Raphael Mignot 
  
Marianne Clausel 
  
Konstantin Usevich 
  
Principal Geodesic Analysis for time series encoded with signature features

Keywords: Geometric statistics, Principal geodesic analysis, Tensor algebra, Iterated integrals signature

We analyze multidimensional time series through the lens of their integrals of various moment orders, constituting their signature. The contribution of this article is to adapt the Principal Geodesic Analysis (PGA), the counterpart for manifolds of the Principal Component Analysis (PCA), to signature features which form a Lie group, by setting an appropriate connection structure. We show that, on both simulations and real data, our approach is more effective than the usual approximation which consists in projecting points of the manifold onto a tangent space and carrying a classical PCA.

Introduction

In many scenarios, data is naturally recovered in the form of time series. The analysis of such stream of data has become key in various fields: health related recordings, environmental sciences, economic indicators, financial assets. Principal Component Analysis. The Principal Component Analysis (PCA) is a ubiquitous method for dimension reduction and which provide useful visual insights. Given d-dimensional centered vector samples x 1 , . . . , x N , the goal is to find a sequence of vectors v 1 , . . . , v K , that we compute successively by solving

v k " arg min ∥v∥"1 vKv1,...v k´1 N ÿ i"1 d 2 px i , π v px i qq (1) 
where π v is the orthogonal projection onto spanpvq and where v 1 does not have an orthogonality requirement. The pv k q k are called Principal Directions. We can compress the data by setting K ă d and projecting it on spanpv 1 , . . . , v K q. If the data belongs to a Euclidean space, Equation ( 1) have a closed form solution and PCA boils down to the diagonalization of the (symmetric) covariance matrix of x " px 1 , . . . , x N q.

Extension to time series and to manifolds. PCA can be extended to time series in several ways. For instance, for sample index i " 1, . . . , N , let tx i pt 1 q, . . . , x i pt T qu be a d-dimensional time series of length T , that is for each i, x i is a matrix of size T ˆd. Then [Rao, 1958] and [Tucker, 1958] suggested to flatten each matrix into long vectors of size T d and consider the dataset as a pN, T dq matrix to inject into the usual PCA procedure. Further details on multivariate time series PCA can be found in [Ramsay and Silverman, 2005, Chapter 8].

Another strategy is to consider features of time series instead of the raw data. For instance, in [START_REF] Cazelles | The Wasserstein-Fourier distance for stationary time series[END_REF], the authors compute the power spectral densities of the time series.

Those features might lie on a manifold. Thus the usual PCA cannot be applied as it is. An extension of the PCA for manifolds called Principal Geodesic Analysis (PGA) have been developed in [START_REF] Fletcher | Statistics of shape via principal geodesic analysis on Lie groups[END_REF]. The problem is defined similarly as in Equation ( 1), but π v is now the projection on the geodesic starting from the origin with initial velocity v. Contrary to the Euclidean situation, this new optimization problem does not have a closed form solution in the general case. For instance, the projection π v might require to be approximated. Because of this, most of the work involving numerical calculation of the PGA, including the original article, relies on an approximation of it: the tangent PGA. It consists in projecting the data onto the tangent space at the origin and performing a classical PCA. Also, note that the PCA is applied on centered data, thus a notion of barycenter must be defined and computed beforehand. In the end, PGA provides another way to extend the PCA to time series.

In this article, we study time series through the lens of their iterated integrals signatures, leveraging the benefits of such transformation and adapting the PGA for this innovative feature. The signature method. The method consists in the analysis of the so-called iterated integrals signature of a time series. The signature has been originally developed for topological work [Chen, 1957] and later on has been used in the theory of rough paths [Lyons, 1998]. More recently, it has been used for time series analysis [Chevyrev andKormilitzin, 2016] [Morrill et al., 2020]. In this context, it has obtained state-of-the-art performances in various applications such as handwriting recognition [START_REF] Yang | Chinese character-level writer identification using path signature feature, DropStroke and deep CNN[END_REF], medical condition detection [START_REF] Morrill | The signature-based model for early detection of sepsis from electronic health records in the intensive care unit[END_REF], human motion [START_REF] Yang | Developing the path signature methodology and its application to landmark-based human action recognition[END_REF], oceanography [START_REF] Sugiura | Machine learning technique using the signature method for automated quality control of Argo profiles[END_REF], financial markets [START_REF] Buehler | A data-driven market simulator for small data environments[END_REF]. The signature method has shown to be useful for multiple reasons. First, it is naturally suitable for multidimensional time series and can deal with a dataset composed of time series of various lengths T , which is standard in real life scenarios with a lot of missing values. Moreover, it is an intrinsic characterization of time series, ignoring time reparametrization and translations. Contributions. Our contributions are the following:

• We define an extension of the PCA for the signature space, Proposition 5. Our approach relies on the unique properties inherent to this space, eliminating the need for the approximation involved in tangent PGA.

