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a b s t r a c t

Coupling genetic and mechanistic models is appealing to explore the impact of energy trade-offs on the
expression of feed efficiency traits in dairy cattle and predict selection response. The objective of this
study was to evaluate the sensitivity of genetic (co)variances among milk production and feed efficiency
(FE) traits simulated with a mechanistic dairy cow model depending on the genetic variability assumed
for input parameters. The cow model was calibrated for a grass-based production and included a genetic
module. Four genetically driven input parameters described the energy acquisition and allocation to dif-
ferent biological functions of cows. In each simulation, a population of 20 000 cows from 200 unrelated
sires was simulated. The nutritional environment was an input of the model and was tailored by modu-
lating feed offer and quality. A non-limiting nutritional environment was simulated to mimic a situation
of ad libitum feeding and was used as a reference. Two other scenarios were simulated by imposing a
moderate and a high DM intake restriction on simulated cows. Five phenotypes related to milk produc-
tion and FE were considered: milk production, BW at calving, DM intake, lactation efficiency and body
reserves during early lactation. These traits were estimated both in first and third lactations. A baseline
scenario was defined considering a heritability of 0.35 and a phenotypic CV of 10% for acquisition and
allocation parameters (AAPs). Different scenarios were explored by reducing the heritability to 0.15 or
increasing CV to 20 and 30% or both. Heritabilities and genetic correlations between simulated traits were
estimated using animal linear mixed models. Each scenario was replicated 20 times. Simulated perfor-
mance and genetic parameters for these traits were compared across scenarios using an ANOVA. The her-
itability of AAPs only influenced the heritability of simulated traits. The phenotypic CV of AAPs mainly
influenced the variability of simulated traits. However, increasing the CV also affected the number of
cows reaching first and third lactation, due to the early culling of females with extreme AAPs profiles.
Compared to other input parameters, the nutritional environment had the largest effect on both perfor-
mance and genetic correlations between traits. Using a heritability value of 0.35 and a CV of 10% for all
four AAPs enabled the simulation of milk production and FE performance with a realistic mean, variance
and genetic correlations among traits in the three considered environments.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Implications

Due to the scarcity of feed efficiency datasets in dairy cattle,
using simulated datasets is an option to explore the relevance of
breeding strategies under different environments. This study capi-
talises on a mechanistic model that simulates phenotypic trajecto-
ries of dairy cows over their lifetime. We identified genetic
parameters to consider as inputs in the model to simulate traits
with realistic means and genetic parameters. The nutritional envi-
ronment was the input parameter with the highest influence on
genetic correlations among simulated traits. This simulation tool
is promising to benchmark selection strategies for feed efficiency
in dairy cows under various nutritional environments.
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Introduction

For decades, mechanistic models (MMs) have been used to
assist decision-making in agriculture. In the livestock sector, such
models were developed to help optimising the technical perfor-
mance of herds and reducing both costs and the environmental
footprint of production (Ellis et al., 2020). In animal nutrition,
MMs has been a useful tool to predict animal responses to changes
in environmental factors (e.g. feed composition, feed restriction,
herd management, climate). So far, the use of MMs have been lim-
ited in animal breeding. However, there is increased interest in
combining mechanistic and genetic modelling to investigate how
energy trade-offs could hamper selection response achieved in
breeding schemes, either by exacerbating genetic antagonisms
between traits or by generating genotype-by-environment (G�E)
interactions (Douhard et al., 2014). Such an approach could be ben-
eficial for the genetic improvement of feed and lactation efficiency
in dairy cattle. These complex traits are highly dynamic and are
affected by trade-offs between different biological functions. Such
trade-offs occur when energy intake is restricted and prevent the
cows from expressing their full potential for the different biological
functions, for example during lactation in low-input production
systems. Increasing milk production and efficiency traits in dairy
cows may thus impair fitness traits such as reproduction (Pryce
et al., 1998) and health (Becker et al., 2021) and lead to a shorter
productive life. The magnitude and nature of trade-offs between
biological functions are expected to differ across production sys-
tems and change phenotypic and genetic covariances between
traits, thus generating G�E interactions (Friggens et al., 2013).
Moreover, the collection of feed intake data is costly and difficult,
e.g. in outdoor production systems, leading to a scarcity of data
needed for estimating reliable genetic parameters under a broad
range of environments.

