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Mechanistic models are valuable tools for studying the underlying mechanisms of complex biological
phenomena. For example, cow lifespan models can be used to identify differences in resource acquisition
and allocation strategies between individuals, which is relevant for decision-making in breeding pro-
grams. In such models, differences in simulated traits between individuals are consequences of the
parameter set that represents the genetic potential of each animal and its interaction with the environ-
ment. This indicates that the identification of these differences is essentially a search for individual
parameters. In mechanistic models, this search is generally a non-convex problem that has different local
minima because the parameters interact within these models. Due to this and to the simulation time
length (e.g. years), there is uncertainty associated with the inference of the parameter values for each
individual. This uncertainty can be quantified using Bayesian inference since this approach treats the
model parameters as random variables with an underlying probability distribution that describes them.
The objective of this work was to employ the Delayed Rejection Adaptive Metropolis (DRAM) algorithm
to identify the parameters of a cows’ lifespan model using two datasets of Holstein cows. The datasets
contain periodic measurements of Milk Yield (MY), BW, and Body Condition Score (BCS). Additionally,
one of the two datasets has information of BW from birth to first calving. The average Mean Absolute
Percentage Error (MAPE) minimisation between the simulated and experimental data (MY, BW and
BCS) was used as the objective function for parameter search. The Bayesian inference performance was
compared with four optimisation metaheuristic approaches: Differential Evolution, Genetic Algorithm,
Particle Swarm Optimisation, and Simulated Annealing. Although the results show that all methods
are efficient in finding parameter values that reduce the distance between the simulated and experimen-
tal data (MAPE < 10%), the DRAMmethod is more efficient in terms of computational cost, and the param-
eter distributions obtained with this method offer more information about the statistical properties of
each parameter (e.g. median).
� 2023 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Implications

The growing demand of milk and meat makes it necessary to
breed efficient animals that are resistant to harsh conditions and
that recover quickly from adverse events. The identification of this
type of animal can be done by using mechanistic models in which
productive life is defined by parameters that represent the individ-
ual genetic potential and its interaction with the environment. To
use models in breeding programs, it is necessary to identify the
best set of parameters for each individual. Therefore, in this
model-based approach, the methodology with which these param-
eters are identified is important. This work explores different
methods for this task.
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Specification table
Subject
 Breeding and Genetics
*This paper does not address genetic issues
directly.
Type of data
 Table, Graph
How data were
acquired
Recorded at milking time, weighings at
the same time of day using standard
commercial equipment, and visual
inspection for BCS.
Data format
 Raw data
Parameters for
data collection
Milk yield and milk composition were
recorded twice daily. All animals were
weighed at the same time of day. The
same person was responsible for the BCS
estimation.
Description of
data collection
In both datasets, cowsweremilked twice
daily between 0600 and 0800 h and
between 1600 and 1800 h.Milk yield and
milk compositionwere recorded at each
milking: almost daily for Dataset1 and
weekly for Dataset2. In Dataset1, cows
wereweighed once aweek during the dry
period and until 3months after calving,
and every 2weeks from3months after
calvingtothedryperiod. InDataset2,cows
wereweighed at least twice aweek. Body
conditionwas scored from1 to 5 on the
same days of weighing in both datasets.
Data source
location
Dataset1
Institution: Danish Cattle Breeders
Organisation. City/Town/Region:
Ammitsbøl, Skovgard
Country: DenmarkLatitude and longitude
(and GPS coordinates, if possible)
for collected samples/data: Lat:
55.650014, Long: 9.410401. Dusgårdvej
31, 7100 Vejle, Denmark
Dataset2
Institution: TrouwNutrition R&D
City/Town/Region: Amersfoort
Country: TheNetherlandsLatitude and
longitude (and GPS coordinates, if
possible)
forcollectedsamples/data:Lat:51.64377,
Long:5.92376. SintAnthonisweg65,5831
AD Boxmeer, the Netherlands
Data accessibility
 Code repository name: Zenodo
Code identification number:
https://doi.org/10.5281/zenodo.
7998116Data
repository name: Data INRAE
Data identification number: https://doi.
org/10.57745/O4XABU
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Introduction

