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A B S T R A C T
Some underwater applications involve deploying multiple underwater Remotely Operated Vehicles in
a common area. Such applications require the localization of these vehicles, not only with respect to
each other but also with respect to a previously unknown environment. To this end, this work presents
MAM3SLAM, a new fully centralized multi-agent and multi-map monocular Visual Simultaneous
Localization And Mapping (VSLAM) framework. Multi-agent evaluation metrics are introduced
to provide an extensive evaluation of MAM3SLAM compared to the state-of-the-art multi-agent
VSLAM on four two-agent scenarios: one standard airborne dataset and three new underwater datasets
recorded in a pool and the sea. The results show that MAM3SLAM is robust to underwater visual
conditions and tracking failures, outperforms the other evaluated methods in estimating the individual
and relative poses of the agents and in collaborative mapping accuracy. MAM3SLAM successfully
estimates the individual and relative localization of the agents with an error lower than 5 cm on
three out of the four test sequences, and is twice as accurate as competing multi-agent works in
challenging visual conditions with frequent visual dropouts, poor textures, low framerate and fast
motion. MAM3SLAM’s source code is made available, as are the underwater datasets.

1. Introduction
In underwater robotics, the most common missions in-

volve covering large areas, for instance exploration and
mapping, biological or archaeological sample collection or
marine infrastructures inspection and maintenance. A now
well-accepted strategy for speeding up large-area mapping
is to use fleets of robots (Murphy et al., 2012). Multiple
Remotely Operated Vehicles (ROVs) can also be deployed to
manage the cable which provides real-time wired communi-
cation between a ROV and a teleoperation station (Laranjeira
et al., 2020; Drupt et al., 2022). These ROVs are then chained
along the cable to control its shape, prevent entanglement,
and counteract the forces generated by the drag on the cable.
The aforementioned applications need individual but also
inter-robot localization within their environment to oper-
ate safely, hence the interest in multi-agent simultaneous
localization and mapping (SLAM) algorithms. Conversely,
multiple agents involve largest region coverage with multiple
views, such that multi-agent SLAM can be expected to map
a wider area in a restrained time, and with an improved
robustness due to the multiplication of the viewing points.
However, underwater multi-agent SLAM is generally ad-
dressed in the case of Autonomous Underwater Vehicles
(AUVs) which have limited communication through the
water medium (Song and Mohseni, 2014; Mangelson et al.,
2018; Özkahraman and Ögren, 2022). The specificity of the
present work is to consider ROVs instead of AUVs, allowing
real time communication between the robots and a central
surface server.
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Underwater SLAM usually relies on multi-sensor fusion,
including visual, inertial, depth and acoustic measurements,
but some works highlight the interest of visual SLAM for un-
derwater applications (Joshi et al., 2019). Cameras have low
cost, weight, and power consumption compared to acous-
tic technologies. In addition, they provide rich information
about their environment, and monocular cameras are the
main feedback sensors used for remotely operated structure
inspection and scientific exploration. While visual SLAM
(VSLAM) is widely investigated for airborne applications,
underwater visual conditions are more challenging due to
backscattering, selective color absorption, turbidity, and the
effect of embedded light on the scene aspect in deep sea
missions. However, recent works demonstrate that VSLAM
algorithms based on ORB-SLAM (Mur-Artal and Tardós,
2017) can be robust to underwater conditions to some extent,
even in the monocular case (Quattrini Li et al., 2017; Joshi
et al., 2019; Hidalgo et al., 2018). In particular, ORB-SLAM
Atlas (Elvira et al., 2019) is identified as a promising solution
for underwater, monocular VSLAM (Drupt et al., 2023),
which can cope with most tested scenarios.

