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Principal Geodesic Analysis for time series
encoded with signature features

Raphael Mignot∗ Marianne Clausel∗ Konstantin Usevich†

January 13, 2024

We analyze multidimensional time series through the lens of their integrals
of various moment orders, constituting their signature. The contribution of
this article is to adapt the Principal Geodesic Analysis (PGA), the counter-
part for manifolds of the Principal Component Analysis (PCA), to signature
features which form a Lie group, by setting an appropriate connection struc-
ture. We show that, on both simulations and real data, our approach is more
effective than the usual approximation which consists in projecting points of
the manifold onto a tangent space and carrying a classical PCA.

Keywords— Geometric statistics, Principal geodesic analysis, Tensor algebra, Iterated inte-
grals signature
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1. Introduction

In many scenarios, data is naturally recovered in the form of time series. The analysis of such
stream of data has become key in various fields: health related recordings, environmental sciences,
economic indicators, financial assets.
Principal Component Analysis. The Principal Component Analysis (PCA) is a ubiquitous
method for dimension reduction and which provide useful visual insights. Given d-dimensional
centered vector samples x1, . . . , xN , the goal is to find a sequence of vectors v1, . . . , vK , that we
compute successively by solving

vk “ argmin
∥v∥“1

vKv1,...vk´1

N
ÿ

i“1

d2pxi, πvpxiqq (1)

where πv is the orthogonal projection onto spanpvq and where v1 does not have an orthogonality
requirement. The pvkqk are called Principal Directions. We can compress the data by settingK ă

d and projecting it on spanpv1, . . . , vKq. If the data belongs to a Euclidean space, Equation (1)
have a closed form solution and PCA boils down to the diagonalization of the (symmetric)
covariance matrix of x “ px1, . . . , xN q.
Extension to time series and to manifolds. PCA can be extended to time series in several
ways. For instance, for sample index i “ 1, . . . , N , let txipt1q, . . . , xiptT qu be a d-dimensional
time series of length T , that is for each i, xi is a matrix of size T ˆ d. Then [Rao, 1958]
and [Tucker, 1958] suggested to flatten each matrix into long vectors of size Td and consider
the dataset as a pN,Tdq matrix to inject into the usual PCA procedure. Further details on
multivariate time series PCA can be found in [Ramsay and Silverman, 2005, Chapter 8].

Another strategy is to consider features of time series instead of the raw data. For instance,
in [Cazelles et al., 2020], the authors compute the power spectral densities of the time series.

Those features might lie on a manifold. Thus the usual PCA cannot be applied as it is.
An extension of the PCA for manifolds called Principal Geodesic Analysis (PGA) have been
developed in [Fletcher et al., 2003]. The problem is defined similarly as in Equation (1), but πv
is now the projection on the geodesic starting from the origin with initial velocity v. Contrary to
the Euclidean situation, this new optimization problem does not have a closed form solution in
the general case. For instance, the projection πv might require to be approximated. Because of
this, most of the work involving numerical calculation of the PGA, including the original article,
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relies on an approximation of it: the tangent PGA. It consists in projecting the data onto the
tangent space at the origin and performing a classical PCA. Also, note that the PCA is applied
on centered data, thus a notion of barycenter must be defined and computed beforehand. In the
end, PGA provides another way to extend the PCA to time series.

In this article, we study time series through the lens of their iterated integrals signatures,
leveraging the benefits of such transformation and adapting the PGA for this innovative feature.
The signature method. The method consists in the analysis of the so-called iterated inte-
grals signature of a time series. The signature has been originally developed for topological work
[Chen, 1957] and later on has been used in the theory of rough paths [Lyons, 1998]. More recently,
it has been used for time series analysis [Chevyrev and Kormilitzin, 2016] [Morrill et al., 2020].
In this context, it has obtained state-of-the-art performances in various applications such as
handwriting recognition [Yang et al., 2015], medical condition detection [Morrill et al., 2019],
human motion [Yang et al., 2022], oceanography [Sugiura and Hosoda, 2020], financial markets
[Buehler et al., 2020]. The signature method has shown to be useful for multiple reasons. First,
it is naturally suitable for multidimensional time series and can deal with a dataset composed of
time series of various lengths T , which is standard in real life scenarios with a lot of missing val-
ues. Moreover, it is an intrinsic characterization of time series, ignoring time reparametrization
and translations.
Contributions. Our contributions are the following:

• We define an extension of the PCA for the signature space, Proposition 5. Our approach
relies on the unique properties inherent to this space, eliminating the need for the approx-
imation involved in tangent PGA.

• We present an algorithm to numerically solve the resulting optimization problem, Algo-
rithm 1, along with an implementation in Python.

• We perform experiments on synthetic and real-life data to illustrate the effectiveness of
the method compared to classical approximation method (tangent PGA), Section 5.2.1
and Section 5.2.2.

Notations. Throughout the document, we use the following notations:

• X : multivariate time series

• x : signature of a time series

• N : Number of time series.

