top-100 genes (SPDE FDR ranking) inferred either by SPDE (left panel) or SPARK (right

panel) relative to the number of contiguous gexels in patterns revealed by MULTILAYER. The FDR threshold (0.05) is highlighted by the red dashed line. Example

of four genes (COL12A1, FN1, SULF1, and POSTN) reported to be highly significantly expressed by SPARK and SPDE, whereas S100A10 is above the defined

FDR threshold by the SPARK statistical analysis only.

(E) Hematoxylin and eosin staining ofmouse olfactory bulb (MOB) tissue used for a spatial transcriptomics assay (Ståhl et al., 2016) (left panel) and reprocessing of

its corresponding data by MULTILAYER.

(F) Number of common significant gene patterns (FDR < 0.05) detected by SPARK (Sun et al., 2020), SPDE (Svensson et al., 2018), and/or MULTILAYERwithin the

top-100 differentially expressed MOB genes (ranked by FDR predicted by SDE).

(legend continued on next page)
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as upregulated or downregulated when the normalized read

counts per gene are above or below the stated average behavior,

respectively (Figure 1). Although this analysis is performed per

gexel, MULTILAYER ranks differentially expressed genes based

on the number of related gexels, hence providing a rapid view of

genes that are overrepresented on the digital map on the basis of

their relative expression (Figure S1B).

Similar to contextual classification strategies used for image

analysis from pixel information (Toussaint, 1978), MULTILAYER

detects gene expression patterns using an agglomerative strat-

egy applied to contiguous gexels. This module generates a

cleaner view of overexpressed genes within the tissue (Figure 1).

Furthermore, it allows the identification of multiple patterns for

the same overexpressed gene within the tissue, which per se

is lost in all other strategies that rely on aggregating independent

gexels by applying, for example, the t-distributed stochastic

neighbor embedding (t-SNE) method (Figures S3, S4, and S7).

Having detected patterns for all overexpressed genes,MULTI-

LAYER compares their spatial localization to infer their degree of

co-expression (implementation of the Tanimoto andDice similar-

ity coefficient, see STAR methods). MULTILAYER expands this

analysis through the ensemble of overexpressed genes to

generate a graph in which nodes correspond to overexpressed

genes within the tissue and edges their similarity coefficient, re-

flecting their degree of spatial co-expression (Figure S4). By

applying the Louvain methodology for community detection

(Blondel et al., 2008), MULTILAYER partitions the digital tissue

map into biologically relevant tissue substructures. Using the

aforementioned strategy, tissue partitioning performed by

MULTILAYER surpasses the outcome obtained using the clas-

sical dimensionality reduction and clustering workflow, as illus-

trated in this study (Figures 1, 3, and S7).

MULTILAYER detects differentially expressed genes
with performance similar to existing methods
We validated the performance of the normalization and the

detection of differential gene expression relative to that of exist-

ing methods using two public SrT datasets, one for the mouse

olfactory bulb (MOB) and the other a human breast cancer tissue

section (Ståhl et al., 2016). SrT landscaping over the breast can-

cer section gave rise to a digital map showing total counts per

gexel varying between 2 and 13,874 reads, with an uneven dis-

tribution of high-count levels on one side of the tissue (Figure 2A).

Such uneven distribution is also observed for the read counts

associated to housekeeping gene actin beta (ACTB) (Figure 2B).

Quantile normalization uniformized the total counts per gexel to

3,135 reads and rendered the ACTB read counts evenly distrib-

uted over the tissue. Quantile normalization did not affect the

spatial read-count distribution associated with the gene fibro-

nectin 1 (FN1), known to be overexpressed in breast cancer

(Wang et al., 2018), which led to its detection as a spatially over-

expressed gene with a pattern composed of several contiguous

gexels (Figures 2A and 2B). Similarly, quantile normalization
(G) Same as (D) for the MOB dataset. Example of three genes (CCK, KCTD12, an

others (SEZ6 and SH3PXD2A) for which their associated confidence is beyond t

(H) In situ hybridization (ISH) and gene-expression data (Allen mouse brain atla

coherent with the digitized view generated by MULTILAYER (displayed in E). The h

from https://www.spatialresearch.org/.
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applied to the MOB dataset corrected for high (and unevenly

spatially distributed) read-count levels associated with the

housekeeping genes GAPDH and ACTB (Figure S1E). In the

absence of such read-count correction, these genes would be

considered to be spatially overexpressed, as illustrated by the

artifactual pattern revealed by MULTILAYER. On the contrary,

the spatial overexpression signature associated with the gene

neurogranin (NRGN) was unchanged by the quantile treatment,

as supported by the pattern detection performed by MULTI-

LAYER, in agreement with publicly available in situ hybridization

data (Figures 2E and S1A).

We compared the performance ofMULTILAYER for the detec-

tion of differential gene expression using two existing statistical

methods, SPARK (Sun et al., 2020) and SpatialDE (SPDE)

(Svensson et al., 2018), previously used for the analysis of the

breast cancer tissue and MOB data. For the breast cancer

data,MULTILAYERdetected >68%of all differentially expressed

genes reported by SPARK (198 of the 290 genes, with a false dis-

covery rate [FDR] < 0.05; Sun et al., 2020), from which 71 were in

common with those reported by SPDE (from a total of 115) (Fig-

ure 2C). In contrast to the common genes detected between

SPARK andMULTILAYER or byMULTILAYER alone, the fraction

of commonly detected genes between SPDE, SPARK, and

MULTILAYER showed a minor decrease when evaluated be-

tween 6 to 10 contiguous gexels (Figure 2C). This observation

suggests that the differentially expressed genes commonly de-

tected by these three methods are associated with patterns rep-

resented by a large number of contiguous gexels, a fact that was

confirmed when comparing the top-100 SPDE-ranked genes

with the number of contiguous gexels in patterns revealed by

MULTILAYER (Figure 2D). SPDE produced conservative confi-

dence descriptors, as illustrated by the associated q values for

the overexpressed genes sulfatase-1 (SULF1), periostin

(POSTN), and the member of the S100 protein family S100A10.

In all cases, SPARK presented higher q values, in agreement

with their rank assigned by MULTILAYER on the basis of the

contiguous gexels within the detected pattern (Figure S2A).

Finally, the fraction of differentially expressed genes detected

by MULTILAYER alone corresponded to patterns composed of

few contiguous gexels (112 genes with >5 contiguous gexels,

and only 9 with >9 gexels, Figures 2C and S2B). Despite such

behavior, these genes are enriched for cancer-related terms

(DisGeNET association analysis; Figure S2D) and among them,

factors such as cytochrome c oxidase subunit 6C (COX6C) or

mucin-like 1 (MUCL1), which have been reported to be overex-

pressed in breast cancer, were retrieved (Figure S2C) (Chang

et al., 2017; Conley et al., 2016).