• We present an algorithm to numerically solve the resulting optimization problem, Algorithm 1, along with an implementation in Python.

• We perform experiments on synthetic and real-life data to illustrate the effectiveness of the method compared to classical approximation method (tangent PGA), Section 5.2.1 and Section 5.2.2.

Notations. Throughout the document, we use the following notations:

• X : multivariate time series

• x : signature of a time series

• N : Number of time series.

• d : Number of components (features) of each multivariate time series.

• T : Length of time series (number of timestamps).

• L : Truncation level of the signature feature.

• G ďL and g ďL : Lie group of signatures truncated at level L and corresponding Lie algebra.

The signature space and its Lie group structure

We first explain how we can encode time series with signature features.

The signature feature for multivariate time series

We first define the signature of continuous processes.

Definition 1. Let X : r0, 1s Ñ R d be a continuous function of bounded variations, that is ∥X∥ TV ă 8. The signature of level L of X is

S pLq pXq :" ż . . . ż 0ďt1﨨¨ďt T ď1 dXpt 1 q b ¨¨¨b dXpt T q (2) " ż . . . ż 0ďt1﨨¨ďt T ď1 9 Xpt 1 q b ¨¨¨b 9 Xpt T qdt 1 . . . dt T
where we have use the b notation for the tensor product: let v be an n-ways tensor and w an m-ways tensor, then for any multi-index I :" pi 1 , . . . , i n , i n`1 , . . . , i n`m q, we have pv b wq i1,...,in,in`1,...,in`m :" v i1,...,in w in`1,...,in`m .

(3)

We call signature the infinite collection of signatures at all levels:

SpXq " t1, S p1q pXq, S p2q pXq, . . . u (4)

where 1 is a convention. In numerical experiments, the computation of the signature is done up to a fixed level L and we denote S ďL pXq the collection of the first L elements of SpXq.

Example 2. Let X : r0, 1s Ñ R d ; t Þ Ñ at `b be a linear path, with a, b P R d . Then

S pkq pXq " ż . . . ż 0ďt1﨨¨ďt T ď1 a b ¨¨¨b adt 1 . . . dt T (5) " 1 k! a b ¨¨¨b a. (6) 
To apply Definition 1 to a time series X, we need to change the discrete representation of X into a continuous one. This is done by considering the linear interpolation of X (or any other continuous interpolation). Thereafter, if X is a time series, SpXq denotes the signature of the linear interpolation of X.

Given a continuous function X : r0, 1s Ñ R, its truncated signature S ďL pXq is an element of a Lie group, that we denote G ďL . We now describe the structure of signature space G ďL and need some background.

Background on Lie groups

A Lie group is a smooth manifold with a smooth group structure, that is the mappings G ˆG Ñ G, pg, hq Þ Ñ gh and G Ñ G, g Þ Ñ g ´1 are smooth. Examples of Lie groups are the general linear group GL n pRq, the orthogonal group O n pRq and the special orthogonal group SO n pRq. For any g P G, we define the left translation

L g : G Ñ G, h Þ Ñ gh and right translation R g : G Ñ G, h Þ Ñ hg. The differential dL g : T h G Ñ T gh G, h Þ Ñ pdL g q h gives
a natural identification of tangent spaces, where we have denoted T h G the tangent space at h of G.

For every Lie group G there is an associated Lie algebra g, a set that can be identified with T 1 G the tangent space at identity.

We call adjoint representation of G the function Ad : G Ñ Autpgq, g Þ Ñ Ad g defined such that Ad g : T 1 G Ñ T e G, v Þ Ñ pdL g q g ´1 ˝pdR g ´1 q e pvq. The derivative of Ad is called the adjoint representation of g, ad : g Ñ Endpgq, v Þ Ñ ad v :" dpAdq e pvq. One can show that for any v, w P g, we have ad v pwq " rv, ws :" vw ´wv, where r., .s is called the Lie bracket.

The group exponential is defined as follows: let v P T 1 G. There exists a unique curve γ v : R Ñ G such that γ v p0q " e and 9 γ v ptq " pdL γvptq q e pvq. The group exponential of v is exppvq :" γ v p1q. In finite dimension, the group exponential is a local diffeomorphism at 0. Its local inverse map is called the group logarithm and denoted log. Note that the Riemannian and group exponentials coincides if and only if G admits a Riemannian metric invariant to left and right translations. For instance, the signature space G ďL does not admit such metric.