• d : Number of components (features) of each multivariate time series.

• T : Length of time series (number of timestamps).

• L : Truncation level of the signature feature.

• GďL and gďL : Lie group of signatures truncated at level L and corresponding Lie algebra.

2. The signature space and its Lie group structure

We first explain how we can encode time series with signature features.
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2.1. The signature feature for multivariate time series

We first define the signature of continuous processes.

Definition 1. Let X : r0, 1s Ñ Rd be a continuous function of bounded variations, that is
∥X∥TV ă 8. The signature of level L of X is

SpLqpXq :“

ż

. . .

ż

0ďt1ď¨¨¨ďtT ď1

dXpt1q b ¨ ¨ ¨ b dXptT q (2)

“

ż

. . .

ż

0ďt1ď¨¨¨ďtT ď1

9Xpt1q b ¨ ¨ ¨ b 9XptT qdt1 . . . dtT

where we have use the b notation for the tensor product: let v be an n-ways tensor and w an
m-ways tensor, then for any multi-index I :“ pi1, . . . , in, in`1, . . . , in`mq, we have

pv b wqi1,...,in,in`1,...,in`m
:“ vi1,...,inwin`1,...,in`m

. (3)

We call signature the infinite collection of signatures at all levels:

SpXq “ t1,Sp1qpXq,Sp2qpXq, . . . u (4)

where 1 is a convention. In numerical experiments, the computation of the signature is done up
to a fixed level L and we denote SďLpXq the collection of the first L elements of SpXq.

Example 2. Let X : r0, 1s Ñ Rd; t ÞÑ at` b be a linear path, with a, b P Rd. Then

SpkqpXq “

ż

. . .

ż

0ďt1ď¨¨¨ďtT ď1

ab ¨ ¨ ¨ b adt1 . . . dtT (5)

“
1

k!
ab ¨ ¨ ¨ b a. (6)

To apply Definition 1 to a time series X, we need to change the discrete representation of X
into a continuous one. This is done by considering the linear interpolation of X (or any other
continuous interpolation). Thereafter, if X is a time series, SpXq denotes the signature of the
linear interpolation of X.

Given a continuous function X : r0, 1s Ñ R, its truncated signature SďLpXq is an element of
a Lie group, that we denote GďL. We now describe the structure of signature space GďL and
need some background.

2.2. Background on Lie groups

A Lie group is a smooth manifold with a smooth group structure, that is the mappings GˆG Ñ

G, pg, hq ÞÑ gh and G Ñ G, g ÞÑ g´1 are smooth. Examples of Lie groups are the general
linear group GLnpRq, the orthogonal group OnpRq and the special orthogonal group SOnpRq.
For any g P G, we define the left translation Lg : G Ñ G, h ÞÑ gh and right translation
Rg : G Ñ G, h ÞÑ hg. The differential dLg : ThG Ñ TghG, h ÞÑ pdLgqh gives a natural
identification of tangent spaces, where we have denoted ThG the tangent space at h of G.

For every Lie group G there is an associated Lie algebra g, a set that can be identified with
T1G the tangent space at identity.

We call adjoint representation of G the function Ad : G Ñ Autpgq, g ÞÑ Adg defined such
that Adg : T1G Ñ TeG, v ÞÑ pdLgqg´1 ˝ pdRg´1qepvq. The derivative of Ad is called the adjoint
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representation of g, ad : g Ñ Endpgq, v ÞÑ adv :“ dpAdqepvq. One can show that for any v, w P g,
we have advpwq “ rv, ws :“ vw ´ wv, where r., .s is called the Lie bracket.

The group exponential is defined as follows: let v P T1G. There exists a unique curve γv : R Ñ

G such that γvp0q “ e and 9γvptq “ pdLγvptqqepvq. The group exponential of v is exppvq :“ γvp1q.
In finite dimension, the group exponential is a local diffeomorphism at 0. Its local inverse map is
called the group logarithm and denoted log. Note that the Riemannian and group exponentials
coincides if and only if G admits a Riemannian metric invariant to left and right translations.
For instance, the signature space GďL does not admit such metric.

For a thorough introduction to manifolds see for instance [Tu, 2011] and for more details on
Lie groups see [Duistermaat and Kolk, 2012].

2.3. The signature space G and its Lie group structure

In this section, we describe the Lie group structure of the signature space that we denote G in
the sequel.We denote g “ pgp0q, gp1q, . . . , gpLqq any element of GďL, corresponding to a truncated

signature. Note that GďL is embedded in the truncated tensor algebra of Rd

TďLpRdq :“
L

à

k“0

pRdqbk “ R ‘ Rd ‘ pRd b Rdq ‘ ¨ ¨ ¨ ‘ pRd b ¨ ¨ ¨ b Rdq. (7)

pTďLpRdq,`, .,bq is an associative algebra and GďL is called the nilpotent free Lie group of step
L. An element g P TďL is an element of GďL if and only if it satisfy a specific property called
the shuffle property.