In breeding programs, most of the emphasis has been made on
traits directly associated with productivity, such as milk yield or
daily weight gain. However, the biological mechanisms underlying
productivity are difficult to be taken into account for selection
because the direct measurements of these mechanisms are difficult
or even impossible. To partially overcome these limitations, it is
possible to use mechanistic models which allow estimation of
inaccessible traits. It implies such models are able to identify
parameters that define biological traits. Puillet et al. (2016) devel-
oped a dynamic-mechanistic model (AQAL) to generate genetically
driven lifetime trajectories of energy acquisition and allocation in
dairy cows, using genetic-scaling parameters. For a given individ-
ual, the simulated performance is the result of the combination
of a capacity to acquire resources and how these acquired
resources are allocated to different life functions. AQAL was used
to evaluate the extent of genotype by environment interaction
for feed efficiency traits (Puillet et al., 2021), demonstrating the
usefulness of mechanistic modelling in breeding strategie
evaluation.

To use a model like AQAL in breeding programs, it is necessary
to have an accurate methodology for parameter search. In mecha-
nistic models, this search is generally a non-convex problem that
has different local optimum because parameters interact within
the model (e.g. AQAL), which generates uncertainty in the estima-
tion of parameters. Additionally to the model architecture (Muñoz-
Tamayo et al., 2018), this uncertainty is also associated with the
noise in the experimental data used during identification (Sherri
et al., 2019); making difficult to determine, a priori, the global opti-
mum of the objective function.

Several global methods based on function evaluation have been
developed for optimisation problems. The majority are analogies of
efficient and simple natural phenomena. Among them, the most
efficient techniques are population-based algorithms such as Parti-
cle Swarm (Kennedy and Eberhart, 1995), Genetic Algorithms
(Fogel, 1994), or Simulated Annealing (Ingber, 1993). However,
there is no theoretical guarantee that these algorithms converge
to the global optimum. Alternatively, Bayesian methods have good
theoretical convergence results, providing information about the
parameter distributions.

Bayesian Inference (BI) can be used to quantify the uncertainty
in the parameter values, because the parameters are treated as ran-
dom variables with an underlying probability distribution that
describes them (Miles and Smith, 2019). Among them, the DRAM
method (Haario et al., 2006), a modified version of the
Metropolis-Hastings algorithm, is an efficient BI method for
parameter identification. The adaptive Metropolis (AM) compo-
nent in DRAM means that each parameter is generated following
the distribution calculated with all of the previous states in the
iterative process. The delayed rejection (DR) mechanism is used
to stimulate mixing by sampling from a narrower proposed distri-
bution when a parameter sample is rejected (Haario et al., 2006).

This work presents a protocol to use BI for the identification of
resource acquisition and resource allocation parameters using the
AQAL model (Puillet et al., 2016) for dairy cows, taking into
account the aforementioned uncertainty. The performance of BI
was compared with the performance of four other optimisation
methods: Differential Evolution (DE), Genetic Algorithm (GA), Par-
ticle Swarm Optimisation (PSO), and Simulated Annealing (SA).
Material and methods

The objective of optimisation is to explore the parameter space
to identify the global optimum of the objective function, which in
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Table 1
Minimum, maximum, and DRAM initialisation values for parameter search in the
dairy cows AQAL model (Puillet et al., 2016).

Parameters Min. Max. DRAM initialisation

acq_bas_pot 5 20 8.5
acq_bas_lac 0 30 15
init_G 0.2 0.5 0.35
s2pc_pot 0.6 1.1 0.9
k_acq_bas_mat 0.005 0.012 0.008
k_Pc_on_g2s 0.008 0.02 0.015

The parameters ‘‘acq_bas_pot” and ‘‘acq_bas_lac” are the basal and an additional
lactation acquisition (Kg/d), respectively. ‘‘k_acq_bas_mat” is the rate of basal
acquisition maturation. ‘‘init_G” and ‘‘s2pc_pot” control energy allocation for
growth and lactation, respectively. ‘‘k_Pc_on_g2s” relaunches growth after calving.
For details, see Puillet et al. (2016). AQAL = dynamic-mechanistic model of lifetime
trajectories of energy acquisition and allocation in dairy cows; DRAM = Delayed
Rejection Adaptive Metropolis.
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our case is to reduce the distance between the simulated and
experimental data. Three steps are required to do this: a) prepro-
cessing of experimental data to fit with the specific model being
used (in this case AQAL), b) formulation of the objective function,
and c) parameter optimisation. The first two-steps are model
specific.