In the case of the MOB data, MULTILAYER detected 98 of the

top-100 SPDE-ranked genes (q value ranking, of which the top

67 had an FDR < 0.05; Sun et al., 2020), among which 44 were

in common between all threemethods (Figure 2F). The conserva-

tive statistical behavior of SPDE is highlighted when comparing

the number of contiguous gexels per pattern detected by
d NRGN) reported to be significantly expressed by SPARK and SPDE and two

he defined FDR threshold by the SPARK statistical analysis only.

s) for the neurogranin (NRGN) gene, revealing its spatial signature, which is

ematoxylin and eosin staining images reproduced in (A) and (E) were obtained

https://www.spatialresearch.org/
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Figure 3. MULTILAYER reveals functionally relevant tissue substructures by agglomerative clustering of digitized molecular signatures

(A) MULTILAYER normalization of spatial transcriptomics data from developing human heart tissue (9 weeks post conception; Asp et al., 2019).

(B) Differential gene-expression signature (relative to the average behavior within the tissue) for ACTA2, ELN, TTN, and NPPA.

(legend continued on next page)
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MULTILAYER with their corresponding q value (Figure 2G),

notably by the low confidence assigned by SPDE to the genes

SEZ6 and SH3PXD2A, but significantly detected by MULTI-

LAYER and SPARK (Figure S2E).

Overall, this comparative analysis using SPARK and SPDE

shows that MULTILAYER allows retrieval of most of the signifi-

cant genes revealed by these methods.

MULTILAYER efficiently partitions digitized tissuemaps
into biologically relevant substructures
In contrast to existing methods, MULTILAYER not only reveals

differentially expressed genes but also uses their spatial informa-

tion to partition digitized tissues into potentially relevant func-

tional substructures. We processed public SrTmaps for a variety

of tissues, including human developing heart samples (Asp et al.,

2019), pancreatic tumors (Moncada et al., 2020), as well as the

recent processing of a whole mouse embryo (Liu et al., 2020),

to assess its performance. As part of the heart study, MULTI-

LAYERwas instrumental in revealing the complexity of the tissue

within 19 digital maps covering three described developmental

stages (4.5–5, 6.5, and 9 post-conception weeks (PCW); Fig-

ure S5). We focused our attention on a tissue section collected

at 9 PCW to highlight the performance of MULTILAYER (Fig-

ure S5, section 15). After applying quantile normalization to the

raw read counts (Figure 3A), MULTILAYER detected several

overexpressed genes, including those encoding the smooth

muscle actin ACTA2, one of the components of the elastic fibers

(elastin and ELN), the large abundant protein comprising the stri-

ated muscle Titin (TTN), and the natriuretic peptide NPPA (Fig-

ure 3B). The spatial gene overexpression signature for ACTA2

appeared to be concomitant with that of ELN and distinct from

those observed for TTN and NPPA. This observation was

confirmed by the spatial gene co-expression analysis performed

by MULTILAYER, showing that ACTA2 and ELN present a simi-

larity index >30% (Tanimoto distance) (Figure 3C), also observed

for other factors, such as PXDN, BGN, S100A11, HTRA1, EMI-

LIN1, CXCL12, MYH10, and TAGLN, some previously described

to be expressed in the heart valve (Hinton et al., 2010; Munjal

et al., 2014; Regalado et al., 2015). In a similar manner, TTN pre-

sented a co-expression signature with NPPA, as well as several

other factors, such as NDUFA4, FHL2, and CTNNA1, known to
(C) Spatial gene co-expression analysis for ACTA2 and TTN. Gexels colored in re

colored gexels show their co-expression pattern (Tanimoto similarity index).

(D) Spatial community tissue stratification from gene co-expression analysis and a

genes. The developing human heart tissue map was stratified into five spatial c

localization pattern (‘‘2’’ and ‘‘3’’).

(E) Gene ontology analysis (ARCSH4 tissue database; Lachmann et al., 2018) for

tissue, as performed by MULTILAYER. (F) MULTILAYER normalization of spatial t

et al., 2020).

(G) Differential gene-expression signature for MUC5B, S100A6, and PRSS1.

(H) Spatial gene co-expression analysis for MUC5B, S100A6, and PRSS1. Gexe

colored gexels show their co-expression pattern (Tanimoto similarity index).

(I) Composite view of the six spatial communities detected in the pancreatic adeno

tissue and all overexpressed genes.

(J) Gene ontology analysis (DisGeNET database; Piñero et al., 2020) for each of

(K) MULTILAYER processing of DBiT-seq data (deterministic bar coding in tissue f

gexel resolution). The right panel shows eight spatial communities revealed by a

gexels; Tanimoto similarity index >10%).

(L) Anatomical annotation elaborated by Liu et al. (2020).

(M) UMAP clustering (right) and its corresponding spatial projection (left) perform
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present a specific left ventricle overexpression (as documented

on the genotype-tissue expression portal (Lonsdale et al.,

2013)(GTEx Consortium, 2020).

By extending the gene co-expression pattern detection over

the entire tissue and applying spatial community partitioning,

MULTILAYER revealed the presence of five communities that

can be summarized within three major distinct tissue substruc-

tures (Figure 3D). Gexel communities ‘‘0’’ and ‘‘1’’ corresponded

to two distinct regions, associated with the left and right ventricle

and atrium of the heart (Figure 3E). In contrast, communities ‘‘2’’

and ‘‘3’’ showed redundant spatial location (Figure 3D) function-

ally related to pericardial tissue and the heart valve (Figure 3E). It

is noteworthy that the aforementioned tissue substructures re-

vealed by MULTILAYER, provides a clearer tissue partitioning

than that obtained with dimensionality reduction and clustering

strategies (Figure S7; Asp et al., 2019).

We analyzed pancreatic ductal adenocarcinoma SrT maps

(Moncada et al., 2020) to further illustrate the performance of

MULTILAYER on other types of tissue. After read-count normal-

ization (Figure 3F), MULTILAYER detected a variety of spatially

overexpressed genes, among them the mucin family member

MUC5B, S100 calcium-binding protein A6 (S100A6), and the

serine protease PRSS1 (Figure 3G). These three overexpressed

genes showed a completely distinct spatial behavior, further

confirmed by their gene co-expression patterns, as inferred by

MULTILAYER (Figure 3H). Such distinct spatial patterns are in

agreement with their previously described functional role, as

MUC5B has been shown to be overexpressed in pancreatic

ducts (Ringel and Löhr, 2003), S100A6 associated with pancre-

atic cancer development (Ohuchida et al., 2005), and PRSS1 ex-

pressed in normal pancreatic tissue, as it codes for trypsinogen,

the enzyme secreted by this organ. Beyond these three distinct

regions, MULTILAYER inferred up to six gexel communities (Fig-

ures 3I and S6), which can be summarized in four potentially

functional relevant regions. Gexel community ‘‘0,’’ was associ-

ated with functional terms such as pancreatitis or abnormal

enzyme activity, most likely due to the fact that mutations of

PRSS1 have been shown to be associated with hereditary

pancreatic disorders (Shelton et al., 1993). This spatial region

has been characterized as ‘‘normal pancreas tissue’’ as part of

the histological annotation described by Moncada et al. (2020),
d correspond to the location of the target genes (ACTA2 or TTN) and the other

gglomerative clustering performed over the entire tissue and all overexpressed

ommunities (from ‘‘0’’ to ‘‘4’’), of which two show a highly redundant spatial

each of the spatial communities retrieved within the developing human heart

ranscriptomics data from pancreatic ductal adenocarcinoma tissue (Moncada

ls colored in red correspond to the location of the target genes and the other

carcinoma tissue from a gene co-expression analysis performed over the entire

the spatial communities displayed in (I), as performed by MULTILAYER.