The (non commutative) group product between two elements g, h P GďL is, for any K “

1, . . . , L,

pghqpKq :“
K
ÿ

k“0

gpkq b hpK´kq. (8)

The neutral element of GďL is 1 :“ p1, 0, . . . , 0q and the group inverse of any g P GďL is

g´1 :“
L

ÿ

k“0

p´1qkpg ´ 1qk. (9)

The group exponential exp : gďL Ñ GďL is

exppvq “

L
ÿ

k“0

vk

k!
. (10)

The group logarithm log : GďL Ñ gďL is defined everywhere on GďL and it verifies

logpgq “

L
ÿ

k“1

p´1qk`1 pg ´ 1qk

k
. (11)

Remark 3. A natural question when it comes to the signature of a path X is: from the signature
SďLpXq, can we recover X, up to time reparametrization and tree-likeness? This task is actually
difficult and at the moment there isn’t a natural procedure for it.

For a complete exposure to the signature topology and its properties see [Friz and Victoir, 2010,
Chapter 7] and [Reutenauer, 1993].
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3. Mean and PGA in Lie groups

In this section, we introduce a notion of barycenter (mean) for Lie groups which is a prerequisite
to define the PGA. Then, we present the PGA for Lie groups and how we can adapt it to the
signature space.

3.1. Mean

The definition of barycenter for Euclidean space x̄ “ 1
N

řN
i“1 xi cannot be used for manifolds,

since in many cases x̄ might not belong to the manifold. Take for instance the space of n ˆ n

matrices with non zero determinant GLn and x1 “

ˆ

1 2
0 1

˙

and x2 “

ˆ

1 0
2 1

˙

. We have

x1, x2 P GLn but the Euclidean barycenter of x1 and x2 is x̄ “

ˆ

1 1
1 1

˙

which has determinant

zero, thus x̄ R GLn.
A generalization of the Euclidean barycenter to manifolds is the Fréchet mean: let pM, dq be

a metric space. Given a set of points x1, . . . , xN P M, the Fréchet mean is the point µ P M such
that

µ “ argmin
µ

N
ÿ

i“1

d2pµ, xiq. (12)

This definition can be used for Lie groups. Also, if dp., .q is a bi-invariant Riemannian met-
ric, then µ is stable by group operations: left and right multiplication, inversion. Stability
for the right multiplication means that µy is the Fréchet mean of txiyui“1,...,N . However,
if dp., .q is not bi-invariant, the stability of µ is not ensured. For such cases, the authors of
[Pennec and Lorenzi, 2020] have defined a notion of barycenter on Lie groups called the group
mean, see Definition 4.

Definition 4 ([Pennec and Lorenzi, 2020, Definition 11]). Let G be a Lie group with globally
defined logarithm and ν a probability measure on it. We say that µ P G is a group mean of ν if

0 “

ż

G

logpµ´1
ν xqνpdxq.

In other words: empirically, for a set of signatures tx1, . . . , xNu, we look for µ such that vectors
vi in the tangent space at the identity T1G have mean zero, where vi :“ logpµ´1xiq, see Figure 1.

For the Lie group of signatures, we do not have a bi-invariant metric, thus we rely on this
definition of barycenter. In [Clausel et al., 2023], we show the existence and uniqueness of the
group mean for signatures along with a method to compute numerically the group mean of a
finite set of signatures.

3.2. PGA in Lie groups

3.2.1. General framework valid for all Lie groups

Principal Geodesic Analysis has first been introduced in [Fletcher et al., 2003]. The computa-
tion of PGA components involve an optimization problem, that is solved using a linear approx-
imation. Our approach to solve the optimization problem associated to PGA is inspired from
[Sommer et al., 2014]. The main idea is to not rely on the tangent PGA, which might lead to a
too crude approximation of the geometry of the considered manifold.

Now, we introduce the Principal Geodesic Analysis in the specific context of Lie groups, as
presented in [Said et al., 2007]. Let G denote the signature Lie group of dimension d. Let
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Figure 1: The group mean µ on a Lie group G is such that the sum of the vi is zero where
we have denoted vi :“ logpyiq “ logpµ´1xiq vectors in the tangent space T1G.
Dotted lines are the geodesics on the Lie group G starting from the origin with
initial velocity vi.

x1, . . . , xN P G be a dataset with group mean µ. Denote yi :“ µ´1xi the centered data. The
goal is to optimize the objective function F : T1G Ñ R

argmax
∥v∥“1

F pvq (13)

defined as

F pvq :“
N
ÿ

i“1

argmin
tPR

dpyi, γvptqq2 (14)

with dpg, hq “ ∥logpg´1hq∥ and γv the geodesic starting from e with velocity v. In other words,
we want to minimize the distance between the data points yi and their projections onto the
geodesic γv or equivalently, we want to maximize the variance of data points projected onto
a geodesic, see Figure 2. Then, we find a second principal geodesic by solving Equation (14)

for g
p1q

i :“ p´1
i,1yi instead of yi, where pi,1 is the projection of yi on the geodesic γv. For the

k-th geodesic, we solve Equation (14) for g
pkq

i :“ p´1
i,kg

pk´1q

i . Note that we have the following
reconstruction of the data points, for any k,

xi “ µpi,1pi,2 . . . pi,kg
pkq

i . (15)

