Towards Simulation of an Unified Address Space
for 128-bit Massively Parallel Computers

Eduardo Tomasi!?, César Fuguet!, Christian Fabre! and Frédéric Pétrot?*

1Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France
2Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, F-38000 Grenoble, France

Abstract

High Performance Computing (HPC) supercomputers are composed of up to ten thousand nodes, each one having
hundreds of cores organized around a shared memory. These nodes communicate through a high-performance
communication network. Applications for HPC have increasing needs, both in terms of computational speed and
the size of datasets to be processed. To follow these needs, memory in supercomputers is increasing at a rate
such that, in the next decade, it will likely exceed 25% bytes. The RISC-V 128-bit ISA gives us the opportunity to
rethink how memory is addressed and virtualized at the scale of a supercomputer. We are working on a platform
to simulate a distributed 128-bit system with a global address space shared by the whole supercomputer.

Introduction

Massively parallel supercomputers can process large
amounts of data by distributing the computation over
hundreds or thousands of independent compute nodes.
Each node contains its own processing units organized
around a shared memory and running its own instance
of an operating system, and they communicate through
a high bandwidth and low latency communication net-
work and a dedicated networking software stack. These
supercomputers are used, for instance, for Cloud Com-
puting and for High Performance Computing (HPC).

An application consists of multiple processes that
communicate by passing messages through the com-
munication network. Inside a node, processes spawn
threads that share data within a coherent memory
space. Despite the complexity of mixing two program-
ming models, MPI (Message Passing Interface) and
OpenMP have become the de facto standard for high
performance inter- and intra-node parallelism, respec-
tively (Figure 1).

A typical workload for HPC is computationally in-
tensive scientific applications, whose needs, both in
terms of computational speed and the size of dataset
to be processed, have been constantly increasing. To
follow these needs, global memory in supercomputers
is increasing at a rate such that, in the next decade,
it might exceed 264 bytes. The RISC-V community
has already set the basis for a 128-bit architecture,
allowing us to rethink the software architecture of su-
percomputers. It gives us an oportunity to reassess
memory virtualization, in a way such that it is globally
shared by all nodes participating in one application.

*Corresponding author: eduardo.tomasiribeiro@cea.fr

RISC-V Summit Europe, Barcelona, 5-9th June 2023

Message Passing (e.g., MPI)
[Communication Network

CPU CPU CPU CPU CPU CPU CPU CPU
1T 1T] 1T 1T]

Addreés Space Addreés Space

Local Memory Local Memory

Shared Memory (e.g., OpenMP)

Figure 1: Shared Memory is used for parallelism inside a
node, and Message Passing for parallelism between nodes.

Programming Models

Shared Memory

Within a node, memory coherence is ensured by hard-
ware protocols, such that the CPUs and accelerators
within a node communicate through a shared memory.
This allows developers to parallelize a program with
multiple threads sharing a single address space.

OpenMP is one of the main API specifications for
shared memory parallel programming. Parallel execu-
tion can be achieved with a high level of abstraction,
as communication and synchronization points are im-
plicit. However, this approach is only viable as long
as memory coherence scales, up to a few dozen cores,
limiting its usage to internode parallelism.

Message Passing

Beyond a node, memory is physically distant and
coherence cannot be efficiently guaranteed. Processes
running the same application in different nodes do
not have access to each other’s address space, so they
communicate through the communication network.
This means that data can only be shared by message
passing. Pointers, however, cannot be shared.

mailto:eduardo.tomasiribeiro@cea.fr

Guest Machine Guest Machine Guest Machine
QEMU QEMU QEMU
MPI Applications MPI Applications MPI Applications

Linux Kernel Linux Kernel
Virtual HW Virtual HW Virtual HW

Linux Kernel

Physical Hardware

Memory

Host Machine

Figure 2: Simplified diagram of the platform. The ma-
chines are connected using TUN/TAP interfaces.