For a thorough introduction to manifolds see for instance [Tu, 2011] and for more details on Lie groups see [START_REF] Duistermaat | Lie groups[END_REF].

The signature space G and its Lie group structure

In this section, we describe the Lie group structure of the signature space that we denote G in the sequel.We denote g " pg p0q , g p1q , . . . , g pLq q any element of G ďL , corresponding to a truncated signature. Note that G ďL is embedded in the truncated tensor algebra of R d

T ďL pR d q :" L à k"0 pR d q bk " R ' R d ' pR d b R d q ' ¨¨¨' pR d b ¨¨¨b R d q.
(7)

pT ďL pR d q, `, ., bq is an associative algebra and G ďL is called the nilpotent free Lie group of step L. An element g P T ďL is an element of G ďL if and only if it satisfy a specific property called the shuffle property. The (non commutative) group product between two elements g, h P G ďL is, for any K " 1, . . . , L,

pghq pKq :" K ÿ k"0 g pkq b h pK´kq . (8) 
The neutral element of G ďL is 1 :" p1, 0, . . . , 0q and the group inverse of any g P G ďL is

g ´1 :" L ÿ k"0 p´1q k pg ´1q k . ( 9 
)
The group exponential exp :

g ďL Ñ G ďL is exppvq " L ÿ k"0 v k k! . ( 10 
)
The group logarithm log : G ďL Ñ g ďL is defined everywhere on G ďL and it verifies logpgq

" L ÿ k"1 p´1q k`1 pg ´1q k k . ( 11 
)
Remark 3. A natural question when it comes to the signature of a path X is: from the signature S ďL pXq, can we recover X, up to time reparametrization and tree-likeness? This task is actually difficult and at the moment there isn't a natural procedure for it.

For a complete exposure to the signature topology and its properties see [Friz and Victoir, 2010, Chapter 7] and [Reutenauer, 1993].

Mean and PGA in Lie groups

In this section, we introduce a notion of barycenter (mean) for Lie groups which is a prerequisite to define the PGA. Then, we present the PGA for Lie groups and how we can adapt it to the signature space.

Mean

The definition of barycenter for Euclidean space x " 1 N ř N i"1 x i cannot be used for manifolds, since in many cases x might not belong to the manifold. Take for instance the space of n ˆn matrices with non zero determinant GL n and x 1 " ˆ1 2 0 1 ˙and x 2 " ˆ1 0 2 1 ˙. We have

x 1 , x 2 P GL n but the Euclidean barycenter of x 1 and x 2 is x " ˆ1 1 1 1 ˙which has determinant zero, thus x R GL n .
A generalization of the Euclidean barycenter to manifolds is the Fréchet mean: let pM, dq be a metric space. Given a set of points x 1 , . . . , x N P M, the Fréchet mean is the point µ P M such that

µ " arg min µ N ÿ i"1 d 2 pµ, x i q. ( 12 
)
This definition can be used for Lie groups. Also, if dp., .q is a bi-invariant Riemannian metric, then µ is stable by group operations: left and right multiplication, inversion. Stability for the right multiplication means that µy is the Fréchet mean of tx i yu i"1,...,N . However, if dp., .q is not bi-invariant, the stability of µ is not ensured. For such cases, the authors of [START_REF] Pennec | Beyond Riemannian geometry: The affine connection setting for transformation groups[END_REF] have defined a notion of barycenter on Lie groups called the group mean, see Definition 4.

Definition 4 ( [Pennec and Lorenzi, 2020, Definition 11]). Let G be a Lie group with globally defined logarithm and ν a probability measure on it. We say that µ P G is a group mean of ν if

0 " ż G logpµ ´1 ν xqνpdxq.
In other words: empirically, for a set of signatures tx 1 , . . . , x N u, we look for µ such that vectors v i in the tangent space at the identity T 1 G have mean zero, where v i :" logpµ ´1x i q, see Figure 1.

For the Lie group of signatures, we do not have a bi-invariant metric, thus we rely on this definition of barycenter. In [START_REF] Clausel | The barycenter in free nilpotent Lie groups and its application to iterated-integrals signatures[END_REF], we show the existence and uniqueness of the group mean for signatures along with a method to compute numerically the group mean of a finite set of signatures.