As mentioned above, in [Sommer et al., 2014], the authors perform an exact optimization of
the PGA on Lie groups that are also differentiable manifolds, in all generality considering as
distance in Equation (14) the Riemannian distance. Therefore, they have to use the geodesics
derived from their implicit equation (with Christoffel symbols) to perform their calculations. In
our case, we shall provide an explicit formula taking benefit only of the Lie group structure and
of an explicit closed form of the geodesic.

It has already be done in the work on Lie groups mentioned above [Said et al., 2007]. In
this case the Lie group distance involved in Equation (14) is a bi-invariant Riemannian metric
allowing to simplify the expression of Equation (14). Unfortunately, in our setting, we do not
have a bi-invariant Riemmanian metric on the signature space. Since, the bi-invariance of any
geometric characteristic is a natural requirement, we follow the same approach as in our definition
of the signature mean and propose an alternative definition of PGA especially dedicated to the
signature space.
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Figure 2: Illustration of Equation (14). To find the first principal direction, we search
for an initial velocity v that minimizes the sum of the lengths of the dashed
lines (distance to geodesic).

3.2.2. Our framework: an affine connection structure

A key ingredient of our approach to define PGA is the derivation of closed form expression of
the geodesics, which simplify drastically the calculations. To this end, we need to choose a
connection. Among the natural family of bi-invariant connections suggested in [Cartan, 1926],
we choose the canonical symmetric Cartan-Schouten connection. The CCS connexion is the most
natural one.

Indeed, as pointed out in [Pennec and Lorenzi, 2020], when there exists a bi-invariant metric
on the Lie group, the canonical Cartan Schouten (CCS) connection is the Levi-Civita connection
of that metric and when there is not, the CCS connection still exists.

We give now the principal characteristics of this connexion that we shall use in the sequel.
The derived geodesics going through the identity with initial velocity v are of the form expptvq

and the parallel transport along expptvq is, for any v, w P gďL,

Π1Ñexppvqw “ pdLexppv{2qqexppv{2qpdRexppv{2qq1w. (16)

Group exponential at g P GďL is, for any v P TgpGďLq,

expgpvq :“ g expppdLg´1qgvq (17)

and group logarithm at g P GďL is, for any h P GďL,

loggphq “ pdLgq1 logpg´1hq. (18)

See [Pennec and Lorenzi, 2020] for further details on the CCS connection.

4. Extension of PCA for signature

4.1. Estimation of Principal Geodesics in the signature space

In view of the previous section we see that the core of the PGA algorithm is solving the optimiza-
tion problem defined in Equation (13). To solve Problem 13, we need to calculate the gradient
of the objective function F .
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Proposition 5. Denote fipvq :“ argmintPR hipv, tq with hipv, tq :“ dpyi, γvptqq2. For any given
inner product ⟨¨, ¨⟩1 on T1pGďLq, we have for any v, u P T1pGďLq,

p∇F qvu “ ´

N
ÿ

i“1

1

B2
2hpv, fipvqq

DuB2hpv, fipvqq (19)

where

B2
2hpv, tq “

〈
pd log ˝dR

ye´ 1
2
tv ˝ dL

e´ 1
2
tv qpvq, v

〉
1

`

〈
pd log ˝dL

e´ 1
2
tvye´ 1

2
tv qpvq, v

〉
1

(20)

and

DuB2hpv, tq “

〈
pd logq ˝ pdRye´1{2tv q ˝ pd expq´1{2tvp´

1

2
tuq, v

〉
1

`

〈
pd logq ˝ pdLe´1{2tvyq ˝ pd expq´1{2tvp´

1

2
tuq, v

〉
1

`

〈
logpe´ 1

2 tvye´ 1
2 tvq, 1

〉
1
. (21)

Before proving this proposition, we show how it is useful for our purpose. In order to solve

Equation (13), we proceed as following. Initialize v
p0q

k such that ∥vp0q

k ∥ “ 1, then find tk,0,i :“

argmint hipv
p0q

k , tq for all i “ 1, . . . , N . Now, repeat the following two steps until convergence:

i. Find k-th Principal Direction step. Denote Tk,l :“ ttk,l,1, . . . , tk,l,Nu and FTk,l
pvq :“

řN
i“1 dpyi, γvptk,l,iqq2 for any integers k, l. Perform one step of Gradient Descent:

v
pl`1q

k Ð v
plq
k ´ αp∇FTk

q
v

plq

k

v
pl`1q

k Ð
v

pl`1q

k

∥vpl`1q

k ∥

where index l denotes gradient descent steps.

ii. Projection step. For a fixed v
plq
k , find tk,l,i :“ argmintPR hipv

plq
k , tq for all i “ 1, . . . , N :

initialize tp0q P R and update the value of tpjq in the opposite direction of the gradient:

tpj`1q Ð tpjq ´ αB2hipv
plq
k , tpjqq. (22)

To sum up, we fix a direction v P T1pGďLq, project the data on the geodesic with velocity v,
then fix a new direction, project again, etc. See Algorithm 1.