The main standard for parallel programming on
distributed systems is MPI. It requires developers to
explicitly distribute the workload and tasks, and to ex-
plicitly define the communication and synchronization
points. As memory is not coherent, the programmer is
also responsible for guaranteeing that all nodes have
the most recent value of shared data.

Contributions

We developed a platform for simulation of a
distributed machine with the 128-bit RISC-V
base ISA to explore different programming models
and architectures based on a distributed memory space
(Figure 2). We chose QEMU for three main reasons:
it is fast; it provides convenient interfaces to extend
the simulator and add appropriate instrumentation; it
supports the RV128 ISA [1]. However, there is not, to
this date, any toolchain that supports this ISA.

Due to the lack of 128-bit applications, we started
using RV64 and existing benchmarks, and will slowly
extend it to the 128-bit solution.

This simulator allows users to have an early proto-
type of their distributed applications, so developers
can tune them and prevent performance bottlenecks.
In addition to the possibility of exploring different
network topologies, multiple metrics will be provided
to guide the programmer (e.g. number of atomic op-
erations, cost in terms of instructions to perform MPI
communications and number of system calls).

For our exploration of memory architectures for
a 128-bit supercomputer, we will use this simulator
to evaluate the cost of MPI calls, and the potential
speedup when passing to a shared global address space.

Related Work

Some research teams studied this problem in the 1990s
with Distributed Shared Memory (DSM) approaches,
such as Ivy [2] and Munin [3]. These solutions failed
to achieve scalability, due to a large run-time overhead
due to software-based coherence protocols, and they

were quickly replaced by multicore architectures.

Similarly, Jia et al. [4] addressed this problem with
a distributed hypervisor that provides a many-to-one
virtualization of the underlying hardware to enable dis-
tributed CPU, memory and I/O virtualization. How-
ever, it makes use of DSM algorithms to achieve mem-
ory aggregation, experiencing some of the overhead
issues of other DSM implementations.

Wang et al. [5] proposed a RISC-V extension for
scalable global addressing in HPC. It provides support
for direct accesses to remote shared memory, aiming to
reduce user libraries’ and drivers’ overheads. Our ap-
proach aims at achieving this at the hardware/software
interface instead, rethinking memory virtualization
and adding the necessary hardware support.

Conclusion

If today’s rate continues, 64-bit supercomputers will
likely run short of addresses in the following decades,
if it all resided on the same address space. The RV128
ISA gives us the opportunity to start thinking about
the solutions to this problem, and the challenges that
may come with 128-bit architectures. Current pro-
gramming models, however, do not seem to address
the challenges of programming such supercomputers.
We think that this problem should not be addressed
only at the software level, nor at the hardware level.
We want to address it at the hardware/software inter-
face, rethinking memory virtualization in the operating
system, and adding the necessary hardware support.
We have built a simulator of distributed systems, that
allow us to profile MPI workloads and do the instru-
mentations to get to a 128-bit global address space.

Acknowledgment

The authors would like to thank the partners of the
ANR Maplurinum project and acknowledge the finan-
cial support of the French Agence Nationale de la
Recherche under grant ANR-21-CE25-0016.

References

[1] Fabien Portas et al. “Fast simulation of future 128-bit
architectures”. In: 2022 DATE.

[2] Kai Li et al. “Memory coherence in shared virtual memory
systems”. In: ACM Trans. Comput. Syst. 7.

[3] John B. Carter et al. “Implementation and performance of
Munin”. In: SIGOPS Oper. Syst. Rev.

[4] Xingguo Jia et al. “GiantVM: A Novel Distributed Hyper-
visor for Resource Aggregation with DSM-aware Optimiza-
tions”. In: ACM Trans. Archit. Code Optim.

[5] Xi Wang et al. “xBGAS: A Global Address Space Extension
on RISC-V for High Performance Computing”. In: 2021
IEEE IPDPS.

RISC-V Summit Europe, Barcelona, 5-9th June 2023

	Introduction
	Programming Models
	Shared Memory
	Message Passing

	Contributions
	Related Work
	Conclusion