or spatial omics sequencing; Liu et al., 2020) from a whole mouse embryo (50-m

gglomerative clustering of co-expressed gexels (patterns with >5 contiguous

ed by Liu et al. (2020) (images reproduced with authorization).
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in agreement with theMULTILAYER functional annotation, which

was devoid of tumor-related terms (Figure 3J). On the contrary,

gexel community ‘‘3’’ was strongly associated with disease

terms such as ‘‘adenocarcinoma,’’ ‘‘tumor progression,’’ and

‘‘neoplasmmetastasis,’’ in agreement with the histological anno-

tation described by Moncada et al. (2020). Similarly, gexel com-

munities ‘‘2’’ and ‘‘1’’ were associated with ‘‘cancer-related

terms,’’ but with a lower confidence, in agreement with the afore-

mentioned histological differences (gexel community ‘‘1’’

described as duct epithelium and ‘‘2’’ as stroma; Moncada

et al., 2020).

Finally, to further demonstrate the relevance of gexel commu-

nity stratification, we processed data issued from the recently

described DBiT-seq methodology, for which the authors used

microfluidic channels to generate a spatial transcriptome map

over a whole mouse embryo (Liu et al., 2020). The corresponding

transcriptome map (50-mm resolution) is composed of gexels

with total counts varying between �600 and �46,000 reads un-

evenly distributed throughout the tissue (Figure 3K). MULTI-

LAYER uniformized the total counts per gexel to �12,000 reads

and allowed to reveal up to eight distinct spatial communities

(Figures 3K and S7I). The spatial localization of the inferred com-

munities showed a strong correlation with the anatomical anno-

tation presented within the DBiT-seq study (Figures 3L and S7J;

Liu et al., 2020), better than the unsupervised UMAP clustering

(Figure 3M) or a similar dimensionality reduction that can be ob-

tained using the t-SNE algorithm (Figure S7J). This enhanced

MULTILAYER performance relative to other strategies that rely

on aggregating independent gexels by applying the t-SNE algo-

rithm was also verified for the developing human heart and the

pancreatic ductal adenocarcinoma datasets (Figures S7A–S7F).

Overall, MULTILAYER made it possible to perform automated

tissue stratification, showing biologically relevant roles coherent

with the findings revealed in the studies from which we collected

the data. It is noteworthy that, contrary to previous studies,

MULTILAYER partitions the digital map based on contiguous

gexel information and provides ranked lists of overexpressed

genes and relevant gene co-expression patterns to the user,

thus enhancing the molecular characterization of the spatial in-

formation in a self-supervisedmanner, similar to that used for tis-

sue image segmentation (reviewed in Gildenblat and Klai-

man [2019]).

MULTILAYER allows the processing of high-resolution
SrT maps by incorporating a super-gexel agglomerative
compression module
Most of the current available SrTmaps come fromglass slides on

which barcoded-polyT DNA probes are printed. The

manufacturing constraints of such DNA arrays provide a resolu-

tion of �100 mm (equivalent to �10–40 cells per gexel), with a

number of spots ranging between �1,000 and �5,000 (when

considering the recent commercial upgrade of the original SrT

protocol), covering a surface of �6 3 6 mm (Ståhl et al., 2016).

An alternative strategy, based on the use of uniquely DNA-bar-

coded beads deposited onto a glass coverslip, enhanced the

SrT resolution to 10 mm. This methodology, known as Slide-

seq, allowed the generation of high-resolution SrT maps within

a circular surface of 3 mm in diameter containing �70,000

uniquely DNA-barcoded beads (Rodriques et al., 2019).
Aiming to use MULTILAYER to analyze high-resolution Slide-

seq maps but concerned by the technical constraints related

to (1) the low number of read counts per gene retrieved within

the gexels (Figure S8) and (2) the high number of gexels within

the SrT map impacting the computational performance

(including the display functionalities); we have implemented a

complementary script allowing to reduce the SrT map

complexity. This ad hoc module, called ‘‘MULTILAYER

compressor,’’ generates super-gexels by agglomerating contig-

uous gexels defined by a user-provided compression factor.

This approach, previously described for image-segmentation

strategies (Stutz et al., 2018), allowed enhancement of the num-

ber of counts per gene within super-gexels to levels even com-

parable to those retrieved in regular SrT maps (Figure S8).

Furthermore, it reduced the computational requirements, such

that MULTILAYER was able to deconvolve the potentially func-

tional relevant complexity of the digital tissue. This last aspect

has been highlighted by the analysis of public Slide-seq data,

including mouse hippocampus and sagittal cortex maps (Fan

et al., 2020; Rodriques et al., 2019). In both cases, raw Slide-

seq maps composed of � 70,000 high-resolution gexels were

compressed by factors of 603, 1003, and 1753, leading to

grid sizes compatible with the performance of MULTILAYER

(Figures 4 and S8–S11). Normalization and differential gene

expression analysis performed on the hippocampusmap (reduc-

tion factor of 603) allowed us to identify spatially distinct overex-

pression signatures for factors such as protein phosphatase 3

catalytic subunit alpha (PPP3CA), Purkinje cell protein 4

(PCP4), and synaptosome-associated protein 25 (SNAP25) (Fig-

ures 4B and S9). This was further supported by global tissue

stratification from a comparison of gene co-expression patterns

retrieved over the entire tissue (43 spatial communities; Fig-

ure 4C). The use of higher compression factors (1003 and

1753) did not affect the observed overexpression signature for

PPP3CA, PCP4, or SNAP25 and increased their related read

counts and differential overexpression levels, in agreement

with the agglomerative strategy used for generating super-gex-

els (Figures 4B and S9C). Furthermore, it reduced the number

of detected spatial gexel communities (13 and 8 spatial commu-

nities for 1003 and 1753, respectively) but retained the global

digital tissue substructures (Figures 4C, 4E, and 4G). Finally,

the relevance of the various spatial gexel communities were

confirmed by gene ontology enrichment analysis (ARCHS4 tis-

sue database; Lachmann et al., 2018) assessed using the three

described compression factors (Figures 4D, 4F, and 4H).