Building on ORB-SLAM Atlas (Elvira et al., 2019), this
paper presents a new multi-agent and multi-map monocular
VSLAM framework, namely MAM3SLAM, as a solution
for the localization of multiple ROVs operating in a com-
mon area. In this multi-ROV scenario, allowing real-time
communication with a powerful server without communica-
tion restrictions, the proposed approach is fully centralized,
meaning that all the computations are performed on this
central server. The contributions of the current work can be
listed as follows:

• The introduction and release of MAM3SLAM1,
which extends ORB-SLAM Atlas to a multi-agent

1https://github.com/LaboratoireCosmerTOULON/MAMMM-SLAM
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case, where multiple agents can localize in the same
maps and access and update their data collaboratively

• The collection and release of an underwater bench-
mark dataset for two-agent systems, composed of two
pool sequences and one sea sequence2

• The proposal of several multi-agent SLAM evaluation
metrics; an evaluation of MAM3SLAM on one stan-
dard airborne dataset and these three new underwater
sequences3 and an intensive comparison with state-of-
the-art CCM-SLAM (Schmuck and Chli, 2019) and
ORB-SLAMM (Daoud et al., 2018) works, result-
ing in the first comparative benchmark of these ap-
proaches in the literature, to the authors’ knowledge.

While the introduction of MAM3SLAM is more of an engi-
neering contribution to demonstrate the potential of ORB-
SLAM Atlas-based multi-agent SLAM for underwater, vi-
sually challenging scenarios, the recording and release of
the underwater datasets and the proposed benchmark are the
main contributions of the current work.

Section 2 presents the related work, including VSLAM
for underwater applications and the corresponding specifici-
ties, and the state-of-the-art in terms of multi-agent VSLAM.
Section 3 describes the algorithm of MAM3SLAM. Under-
water multi-agent datasets collection is detailed in Section 4
and multi-agent VSLAM evaluation methodology is given
in Section 5. Evaluation results are presented and discussed
in Section 6, before concluding in Section 7.

2. Related work
The first mention of visual-based SLAM for underwater

applications can be found in (Eustice et al., 2005, 2006),
where the wreck of the Titanic was mapped using a visual-
based SLAM information filter, combined with navigation
measurements involving a tilt sensor, a magnetometer, a
Doppler Velocity Log (DVL), and pressure and altitude
sensors. In line with this first work, many more recent un-
derwater visual-based SLAM algorithms rely on additional
navigation sensors (Zhang et al., 2022) and are, therefore,
not purely visual works, such that they are finally out of
the scope of the VSLAM definition. Although VSLAM is
widely investigated for airborne applications, only a few
works focus on underwater VSLAM, and even fewer ones
investigate multi-agent VSLAM for underwater.
2.1. Challenges in underwater vision

VSLAM algorithms usually assume that the scene is
rigid, static and Lambertian. However, these assumptions
are challenged by underwater visual conditions. Light prop-
agation through the water is affected by back-scattering,
selective color absorption, and turbidity (Akkaynak et al.,
2017; Wang et al., 2019). This phenomenon can be com-
pensated by estimated the water model from one view and

2https://github.com/LaboratoireCosmerTOULON/2-agent-datasets
3https://youtu.be/tmDzvdISuMk

the corresponding depth map (Akkaynak and Treibitz, 2019)
or multiple views of the scene (Boittiaux et al., 2023b).
Although very efficient, those techniques require a prior
dense 3D mapping of the scene and are therefore not straight-
forward for the usual online monocular VSLAM algorithms.
Attempts of image restoration steps in VSLAM works will
be further discussed in Section 2.2.

The presence of embedded lights in deep sea missions
also affects the aspect of the scene (Ferrera et al., 2019)
and, conversely, scenes in shallow water can feature surface
effects, known as flickering. As a result, the image of an
underwater three-dimensional point depends on different
factors including its position with respect to the camera,
its depth with respect to the surface, but also the weather
conditions. In extreme cases, a camera placed in open water
or too far from the surrounding objects may not be able to
observe the seabed or any other environment feature. This
scenario can occur when a robot moves down the water
column towards its working depth or if the camera is facing
away from any landmark. Such a dropout example is given
in Figures 1.

(a) Before dropout (b) During dropout
Figure 1: Visual dropout in the sea, off the coast of Saint-
Raphael, France (Drupt et al., 2023)

In addition, while most airborne VSLAM works inves-
tigate indoor, industrial, or urban landscapes featuring few
mobile objects and mostly artificial environments, underwa-
ter applications can feature a large variety of landscapes,
including low-textured, natural environments and mobile
elements including fish, seaweeds, and suspended particles,
as illustrated in Figure 2.