Preprocessing of experimental data

The preprocessing steps may differ depending on the model and
the structure of the database being used. For calibrating AQAL,
experimental data are necessary to run the model and to compute
the error. To run, AQAL uses a sequence of values (e.g. [0.75, 0.83,
0.90, 1, 1, 1]) which represents the proportion of the maximum
level of resource acquisition reached in each lactation. In the pro-
cess of calculating this sequence, milk production should be used.

First, it is important to find the average of the upper MY values
in each lactation rather than just using the maximum value. This
approach helps mitigate the influence of potential noise or outliers
in the data. Once the lactation with maximum production is deter-
mined, the next step is to calculate the maximum resource acqui-
sition ratio for each lactation. This is achieved by dividing the MY
(upper average) of each lactation by the maximumMY observed in
all lactations. The details to carry out this calculation can be
reviewed in the calibration script that accompanies this work.

To compute the error, at least three traits must be used: MY
(Kcal of Metabolisable Energy per day or Kg/d), BW (Kg), and BCS
(1–5 scale). Given that data are commonly recorded with a date,
it becomes essential to have the animal’s date of birth in order to
determine the age at which each variable was measured. This
information is crucial for conducting a meaningful comparison
between simulated data and the actual observations recorded on
those specific dates. Data about parturition and drying-off, or cul-
ling, are also required. The accompanying datasets for this study
include columns that present the age of the animals, parturition
number and days in milk.

Formulation of the objective function

Parameter inference is an iterative process in which an algo-
rithm evaluates candidates until obtaining a parameter set that
most reduces the distance between experimental and simulated
data (i.e. objective function). For this, the algorithm needs a metric
that represents these distances. We used the Mean Absolute Per-
centage Error (MAPE) to quantify this mismatch because, unlike
other metrics like Mean Squared Error, the MAPE metric avoids
the effect of traits’ units and scales on the average error calculation.
To calculate the MAPE, the following general equation was used:

MAPE(i) = ABS(Experimental(i) � Simulated(i))/
Experimental(i) * 100.

Due to the fact that databases can present imbalances in the
data record (e.g. more data in one lactation than in others), it is rec-
ommended to calculate an average MAPE for each variable for each
lactation. For example, for a cowwith four lactations, it will be nec-
essary to calculate 12 MAPEs (three variables � four lactations).
These can then be reduced to 1 value by weighting the different
MAPEs according to their relative importance. In the present case,
we choose equal weights, i.e. the objective function returns the
average of those 12 MAPEs.

The algorithm for MAPE estimation is summarised as follows:

1. Generate a set of parameters according to each method.
2. Run the model using the candidate parameters.
3. For each lactation
3

3.1. For each variable (MY, BW, BCS)
3.1.1. Calculate the average MAPE

4. Return the average of the MAPEs.
5. Repeat all the steps until the number of samples required is
achieved. It is generally considered that there should be thou-
sands of runs for these kinds of parameter search methods.

Parameter optimisation

The parameter optimisation step involves determining the opti-
mal values for the parameters of the AQAL model or any other pre-
dictive model. In this step, recorded traits, which are the observed
or measured trait values, and model-predicted trait values are used
as the input. The goal is to find the set of parameters that min-
imises the discrepancy or error between the recorded traits and
the model-predicted values. This discrepancy is quantified using
a defined function that measures the difference between the
observed traits and the predicted values (e.g. MAPE). The optimisa-
tion algorithm then iteratively adjusts the parameter values to
minimise the discrepancy, ultimately finding the parameter values
that best fit the data. The codes used for the parameter optimisa-
tion process were deposited in the code repository and properly
documented, ensuring transparency and reproducibility for future
use.