A similar analysis performed on the cortex map (reduction fac-

tor of 603) allowed us to identify spatially distinct overexpression

signatures for factors such as the gene transthyretin (TTR) and

calcium/calmodulin-dependent protein kinase II inhibitor 1

(CAMK2N1) (Figure S10). We confirmed their gene expression

relevance within the mouse cortex by gene ontology term anal-

ysis performed over the spatially co-expressed genes at various

digital compression factors (603, 1003, and 1753) (Figures

S10E–S10I). The extension of the co-expression pattern over

all genes within the tissue map allowed us to infer >40 super-

gexel communities on the cortex map using the 603 compres-

sion factor (Figure S11A). Gene ontology analysis performed

by MULTILAYER (ARCHS4 tissue database) showed the enrich-

ment of terms such as cerebral cortex, superior frontal gyrus,
Cell Systems 12, 1–12, May 19, 2021 7
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Figure 4. High-resolution hippocampus spatial transcriptomics map analyzed by MULTILAYER

(A) Raw hippocampus Slide-seqmap displaying the presence of at least one read count per position. (B) Differential spatial expression signatures associated with

the factors PPP3CA, PCP4, and SNAP25 after applying compression factors (c.f.) of 603 and 1003, respectively.

(C) Spatial communities revealed on the hippocampus STmap after applying a compression factor of 603. MULTILAYER compressor reduced the complexity of

the original map (displayed in A) to a grid composed of 110 3 110 super-gexels, which was then processed by MULTILAYER.

(D) Gene ontology enrichment analysis performed on the 43 spatial communities displayed in (C).

(E and G) Spatial communities revealed on the hippocampus ST map after applying compression factors (c.f.) of 1003 and 1753, respectively.

(F and H) Gene ontology enrichment analysis performed on the spatial communities displayed in (E) and (G), respectively. ARCHS4 tissues: GO terms database

from massive mining of publicly available RNA-seq data from human and mouse (Lachmann et al., 2018).
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dentate granule cell, motor neuron, neuronal epithelium, dorsal

striatum, and spinal cord (Figure S11D). The use of a compres-

sion factor of 1003 reduced the digital tissue stratification to

15 communities (Figure S11B) and down to seven when a

1753 compression factor was applied (Figure S11C). In both

cases, the major spatial tissue stratification remained visible,

further supported by their associated gene ontology terms (Fig-

ures S11E and S11F).

Overall, MULTILAYER allowed the stratification of high-resolu-

tion but sparse SrT maps by the use of a super-gexel agglomer-

ative compression strategy.

MULTILAYER provides an enhanced tissue
heterogeneity classification when comparing multiple
digitized tissue maps
A major question to address when analyzing multiple tissues

from related samples is whether their inferred substructures

(herein referred as spatial communities) share commonalities

and differences that could enhance our understanding of their

molecular inter-relationship. Recently, Berglund et al. generated

SrT maps from 12 spatially separated biopsies from a cancerous

prostate, for which a pathological annotation, based on a histo-

logical analysis (Gleason Grading), was performed (Figure 5A)
8 Cell Systems 12, 1–12, May 19, 2021
(Berglund et al., 2018). We addressed this question by imple-

menting a ‘‘batch mode’’ within MULTILAYER, allowing the

processing of multiple SrT maps, and their comparison on the

basis of their stratified spatial communities. MULTILAYER in-

ferred spatial community substructures within all 12 sections

and revealed their significantly enriched disease-gene associa-

tions (Figures 5B and S12).

MULTILAYER performed inter-tissue comparisons by con-

structing a graph in which spatial communities per tissue

were associated with their relevant gene co-expression pat-

terns. Such inter-tissue graph was partitioned (Louvain method-

ology Blondel et al., 2008) into nine ‘‘classes,’’ corresponding to

the relationship between tissue substructures retrieved among

all 12 biopsies (Figure 5C). Noteworthy, MULTILAYER’s parti-

tioning revealed that all tissues present molecular signatures

related to prostate cancer progression on at least one substruc-

ture, regardless of the histological classification (Figures 5C,

5D, and S12). For example, tissue biopsies histologically classi-

fied as ‘‘normal glands’’ (P1.1, P2.1, P3.2, P4.1, P4.2, and P4.3)

showed gene co-expression patterns associated with factors

such as the membrane cell-junction protein claudin-4

(CLDN4), known to be overexpressed in primary and metastatic

prostate cancer (Landers et al., 2008); growth/differentiation
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factor-15 (GDF-15), the overexpression of which has been

associated with prostate cancer progression (Va�nhara et al.,

2012); the gene ACPP, encoding prostatic acid phosphatase,

associated with prostatic hyperplasia and also observed in

prostate carcinoma (as shown in the human protein atlas data-

base); kallikrein-related peptidase 2 (KLK2), encoding a trypsin-

like serine protease primarily expressed in the prostate, the

overexpression of which is considered to be a prognostic

marker for prostate cancer risk (Shang et al., 2014); and acti-

vating transcription factor 3 (ATF3), shown to be upregulated

in oncogenic stress and described as a tumor suppressor

response, presenting an inhibitory effect on androgen-receptor

signaling (Wang et al., 2015) (Figures S12–S14). Similarly, tissue

P3.1, classified as ‘‘inflammation,’’ was stratified in six spatial

community substructures, four of which were associated with

inter-tissue classes functionally enriched for cancer-related

terms (class 2: communities 0, 1, and 2; class 1: community

3) (DisGeNET (Piñero et al., 2020) analysis; Figures 5C, 5D,

and 5F). This annotation was supported by gene co-expression

patterns related to factors such as the Fos protein FOSB,

known to form transcriptionally active heterodimers with Jun

proteins and reported to be overexpressed in prostate cancer

cell lines (Barrett et al., 2017), as well as in prostate cancer bi-

opsies (Berglund et al., 2018), or KLK2 (Figure 5E). Furthermore,

although the ‘‘inflammation’’ classification was supported by

the local overexpression of the gene aquaporin-3 (AQP3; com-

munity ‘‘0’’) (Figure 5E), the gene co-expression analysis for this

factor revealed the presence of other players within the same

community, including serine peptidase inhibitor kazal type 1

(SPINK1), previously described as a marker for a molecular sub-

type of prostate cancer (Johnson et al., 2016) (Figures S12–

S14). Finally, the spatial communities ‘‘4’’ and ‘‘5’’ appeared

to be devoid of major cancer-related terms (supporting their as-

sociation with class ‘‘3’’) but still showed molecular signatures

related to prostate cancer incidence, such as sever sepsis (Fig-

ure 5F). Indeed, community ‘‘4’’ showed a gene co-expression

signature related to colony-stimulating factor 3 (CSF3), known

to regulate the generation of infection-protective granulocytes

and macrophages (Metcalf, 2010), an aspect that supports

the histological classification of this tissue as ‘‘inflammation.’’

Finally, the tissue biopsies histologically classified as cancer

did not systematically present all spatial communities related

to cancer-related terms. Certain community substructures in tis-

sues P1.3 (histologically classified as ‘‘inflammation’’) and P3.3 1

(histologically classified as ‘‘normal glands’’) were associated
Figure 5. MULTILAYER reveals an enhanced discrepancy between norm

cancer tissue biopsies

(A) Scheme representing the spatial location of 12 tissue biopsies collected from

fication, as described by Berglund et al. (Berglund et al., 2018).