To broaden the scope of nutrition MMs to animal breeding
issues, Puillet et al. (2021) developed a model based on the
resource acquisition and allocation theory which includes a genetic
module. Four genetically driven parameters describe the variability
in the way cows acquire and allocate energy for different functions
such as lactation, growth, and reproduction over their lifetime. This
model was used to explore the relative contribution of energy
acquisition and allocation parameters (AAPs) on lactation effi-
ciency in dairy cows and to evaluate the magnitude of G�E inter-
actions for these traits under various environments (Puillet et al.,
2021). In this study, the genetic parameters of AAPs were defined
empirically with typical values for production traits (Hill et al.,
2007). Therefore, more insight is needed on the relative influence
of genetic parameters assumed for AAPs and the effect of the nutri-
tional environment on simulated traits before the model can be
used in breeding applications. The objective of this study was to
perform a sensitivity analysis to identify genetic parameters to
be used as input for the simulation of dairy cow performance with
realistic mean, variance and genetic correlation patterns among
traits.
Material and methods

The sensitivity analysis applied in this study made intensive use
of stochastic simulations. The compiled executable of the simula-
tion tool and scripts to reproduce simulations and analyses can
be retrieved from: https://data.mendeley.com/datasets/txx9zkb-
d2g/2. This code needs to be run under Linux with the SLURM
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Table 1
Effect of the different scenarios on the average number of cows reaching first and third calving in the simulated dataset.

Heritability CV Number of cows starting first
lactation

Number of cows starting third lactation

Scenario1 Acquisition2 Allocation3 Acquisition2 Allocation3 Mean SEM % of born heifers Mean SEM % of primiparous cows

High nutritional environment (HS)
HS_3535_1010 35 35 10 10 19 730 3.0 98.6% 14 771 20.0 74.9%
HS_3515_1010 35 15 10 10 19 730 2.9 98.7% 14 773 16.1 74.9%
HS_1515_1010 15 15 10 10 19 730 3.0 98.6% 14 774 17.0 74.9%
HS_3535_2020 35 35 10 30 19 039 9.0 95.2% 11 953 31.1 62.8%
HS_3535_1030 35 35 20 20 18 238 12.8 91.2% 10 768 37.9 59.0%
HS_3535_2030 35 35 20 30 17 885 14.3 89.4% 10 457 31.6 58.5%

Moderate nutritional environment (MS)
MS_3535_1010 35 35 10 10 19 730 2.9 98.7% 13 486 22.3 68.4%
MS_1515_1010 15 15 10 10 19 730 3.0 98.6% 13 848 18.6 70.2%
MS_3535_2020 35 35 20 20 19 039 9.0 95.2% 10 973 30.5 57.6%

Low nutritional environment (LS)
LS_3535_1010 35 35 10 10 19 730 2.9 98.7% 9 707 33.9 49.2%
LS_1515_1010 15 15 10 10 19 730 3.0 98.6% 9 686 25.6 49.1%
LS_3535_2020 35 35 20 20 19 030 9.0 95.1% 8 267 33.7 43.4%

1 Abbreviations of scenarios were obtained by concatenating abbreviations of the nutritional environment, heritabilities of the two acquisition and allocation parameters
and CV of the two acquisition and allocation parameters.

2 Parameter value for both basal acquisition and lactation acquisition parameters.
3 Parameter value for both allocation priority from growth to survival and lactation allocation parameters.
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workload manager. In addition, it requires R statistical software (R
Core Team, 2021) for data manipulations and statistical analyses as
well as DMU version 5.2 (Madsen and Jensen, 2013) for the estima-
tion of variance components. In this code, the seeds used for sam-
pling random numbers were fixed at the beginning of each
replicate to ensure the reproducibility of data.

Datasets were generated for 12 different scenarios, considering
different combinations of input parameters based on three differ-
ent nutritional environments, two levels of heritability and three
levels of CV for AAPs (Table 1).
Dairy cow mechanistic model

The AQAL bioenergetic dairy cow model simulates phenotypic
trajectories over a cow’s lifetime for milk production, DM intake,
body mass components including body reserves, as well as the tim-
ing of estruses and success of reproduction events (Puillet et al.,
2016). The model can accommodate different nutritional environ-
ments by modulating the DM offer and metabolisable energy (ME)
content of feed over time. The dynamics of energy acquisition and
allocation for the main energy sinks (maintenance, lactation, gesta-
tion, body reserves) is described deterministically (Puillet et al.,
2016). Four input parameters can be tuned to describe different
dynamics of energy acquisition and allocation as observed for
instance in different breeds. The first two acquisition parameters
relate to the maximal potential DM intake of a non-lactating cow
(basal acquisition abbreviated as BasAcq, in kg of DM/d) and the
potential increase in DM intake during lactation (lactation acquisi-
tion or LactAcq, in kg of DM/d) in a non-limiting environment. The
two other input parameters relate to the dynamics of energy allo-
cation. The first one drives the dynamic of allocation to growth and
corresponds to the rate of transfer between allocation to growth
and allocation to survival (fprioG2S, dimensionless). A high value
implies a fast decrease in allocation to growth when the female
ages. The second one drives the allocation to lactation and corre-
sponds to the intensity of the charge of allocation to lactation at
parturition (LactAll, dimensionless). The mean values of BasAcq,
LactAcq, fprioG2S and LactAll were determined to fit real data using
a calibration procedure as described in Puillet et al. (2016). They
were set to 7.00 kg/d, 10.25 kg/d, 3.5 10�3 and 0.56 as in Puillet
et al. (2021). Based on the individual cow model, a genetic module
was developed to simulate phenotypic and genetic variability
3

