Eduardo Tomasi

César Fuguet

Christian Fabre

Frédéric Pétrot

Distributed Architectures Programming Models

come

SIMULATION OF A DISTRIBUTED SYSTEM

QEMU

QEMU is an open-source machine emulator. Multiple architectures can be executed in a single host. It provides a virtual model of an entire machine (CPU, memory and devices). We chose it for three main reasons:

IT IS FAST 1

It uses dynamic binary translation (DBT) to reach very high simulation speed. Also, QEMU's scalability on SMP machines is good [START_REF] Badaroux | To Pin or Not to Pin: Asserting the Scalability of QEMU Parallel Implementation[END_REF].

TCG PLUGIN

2

QEMU plugins provide interfaces to extend the simulator and add proper instrumentation. Plugins provide a mechanism to subscribe to events during translation and execution of instructions [START_REF] Cota | Cross-ISA machine instrumentation using fast and scalable dynamic binary translation[END_REF].

RISC-V 128

3

QEMU already has support for RV128 [START_REF] Portas | Fast simulation of future 128-bit architectures[END_REF]. Global memory in HPC might, in the next decade, exceed 2 64 bytes. It allows us to rethink the software architecture of supercomputers, including memory virtualization [START_REF] Waterman | Chapter 6, RV128I Base Integer Instruction Set, Version 1.7[END_REF].

Scalability

i$ d$ CPU i$ d$ CPU i$ d$ LLC$ DRAM GPU NIC
A cluster is a multicore computer that has its own memory hierarchy (multi-level caches and DRAM) and accelerators (such as GPUs). They are connected to each other through a high-performance communication network. MPI requires developers to expllictly define the communication and synchronization points. Also, pointers cannot be shared, which complexifies the transfer of structured data from one process to another. PGAS, on the other hand, eliminates the need for explicit communication, but introduces challenges related to data consistency and synchronization. To retrieve the metrics of interest, we need to monitor the code during execution. We need to know beforehand the virtual addresses of the MPI functions in the binary code. Through a QEMU plugin, we can monitor the translation blocks executed and profile the calls.

QEMU Extended with Plugins

We can gather metrics such as: number of instructions during a MPI call, number of system calls and number of memory accesses.

Results

Syscalls

Fig 1 .

 1 Fig 1. An example of a typical clustered architecture, as can be found in high performance computing (HPC).

Fig 2 .

 2 Fig 2. Shared Memory is used for parallelism inside a cluster, and Message Passing for parallelism between clusters.

Fig 3 .

 3 Fig 3. How to use QEMU to profile MPI calls.

Table II . Number of syscalls during MPI calls of NPB-DT. Table I. Number of syscalls during MPI calls of NPB-IS.

 II

					Syscalls					
	Function		n p	1 cluster 2 clusters 4 clusters				
	MPI Allreduce	1 2 4 8 16 32	0 93 78 80 85 144	4 41 3656 5056 4203 294	634 888 2379 2178 126 -	Function MPI Send	n p 5 8 16 32	1 cluster 2 clusters 4 clusters 9 9 10 10 10 10 11 12 15 19 22 -
	MPI Alltoallv	1 2 4 8 16 32	37 59 51 55 65 109	4763 7627 8529 8762 9756 10666	5488 5809 6792 7242 4361 -	MPI Recv	5 8 16 32	4 5 11 9	4 5 7 9	4 5 8 -
	No plugin		insn plugin	MPI plugin			
	n p	MIPS MIPS Slowdown MIPS Slowdown			
	1 2 4 8 16 32	74.3 101.6 126.2 155.3 170.0 101.6 64.2 80.6 92.3 97.9 203.2 102.9	13.6% 20.7% 26.9% 36.9% 40.2% 49.3%	40.0 48.7 53.7 60.0 64.5 72.3	46.1% 52.0% 57.4% 61.3% 62.1% 64.4%			

Table III. Impact of the plugins during execution of NPB-IS.

This work was funded by the French National Research Agency (ANR) under grant agreement ANR-21-CE25-0016 (MAPLURINUM) shared memory.