(B) Spatial transcriptome maps from the biopsies illustrated in (A) and processe

coded, NA, non-assigned).

(C) Inter-tissue comparison performed by MULTILAYER (batch-mode) organizin

nodes). In addition, the tissue biopsy of origin is displayed (rounded-square nodes

by Berglund et al. (218).

(D) Relevant gene-disease association inferred for the spatial community classes

(E) Example of gene co-expression patterns detected in tissue P3.1 for different sp

gene co-expression similarity patterns (Tanimoto index in percent).

(F) Relevant gene-disease association analysis for each of the spatial communiti

also displayed (light blue). DisGeNET: disease-gene association discovery platfor
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with class ‘‘3,’’ further supporting the necessity of molecular tis-

sue stratification to better define tumor progression.

DISCUSSION

Although the use of single-cell transcriptomics for studying the

molecular complexity of tissues is gaining popularity, spatial tran-

scriptomics strategies are anticipated to take over in the following

years, thanks to the efforts to democratize access to the required

physical supports. Indeed, although SrT is systematically consid-

ered to be a ‘‘non-single-cell resolution’’ assay, in reality, all sin-

gle-cell ‘‘omics’’ approaches converge to aggregate multiple

cell readouts into clusters to infer their potentially functional rele-

vance. Similarly, most of the computational algorithms applied to

SrT maps process gexels as independent units (i.e., by applying

clustering strategies classically used in single-cell ‘‘omics’’ as-

says), thus underexploring the available spatial information.

Here, we considered SrT data as a digital image composed of

an ensemble of gexels arranged in a two-dimensional grid.

Hence, we demonstrated that the principles applied to digital im-

age processing, which relies on contiguous pixel aggregation,

can help to reveal biologically relevant tissue substructures.

Specifically, the proposed stand-alone package MULTILAYER

allows the ‘‘rationalization’’ of spatial information by analyzing

the presence of contiguous gexels showing the same gene

expression behavior (herein defined as a gene pattern), leading

to the stratification of the digital map into molecular tissue sub-

structures. Indeed, in contrary to other methodologies, in which

gexels are considered to be independent units that converge into

given clusters after dimensionality reduction processing, MULTI-

LAYER captures gene expression patterns, which are then

converged toward regions due to their spatial co-localization.

We demonstrated within this study that this major conceptual

strategy can lead to better resolved molecular tissue stratifica-

tion, which can be explained by the fact that tissue substructures

are expected to arise from the organization of contiguous cells

sharing common cell fates, issued from defined gene programs.

MULTILAYER provides a self-supervised strategy for the pro-

cessing of SrT maps. It highlights relevant overexpressed gene

patterns, leading to spatial tissue partitioning, and infers their

functionally relevant gene ontology associations. Due to its

‘‘MULTILAYER’’ architecture, it provides the means to process

all types of SrT maps, including high-resolution data. Further-

more, it provides the means to compare multiple SrT maps, an

aspect that is currently limited by the scarcity of studies
al and cancer-related tissue sub-structures withinmultiple prostate

a cancerous prostate and colored in agreement with the histological classi-

d by MULTILAYER to infer spatial community molecular substructures (color-

g all spatial communities (round nodes) into nine ‘‘classes’’ (green hexagonal

). Nodes are colored in agreement with the histological classification described

displayed in (C).

atial communities. Gexels in red correspond to the query gene and the others to

es retrieved for tissue P3.1. The corresponding spatial community classes are

m (Piñero et al., 2020), Gs, Gleason score for cancer staging; Com, community.
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presenting the required data. However, it is anticipated that it will

be of extreme interest, for example, in the context of develop-

mental or molecular diagnostic studies.

Overall, we anticipate that MULTILAYER corresponds to the

first version of algorithms dedicated to the processing of ‘‘molec-

ular tissues,’’ which combined with other strategies, such as sin-

gle-cell ‘‘omics,’’ may allow the reconstitution of digital maps of

all organs within the human body, as well as contribute to the

development of molecular diagnostic strategies in the future in

personalized medicine.
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Ringel, J., and Löhr, M. (2003). The MUC gene family: their role in diagnosis

and early detection of pancreatic cancer. Mol. Cancer 2, 9.

Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E.,

Vanderburg, C.R., Welch, J., Chen, L.M., Chen, F., and Macosko, E.Z.

(2019). Slide-seq: a scalable technology for measuring genome-wide expres-

sion at high spatial resolution. Science 363, 1463–1467.
12 Cell Systems 12, 1–12, May 19, 2021
Shang, Z., Niu, Y., Cai, Q., Chen, J., Tian, J., Yeh, S., Lai, K.P., and Chang, C.

(2014). Human kallikrein 2 (KLK2) promotes prostate cancer cell growth via

function as a modulator to promote the ARA70-enhanced androgen receptor

transactivation. Tumour Biol. 35, 1881–1890.

Shelton, C., Solomon, S., LaRusch, J., and Whitcomb, D.C. (1993). PRSS1-

related hereditary pancreatitis. In GeneReviews, M.P. Adam, H.H. Ardinger,

R.A. Pagon, S.E. Wallace, L.J. Bean, K. Stephens, and A. Amemiya, eds.

(University of Washington) https://www.ncbi.nlm.nih.gov/books/NBK84399/.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Breast cancer SrT raw matrix (ST) Ståhl et al., 2016 https://github.com/SysFate/

MULTILAYER/tree/master/

Data/Breast_cancer

Development_heart raw matrices (ST) Asp et al., 2019 https://github.com/SysFate/

MULTILAYER/tree/master/

Data/Development_heart

Mouse_Olfactory_Bulb raw matrix (ST) Ståhl et al., 2016 https://github.com/SysFate/

MULTILAYER/tree/master/

Data/Mouse_Olfactory_Bulb

Pancreatic_adenocarcinoma raw

matrix (ST)

Moncada et al., 2020 https://github.com/SysFate/

MULTILAYER/tree/master/

Data/Pancreatic_

adenocarcinoma

Prostate_cancer raw matrices (ST) Berglund et al., 2018 https://github.com/SysFate/

MULTILAYER/tree/master/

Data/Prostate_cancer

High_resolution_brain raw matrices

(Slide-seq)

Rodriques et al., 2019 https://github.com/SysFate/

MULTILAYER/tree/master/

Data/

High_resolution_brain

Whole_mouse_embryo raw matrix

(DBiT-Seq)

Liu et al., 2020 https://github.com/SysFate/

MULTILAYER/tree/master/

Data/Whole_mouse_embryo

Spatial gene expression readouts for the

mouse olfactory bulb (Rep11_MOB)

and human breast-cancer tissue

data (Layer2_BC) processed with

SPARK

Kindly provided by Dr. Jiaqiang Zhu

(Sun et al., 2020)

https://github.com/SysFate/

MULTILAYER/tree/master/

Data/SPARK_diffGenes

Spatial gene expression readouts for the

mouse olfactory bulb

(Rep11_MOB_spe.csv) and human breast-

cancer tissue data (Layer2_BC_spe.csv)

processed with Spatial DE

Sun et al., 2020 https://github.com/xzhoulab/

SPARK-Analysis/tree/master/

output

Software and algorithms

MULTILAYER This paper https://github.com/SysFate/

MULTILAYER

MULTILAYER compressor This paper https://github.com/SysFate/

MULTILAYER
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Marco

Antonio Mendoza-Parra (mmendoza@genoscope.cns.fr).