PGA in Lie groups

General framework valid for all Lie groups

Principal Geodesic Analysis has first been introduced in [START_REF] Fletcher | Statistics of shape via principal geodesic analysis on Lie groups[END_REF]. The computation of PGA components involve an optimization problem, that is solved using a linear approximation. Our approach to solve the optimization problem associated to PGA is inspired from [START_REF] Sommer | Optimization over geodesics for exact principal geodesic analysis[END_REF]. The main idea is to not rely on the tangent PGA, which might lead to a too crude approximation of the geometry of the considered manifold. Now, we introduce the Principal Geodesic Analysis in the specific context of Lie groups, as presented in [START_REF] Said | Exact principal geodesic analysis for data on SO(3)[END_REF]. Let G denote the signature Lie group of dimension d. Let Figure 1: The group mean µ on a Lie group G is such that the sum of the v i is zero where we have denoted v i :" logpy i q " logpµ ´1x i q vectors in the tangent space T 1 G. Dotted lines are the geodesics on the Lie group G starting from the origin with initial velocity v i .

x 1 , . . . , x N P G be a dataset with group mean µ. Denote y i :" µ ´1x i the centered data. The goal is to optimize the objective function

F : T 1 G Ñ R arg max ∥v∥"1
F pvq (13) defined as

F pvq :" N ÿ i"1 arg min tPR dpy i , γ v ptqq 2 (14) 
with dpg, hq " ∥logpg ´1hq∥ and γ v the geodesic starting from e with velocity v. In other words, we want to minimize the distance between the data points y i and their projections onto the geodesic γ v or equivalently, we want to maximize the variance of data points projected onto a geodesic, see Figure 2. Then, we find a second principal geodesic by solving Equation ( 14) for g p1q i

:" p ´1 i,1 y i instead of y i , where p i,1 is the projection of y i on the geodesic γ v . For the k-th geodesic, we solve Equation ( 14) for g pkq i

:" p ´1 i,k g pk´1q i

. Note that we have the following reconstruction of the data points, for any k,

x i " µp i,1 p i,2 . . . p i,k g pkq i .
(

) 15 
As mentioned above, in [START_REF] Sommer | Optimization over geodesics for exact principal geodesic analysis[END_REF], the authors perform an exact optimization of the PGA on Lie groups that are also differentiable manifolds, in all generality considering as distance in Equation ( 14) the Riemannian distance. Therefore, they have to use the geodesics derived from their implicit equation (with Christoffel symbols) to perform their calculations. In our case, we shall provide an explicit formula taking benefit only of the Lie group structure and of an explicit closed form of the geodesic.

It has already be done in the work on Lie groups mentioned above [START_REF] Said | Exact principal geodesic analysis for data on SO(3)[END_REF]. In this case the Lie group distance involved in Equation ( 14) is a bi-invariant Riemannian metric allowing to simplify the expression of Equation ( 14). Unfortunately, in our setting, we do not have a bi-invariant Riemmanian metric on the signature space. Since, the bi-invariance of any geometric characteristic is a natural requirement, we follow the same approach as in our definition of the signature mean and propose an alternative definition of PGA especially dedicated to the signature space. 14). To find the first principal direction, we search for an initial velocity v that minimizes the sum of the lengths of the dashed lines (distance to geodesic).

Our framework: an affine connection structure

A key ingredient of our approach to define PGA is the derivation of closed form expression of the geodesics, which simplify drastically the calculations. To this end, we need to choose a connection. Among the natural family of bi-invariant connections suggested in [Cartan, 1926], we choose the canonical symmetric Cartan-Schouten connection. The CCS connexion is the most natural one. Indeed, as pointed out in [START_REF] Pennec | Beyond Riemannian geometry: The affine connection setting for transformation groups[END_REF], when there exists a bi-invariant metric on the Lie group, the canonical Cartan Schouten (CCS) connection is the Levi-Civita connection of that metric and when there is not, the CCS connection still exists.

We give now the principal characteristics of this connexion that we shall use in the sequel. The derived geodesics going through the identity with initial velocity v are of the form expptvq and the parallel transport along expptvq is, for any v, w P g ďL , Π 1Ñexppvq w " pdL exppv{2q q exppv{2q pdR exppv{2q q 1 w.

(16)

Group exponential at g P G ďL is, for any v P T g pG ďL q, exp g pvq :" g expppdL g ´1 q g vq (17)

and group logarithm at g P G ďL is, for any h P G ďL , log g phq " pdL g q 1 logpg ´1hq.

See [START_REF] Pennec | Beyond Riemannian geometry: The affine connection setting for transformation groups[END_REF] for further details on the CCS connection.

Extension of PCA for signature 4.1. Estimation of Principal Geodesics in the signature space

In view of the previous section we see that the core of the PGA algorithm is solving the optimization problem defined in Equation (13). To solve Problem 13, we need to calculate the gradient of the objective function F .