around the mean AAPs in a population of related cows. Thus, the
variance observed around mean phenotypic trajectories at the pop-
ulation level was induced by assuming genetic and phenotypic
variability for the AAPs. Only those four AAPs were assumed to
be genetically driven as they were linked to the main energy acqui-
sition processes and energy sinks. Further details concerning the
model and its implementation can be found in Puillet et al. (2016
and 2021).
Simulated production systems

As a case study, a grass-based production system with seasonal
calving was modelled following the same set-up as Puillet et al.
(2021). The population was simulated as a single cohort of females
from birth to death. It comprised 20 000 cows reared in the same
environment. The mating season started on October 10th each year
and lasted for 10 weeks. Gestation lasted 282 d, and cows were
dried-off 90d before calving or at latest on May 15th. First mating
of heifers occurred at 424 d of age. The probability of conception
was derived based on deterministic equations accounting for milk
production and energy balance (Puillet et al., 2016). Females that
were not pregnant at the end of the mating season were culled.
Moreover, females were culled when their body reserves were
completely depleted due to insufficient energy acquisition or too
high allocation to growth and lactation. Seasonality of feed
resources in terms of quality and quantity was accounted for in
the simulations. Variation in feed quality was defined to be consis-
tent with ME content of grass in New Zealand (Roche et al., 2009).
The ME content varied from 10.85 to 12.45 MJ/kg DM with a yearly
average of 11.70 MJ/kg DM. Three nutritional environments were
defined by changing the DM offer as simulated by Puillet et al.
(2021). The high and non-limiting environment (HS) was defined
to provide sufficient energy to cover the nutritional requirements
of all cows during lactation and gestation. Secondly, a moderate
scenario (MS) was defined so that DM offer could be limiting for
high acquisition cows. The yearly average DM offer was 12.2 kg/
d per cow with values ranging from 10 to 16.8 kg/d depending
on the seasonality of grass production. Finally, a low nutritional
environment (LS) was also simulated with a high constraint on
DM offer. The yearly average DM offer was 9.8 kg/d per cow with
values ranging from 8 to 13.4 kg/d per cow.
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Genetic determinism of acquisition-allocation parameters

In AQAL, the variance of simulated traits was induced by assum-
ing phenotypic variance for AAP. These parameters were assumed
to be genetically driven meaning that part of phenotypic variability
was explained by additive genetic effects. A half-sib pedigree struc-
ture was simulated in this study. The true breeding values (TBVs)
of AAPs were sampled for a set of 200 unrelated sires and 20 000
unrelated dams from a multivariate normal distribution with
assumed genetic parameters. Sires were mated to dams to gener-
ate a single generation of 200 half-sib families comprising 100
daughters each. Procedures to sample TBV of cows and reconstruct
acquisition and allocation phenotypes are described in Puillet et al.
(2021).

First, the same genetic parameters for AAPs as in Puillet et al.
(2021) were used, i.e. heritability of 0.35, a phenotypic CV of 10%
and no genetic or phenotypic correlation between the input traits.
These parameters were used to simulate milk production and FE
data in all three nutritional environments and served as a baseline.

Then, different sets of genetic parameters were considered
(Table 1) to evaluate how sensitive the genetic and phenotypic cor-
relations between simulated traits were to changes in the genetic
parameters of AAPs. In all three environments, the effect of heri-
tability was evaluated by decreasing it to 0.15 for all four AAPs.
Alternatively, the effect of CV was evaluated by increasing it to
20% for all four AAPs, whilst keeping heritability to 0.35. These
lower heritabilities and higher CVs are typical of fitness traits
(Hill et al., 2007). To have a better understanding on how the her-
itabilities (and CVs) of acquisition and allocation respectively influ-
enced the (co)variances of simulated traits, we considered
additional scenarios in the high nutritional environment only. First,
we maintained heritabilities of acquisition to 0.35 and reduced
heritabilities of allocation traits to 0.15, keeping CVs to 10% for
all four parameters. Then, the CV of allocation parameters was
increased to 30% whilst the CV of acquisition parameters kept to
lower values (10 and 20%). Abbreviation of scenarios were built
by concatenating the abbreviation of the nutritional environment,
the heritability assumed for both acquisition and both allocation
traits, and the CV assumed for both acquisition and both allocation
traits (for instance HS_3535_2030).