Materials availability
This study did not generate new materials.

Data and code availability
This paper analyzes existing, publicly available data. These datasets were converted into a uniform format compatible with MULTI-

LAYER requirements and are provided in the key resources table.
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MULTILAYER and MULTILAYER Compressor are available at https://github.com/SysFate/MULTILAYER.

Scripts used to generate the figures presented in this paper – other than MULTILAYER outputs - are not provided in this paper but

are available from the Lead Contact on request.

Any additional information required to reproduce this work is available from the Lead Contact.

METHOD DETAILS

Normalization
MULTILAYER corrects for differences in total read counts within gexels, as such variations are considered to be technical artifacts

arising from the sample preparation. Quantile normalization (previously described for correcting technical variations within RNA-seq

assays (Hansen et al., 2012)) is applied as follows. A pseudo-count of 1 is added to all gexels to avoid handling null values. Read-

counts per gene within gexels are sorted on the basis of their frequency and then the average read-counts across all ranked gexels

is computed based on their rank (i.e., averagewithin the highest, middle, or lowest values). Finally, the average read-counts are incor-

porated instead of the original counts and the read-count distribution reorganized as initially. As a consequence, a constant value is

retrieved across all gexels when all read-counts per gexel are added after normalization, corresponding to an ideal situation in which

all coordinates within the digitized tissue are composed of the same sequencing coverage level.

Spatial differential gene expression
Based on the assumption that the tissue under study is not homogenous, MULTILAYER performs differential expression analysis to

identify over/under-expressed genes relative to the global behavior within the tissue. The average of the read counts per gene within

the tissue is computed and the read counts per gene within gexels then expressed relative to the average value (log2). Differentially

expressed genes within gexels are defined by a threshold value of two-fold (1 or -1 in log2) as a default parameter. As part of the

‘‘differential expression’’ panel, MULTILAYER displays a ranking of induced or repressed genes based on the number of gexels within

the tissue, allowing the intuitive identification of the most relevant overexpressed genes.

Gene-expression pattern detection
As in digital image processing, MULTILAYER applies an iterative agglomerative strategy (sklearn.cluster.AgglomerativeClustering)

over contiguous gexels associated with a given upregulated gene. At the end of the process, gene patterns showing a user-defined

minimal number of contiguous gexels are retained for downstream processing (default threshold: 10 contiguous gexels). The param-

eters used in the agglomerative clustering method are the number of clusters (n_clusters): none, affinity: Euclidean, linkage: single,

distance threshold (distance_threshold): 1.5.

Gene co-expression patterns similarity
Once the gene patterns over the whole tissue have been detected, MULTILAYER compares their localization to assess their relevant

spatial co-expression. Two similarity metrics are implemented in MULTILAYER: the Tanimoto/Jaccard and Dice/Sorensen similarity

indices. Specifically, the gene co-expression pattern similarity is evaluated as follows:

Tanimoto index = GA X GB / GA W GB
Dice index = 2* (GA X GB) / (GA W GB)

where GA and GB correspond to the number of gexels associated with Gene A and Gene B, respectively. All figures presented in this

article were obtained using the Tanimoto/Jaccard similarity index.

Within the gene co-expression pattern panel of MULTILAYER, overexpressed gene patterns are ranked on the basis of the number

of contiguous gexels. Furthermore, the gene co-expression similarity analysis displays gexels colored on the basis of their co-

expression similarity index, allowing visualization of the extent of co-expressed patterns with the queried gene. In addition, MULTI-

LAYER provides the possibility to perform a gene ontology enrichment analysis based on their inferred co-expressed genes

(see below).

Identification of tissue communities by gene co-expression-pattern partitioning
Gene co-expression patterns detected over the whole tissue are represented within MULTILAYER as a graph composed of nodes

representing the assessed gene patterns and edges revealing their degree of similarity. This Complex graph is stratified into high

modularity community partitions by applying the Louvain hierarchical clustering algorithm (Blondel et al., 2008). Due to the non-deter-

ministic nature of the Louvain algorithm, MULTILAYER partitions the graph multiple times (15 events by default) and then selects the

most frequent community-partition outcome (the frequency of the community partitions are displayed in the terminal) for their display

within the tissuemap in which gexels are colored in accordance with their associations with the inferred communities. In addition, the

community panel within MULTILAYER displays the list of overexpressed genes comprising the patterns associated with the illus-

trated communities.
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Arguments for Louvain partitioning: (i) Weight: allows inclusion of the similarity index computedwithin the co-expressed genes as a

weight argument, (ii) Multiple iterations: allows the performance of 15 consecutive partitioning operations with the Louvain algorithm

and selection of the most highly represented for downstream analyses.

Gene ontology analysis
MULTILAYER counts using a gene ontology enrichment analysis implemented within the ‘‘gene co-expression pattern detection’’

and ‘‘gexel communities’’ panels. A collection of GO termswas collected from the Enrichr libraries suite. MULTILAYER infers the con-

fidence of the GO term enrichment by comparing the list of genes from the detected gene co-expression patterns or within a spatial

community to those retrieved from the GO database (one-sided Fisher Exact test).

As outcome, MULTILAYER provides a confidence bar plot per enriched GO term, as well as a heatmap matrix displaying the list of

genes associated with the enriched GO terms.

MULTILAYER Compressor ad-hoc module
Multilayer Compressor is an ad-hocmodule for generating super-gexel maps by aggregating the raw read counts of contiguous gex-

els prior to processing. This strategy allows the conversion of a large matrix, such as those retrieved in the case of high-resolution

Slide-Seq data (Rodriques et al., 2019), to a compressed format, counting a smaller number of gexels within the grid but with a higher

number of read counts per gexel. Multilayer Compressor transforms input data (3 column format composed of gexel coordinate,

Gene ID, and read counts per gene), into a data-frame compatible with MULTILAYER (matrix format composed of gexel coordinates

in columns and Gene ID in rows) according to the user-defined compression factor parameters (number of gexels on X and Y coor-

dinates). We recommend using the MULTILAYER Compressor when raw ST maps are bigger than 120 x 120 gexel grids.