Proposition 5. Denote f i pvq :" arg min tPR h i pv, tq with h i pv, tq :" dpy i , γ v ptqq 2 . For any given inner product ⟨¨, ¨⟩1 on T 1 pG ďL q, we have for any v, u P T 1 pG ďL q, p∇F q v u " ´N ÿ

i"1 ` pd logq ˝pdL e ´1{2tv y q ˝pd expq ´1{2tv p´1 2 tuq, v

1 ` logpe ´1 2 tv ye ´1 2 tv q, 1 1 . ( 21 
)
Before proving this proposition, we show how it is useful for our purpose. In order to solve Equation ( 13), we proceed as following. Initialize v p0q k such that ∥v p0q k ∥ " 1, then find t k,0,i :" arg min t h i pv p0q k , tq for all i " 1, . . . , N . Now, repeat the following two steps until convergence: i. Find k-th Principal Direction step. Denote T k,l :" tt k,l,1 , . . . , t k,l,N u and F T k,l pvq :" ř N i"1 dpy i , γ v pt k,l,i qq 2 for any integers k, l. Perform one step of Gradient Descent:

v pl`1q k Ð v plq k ´αp∇F T k q v plq k v pl`1q k Ð v pl`1q k ∥v pl`1q k ∥
where index l denotes gradient descent steps.

ii. Projection step. For a fixed v plq k , find t k,l,i :" arg min tPR h i pv plq k , tq for all i " 1, . . . , N : initialize t p0q P R and update the value of t pjq in the opposite direction of the gradient:

t pj`1q Ð t pjq ´αB 2 h i pv plq k , t pjq q. ( 22 
)
To sum up, we fix a direction v P T 1 pG ďL q, project the data on the geodesic with velocity v, then fix a new direction, project again, etc. See Algorithm 1.

Proof of Proposition 5 4.2.1. Preliminary result

Before proving Proposition 5, we need a preliminary result.

Lemma 6. Let y P G. Assume that for each v " pv 1 , . . . , v d q P T 1 G with ∥v∥ " 1, the following f : T 1 G Ñ R exists and is unique: where λ :" B 2 2 hpv, f pvqq. Proof of Lemma 6. We fix a ṽ P T 1 G. Observe that by definition B 2 hpṽ, f pṽqq " 0. If B 2 2 hpṽ, f pṽqq ‰ 0 then the implicit function theorem asserts the existence of a unique continuous mapping ψ : V ṽ Ñ R with V ṽ a neighborhood of ṽ, such that for any v P V ṽ we have B 2 hpv, ψpvqq " 0. By uniqueness of ψ, we have ψ " f | Vṽ . Let us differentiate the previous equation. Using the chain rule, we have

f pvq :" arg
¨B Bv1 B 2 hpv, f pvqq `B2 2 hpv, f pvqq B Bv1 f pvq . . . B Bv d B 2 hpv, f pvqq `B2 2 hpv, f pvqq B Bv d f pvq ‹ '" 0 (24)
and we obtain the result.

A first order derivative formula

We want apply Lemma 6 successively with f i pvq :" arg min tPR h i pv, tq where h i pv, tq :" dpγ v ptq, y i q.

We first need to give a meaning to B 2 hpv, tq.

On a Riemannian manifold, we have hpv, tq :" dpγ v ptq, yq 2 " ∥Log e tv y∥ 2 (25

)
where Log is the Riemannian logarithm and thus using Lemma 14,

B 2 hpv, tq " ´2 Log e tv pyq, d dt e tv . ( 26 
)
By analogy with Equation ( 26) valid in the Riemannian case, we set as a definition on a Lie group equipped with a connection and an inner product ⟨., .⟩ 1 defined on the tangent space at the identity T 1 G, that where ⟨., .⟩ g for any g P G is the parallel transport of ⟨., .⟩ 1 , that is for any g P G and u, v P T g G, ⟨u, v⟩ g :" ⟨Π gÑ1 u, Π gÑ1 v⟩ 1 (28)

with Π gÑ1 parallel transport of the connection. We now show that the right hand side of Equation ( 27) can be reduced to a simpler form when the Lie group is G ďL .

Lemma 7. We use Equation (27) as a definition for B 2 hpv, tq. Then, for the signature space G ďL equipped with the CCS connection, we have for any v P T 1 pG ďL q and t P R,

B 2 hpv, tq " ´2 logpe ´1 2 tv ye ´1 2 tv q, v 1 . (29) 
Proof.