Definition of phenotypes

Phenotypic trajectories for milk production, feed efficiency and
body reserves were generated using the mechanistic model
described above and the sampled AAPs for each nutritional envi-
ronment. Thus, no TBVs were sampled for milk production, feed
efficiency and body reserve traits. Five simulated phenotypes were
considered for further genetic analyses and were estimated for
cows in first and third lactation (variable names were suffixed with
L1 and L3). These traits comprised total lactation milk production
(Milk), BW at calving (BWcalv), daily DM intake across lactation
(DMI), lactation efficiency (Lact_Eff), expressed as the ratio of
energy invested in milk production over total energy intake during
the lactation, and the minimum weight of body reserves during
lactation (BRmin), expressed as the proportion of labile mass over
empty BW. These traits were measured in first and third lactations.
Records in both lactations were not analysed as repeated measure-
ments but as two distinct traits.

Estimation of variance components

All traits were analysed using the following animal linear mixed
model:

Y = Xb + Zu + e
4

where X is the incidence matrix-relating performances to the fixed
effects; b is the vector of fixed effects that comprised the calving
group (four levels) that defined the nutritional environment at
the time of parturition for all traits and the number of days in milk
as a covariate for Milk and Lact_Eff to correct for shorter lactations;
Z is the incidence matrix-relating performances to animals; u is the
vector of additive genetic values following a normal distribution N
(0, Arg

2) where A is the additive relationship matrix and rg
2 is the

genetic variance of the trait; and e is the residual term following
a normal distribution N(0, Ire

2) where re
2 is the residual variance

of the trait and I the identity matrix.
Variance components were estimated using the Average Infor-

mation Restricted Maximum Likelihood algorithm. At first, univari-
ate analyses were carried out to estimate heritabilities, followed by
bivariate analyses to estimate genetic and phenotypic covariances
between traits. All calculations were carried out using the DMU
software (Madsen and Jensen, 2013) that can be retrieved from
https://dmu.ghpc.au.dk/dmu/DMU/Linux/Previous/.
Comparison across scenarios

Each scenario was replicated 20 times to reduce the uncertainty
around genetic correlation estimates that could be large for low
heritability trait. Performances, heritabilities, and genetic and phe-
notypic correlations were compared across scenarios using a 1-
way ANOVA to evaluate the impact of each scenario, i.e. each com-
bination of genetic parameters assumed for AAPs and environ-
ment. The normality of the response variable was checked at first
within each scenario using the Shapiro-Wilks test. Then, the homo-
geneity of variances across scenarios was evaluated using the
Levene test. In most cases, variances were different across scenar-
ios. Therefore, a Welsh 1-way ANOVA was carried out followed by
Games-Howell posthoc tests to determine the significance of con-
trasts between all pairs of scenarios. Statistical analyses were per-
formed with the rstatix package (Kassambara, 2021), and matrices
were represented with the corrplot package (Wei and Simko, 2021)
in R (R Core Team, 2021).
Results

Comparison of performance mean and variability

The number of cows starting their first and third lactation is
presented in Table 1 for all scenarios. The number of heifers start-
ing first lactation was not affected by the environment or heritabil-
ity of AAPs. However, it was highly affected by the CV of AAPs.
When CV of AAPs was increased to 20%, the number of heifers fail-
ing due to acute energy imbalance (i.e. too few body reserves)
before starting first lactation increased from 1.4 to 4.8%. In the
most extreme scenario regarding CV (HS_3535_2030), the propor-
tion of heifers failing prematurely increased to 10.6%. These ani-
mals with a combination of too high allocation to growth and
low basal acquisition failed to acquire and maintain sufficient body
reserves to allow them to transition to viable lactation. The num-
ber of cows reaching third lactation depended on the nutritional
environment and the CV assumed for AAPs but not on their heri-
tability. In scenarios with a heritability of 0.35 and a CV of 0.10
for all AAPs, the proportion of primiparous cows reaching third
calving was 74.5, 68.4 and 49.2% in the high, moderate and low
nutritional environments. When CV of AAPs was increased to
20%, the proportion of primiparous cows reaching third lactation
decreased to 62.8, 57.6 and 43.3% in the high, moderate and low
nutritional environments.

The high nutritional environment mimicked a situation of ad li-
bitum feeding. In the moderate nutritional environment, realised

https://dmu.ghpc.au.dk/dmu/DMU/Linux/Previous/
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DMI was reduced by 2.0% compared to target intake during the first
lactation meaning that DM offer was only slightly limiting com-
pared to cow potential intake. This constraint was more important
for third lactation cows which had higher nutritional requirements
for maintenance and production (�12.9%). The LS environment
was rather extreme with a DM offer that was much lower than
potential intake both in first lactation (�12.5%) and third lactation
(�27.8%).