4.2. Proof of Proposition 5

4.2.1. Preliminary result

Before proving Proposition 5, we need a preliminary result.

Lemma 6. Let y P G. Assume that for each v “ pv1, . . . , vdq P T1G with ∥v∥ “ 1, the following
f : T1G Ñ R exists and is unique:

fpvq :“ argmin
tPR

hpv, tq

9



Algorithm 1: Principal Geodesic Analysis of Signatures

Input: A batch of N signatures xi :“ SďLpXiq

Number of geodesics k to keep
Output: v1, . . . , vK the first K geodesic directions

1 Compute group mean µ of input data tx1, . . . , xNu

2 Center data: xi Ð µ´1xi
3 for k “ 1, . . . ,K do
4 Initialize vk
5 Repeat the following two steps until convergence:

6 1. Update v
plq
k : one step in the opposite direction of gradient, obtain v

pl`1q

k

7 2. Project xi on geodesic starting from identity with initial velocity v
pl`1q

k

8 return v1, . . . , vK

where h : T1Gˆ R, hpv, tq :“ dpy, γvptqq2. Assume that B2
2hpv, fpvqq ‰ 0. Then, we have

∇fpvq “ ´λ´1
`

B
Bv1

B2hpv, fpvqq . . . B
Bvd

B2hpv, fpvqq
˘T

(23)

where λ :“ B2
2hpv, fpvqq.

Proof of Lemma 6. We fix a ṽ P T1G. Observe that by definition B2hpṽ, fpṽqq “ 0. If B2
2hpṽ, fpṽqq ‰

0 then the implicit function theorem asserts the existence of a unique continuous mapping
ψ : Vṽ Ñ R with Vṽ a neighborhood of ṽ, such that for any v P Vṽ we have B2hpv, ψpvqq “ 0. By
uniqueness of ψ, we have ψ ” f |Vṽ

. Let us differentiate the previous equation. Using the chain
rule, we have

¨

˚

˝

B
Bv1

B2hpv, fpvqq ` B2
2hpv, fpvqq B

Bv1
fpvq

...
B

Bvd
B2hpv, fpvqq ` B2

2hpv, fpvqq B
Bvd

fpvq

˛

‹

‚

“ 0 (24)

and we obtain the result.

4.2.2. A first order derivative formula

We want apply Lemma 6 successively with fipvq :“ argmintPR hipv, tq where hipv, tq :“ dpγvptq, yiq.
We first need to give a meaning to B2hpv, tq.

On a Riemannian manifold, we have

hpv, tq :“ dpγvptq, yq2 “ ∥Logetvy∥2 (25)

where Log is the Riemannian logarithm and thus using Lemma 14,

B2hpv, tq “ ´2

〈
Logetv pyq,

d

dt
etv

〉
. (26)

By analogy with Equation (26) valid in the Riemannian case, we set as a definition on a Lie
group equipped with a connection and an inner product ⟨., .⟩1 defined on the tangent space at
the identity T1G, that

B2hpv, tq :“ ´2

〈
logetv pyq,

d

dt
etv

〉
etv

(27)
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where ⟨., .⟩g for any g P G is the parallel transport of ⟨., .⟩1, that is for any g P G and u, v P TgG,

⟨u, v⟩g :“ ⟨ΠgÑ1u,ΠgÑ1v⟩1 (28)

with ΠgÑ1 parallel transport of the connection.
We now show that the right hand side of Equation (27) can be reduced to a simpler form when

the Lie group is GďL.

Lemma 7. We use Equation (27) as a definition for B2hpv, tq. Then, for the signature space
GďL equipped with the CCS connection, we have for any v P T1pGďLq and t P R,

B2hpv, tq “ ´2
〈
logpe´ 1

2 tvye´ 1
2 tvq, v

〉
1
. (29)

Proof. Step 0. On GďL equipped with the CCS connection, Equation (27) is equivalent to

B2hpv, tq :“ ´2
〈
dpLetv q1 logpe´tvyq, dpLetv q1v

〉
etv

(30)

where we have used that logetv pyq “ pdLetv qe logpe´tvyq, see Section 3.2.2, and d
dte

tv “ pdLetv qev.
Step 1: use parallel transport to give a meaning to inner product. Using the expression
of the parallel transport of the CCS connection, see Equation (16), we have for any g P GďL,
ΠgÑ1 : TgpGďLq Ñ T1pGďLq with

ΠgÑ1 “ pdLg´1{2qg1{2pdRg´1{2qg (31)

where we have denoted gα :“ exppα log gq for any real value α. Thus, we have

B2hpv, tq “ ´2
〈
ΠetvÑ1dpLetv q1 logpe´tvyq,ΠetvÑ1dpLetv q1v

〉
1

(32)