Step 0. On G ďL equipped with the CCS connection, Equation ( 27) is equivalent to B 2 hpv, tq :" ´2 dpL e tv q 1 logpe ´tv yq, dpL e tv q 1 v e tv (30)

where we have used that log e tv pyq " pdL e tv q e logpe ´tv yq, see Section 3.2.2, and d dt e tv " pdL e tv q e v.

Step 1: use parallel transport to give a meaning to inner product. Using the expression of the parallel transport of the CCS connection, see Equation ( 16), we have for any g P G ďL , Π gÑ1 : T g pG ďL q Ñ T 1 pG ďL q with Π gÑ1 " pdL g ´1{2 q g 1{2 pdR g ´1{2 q g

(31)

where we have denoted g α :" exppα log gq for any real value α. Thus, we have B 2 hpv, tq " ´2 Π e tv Ñ1 dpL e tv q 1 logpe ´tv yq, Π e tv Ñ1 dpL e tv q 1 v 1 (32)

" ´2 dpL e 1 2
tv qdpR e ´1 2 tv q logpe ´tv yq, dpL

e 1 2
tv qdpR e ´1 2 tv qv 1

where we have used the commutativity of dL and dR (Lemma 11) in the last equation and that dL g ˝dL h " dL gh (Lemma 12). In other words, from the definition of Ad, B 2 hpv, tq " ´2 Adpe 1 2 tv q logpe ´tv yq, Adpe

1 2 tv qv 1 . (34) 
Step 2: simplify the formula using the fact we have explicit expressions in the case of the signature. Using Lemma 13 and that g logphqg ´1 " logpghg ´1q, we have Adpe 1 2 tv q logpe ´tv yq " e 1 2 tv logpe ´tv yqe ´1 2 tv (35)

" logpe 1 2 tv e ´tv ye ´1 2 tv q (36)

" logpe ´1 2 tv ye ´1 2 tv q.

(37)

Using Lemma 13 and that rv, vs " 0, we have Adpe

1 2 tv qpvq " exppad 1 2 tv qpvq (38) " ˆId `ad 1 2 tv `1 2 ad 1 2 tv ˝ad 1 2 tv `¨¨¨`1 L! ad 1 2 tv ˝¨¨¨˝ad 1 2 tv ˙pvq (39) " v `1 2 trv, vs `1 8 t 2 rv, rv, vss `¨¨¨`1 2 L L! t L rv, . . . rv, vss (40) 
" v. (41) 
Injecting Equations ( 37) and (41) into Equation (34) gives dpL e tv q 1 logpe ´tv yq, dpL e tv q 1 v e tv " logpe ´1 2 tv ye ´1 2 tv q, v 1

and thus

B 2 hpv, tq " ´2 logpe ´1 2 tv ye ´1 2 tv q, v 1 . (43) 
We now have all the tools to prove the main result.

Proof of Proposition 5. Denote f i pvq :" arg min tPR h i pv, tq with h i pv, tq :" dpγ v ptq, y i q 2 . That is,

∇F pvq " N ÿ i"1 ∇f i pvq ( 44 
)
where F is our main objective function, given by Equation ( 14). To compute each ∇f i pvq, we shall use Lemma 6 which requires to differentiate B 2 h. We use the expression of B 2 h as given in Lemma 7. Differentiating Equation ( 29) with respect to t gives: Our PGA is implemented in Python, following the steps of Algorithm 1. The time series we use in our experiments are scaled to have a total variation norm equal to one. The computation of the signature up to level L is done with library iisignature1 . We have implemented the basic group operations: product, inverse, exponential, logarithm. To center the data, we use the group mean algorithm presented in our previous work [START_REF] Clausel | The barycenter in free nilpotent Lie groups and its application to iterated-integrals signatures[END_REF]. To initialize the k-th principal direction v k , we randomly draw one of the signature instance x i and we compute its group logarithm. The update step is performed using the Adam optimization strategy [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. The projection step is done using scipy root finder function fsolve().

B 2 2 hpv,
To compute ∇F as shown in Proposition 5, we need the differential of B 2 h. To that end, we have implemented B 2 h as expressed in Equation ( 29) and then its derivative is computed using automatic differentiation via the library autograd2 .

For comparison purposes, we also perform the linear PGA (PCA in tangent space), that we denote tPGA. This is done by projecting the data into the tangent space using the group logarithm and then computing the usual (Euclidean) PCA. This last task is done using the scikit-learn implementation of the PCA: sklearn.decomposition.PCA.