(a) Suspended particles (b) Fishes and seaweeds (Joshi
et al., 2019)

Figure 2: Examples of mobile objects in underwater, natural
environments
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2.2. Monocular VSLAM for underwater
Coping with the aforementioned underwater-specific vi-

sual conditions is crucial when applying VSLAM techniques
underwater. Some works investigate an image restoration
step for each incoming frame (Salvi et al., 2008; Cho and
Kim, 2018) to correct underwater visual distortion effects.
However, this operation is always an approximation and can
be computationally expensive, depending on the physical
accuracy of the model used. As a result, an interest has been
shown for off-the-shelf, underwater robust algorithms. Eval-
uations of state-of-the-art monocular VSLAM algorithms on
underwater scenarios demonstrate that VSLAM works based
on ORB-SLAM (Mur-Artal et al., 2015), and more specifi-
cally ORB-SLAM Atlas (Elvira et al., 2019; Campos et al.,
2021) can be robust to underwater visual conditions (Joshi
et al., 2019; Drupt et al., 2023).

ORB-SLAM (Mur-Artal et al., 2015; Mur-Artal and
Tardós, 2017) is a monocular VSLAM algorithm based on
ORB features (Rublee et al., 2011), which strongly im-
pacted VSLAM by providing a publicly available algo-
rithm able to perform tracking, local mapping in KeyFrame
(KF) windows, a tracking failure recovery module based on
relocalization and loop detection and closing, along with
outstanding accuracy. Relocalization and loop detection are
performed by a Bags-of-Words (BoW) place recognition
module based on DBoW2 (Galvez-López and Tardos, 2012),
where candidate matches are validated a second time accord-
ing to consistency criteria over a window of connected KFs
to reject bad loop closures. Even though it is quite robust to
underwater visual conditions, ORB-SLAM is still reported
to suffer from critical tracking failures caused by incorrect
feature matching and triangulation or visual dropouts, from
which the system fails to recover. Indeed, ORB-SLAM’s
tracking failure recovery consists of a relocalization attempt
in the map, which becomes useless when the camera moves
outside the already mapped area.

ORB-SLAM Atlas (Elvira et al., 2019) extends ORB-
SLAM with a new, improved tracking failure recovery strat-
egy, designed to handle relocalization failures. If lost, ORB-
SLAM Atlas initially tries to relocalize in the KF database,
similarly to ORB-SLAM, but initializes a new map if relo-
calization fails within a timed window. All KFs are stored
in the same database, which is queried by DBoW2 at each
new KF insertion with the same place recognition module
as ORB-SLAM’s loop closure. Two matched maps are fused
into one through a global bundle adjustment. The system can
thus reuse previous mapping data after a fusion between the
current map and an old one. In addition, ORB-SLAM Atlas
extends relocalization to all maps of the system. An imple-
mentation of ORB-SLAM Atlas is provided in the ORB-
SLAM3 library (Campos et al., 2021), which unifies recent
developments on ORB-SLAM. Underwater evaluations of
this work demonstrate that the new, multi-map SLAM re-
covery strategy of ORB-SLAM Atlas makes it significantly
more robust to tracking inconsistencies and visual dropouts

than ORB-SLAM (Drupt et al., 2023), making it a promis-
ing candidate for underwater visual-based localization and
mapping.
2.3. Multi-agent SLAM architectures

Multi-agent SLAM systems involve several robotic
agents moving around in the same area and providing
local information to the system. The multi-agent SLAM
problem consists of localizing these multiple agents while
building a consistent map of the scene using these multiple
local observations inputs. On the one hand, multi-agent
SLAM allows the localization of several agents with respect
to each other and their environment, while on the other
hand, multiple agents involve larger scene coverage and
multiple viewing angles, which is expected to increase
mapping accuracy by fusing observations with wide
baselines (Cieslewski et al., 2018; Schmuck and Chli,
2019). In the current underwater application target, these
properties can be expected to reduce tracking failures by
relying on a more accurate map.