This section refers to the first step of the MAPE estimation algo-
rithm which involves generating a set of parameters using differ-
ent methods. Each method employs a unique strategy for
parameter generation. Specifically, DRAM generates a sequence
of random parameters from a Markov chain whose distributions
approach the posterior distributions of each parameter. In DE
and GA, the algorithm begins by randomly initialising the popula-
tion within a certain search space, and then, these initial values are
evolved over generations in order to optimise the objective func-
tion; this is achieved using genetic operators such as mutation,
selection, and crossover. In PSO, the search is based on the move-
ment of individual particles through the search space, which mim-
ics the swarm of birds or insects. SA is based on metallurgical
practices whereby a metal is heated to a high temperature and
then cooled to obtain a more purified material. According to
Piotrowski et al. (2020), we set the population to 100 in DE, GA,
PSO and SA methods. The mutation probability was set at 0.01
for GA. In PSO, the parameters w, c1, and c2 were set to 0.8, 0.5,
and 0.5, respectively. The maximum and minimum temperature
in SA was set to 1 and 1e�9, respectively. Table 1 shows the min-
imum and maximum values for parameters search in DE, GA, PSO
and SA methods, and the values for DRAM initialisation. In Python,
we used the ’pymcmcstat’ library for DRAM and the ’scikit-opt’
library for DE, GA, PSO, and SA.
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Datasets

Two datasets from Holstein cows (18 and 25 animals) were
used to test the performance of the five methods (DRAM, DE, GA,
PSO, and SA). Both datasets report periodic measures of MY, BW,
and BCS at least three lactations per cow. Additionally, one of the
two datasets has information of BW from birth to first calving.
The data used in this study are freely accessible in the data
repository.

Although the size of the datasets in this study may be smaller
compared to those in studies targeting direct biological research
objectives, it is important to acknowledge that the datasets utilised
are sufficient for the purpose of evaluating and comparing optimi-
sation methods. The primary focus of this study is to demonstrate
the effectiveness and advantages of these methods, rather than
drawing broad biological conclusions. Therefore, considering this
objective, the size of the datasets employed is appropriate and
enables a meaningful evaluation of the proposed optimisation
methods.
Results

The model used in this study (AQAL, Puillet et al., 2016) is
designed to prematurely end the simulation (death of the virtual
cow). The probability of death depends on extreme values of body
reserve proportion. This model characteristic means that, during
calibration, some iterations do not return an optimised error value
because the chosen parameter set results in an early end of the
simulation, i.e. before reaching the last data value in the observed
data. In these cases, which are typified by MAPE values more than
10 times greater than for completed simulations, these parameter
sets were not included in the registry of accepted parameters per
method. This means that the number of parameter sets is always
lower than the number of iterations used to obtain these sets.
The parameter search was stopped for each animal when at least
2 000 sets of valid iterations were obtained, i.e. excluding parame-
ters estimated in incomplete simulations.
Fig. 1. Iterative processes for identification of the parameter ‘‘acq_bas_pot” (basal acqu
Rejection Adaptive Metropolis (DRAM), Differential Evolution (DE), Genetic Algorithm (G
the graphs are the candidates’ values generated for each method during the iterative pr
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Iterative processes

Sampling strategies differ significantly between methods. Fig. 1
shows, except for DE, that as the iterative process progresses, the
generation of samples is focused on a certain region of the param-
eter space, which in this case was from 5 to 20 (Kg DM/d) for the
acquisition parameter ‘‘acq_bas_pot”. With the exception of DRAM,
in the early iterative process, the methods explore all the parame-
ter space proposed. This behaviour is strongly maintained during
the entire search in DE. The DRAM subplot shows that the early
search is affected by the initial value of the parameter; however,
after a few hundred iterations, this initial effect has been lost
and the algorithm explores the parameter space where it is
expected to find the global minimum of the response function.