“ ´2
〈
dpL

e
1
2
tv qdpR

e´ 1
2
tv q logpe´tvyq, dpL

e
1
2
tv qdpR

e´ 1
2
tv qv

〉
1

(33)

where we have used the commutativity of dL and dR (Lemma 11) in the last equation and that
dLg ˝ dLh “ dLgh (Lemma 12). In other words, from the definition of Ad,

B2hpv, tq “ ´2
〈
Adpe

1
2 tvq logpe´tvyq,Adpe

1
2 tvqv

〉
1
. (34)

Step 2: simplify the formula using the fact we have explicit expressions in the case
of the signature. Using Lemma 13 and that g logphqg´1 “ logpghg´1q, we have

Adpe
1
2 tvq logpe´tvyq “ e

1
2 tv logpe´tvyqe´ 1

2 tv (35)

“ logpe
1
2 tve´tvye´ 1

2 tvq (36)

“ logpe´ 1
2 tvye´ 1

2 tvq. (37)

Using Lemma 13 and that rv, vs “ 0, we have

Adpe
1
2 tvqpvq “ exppad 1

2 tv
qpvq (38)

“

ˆ

Id ` ad 1
2 tv

`
1

2
ad 1

2 tv
˝ ad 1

2 tv
` ¨ ¨ ¨ `

1

L!
ad 1

2 tv
˝ ¨ ¨ ¨ ˝ ad 1

2 tv

˙

pvq (39)

“ v `
1

2
trv, vs `

1

8
t2rv, rv, vss ` ¨ ¨ ¨ `

1

2LL!
tLrv, . . . rv, vss (40)

“ v. (41)
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Injecting Equations (37) and (41) into Equation (34) gives〈
dpLetv q1 logpe´tvyq, dpLetv q1v

〉
etv

“

〈
logpe´ 1

2 tvye´ 1
2 tvq, v

〉
1

(42)

and thus
B2hpv, tq “ ´2

〈
logpe´ 1

2 tvye´ 1
2 tvq, v

〉
1
. (43)

We now have all the tools to prove the main result.

Proof of Proposition 5. Denote fipvq :“ argmintPR hipv, tq with hipv, tq :“ dpγvptq, yiq
2. That is,

∇F pvq “

N
ÿ

i“1

∇fipvq (44)

where F is our main objective function, given by Equation (14). To compute each ∇fipvq, we
shall use Lemma 6 which requires to differentiate B2h. We use the expression of B2h as given in
Lemma 7. Differentiating Equation (29) with respect to t gives:

B2
2hpv, tq “ ´2

˜

´
1

2

〈
pd log ˝dR

ye´ 1
2
tv ˝ dL

e´ 1
2
tv qpvq, v

〉
1

´
1

2

〈
pd log ˝dL

e´ 1
2
tvy

˝ dL
e´ 1

2
tv qpvq, v

〉
1

¸

. (45)

That is

B2
2hpv, tq “

〈
pd log ˝dR

ye´ 1
2
tv ˝ dL

e´ 1
2
tv qpvq, v

〉
1

`

〈
pd log ˝dL

e´ 1
2
tvye´ 1

2
tv qpvq, v

〉
1
. (46)

Differentiating Equation (29) with respect to v gives:

DuB2hpv, tq “

〈
pd logq ˝ pdRye´1{2tv q ˝ pd expq´1{2tvp´

1

2
tuq, v

〉
1

`

〈
pd logq ˝ pdLe´1{2tvyq ˝ pd expq´1{2tvp´

1

2
tuq, v

〉
1

`

〈
logpe´ 1

2 tvye´ 1
2 tvq, 1

〉
1
. (47)

5. Experiments

5.1. Practical implementation

5.1.1. Implementation details

Our PGA is implemented in Python, following the steps of Algorithm 1. The time series we use
in our experiments are scaled to have a total variation norm equal to one. The computation
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of the signature up to level L is done with library iisignature1. We have implemented the
basic group operations: product, inverse, exponential, logarithm. To center the data, we use
the group mean algorithm presented in our previous work [Clausel et al., 2023]. To initialize
the k-th principal direction vk, we randomly draw one of the signature instance xi and we com-
pute its group logarithm. The update step is performed using the Adam optimization strategy
[Kingma and Ba, 2014]. The projection step is done using scipy root finder function fsolve().
To compute ∇F as shown in Proposition 5, we need the differential of B2h. To that end, we
have implemented B2h as expressed in Equation (29) and then its derivative is computed using
automatic differentiation via the library autograd2.

For comparison purposes, we also perform the linear PGA (PCA in tangent space), that
we denote tPGA. This is done by projecting the data into the tangent space using the group
logarithm and then computing the usual (Euclidean) PCA. This last task is done using the
scikit-learn implementation of the PCA: sklearn.decomposition.PCA.