Two kinds of measurements can be involved in multi-
agent SLAM systems. Intra-agent, or individual measure-
ments only characterize the localization and local surround-
ings of the agent performing the measurement. Conversely,
inter-agent, or relative measurement, characterizes the rela-
tive localization of several agents (Cieslewski et al., 2018).
In addition, multi-agent SLAM approaches can be classified
according to the distribution of their computations among
the agents and an optional central server, as illustrated in
Figure 3. In fully centralized approaches, all computations
are done on a central server, which can be one of the agents or
an external server. Other agents only perform measurements
and send their data to the server. Optionally, the server can
send back the estimated locations to the agents. Centralized
approaches strongly rely on the server having sufficient
computational resources and bandwidth. As a result, they
are not scalable to many agents and are not robust to com-
munication failures. Conversely, decentralized approaches
distribute the computations among the agents (fully decen-
tralized) or between the agents and a central server (partially
decentralized). The main motivations of partially decentral-
ized approaches are to reduce the server’s computational
payload and provide better robustness to communication
failures since agents can keep estimating a localization based
on their measurements if the server is unavailable (Schmuck
and Chli, 2019). The scalability of such methods still de-
pends on the server’s computation resources and requires
to exchange significant amounts of data. Fully decentralized
algorithms do not involve any servers. Agents communicate
their measurements and, optionally, a state prior to each
other, and all computations are distributed among them.
Such approaches are motivated to reduce the communication
bandwidth and computational requirements for a more scal-
able multi-agent localization scheme. Decentralized works
focus on reducing bandwidth requirements through com-
munication sparsification, data marginalization, and inter-
robot data exchanges condensation to improve scalability
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Server

Agents

(a) Centralized

Server

Agents

(b) Partially decentralized
Agents

(c) Fully decentralized

Communication

Optional communication

Computations

No computations, only measurements

Figure 3: Multi-agent SLAM communication schemes

Table 1
Communication schemes and computations distribution in recent ORB-SLAM-based multi-agent works CORB-SLAM (Li et al.,
2018) ,ORB-SLAMM (Daoud et al., 2018), CCM-SLAM (Schmuck and Chli, 2019) and SwarmMap (Cao et al., 2023) and in
the proposed algorithm MAM3SLAM, where ‘T’ stands for ‘tracking’, ‘LM’ for ‘local mapping’, ‘LC’ for ‘loop closing’, ‘MM’ for
‘map merging’ and ‘R’ for ‘recovery’.

Communications Category Computations on agents Computations on server

CORB-SLAM Maps: agents → server Partially decentralized T, LM, LC MM
ORB-SLAMM Frames: agents → server Centralized ∅ T, LM, LC, MM, R
CCM-SLAM KFs: agents ↔ server Partially decentralized T, LM LC, MM
SwarmMap Map operations: agents → server Partially decentralized T, LM LC, MM
MAM3SLAM Frames: agents → server Centralized ∅ T, LM, LC, MM, R

and robustness to communication restrictions (Luft et al.,
2018; Dubois et al., 2019; Özkahraman and Ögren, 2022).
However, fully decentralized algorithms are less accurate
than those involving a central server since observations are
never fused at a global scale.
2.4. Multi-agent Visual SLAM

Historically, multi-agent VSLAM has been investigated
alongside single-agent VSLAM (Zou et al., 2019). Individ-
ual measurements are provided by embedded cameras and,
in a few works, camera views from multiple neighbor agents
are used to provide a relative measurement using multiple-
view geometry (Zou and Tan, 2013; Cieslewski et al., 2018).
Although some recent Bayesian works investigate fully de-
centralized approaches (Leonardos and Daniilidis, 2017;
Cieslewski et al., 2018), most works, including the ones
based on ORB-SLAM, are centralized or only partially
decentralized (Li et al., 2018; Daoud et al., 2018; Schmuck
and Chli, 2019).

With regards to underwater applications, some works
investigate the problem of multi-agent VSLAM for
AUVs (Mangelson et al., 2018; Özkahraman and Ögren,
2022), where the main challenge consists in managing
information sharing between AUVs under the bandwidth
limitations of underwater wireless communications in a
distributed, sparsely communicating manner. However, by
allowing real-time, large-bandwidth communication with
a surface server, multi-ROV applications fit the standard

communication configuration of airborne multi-agent
VSLAM systems, where inter-agent data fusion can be
performed on a central server in a centralized or partially
decentralized scheme (Zou et al., 2019). In addition, having
a physical connection between the ROVs and the server
reduces the risk of data transmission failure between the
agents and the server. According to this configuration and
the observations reported in Section 2.2, we focus only on
ORB-SLAM-based multi-agent works in the following.