After performing PGA or tPGA, we obtain the initial velocities v 1 , . . . , v K of the K first principal geodesics (the principal directions). Denote t k,i the scalar value such that the projection of instance y i onto the k-th principal geodesic is π v k py i q " exppt k,i v k q. For each principal direction, that is k " 1, . . . , K, we look at the standard deviation stdpt k,. q "

g f f e 1 N N ÿ i"1 pt k,i q 2 .
(48)

Closed formula for low order cases

In this section, we show that given the truncation level of the signature, the computation time of Algorithm 1 can be greatly diminished, because of the nilpotency of G ďL . Indeed, we show that Equation ( 29) can be reduced to a simpler form when the truncation level L of the signature is low, allowing us to reduce computational cost. Indeed, the log expression in Equation ( 29) can be computed using the following result.

Proposition 8. Let a, b be element of a Lie algebra. Then logpe a{2 e b e a{2 q " a `b ´1 24 ra, ra, bss `1 12 rra, bs, bs `7 5760 ra, ra, ra, ra, bssss `. . .

where r., .s denote the Lie bracket: ru, vs " u b v ´v b u. This proposition is a special case of the Baker-Campbell-Hausdorff formula where Lie brackets containing an even number of terms vanish.

Using Proposition 8, we have in Equation ( 29) logpe ´1 2 tv ye ´1 where u " log y. Now, elements of g ďL are nilpotent, that is for any u P g ďL we have u bK " 0 for any K ą L. Thus, if u, v P g ďL , then all Lie brackets with more than L terms vanish.

We now detail two specific cases to illustrate this. 

Real data

Population dataset. The population dataset3 is a collection of time series representing the population from 1900-1999 in 20 states of the USA. Following the analysis of [START_REF] Kalpakis | Distance measures for effective clustering of ARIMA time-series[END_REF], two clusters can be observed and will be used as the reference clustering: states with an exponential growth of population over time and states with a stabilizing growth. The goal is to retrieve those two clusters in an unsupervised fashion. Curves are shown on Figure 6a and the two clusters in Figure 6b. We compute the signature up to order 5 of the curves and perform PGA. Cumulated dispersion of the projections onto geodesics (see Equation ( 48)) are shown in Figure 7. We can see that the tangent PGA captures more information on the first two principal geodesics but then stays at the same level of explained variance. On the other hand, the PGA increases for each new principal geodesic added. If we choose to keep the first six principal geodesics, more than a third more information is captured with the PGA compared to the tangent PGA.

Projections onto the first two Principal Geodesics are shown in Figure 8. We can see in Figures 8a and8b that the two set of curves can be linearly separated on the first geodesic plan, either with the tangent PGA or with the PGA.

Conclusion

We have proposed an extension of the PCA for signature features of time series by means of an adaptation of the PGA. We have provided theoretical tools along with a numerical implementation to apply this new method. Also, we have shown through experiments, both on simulated and real data, that our approach provide better results than the usual approximation. Proof of Lemma 14. Denote Γ : p´ε, εq ˆr0, 1s Ñ M; Γps, tq " γ s ptq the geodesic variation of γ s geodesic with start point γ s p0q " xpsq, fixed end point γ s p1q " y and velocity 9 γ s p0q " Log xpsq pyq. We define the length of any curve γ as Lengthpγq :" Since γ is a geodesic we have D t 9 γ " 0. Also, B s γ s p1q " B s y " 0 i.e. V p1q " 0. Thus, where we can identify ∇ x ∥Log x y∥ 2 " ´2Log x pyq.

d
Lemma 15. Let x, y P M. We have 

Figure 2 :

 2 Figure 2: Illustration of Equation (14). To find the first principal direction, we search for an initial velocity v that minimizes the sum of the lengths of the dashed lines (distance to geodesic).
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 2 hpv, tq :" ´2 log e tv pyq,

Figure 3 :

 3 Figure 3: Simulated data (20 bivariate time series).

Figure 4 :

 4 Figure 4: PGA and tPGA results on the simulated data.

Figure 5 :

 5 Figure 5: Projections on first three principal geodesics of the simulated data.

Figure 6 :

 6 Figure 6: Population dataset. 20 curves sampled once a year on the period 1900 -1999.

Figure 7 :

 7 Figure 7: PGA and tPGA results on the Population dataset.

  variational field of Γ, i.e. V ptq :" B s | s"0 Γps, tq and c :" ∥ 9 γ∥ M . The first variation formula of the length is 4

D

  x pLog x qpyq " ´rDpExp x qpLog x pyqqs ´1 D x pExp x qpLog x pyqq. (70) Proof. By definition, Exp x pLog x pyqq " y.(71)Differentiating with respect to x gives D x pExp x qpLog x pyqqq `DpExp x qpLog x pyqq.D x pLog x qpyq " 0 (72) and rearranging the terms gives the result.