Given the iterative behaviours presented in Fig. 1, it is expected
that independent runs of GA, PSO and SA converge to the same
parameter value. However, stochasticity results in different param-
eter values for independent runs of these methods. Fig. 2 shows the
smoothed trajectories of three runs of the search for the parameter
‘‘acq_bas_pot” with the five methods. The Savitzky Golay filter
(Schafer, 2011) was used to smooth all iterative processes, with a
third-degree polynomial function and a window size of 100 points.
Methods performance

As presented in Table 2, all methods were able to explore the
proposed parameter space and find sets of parameters that reduce
the distances between the observed and predicted values of MY,
BW, and BCS (MAPE < 10%). However, in terms of computational
cost, the DRAM method is the most efficient for this task. Table 2
shows that the minimum error can be found with this method with
fewer iterations compared to the other methods.

The quality of the adjusted between the parameters inferred
with the DRAM method and the other methods (DE, GA, PSO and
SA) was evaluated using the concordance correlation coefficient
(CCC, Lawrence and Lin, 1989), and the root mean square predic-
tion error (RMSPE). The results in Table 3 show that there is no
isition, Kg DM/d, in the dairy cows AQAL model, Puillet et al., 2016), using Delayed
A), Particle Swarm Optimisation (PSO) and Simulated Annealing (SA). The points on
ocess.



Fig. 2. Smoothed iterative processes of independent runs for the identification of the ‘‘acq_bas_pot” parameter (basal acquisition, Kg DM/d, in the dairy cows AQAL model,
Puillet et al., 2016), using Delayed Rejection Adaptive Metropolis (DRAM), Differential Evolution (DE), Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) and
Simulated Annealing (SA).

Table 2
Summary of methods performance for parameter search in the dairy cows AQAL model (Puillet et al., 2016).

Method Minimum MAPE Iterations to achieve the min MAPE

Dataset11 Dataset21 Dataset11 Dataset21

DRAM 5.9 (1.2) 6.2 (1.5) 1 215 (630) 1 111 (806)
GA 7.0 (1.7) 9.2 (2.8) 2 560 (540) 2 352 (1 097)
DE 8.5 (1.8) 8.0 (1.7) 4 023 (1 107) 4 046 (1 720)
PSO 5.7 (1.0) 6.5 (1.8) 4 176 (269) 4 328 (553)
SA 5.2 (0.9) 6.3 (1.9) 5 261 (281) 4 721 (585)

AQAL = dynamic-mechanistic model of lifetime trajectories of energy acquisition and allocation in dairy cows; DRAM = Delayed Rejection Adaptive Metropolis; GA = Genetic
Algorithm; DE = Differential Evolution; PSO = Particle Swarm Optimisation; SA = Simulated Annealing; MAPE = Mean Absolute Percentage Error.

1 Mean (SD).
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good fit between the parameters estimated by the DRAM method
and those estimated with the other methods. The 81.3% of the
CCC values were below 0.7.

It is important to note that different optimisation methods may
not necessarily converge to the exact same values. This variability
in parameter estimation is a common occurrence and can be attrib-
uted to the inherent differences in how each optimisation algo-
rithm explores the parameter space and finds optimal solutions.
We employed various optimisation methods to compare its perfor-
mance with that of the DRAM method. , One of the advantages of
using BI, such as the DRAMmethod, is that it provides a probabilis-
tic framework for parameter estimation. Instead of providing a sin-
gle point estimate for each parameter, Bayesian methods allow us
to obtain additional information about the parameter values, such
as their distribution or median value. This information-rich
approach provides a more nuanced understanding of the parame-
ter uncertainty and variability.

Parameter distributions obtained with the Bayesian method

Based on the iterative behaviours presented in Fig. 1, it is
expected that the DRAM method is not prone to getting trapped
5

in local minima, and can terminate the procedure still searching
the wider parameter domain for better results. The DRAM results
are the probability density distribution of each parameter, which
allows it to deal with the sources of uncertainty during the param-
eter identification. Fig. 3 shows the posterior distributions of the
acquisition parameter ‘‘acq_bas_pot” using DRAM. As shown in
this figure, the median value of the parameter distribution and
the best value (i.e., the parameter value that produces the least
error) are expected to be closer as the number of iterations
increases (1 000–2 000).