Mean performances of cows were affected by the environment
as well as the CV of AAPs but not their heritability. This was
observed for first-parity cows (Table 2) as well as third-parity cows
(Supplementary Table S1). However, for a given set of AAPs genetic
parameters, average milk production, BW at calving and lactation
efficiency measured in first lactation were significantly reduced
in the MS and LS environments compared to the HS environments.

When CV of AAPs was increased from 10 to 20%, no significant
difference was observed in milk production in first lactation in the
high nutritional environment although BW at calving slightly
increased, and lactation efficiency slightly decreased (Table 2). In
the MS and LS environments, mean performance significantly dif-
fered for all traits when CV was increased from 10 to 20%. For third
lactation cows, increasing CV of AAPs also induced small yet signif-
icant changes in all traits (Supplementary Table S1).

The environment also had a significant effect through restric-
tions exerted on DM intake in the suboptimal environments. Con-
sequently, the CV of Milk was reduced in the MS and LS
environments whereas CV of Lact_Eff and BRmin was increased,
regardless of cow parity. In scenarios where different values were
allocated to AAPs, the CVs of DMI and BWcalv were generally close
to the CV of acquisition parameters in the non-constraining nutri-
tional environment, whereas the CV of Milk and Lact_Eff was com-
prised between values set for CV of AAPs.
Comparison of heritabilities estimated across scenarios

Heritabilities estimated for the different traits and scenarios are
presented in Table 3 for first-parity cows and in Supplementary
Table S2 for third-parity cows. Heritability values estimated for
the simulated traits depended simultaneously on the heritability
and CV assumed for AAPs and on the environment.

In the high nutritional environment, the heritability of BWcalv
was close to the one assumed for acquisition parameters. The her-
Table 2
Mean and CV across replicates of simulated performances of cows in first lactation for the

DMI_L1 BWcalv_L1 Milk_

Scenario1 Mean SEM CV2 Mean SEM CV2 Mean

High nutritional environment (HS)
HS_3535_1010 14.1a 0.01 9.37d 501.7a 0.34 10.91e 4 001
HS_3515_1010 14.1a 0.01 9.37d 501.7a 0.34 10.91e 4 002
HS_1515_1010 14.1a 0.00 9.36d 501.6a 0.24 10.91e 4 003
HS_3535_1030 14.1a 0.01 9.52c 501.5a 0.37 11.00e 3 856
HS_3535_2020 14.3b 0.01 15.20a 511.8b 0.68 20.20b 4 001
HS_3535_2030 14.3b 0.01 15.15a 512.0b 0.69 20.38a 3 907

Moderate nutritional environment (MS)
MS_3535_1010 13.8c 0.01 8.57e 501.8a 0.35 10.91e 3 884
MS_1515_1010 13.8c 0.00 8.57e 501.9a 0.24 10.91e 3 885
MS_3535_2020 13.7d 0.01 12.45b 511.0b 0.66 20.08c 3 799

Low nutritional environment (LS)
LS_3535_1010 12.3e 0.00 8.03f 501.0a 0.33 10.61f 3 398
LS_1515_1010 12.3e 0.00 8.02f 501.0a 0.23 10.61f 3 399
LS_3535_2020 12.2f 0.00 9.54c 501.7a 0.56 18.26d 3 286

Milk_L1 = milk production in first lactation; Lac_Eff_L1 = lactation efficiency in first la
BRmin_L1 = minimal body reserves during first lactation.
a–h Values within a column with different superscripts differ significantly at P < 0.05.

1 See Table 1 for scenario abbreviations.
2 SEM of CV ranged from 0.01 to 0.13% for the five analysed traits.
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itability estimates for Milk and BRmin were close to the average of
assumed heritabilities for acquisition and allocation parameters.
Indeed, these estimates were close to 0.35 and 0.15 when the her-
itability of all four AAPs was set to either 0.35 or 0.15, and they
took intermediate values when the heritability of acquisition
parameters was set to 0.35 and the heritability of allocation
parameters was set to 0.15. Heritabilities estimated for Milk and
BRmin were slightly reduced when considering the MS and LS
environments. Unlike milk production, heritability estimated for
BRmin was sensitive to the CV of AAPs, with lower estimates when
CV increased.

As expected, the heritability of DMI was highly dependent on
both assumed heritability for acquisition traits and the environ-
ment. In the high and non-constraining nutritional environment,
the estimated heritability was close to heritabilities assumed for
acquisition parameters. Estimated heritabilities were markedly
reduced in the limiting nutritional environments, especially in
the LS environment.