  min Principal Geodesic Analysis of Signatures Input: A batch of N signatures x i :" S ďL pX i q Number of geodesics k to keep Output: v 1 , . . . , v K the first K geodesic directions 1 Compute group mean µ of input data tx 1 , . . . , x N u 2 Center data: x i Ð µ ´1x i 3 for k " 1, . . . , K do , . . . , v K where h : T 1 G ˆR, hpv, tq :" dpy, γ v ptqq 2 . Assume that B 2 2 hpv, f pvqq ‰ 0. Then, we have ∇f pvq " ´λ´1 `B Bv1 B 2 hpv, f pvqq . . .
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  logpe ´1 2 tv ye ´1 2 tv q, 1
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	5. Experiments				
	5.1. Practical implementation			
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`

  Remark that since γ s is a geodesic, it has constant speed and we have from the definition Lengthpγq " ∥ 9 γ s ∥ " ∥Log xpsq y∥. Thus

	ˇˇˇs						
	ds	"0	LengthpΓ s q "	´1 c	⟨V p0q, 9 γp0q⟩	(66)
					"	´1 c	⟨ B s | s"0 γ s p0q, 9 γp0q⟩	(67)
					"	´1 c		d ds	ˇˇˇs "0	xpsq, Log x pyq .	(68)
	d ds	ˇˇˇs	"0	∥Log xpsq y∥ 2 " ´2	d ds	ˇˇˇs "0	xpsq, Log x pyq	(69)

See https://github.com/bottler/iisignature

See https://github.com/HIPS/autograd

Available at https://www.census.gov/data.html.

See for instance[Lee, 2018, Theorem 6.3].

Example 9. If truncation level is L " 2, Equation (50) is truncated: logpe ´1 2 tv ye ´1 2 tv q " ´tv `u (51)

that is, Equation (29) becomes B 2 hpv, tq " 2 ⟨tv ´log y, v⟩ 1 " 2t∥v∥ 

Numerical results

In this section, we show how our method helps us get better insights on set of time series compared to the tangent PGA. First, we take a glance at a simulated dataset from a random walk model. Then, we look at a real life dataset: population census in the United States over the 20th century.

Simulated data

Random walks with trend. We generate two clusters of time series in the following way: if X is a member of cluster j P t1, 2u, then

where εpkq are iid N pµ j , Idq and

Note that this model is not stationary. We simulate 20 bivariate time series of length 6 using this toy model (10 in each cluster). Those are shown in Figure 3. We perform PGA using the signatures up to level L " 5. Also, we perform a tangent PGA for comparison purposes. Cumulated dispersion of the projections onto geodesics (see Equation ( 48)) are shown in Figure 4 and projections onto the first two principal geodesics in Figure 5. We can see that as the number of components increases, the PGA explain more variance than the tangent PGA, which seems to stabilize after PG3. Also, observe that for both methods, projections onto the first two principal geodesics can be linearly separated in a way that we recover the two true clusters. Using a simple clustering strategy such as the Nearest Neighbors, only one instance might be assigned to the wrong cluster.

Overall, on this dataset the PGA seems to be more relevant than its linear counterpart since it explains more variance and both methods separate the data similarly. 

A. Technical Lemmas

Lemma 11. For any g, h P G and v P T 1 G, we have pdL g q h ˝pdR h q e " pdR h q g ˝pdL g q e .

(58)

Proof. Let g, h, p P G. Using the associativity rule of the group, we have pL g ˝Rh qppq " gpphq " pgpqh " pR h ˝Lg qppq (59) thus L g and R h commute for any g, h. Differentiating Equation (59), with p " e and v P T 1 G, we have ppdL g q h ˝pdR h q e qpvq " ppdR h q g ˝pdL g q e qpvq (60) thus dL g and dR h commute for any g, h. Note that this stays true for any p P G.

Lemma 12. For any g, h P G, we have pdL gh q e " pdL g q h ˝pdL h q e .

Proof. This identity comes from the differentiation of L gh " L g ˝Lh .

Lemma 13. Let g " e u be an element of the signature space G ďL and v an element of the signature Lie algebra g ďL . Then

Adpgqpvq " gvg ´1 " e adu v.

(62)

Proof. See [Reutenauer, 1993, Theorem 3.2].

Lemma 14. Let x, y be two points on a Riemannian manifold M and denote Log the Riemannian logarithm. Then, we have ∇ x ∥Log x pyq∥ 2 " ´2Log x pyq.

(63)