Comparison with SPARK and SpatialDE statistical methods
Spatial expression pattern detection readouts for the mouse olfactory bulb and human breast-cancer tissue data (Figure 2) per-

formed with SpatialDE were obtained from https://github.com/xzhoulab/SPARK-Analysis/tree/master/output (Layer2_BC_spe.csv;

Rep11_MOB_spe.csv). Furthermore, those generated by SPARKwere kindly provided by the laboratory of Dr. Jiaqiang Zhu (see key

resources table). For the comparisons, genes were sorted by the adjusted p-value (q-value) descriptor provided by SPDE and

compared to those provided by SPARK, as well as with the number of contiguous gexels per pattern detected by MULTILAYER.

Data availability
All spatial transcriptomics data used within this article were obtained from public repositories and converted into a uniform format

compatible with MULTILAYER requirements. Human breast-cancer data (Breast Cancer Layer 2), mouse olfactory bulb data

(MOB Replicate 11), published by Stahl et al. (Ståhl et al., 2016), human heart development data, generated by Asp. M. et al. (Asp

et al., 2019), and prostate cancer data, generated by Berglund et al. (Berglund et al., 2018), were obtained from the Spatial Research

portal. In addition to the raw SrT matrices, their associated hematoxylin and eosin-stained images were also obtained from the same

public repository. Hippocampus and cortex high-resolution Slide-seq maps (Rodriques et al., 2019) were obtained from the Spa-

tialDB database (Fan et al., 2020). Pancreatic ductal adenocarcinoma data, generated by Moncada et al. (Moncada et al., 2020),

were obtained from the GEO database (GSE111672). Whole mouse embryo DBiT-Seq data, generated by Yang Liu et al (Liu

et al., 2020), were obtained from the GEO database (GSE137986). Images corresponding to the original DBiT-Seq article were re-

produced with authorization (ELSEVIER License Number 4970301038168).

Compatible MULTILAYER versions of these data are accessible via https://github.com/SysFate/MULTILAYER.

Code availability
MULTILAYER and MULTILAYER Compressor are available at https://github.com/SysFate/MULTILAYER.
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Figure S1. Read count normalization and differential gene expression within the tissue landscape as performed by MULTILAYER. Related to Figure 2. (A) Read
counts associated to the neurogranin gene (NRGN) before and after quantile normalization, performed over the mouse olfactory bulb dataset (rep11; Stahl et al;
Science 2016). (B) The normalized read-count map for NRGN has been processed towards a relative gene expression map by applying the illustrated formula.
Within the differential gene expression panel, MULTILAYER provides a interphase for defining a minimal fold-change expression level threshold (in log2) (blue
arrow). Furthermore users can define upper thresholds for the color heatmap (green arrow). MULTILAYER provides a ranking of all induced or repressed genes on
the basis of the total number of gexels satisfying the defined threshold, such that users can quickly explore the relative gene expression behavior on a spatial
context (red arrows). (C) MULTILAYER grid map displaying either raw or normalized read counts associated to all genes within gexels. Notice that the raw reads
landscape present strong differences in read counts per gexel across the tissue surface, also reflected by the max/min ratio (examples highlighted by the white
arrows). (D) & (E) Differential gene expression and patterns detection analysis from either raw or normalized data illustrated for the house-keeping genes GAPDH,
ACTB or the Fatty Acid Binding Protein 7 gene (FBP7) known be expressed on the mouse olfactory bulb (as confirmed by data available in the Allen mouse brain
atlas). Notice that for the raw maps, MULTILAYER allows to capture over-expressed patterns for the house-keeping genes, which reflects the over-represented
regions observed within the total read counts map (C). After quantile normalization, gexels display a more uniform read-count levels, with fewer events over-
represented, leading to the absence of pattern detection. In contrast MULTILAYER detected 3 significant patterns for FABP7 after normalization presenting a
spatial signature in agreement with the ISH staining reported with the data collected from the Allen mouse brain atlas (D).
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Figure S2. Over-expressed genes as predicted by SpatialDE, SPARK and/or MULTILAYER. Related to Figure 2. (A) Example of three genes (COL12A1, POSTN and
SULF1) within the human breast cancer data (Stahl et al; Science 2016), described as significantly differentially expressed by SpatialDE and SPARK (FDR < 0.05; left
table). Furthermore, S100A10 presented an FDR<0.05 only when evaluated by SPARK. All four cases are among the top-200 ranked genes by MULTILAYER ( >5
contiguous gexels). (B) Number of contiguous gexels retrieved by MULTILAYER (x-axis) within genes considered non-differentially expressed by SPARK (FDR>0.05;
y-axis: SPARK q-value). (C) Differential gene expression pattern for four genes illustrated in (B), revealing their similar spatial expression behavior to those
presented in (A). Three of these four genes are among the top-200 ranked by MULTILAYER (table in (A)). (D) Disease-gene association analysis (DisGeNET) applied
over the 570 genes displayed in (B) revealing their significant enrichment within cancer related terms, including mammary neoplasms. (E) Example of 2 genes
(CCK, KCTD12) within the mouse olfactory bulb data (Stahl et al; Science 2016), described as significantly over-expressed by SPARK and SpatialDE, while two others
(SEZ6, SH3PXD2A) only found by SPARK. All four genes are among the top ranked top-ranked genes by MULTILAYER.
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Figure S3. Agglomerative ATF3 patterns detection on prostate cancer digitized tissue. Related to Figure 1 and Figure 5.
(A) MULTILAYER normalize gexel read counts such that uniform levels are retrieved over the whole tissue. Then, in this example it computes differential gene
expression levels for ATF3 relative to the average ATF3 counts over all gexels and agglomerates contiguous gexels presenting ATF3 over-expressed levels. The
most right panel displays the detection of three spatially distinct ATF3-associated patterns. (B) Each of the ATF3-related patterns were compared with all other
over-expressed genes on the map for revealing their potential co-expression behavior. This analysis is displayed on the basis of their spatial co-expression
similarity index (Tanimoto distance; heatmap). Furthermore the identity of the co-expressed genes with ATF3 within the three distinct patterns is highlighted as a
network representation, where the colored edges corresponds to their level of similarity index. Finally, all co-expressed genes per detected pattern has been
evaluated on the basis of their potential gene-disease association (DisGeNET). Notice that each of the distinct ATF3 patterns present also distinct gene-disease
associations. Processed data: Prostate tissue map; Berglund et al; Nature Communications 2018.
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Figure S4. Spatial gexel communities inferred from the
comparison of all gene co-expression patterns detected
within a prostate cancer digitized tissue. Related to Figure
1.
(A) All gene co-expression patterns detected by