Although DRAM is more computationally efficient than the
other methods, exploring the parameter wider domain with this
method is time-consuming. In those cases where it is required to
make an individualised identification of lifespan parameters of
many animals (see Ramirez et al., 2022), it is necessary to find
a balance between the minimum time allocated for the
parameter identification and the quality of the identification.
Fig. 4 shows that it is possible to obtain good results using a
short iterative process (e.g. 2 000 iterations). This figure shows
that the median values of the acquisition parameters
‘‘acq_bas_pot” are close values after short (2 000) and long
(5 000 or 10 000) iterations.



Table 3
Summary of the adjustment between the four Genetic Scale Parameters (GSP) in the dairy cows AQAL model (Puillet et al., 2016) estimated with the DRAM method and the GSP
estimated with DE, GA, PSO and SA methods.

Respect to DRAM

Method GSP Dataset RMSPE% CCC Slope Intercept

DE acq_bas_pot Dataset1 9.2 0.213 0.27 6.48
DE acq_bas_lac Dataset1 23.2 0.396 0.40 6.49
DE init_G Dataset1 11.4 0.505 0.55 0.17
DE s2pc_pot Dataset1 6.8 0.167 0.30 0.56
DE acq_bas_pot Dataset2 10.7 0.634 0.75 2.50
DE acq_bas_lac Dataset2 19.4 0.450 0.87 1.45
DE init_G Dataset2 10.8 0.182 0.26 0.28
DE s2pc_pot Dataset2 5 0.036 0.04 0.84
GA acq_bas_pot Dataset1 7.2 0.464 0.55 4.10
GA acq_bas_lac Dataset1 22.1 0.564 0.79 2.36
GA init_G Dataset1 10.2 0.586 0.66 0.15
GA s2pc_pot Dataset1 6.5 0.148 0.25 0.59
GA acq_bas_pot Dataset2 16.8 0.476 0.99 0.78
GA acq_bas_lac Dataset2 36 0.104 0.47 4.47
GA init_G Dataset2 14.2 0.202 0.49 0.21
GA s2pc_pot Dataset2 8.8 0.190 0.85 0.09
PSO acq_bas_pot Dataset1 6.4 0.478 0.51 4.04
PSO acq_bas_lac Dataset1 8.7 0.909 0.76 3.20
PSO init_G Dataset1 6.2 0.811 0.80 0.07
PSO s2pc_pot Dataset1 3 0.712 0.74 0.20
PSO acq_bas_pot Dataset2 23.7 0.348 1.17 �0.71
PSO acq_bas_lac Dataset2 24.2 0.240 0.57 5.71
PSO init_G Dataset2 9.5 0.425 0.67 0.14
PSO s2pc_pot Dataset2 5.2 0.244 0.45 0.48
SA acq_bas_pot Dataset1 7.8 0.321 0.40 4.71
SA acq_bas_lac Dataset1 11.1 0.882 0.75 3.69
SA init_G Dataset1 7.8 0.775 0.91 0.01
SA s2pc_pot Dataset1 2.4 0.785 0.76 0.19
SA acq_bas_pot Dataset2 11.2 0.635 0.78 2.12
SA acq_bas_lac Dataset2 17.1 0.459 0.74 3.49
SA init_G Dataset2 6.2 0.530 0.41 0.23
SA s2pc_pot Dataset2 6.8 0.289 0.87 0.09

AQAL = dynamic-mechanistic model of lifetime trajectories of energy acquisition and allocation in dairy cows; DRAM = Delayed Rejection Adaptive Metropolis; DE = Dif-
ferential Evolution; GA = Genetic Algorithm; PSO = Particle Swarm Optimisation; SA = Simulated Annealing. The parameters ‘‘acq_bas_pot” and ‘‘acq_bas_lac” are the basal
and an additional lactation acquisition (Kg/d), respectively. The parameters ‘‘init_G” and ‘‘s2pc_pot” control energy allocation for growth and lactation, respectively. For
details, see Puillet et al. (2016). Concordance correlation coefficient (CCC, scale from �1 to 1).