After performing PGA or tPGA, we obtain the initial velocities v1, . . . , vK of the K first
principal geodesics (the principal directions). Denote tk,i the scalar value such that the projection
of instance yi onto the k-th principal geodesic is πvkpyiq “ expptk,ivkq. For each principal
direction, that is k “ 1, . . . ,K, we look at the standard deviation

stdptk,.q “

g

f

f

e

1

N

N
ÿ

i“1

ptk,iq2. (48)

5.1.2. Closed formula for low order cases

In this section, we show that given the truncation level of the signature, the computation time
of Algorithm 1 can be greatly diminished, because of the nilpotency of GďL.

Indeed, we show that Equation (29) can be reduced to a simpler form when the truncation level
L of the signature is low, allowing us to reduce computational cost. Indeed, the log expression
in Equation (29) can be computed using the following result.

Proposition 8. Let a, b be element of a Lie algebra. Then

logpea{2ebea{2q “ a` b´
1

24
ra, ra, bss `

1

12
rra, bs, bs `

7

5760
ra, ra, ra, ra, bssss ` . . . (49)

where r., .s denote the Lie bracket: ru, vs “ u b v ´ v b u. This proposition is a special case of
the Baker–Campbell–Hausdorff formula where Lie brackets containing an even number of terms
vanish.

Using Proposition 8, we have in Equation (29)

logpe´ 1
2 tvye´ 1

2 tvq “ ´tv`u´
1

24
t2rv, rv, uss ´

1

12
trrv, us, us `

7

5760
t4rv, rv, rv, rv, ussss ` . . . (50)

where u “ log y.
Now, elements of gďL are nilpotent, that is for any u P gďL we have ubK “ 0 for any K ą L.

Thus, if u, v P gďL, then all Lie brackets with more than L terms vanish.
We now detail two specific cases to illustrate this.

1See https://github.com/bottler/iisignature
2See https://github.com/HIPS/autograd
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Example 9. If truncation level is L “ 2, Equation (50) is truncated:

logpe´ 1
2 tvye´ 1

2 tvq “ ´tv ` u (51)

that is, Equation (29) becomes

B2hpv, tq “ 2 ⟨tv ´ log y, v⟩1 “ 2t∥v∥2 ´ 2 ⟨log y, v⟩1 . (52)

Example 10. If truncation level is L “ 3 or L “ 4, Equation (50) is truncated and Equation (29)
becomes

B2hpv, tq “ ´2

〈
´tv ` u´

1

24
t2rv, rv, uss ´

1

12
trrv, us, us, v

〉
1

(53)

“ ´2 ⟨log y, v⟩1 ` t

〈
2v `

1

6
rrv, log ys, log ys, v

〉
1

`
1

12
t2 ⟨rv, rv, log yss, v⟩1 . (54)

Thus,
d

dt
logpe´ 1

2 tvye´ 1
2 tvq “ ´v ´

1

12
rrv, us, us ´

1

12
trv, rv, uss (55)

5.2. Numerical results

In this section, we show how our method helps us get better insights on set of time series
compared to the tangent PGA. First, we take a glance at a simulated dataset from a random
walk model. Then, we look at a real life dataset: population census in the United States over
the 20th century.

5.2.1. Simulated data

Random walks with trend. We generate two clusters of time series in the following way: if
X is a member of cluster j P t1, 2u, then

Xptq “

t
ÿ

k“1

εpkq (56)

where εpkq are iid N pµj , Idq and

µj “

#

p´1, 1q if j “ 1

p1, 1q if j “ 2
. (57)

Note that this model is not stationary. We simulate 20 bivariate time series of length 6 using
this toy model (10 in each cluster). Those are shown in Figure 3. We perform PGA using
the signatures up to level L “ 5. Also, we perform a tangent PGA for comparison purposes.
Cumulated dispersion of the projections onto geodesics (see Equation (48)) are shown in Figure 4
and projections onto the first two principal geodesics in Figure 5.

We can see that as the number of components increases, the PGA explain more variance than
the tangent PGA, which seems to stabilize after PG3. Also, observe that for both methods,
projections onto the first two principal geodesics can be linearly separated in a way that we
recover the two true clusters. Using a simple clustering strategy such as the Nearest Neighbors,
only one instance might be assigned to the wrong cluster.

Overall, on this dataset the PGA seems to be more relevant than its linear counterpart since
it explains more variance and both methods separate the data similarly.
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Figure 3: Simulated data (20 bivariate time series).
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Figure 4: PGA and tPGA results on the simulated data.
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Figure 5: Projections on first three principal geodesics of the simulated data.