Heritability of lactation efficiency was lower than the heritabil-
ity values assumed for AAPs. Furthermore, heritability estimates
were slightly increased when the CV of allocation parameters
was increased. Heritabilities estimated in the HS and MS nutri-
tional environments were not significantly different whereas these
estimates were slightly lower in the LS environment with an
increased CV.
Change in genetic correlation patterns among traits across scenarios

The average of genetic and phenotypic correlations estimated in
the baseline scenario are presented in Fig. 1 for the high nutritional
environment. High genetic correlations were estimated between
Milk and Lact_Eff as well as Milk and DMI regardless of cow parity.
The genetic correlation between Milk and BWcalv was moderate to
high in first lactation and much lower, but still positive, in third
lactation. The genetic correlation between lactation efficiency
and DMI was close to zero for both lactations. Genetic correlations
between Lact_Eff and BWcalv, as well as BRmin, were negative and
low in first lactation although phenotypic correlations were of
higher magnitude. Genetic correlations between these traits were
higher in third than in first lactation. The genetic correlation
between DMI and BWcalv was high in first and third lactation.
The genetic correlations between BRmin and DMI as well as
simulated traits and the different scenarios.

L1 Lac_Eff_L1 BRmin_L1

SEM CV2 Mean SEM CV2 Mean SEM CV2

.9a 2.03 11.64f 41.9a 0.01 10.86g 24.4b 0.04 30.91h

.6a 1.69 11.65f 41.8a 0.01 10.86g 24.4b 0.03 30.93h

.7a 1.34 11.65f 41.9a 0.01 10.85g 24.4b 0.03 30.91h

.0d 3.42 25.16b 40.3f 0.04 25.11a 26.1a 0.06 53.13c

.2a 3.73 21.92c 41.4c 0.03 18.38d 24.0c 0.05 51.19e

.0b 4.22 28.17a 40.3f 0.04 25.26a 26.0a 0.06 55.12b

.2c 1.68 10.39g 41.5b 0.01 11.17f 23.1d 0.04 32.00g

.7c 1.09 10.40g 41.5b 0.01 11.17f 23.1d 0.03 32.01g

.7e 2.89 19.32d 40.9d 0.03 18.66c 22.7e 0.05 52.46d

.7f 1.10 9.30h 40.7e 0.01 12.83e 17.5g 0.04 42.67f

.5f 0.73 9.29h 40.7e 0.01 12.84e 17.5g 0.03 42.72f

.7g 1.96 17.10e 40.0g 0.03 19.41b 18.7f 0.05 60.38a

ctation; DMI_L1 = DM intake in first lactation; BWcalv_L1 = BW at first calving;



Table 3
Heritabilities estimated for simulated traits measured on dairy cows in first lactation across scenarios.

Scenario1 Milk_L12 BWcalv_L12 Lac_Eff_L12 DMI_L12 BRmin_L12

HS_3535_1010 0.34a 0.35a 0.22b 0.24b 0.34a

HS_3515_1010 0.23d 0.35a 0.10d 0.24b 0.19c

HS_1515_1010 0.15e 0.15c 0.10d 0.15d 0.14d

HS_3535_1030 0.29bc 0.35a 0.26a 0.21b 0.19c

HS_3535_2020 0.32ab 0.32ab 0.27a 0.27a 0.23b

HS_3535_2030 0.29bc 0.33ab 0.26a 0.28a 0.18c

MS_3535_1010 0.34a 0.35a 0.22b 0.19c 0.33a

MS_1515_1010 0.14e 0.15c 0.10d 0.08ef 0.14d

MS_3535_2020 0.31ab 0.32ab 0.26a 0.22b 0.23b

LS_3535_1010 0.34a 0.35a 0.18c 0.05f 0.30a

LS_1515_1010 0.15e 0.15c 0.07e 0.02g 0.13d

LS_3535_2020 0.30bc 0.31b 0.23b 0.09e 0.19c

Milk_L1 = milk production in first lactation; Lac_Eff_L1 = lactation efficiency in first lactation; DMI_L1 = DM intake in first lactation; BWcalv_L1 = BW at first calving;
BRmin_L1 = minimal body reserves during first lactation.
a–g Values within a row with different superscripts differ significantly at P < 0.05.

1 See Table 1 for scenario abbreviations; HS = high nutritional environment; MS = moderate nutritional environment; LS = low nutritional environment.
2 SEs of the mean ranged from 0.004 to 0.01 for all traits and scenarios.

Fig. 1. Mean genetic and phenotypic correlations (upper and lower triangular
matrices, respectively) estimated between simulated traits of dairy cows in the high
nutritional environment. Traits: Milk_L1 = milk production in first lactation;
Lac_Eff_L1 = lactation efficiency in first lactation; DMI_L1 = dry matter intake in first
lactation; BWcalv_L1 = BW at first calving; BRmin_L1 = minimal body reserves
during first lactation; Milk_L3 = milk production in third lactation; Lac_Eff_L3 = lac-
tation efficiency in third lactation; DMI_L3 = DM intake in third lactation;
BWcalv_L3 = BW at third calving; BRmin_L3 = minimal body reserves during third
lactation. Correlations that were not significantly different from 0 at a 5% threshold
based on the 20 replicates were crossed. SEs of mean genetic correlations ranged
from 0.01 to 0.10 where SEs of genetic correlation estimates ranged from 0.05 to
0.58 for individual estimates within replicates.