MULTILAYER were partitioned on 4 spatial communities by
applying the non-supervised Louvain modularity strategy.
(B) t-distributed stochastic neighbor embedding (t-sne)
combined with k-means clustering reveals 5 spatial
patterned regions (left-panel). The illustrated colored spots
reflects gexels’ partitioning issued from the t-sne /k-means
classification (right panel). Notice that only the spatial
location of pattern (1) from MULTILAYER (A) and that of t-
sne classification appeared as conserved. (C) In contrast to
t-sne classification in which all genes are used for
dimensionality reduction, MULTILAYER first define spatial
gene co-expression patterns over the whole tissue and use
this information for constructing a graph composed by
gene-patterns as nodes (Gene ID | Pattern ID),
interconnected by edges reflecting their degree of similarity
(Tanimoto index). The graph is then partitioned on
communities with the help of the Louvain modularity
algorithm. Edges are colored in agreement to the
communities displayed on (A) and their width are
proportional to their Tanimoto similarity index. Only nodes
and edges presenting a Tanimoto Index > 15% are
displayed. In addition, some edges having similarity indexes
lower than 15% are displayed in gray to illustrate the
connectivity between the partitioned communities. (D)
Functional relevance of the spatial communities is
evaluated by MULTILAYER by the use of GO terms
databases. Specifically, the analysis has been performed
with the gene-disease association (DisGeNET) terms
collection. Processed data: Prostate tissue map section
P1,2c: Berglund et al; Nature Communications 2018.
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Figure S5. Spatial gexel communities inferred gene co-expression patterns detected on developing human heart tissue maps. Related to Figure 3. Asp M. and
colleagues (Cell 2019) have released 19 spatial transcriptomic (ST) maps covering 3 developmental stages during human heart formation (4.5-5; 6.5 and 9 post-
conception weeks). MULTILAYER has been used for decorticating spatial gexel communities over all ST maps. For it, at least 5 consecutive Gexels were used for
detecting gene co-expression patterns per tissue map, then converted into a graph which has been processed by the Louvain modularity algorithm. Notice that in
the first developmental stage, the presence of black-colored Gexels reflects the impossibility of retrieving consecutive Gexels (at least 5) during the agglomerative
clustering processing, likely due to the small size of the analyzed tissues. Please consider that there is no relationship between the colored-depicted communities
between tissue sections.
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Figure S6. Spatial gexel communities inferred by MULTILAYER for the pancreatic ductal adenocarcinoma data (Moncada et al; Nat. Biotech 2020).
Related to Figure 3.
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Figure S7. Spatial gexel communities compared with spatial projection of t-distributed stochastic
neighbor embedding (t-sne) combined with k-means clustering. Related to Figure 3. (A) Spatial
communities detected within a human heart dataset (Asp. et al; 2019). (B) t-sne dimensionality
reduction and clustering (k=4; left panel) of the raw read counts retrieved within all gexels, and its
corresponding spatial projection (right). (C) Same as (B) but applied to quantile-normalized read counts
within gexels. (D) Spatial communities within a pancreatic ductal adenocarcinoma dataset (Moncada et
al. 2020). (E & F) Same as (B & C) but applied to the pancreatic data. (G) Whole mouse embryo
“pixelated” image after spatial barcoding (left panel) and the anatomical annotation elaborated by the
authors of the DBiT-Seq assay (Yang Liu et al; 2020; figures reproduced with authorization). (H)
Dimensionality reduction and clustering applied over raw read counts retrieved within all gexels (left)
and its corresponding spatial projection. (I) Spatial communities detected by MULTILAYER. (J) Functional
relevance of the spatial communities as revealed by GO terms analysis (ARCHS4_tissues database).
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the effect of the compression factor on enhancing the read counts per super-gexels. (E) Histogram illustrating the gain o raw read counts per gene and gexels
within super-gexels thanks to the applied compression factor.
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Figure S9. Slide-Seq high-resolution hippocampus spatial transcriptomics map analyzed by MULTILAYER. Related to Figure 4. (A) Raw hippocampus Slide-seq
map displaying the presence of at least one read-count per position. (B) Raw read counts associated to the hippocampus ST map after applying a compression
factor (c.f.) of 60x (left panel). The MULTILAYER compressor reduced the complexity of figure in (A) - covering a hypothetical grid of 6000x6000 spots - to a grid
composed by 110x110 super-Gexels which can be normalized by MULTILAYER (right panel). (C) Distinct spatial signatures associated to the factors PPP3CA, PCP4
and SNAP25, revealed by MULTILAYER. For each of these factors, their normalized read-counts at three compression factor reduction levels (60x, 100x, 175x) are
depicted.
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Figure S10. Slide-Seq cortex spatial transcriptomics map analyzed by MULTILAYER. Related to Figure 4. (A) Raw cortex map as generated by Slide-Seq (B) raw
map after a compression factor reduction of 60x. (C) Normalized map. (D) Spatial expression signatures associated to the gene TTR and CAMK2N1, after a
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Figure S11. Functionally relevant gexel communities detected by MULTILAYER on Slide-Seq cortex spatial transcriptomics map. Related to Figure 4. (A-C)
Spatial communities revealed on digitized cortex maps at three different compression levels (60x, 100x and 175x respectively). Notice that while the number
of communities decreases with the compression levels, the global tissue stratification is conserved. (D-F) Gene ontology enrichment analysis performed over
the ensemble of gexel communities detected at the aforementioned compression levels.
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Figure S12. Functionally relevant Gexel communities detected by MULTILAYER on Prostate cancer biopsies. Related to Figure 5. Public spatial transcriptomic
(ST) maps for 12 biopsies issued from a cancerous prostate (Berglund E. et al; Nat. Comm. 2018) processed by MULTILAYER on a “batch-mode”. Left panels
illustrate 4 (of the 12) maps stratified on spatial communities (colored regions). Middle panels illustrate the Disease-gene association analysis (DisGeNET),
providing a functional relevance to each of the spatial communities (Com.). In addition, “classes” describing the similarity between biopsy substructures is
highlighted (light blue). Right panels present examples of gene co-expression patterns (inset) and their related functional annotation.



Figure S13. Related to Figure 5. Functionally
relevant gexel communities detected by
MULTILAYER on Prostate cancer samples.
Continuation of Figure S12.

P2.3 
(>4 cont. Gexels)

01

2

3

4

-1
0

*l
o

g(
p

-v
al

u
e)

0

150

4    2   0   1   3 DisGeNET
01Class

Com.

4

KLK2 (Com. 1)

Similarity (%)

>0 100

P2.4
(>9 cont.Gexels)

0

12

3

4

-1
0

*l
o

g(
p

-v
al

u
e)

0

75

0   1   2   3    4
DisGeNET

0 1Class
Com.

TFF3 (Com. 3)

Similarity (%)

>0 100

3  0   1   2   4   5 DisGeNET
2 3Class

Com.

1

-1
0

*l
o

g(
p

-v
al

u
e)

0

75

P3.1 
(>6 cont. Gexels)

0

1
2

3

4

5

P3.2 
(>4 cont. Gexels)

0

1
2

3

4
5

7

0  2  3  1  5  4  6  7

-1
0

*l
o

g(
p

-v
al

u
e)

0

75

DisGeNET
0 6Class

Com.

10

ACPP (Com. 2)

Similarity (%)

>0 100

SPINK1 (Com. 0)

Similarity (%)

>0 100



Figure S14. Related to Figure 5. Functionally relevant gexel communities detected by MULTILAYER on Prostate cancer samples. continuation of Figure
S12.
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