Fig. 3. Examples of the posterior distributions of the acquisition parameter ‘‘acq_bas_pot” (basal acquisition, Kg DM/d, in the dairy cows AQAL model, Puillet et al., 2016)
using Delayed Rejection Adaptive Metropolis (DRAM). The dashed line is the median value of the parameter distribution, and continuous line is the best parameter (i.e. the
parameter that produces the least error) after 1 000 and 2 000 iterations.
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Simulation results with the Bayesian method

Fig. 5 shows the simulation results for two cows, from the two
datasets used in this work. This figure compares the actual MY,
BW, and BCS data and the simulation results using the best set of
parameters obtained with the DRAM method.
6

Author’s point of views

� The main outcome of the study is the comparison of different
optimisation methods for parameter identification in a cow’s
lifespan model. The DRAM method was chosen as the reference
method due to its ability to provide a more informative and



Fig. 4. Examples of posterior distributions of the acquisition parameter ‘‘acq_bas_pot” (basal acquisition, Kg DM/d, in the dairy cows AQAL model, Puillet et al., 2016) using
Delayed Rejection Adaptive Metropolis (DRAM). In blue, the distribution of the short chain (SC, n = 2 000); and in orange, the distribution of the long chain (LC, n = 5 000 or
n = 10 000). The continuous and dashed lines are the median values of the parameter distribution for SC and LC, respectively.

Fig. 5. Simulation results for two cows, from the two datasets used in this work. The figure compares the actual MY, BW, and BCS data and the simulation results of the dairy
cows’ AQAL model (Puillet et al., 2016) using the best set of parameters obtained with the Delayed Rejection Adaptive Metropolis (DRAM) method.
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comprehensive representation of the estimated parameters.
While it is true that the parameter values obtained using differ-
ent optimisation methods may differ (Table 3), the Bayesian
framework allows us to capture the inherent variability and
uncertainty in a more rigorous and systematic way.

� The results show that all methods, including DRAM, are efficient
in finding parameter values that reduce the distance between
simulated and experimental data.

� There are limitations in the study that might have affected the
outcome. One limitation is the uncertainty associated with the
inference of parameter values due to the non-convex nature
of the parameter search problem and the simulation time
length.
7

� The results from this study can be used and benefit various
stakeholders such as researchers in the field of animal breeding
programs. Breeders can utilise AQAL and BI to identify efficient
animals that are resistant to harsh conditions and recover
quickly from adverse events. The study confirms that mechanis-
tic models, such as the AQAL, can be valuable tools for under-
standing the underlying mechanisms of complex biological
phenomena.

� The data from this study can be reused for further analysis by
researchers and modellers interested in studying cow lifespan,
resource allocation, and breeding strategies. The dataset could
be used to compare different modelling approaches, test alter-
native parameter estimationmethods, or explore additional fac-
tors influencing cow lifespan, such as environmental or
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behavioural factors. Further analysis could provide deeper
insights into the dynamics of cow lifespans and the potential
for improving breeding programs.

Conclusion

The use of mechanistic models and BI has significant implica-
tions for breeding programs, offering a means to identify animals
with high efficiency and resilience based on their estimated
genetic potential. This particular study focused on parameter iden-
tification within a mechanistic model of cow lifetime performance.
The objective was to compare different methods for determining
individual parameters that accurately represent the genetic poten-
tial of each cow and its interaction with the environment. The
results demonstrated that various methods, such as DRAM, DE,
GA, PSO, and SA, were effective in minimising the disparity
between simulated and experimental data. Notably, DRAM proved
to be more computationally efficient and provided additional
insights into the statistical properties of each parameter. These
findings highlight the importance of selecting appropriate param-
eter optimisation methods in order to obtain reliable and informa-
tive results for breeding programs.
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