Fig. 2. Contrasts between genetic correlations estimated for each trait measured on
dairy cows in the moderate vs high nutritional environment (upper triangular) and
in the low vs high nutritional environment (lower triangular), considering
heritability of 0.35 and coefficient of variation of 10% for acquisition and allocation
parameters. Traits: Milk_L1 = milk production in first lactation; Lac_Eff_L1 = lacta-
tion efficiency in first lactation; DMI_L1 = DM intake in first lactation;
BWcalv_L1 = BW at first calving; BRmin_L1 = minimal body reserves during first
lactation; Milk_L3 = milk production in third lactation; Lac_Eff_L3 = lactation
efficiency in third lactation; DMI_L3 = DM intake in third lactation;
BWcalv_L3 = BW at third calving; BRmin_L3 = minimal body reserves during third
lactation. Contrasts that were not significantly different from 0 at a 5% threshold
based on the 20 replicates were crossed.
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BWcalv were moderate in first and third lactation. All genetic cor-
relations estimated between the same trait measured in first and
third lactation were very high (>0.86).

The nutritional environment had a large impact on the shaping
of genetic correlations among simulated traits, as already shown
by Puillet et al. (2021). When comparing the high and moderate
nutritional environments, most changes in genetic correlations
between traits measured in first lactation were limited (Fig. 2).
The contrasts were larger for third lactation traits because third-
parity cows experienced higher feed restriction and hence stronger
trade-offs than first-parity cows in the MS environment. The
genetic correlations most impacted by the change in nutritional
6

environment were those estimated between milk production and
other traits, especially DMI, BWcalv and BRmin. These traits were
generally more unfavourably correlated in more constraining envi-
ronments due to increased trade-offs. In third lactation, the drop in
genetic correlation between DMI and BRmin was also notable.

When comparing HS and LS environments, large changes in
genetic correlations were observed whatever the cow parity. The
genetic correlation between Milk and Lact_Eff increased and the
genetic correlations between Milk and DMI, as well as BWcalv,
strongly decreased and became negative indicative of a trade-off
between milk production and BW. The genetic correlation between
BRmin and BWcalv in third lactation was also substantially
reduced.



Fig. 3. Contrasts between genetic correlations estimated for each trait measured on
dairy cows in scenarios with heritability of acquisition and allocation parameters
set to 0.35 vs 0.15 in the high nutritional environment (upper triangular) and in the
low nutritional environment (lower triangular), considering a CV of 10% for
acquisition and allocation parameters. Traits: Milk_L1 = milk production in first
lactation; Lac_Eff_L1 = lactation efficiency in first lactation; DMI_L1 = DM intake in
first lactation; BWcalv_L1 = BW at first calving; BRmin_L1 = minimal body reserves
during first lactation; Milk_L3 = milk production in third lactation; Lac_Eff_L3 = lac-
tation efficiency in third lactation; DMI_L3 = DM intake in third lactation;
BWcalv_L3 = BW at third calving; BRmin_L3 = minimal body reserves during third
lactation. Contrasts that were not significantly different from 0 at a 5% threshold
based on the 20 replicates were crossed.

Fig. 4. Contrasts between genetic correlations estimated for each trait measured on
dairy cows in scenarios with CV for acquisition and allocation parameters set to 20
vs 10% in the high nutritional environment (upper triangular) and in the low
nutritional environment (lower triangular), considering heritability of 0.35 for all
acquisition and allocation parameters considering a CV of 10% for acquisition and
allocation parameters. Traits: Milk_L1 = milk production in first lactation;
Lac_Eff_L1 = lactation efficiency in first lactation; DMI_L1 = DM intake in first
lactation; BWcalv_L1 = BW at first calving; BRmin_L1 = minimal body reserves
during first lactation; Milk_L3 = milk production in third lactation; Lac_Eff_L3 = lac-
tation efficiency in third lactation; DMI_L3 = DM intake in third lactation;
BWcalv_L3 = BW at third calving; BRmin_L3 = minimal body reserves during third
lactation. Contrasts that were not significantly different from 0 at a 5% threshold
based on the 20 replicates were crossed.
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Independently from the environment, the heritability defined
for AAPs did not impact genetic correlations among simulated
traits neither in first nor in third lactation (Fig. 3). Finally, changes
in genetic correlations among simulated traits were limited when
increasing the CV from 10 to 20% in the HS environment (Fig. 4).
The largest change was observed between BRmin and lactation
efficiency in third lactation. In the LS environment, increasing the
CV of AAPs from 10 to 20% had a larger effect on estimated genetic
correlations. However, those changes remained limited and much
smaller than the changes induced by the change in environment.