5.2.2. Real data

Population dataset. The population dataset3 is a collection of time series representing the pop-
ulation from 1900-1999 in 20 states of the USA. Following the analysis of [Kalpakis et al., 2001],
two clusters can be observed and will be used as the reference clustering: states with an ex-
ponential growth of population over time and states with a stabilizing growth. The goal is to
retrieve those two clusters in an unsupervised fashion. Curves are shown on Figure 6a and the
two clusters in Figure 6b. We compute the signature up to order 5 of the curves and perform
PGA. Cumulated dispersion of the projections onto geodesics (see Equation (48)) are shown in
Figure 7. We can see that the tangent PGA captures more information on the first two prin-
cipal geodesics but then stays at the same level of explained variance. On the other hand, the
PGA increases for each new principal geodesic added. If we choose to keep the first six princi-
pal geodesics, more than a third more information is captured with the PGA compared to the
tangent PGA.

Projections onto the first two Principal Geodesics are shown in Figure 8. We can see in
Figures 8a and 8b that the two set of curves can be linearly separated on the first geodesic plan,
either with the tangent PGA or with the PGA.

6. Conclusion

We have proposed an extension of the PCA for signature features of time series by means of an
adaptation of the PGA. We have provided theoretical tools along with a numerical implementa-
tion to apply this new method. Also, we have shown through experiments, both on simulated
and real data, that our approach provide better results than the usual approximation.

3Available at https://www.census.gov/data.html.
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Figure 6: Population dataset. 20 curves sampled once a year on the period 1900 – 1999.
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Figure 7: PGA and tPGA results on the Population dataset.
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Figure 8: PGA results on the population dataset. Zoom in on the projection on the first
two principal geodesics.

A. Technical Lemmas

Lemma 11. For any g, h P G and v P T1G, we have

pdLgqh ˝ pdRhqe “ pdRhqg ˝ pdLgqe. (58)

Proof. Let g, h, p P G. Using the associativity rule of the group, we have

pLg ˝Rhqppq “ gpphq “ pgpqh “ pRh ˝ Lgqppq (59)

thus Lg and Rh commute for any g, h. Differentiating Equation (59), with p “ e and v P T1G,
we have

ppdLgqh ˝ pdRhqeqpvq “ ppdRhqg ˝ pdLgqeqpvq (60)

thus dLg and dRh commute for any g, h. Note that this stays true for any p P G.

Lemma 12. For any g, h P G, we have

pdLghqe “ pdLgqh ˝ pdLhqe. (61)

Proof. This identity comes from the differentiation of Lgh “ Lg ˝ Lh .

Lemma 13. Let g “ eu be an element of the signature space GďL and v an element of the
signature Lie algebra gďL. Then

Adpgqpvq “ gvg´1 “ eaduv. (62)

Proof. See [Reutenauer, 1993, Theorem 3.2].

Lemma 14. Let x, y be two points on a Riemannian manifold M and denote Log the Riemannian
logarithm. Then, we have

∇x∥Logxpyq∥2 “ ´2Logxpyq. (63)
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Proof of Lemma 14. Denote Γ : p´ε, εq ˆ r0, 1s Ñ M; Γps, tq “ γsptq the geodesic variation of γs
geodesic with start point γsp0q “ xpsq, fixed end point γsp1q “ y and velocity 9γsp0q “ Logxpsqpyq.
We define the length of any curve γ as

Lengthpγq :“

ż 1

0

∥ 9γptq∥Mdt. (64)

Denote V the variational field of Γ, i.e. V ptq :“ Bs|s“0 Γps, tq and c :“ ∥ 9γ∥M. The first variation
formula of the length is4

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

LengthpΓsq “ ´
1

c

ż 1

0

⟨V,Dt 9γ⟩ dt`
1

c
⟨V p1q, 9γp1q⟩ ´

1

c
⟨V p0q, 9γp0q⟩ . (65)

Since γ is a geodesic we have Dt 9γ “ 0. Also, Bsγsp1q “ Bsy “ 0 i.e. V p1q “ 0. Thus,

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

LengthpΓsq “ ´
1

c
⟨V p0q, 9γp0q⟩ (66)

“ ´
1

c
⟨Bs|s“0 γsp0q, 9γp0q⟩ (67)

“ ´
1

c

〈
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

xpsq,Logxpyq

〉
. (68)

Remark that since γs is a geodesic, it has constant speed and we have from the definition
Lengthpγq “ ∥ 9γs∥ “ ∥Logxpsqy∥. Thus

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

∥Logxpsqy∥2 “ ´2

〈
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

xpsq,Logxpyq

〉
(69)

where we can identify ∇x∥Logxy∥2 “ ´2Logxpyq.

Lemma 15. Let x, y P M. We have

DxpLogxqpyq “ ´ rDpExpxqpLogxpyqqs
´1
DxpExpxqpLogxpyqq. (70)

Proof. By definition,
ExpxpLogxpyqq “ y. (71)

Differentiating with respect to x gives

DxpExpxqpLogxpyqqq `DpExpxqpLogxpyqq.DxpLogxqpyq “ 0 (72)

and rearranging the terms gives the result.

References

[Buehler et al., 2020] Buehler, H., Horvath, B., Lyons, T., Arribas, I. P., and Wood, B. (2020). A
data-driven market simulator for small data environments. arXiv preprint arXiv:2006.14498.
1
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