Author’s point of views

� The main outcome of this study is a suite of scripts and a com-
piled version of the AQAL software to (1) simulate phenotypic
trajectories of milk production and feed efficiency traits in a
population of related cows and (2) estimate genetic parameters
for traits derived from simulations.

� The sensitivity analysis performed in this study gives insight
into the tuning of genetic parameters of AQAL input traits to
simulate datasets of phenotypes with realistic means and
genetic parameters. It confirmed that a heritability of 0.35 for
all four AAPs and a phenotypic CV of 10% permitted to simulate
datasets of phenotypes with realistic variance and covariance
components, as suggested empirically by Puillet et al. (2021).
Such genetic parameters are typical for production traits in
domesticated species in farm or natural conditions (Hill et al.,
2007).

� As expected, the heritability of AAPs did not influence the mean
or variability of simulated performances but only the heritabil-
ity of simulated underlying traits. The heritability of basal
acquisition was the main driver of the heritability of BW at first
calving. It had to be set to 0.35 to match heritability of BW at
first calving reported in the literature (Liinamo et al., 2012).
The heritability of other traits depended jointly on the heritabil-
ity of acquisition and allocation parameters. Defining a heri-
tability of 0.35 for allocation parameters ensured reaching
heritability in the range of 0.30–0.40 for milk production and
0.25–0.35 for body reserves as usually reported in the literature
based on real data (Vallimont et al., 2010; Liinamo et al., 2012;
Manzanilla-Pech et al., 2014; Manzanilla-Pech et al., 2016;
Manafiazar et al., 2016; Li et al., 2016). Based on this parameter-
isation, the heritability obtained for lactation efficiency was
equal to 0.22 in the high nutritional environment which is con-
sistent with values reported in the literature for other measures
of lactation and feed efficiency, such as feed conversion ratio or
residual feed intake (Manzanilla-Pech et al., 2016; Manafiazar
et al., 2016).

� As expected, the CV of AAPs mainly influenced the variability of
simulated traits. However, it had also an impact on the pheno-
typic mean and genetic parameters of simulated traits due to
increased loss or early culling of females presenting extreme
acquisition and allocation values. Even in the high non-
limiting nutritional environment, the proportion of females lost
before first lactation was very high when CV of acquisition or
allocation was set to 20% or higher. Those high culling rates
are not realistic for heifers which suggested that, to be realistic,
CV of acquisition and allocation input traits should be kept to
values lower than 20%.

� This study confirmed that the nutritional environment has a
much larger influence in the shaping of genetic and phenotypic
covariances between traits than heritability and phenotypic CV
of acquisition and allocation input parameters. Such informa-
tion is critical for using the mechanistic AQAL software for
breeding applications in the context of G�E interactions.
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Indeed, the simulation of milk and feed efficiency performances
should be relatively robust to deviations from true values of
heritability and CV of AAP. The G�E interactions emerging from
the simulations are then mostly dependent on the nutritional
environment specifications and resulting trade-offs in case of
energy restriction.

� The significant changes in correlation among traits across envi-
ronments suggest that the model adequately captures effects
arising from G�E interactions that are consistent with expecta-
tions, i.e. more unfavourable genetic correlations between traits
conflicting for access to energy (for example Milk and BW) and
a higher emphasis on allocation to fitness-related traits than
milk production to achieve higher lifetime lactation efficiency
in more unfavourable environments.

� The set of parameters used for the four AAPs enabled the simu-
lation of cows with moderate BW and milk production in a typ-
ical grass-based production system. Hence, trade-offs for access
to energy between production and reproduction traits were low
in the non-limiting nutritional environment. This was consis-
tent with the literature on trade-offs in ecology as does the
increasing trade-offs in poorer environments leading to more
unfavourable genetic correlations between traits conflicting
for energy access.

� We expect that the script and software attached to this study
will help breeders (1) explore the interest in novel phenotypes
derived from phenotypic trajectories and (2) define new breed-
ing strategies for feed efficiency in dairy cows, with a focus on
the influence of G�E interactions on the trait expression.

In conclusion, the code associated to this article enables the
simulation of datasets of cow phenotypic trajectories for milk pro-
duction and feed efficiency traits in different nutritional environ-
ments. The present sensitivity analysis confirmed the relevance
of defining a heritability value of 0.35 and a CV of 10% for acquisi-
tion and allocation input parameters in the AQAL simulation tool to
simulate traits with realistic heritability and genetic correlation
structure. Furthermore, the heritability and CV of AAPs had a more
limited impact than the nutritional environment on genetic corre-
lations among simulated traits. Hence, the release of such a mech-
anistic simulation tool, coupled with genetic simulation, is an
opportunity to explore the interest in new traits for genetic
improvement and to define new breeding strategies under various
environmental scenarios.
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