ORB-SLAM being both efficient, highly accurate, and
open source, it is used as a basis for multiple multi-agent
works (Li et al., 2018; Daoud et al., 2018; Schmuck and Chli,
2019; Cao et al., 2023). Therefore, these works implement
the main functionalities involved in ORB-SLAM, including
(i) tracking, (ii) local mapping, (iii) loop closing, and (iv) an
optional tracking failure recovery module. In addition, mul-
tiple agents involve a need to fuse local mapping information
from each agent and, therefore, a map merging module.
Communication schemes and computation distributions in
these works are given in Table 1. CORB-SLAM (Li et al.,
2018) introduces the first ORB-SLAM-based multi-agent
architecture. Each agent runs ORB-SLAM individually and
builds its own maps. These maps are sent to a central server,
which tries to detect overlapping regions using a DBoW2
place recognition similar to ORB-SLAM’s loop closure.
Matched maps are then fused into a single common map.
The global map is sent to the agents after each update. ORB-
SLAMM (Daoud et al., 2018) is a fully centralized algorithm
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designed for single or multiple agents. It implements a multi-
map tracking failure recovery strategy that systematically
creates of a new map in case of tracking failure, which is
intended to be aligned with the previous maps by a place
recognition module. Conversely, CCM-SLAM (Schmuck
and Chli, 2019) implements a monocular, partially decen-
tralized framework to apply to vehicles with limited onboard
memory and computational resources under communication
bandwidth constraints. Each agent conducts ORB-SLAM’s
tracking and local mapping and only maintains a window
of local KFs. New, local map information is returned to
the server, which stores map information and handles loop
closing and map merging. A key contribution to that work is
the ability of the agents to keep performing individual visual
odometry if communication with the server is broken. A
downside of this approach is that no SLAM failure handling
strategy is implemented. Extending the scalability of such
multi-agent approaches is also a challenge, which has been
investigated recently in SwarmMap (Cao et al., 2023). This
work presents a partially decentralized architecture similar
to the one of CCM-SLAM but reduces the communication
costs significantly by not sending the local maps to the server
but rather the operations to be performed on the global
map, given the local observations. These map update tasks
are then handled by the server using a SLAM-specific task
scheduling module. Their implementation is open source but
not straightforward for existing systems because it relies on
CUDA (NVIDIA et al., 2020).
2.5. Map merging in multi-map VSLAM

Environment mapping can be decomposed into
several disconnected local maps in multi-map SLAM
systems. Such systems include some multi-agent SLAM
algorithms, like ORB-SLAMM (Daoud et al., 2018)
and CCM-SLAM (Schmuck and Chli, 2019), but also
SLAM algorithms with a multi-map tracking failure
recovery strategy, like single-agent ORB-SLAMM (Daoud
et al., 2018), ORB-SLAM Atlas (Elvira et al., 2019)
or Dual-SLAM (Huang et al., 2020). In order to produce
consistent environment mapping, multi-map SLAM systems
implement map merging algorithms, which include region
overlap detection between disconnected maps and map
alignement.

These map merging algorithms can differ from a SLAM
system to another. In Dual-SLAM (Huang et al., 2020),
where new map creation is triggered by tracking failure,
map merging is driven by spatial and temporal consistency
using a backward SLAM to reach the previous map and
connect it to the new one. Other works mainly rely on a loop-
closing-like map merging, where inter-map place recogni-
tion is performed similarly to loop closure detection, and
map and loop fusions are conducted similarly. This second
category of map merging algorithms, implemented in all
other aforementionned ORB-SLAM-based works, does not
involve a spatial or temporal prior and is thus more suitable
for fusing multiple maps created by multiple agents, where
such a prior is usually unavailable.

In ORB-SLAMM (Daoud et al., 2018), a map merging
thread continuously iterates place recognition among all KFs
from all maps. This thread is unique in the system and
considers all KFs independently from their agent creator.
ORB-SLAMM’s map overlap detection is similar to ORB-
SLAM’s loop closure by DBoW2 (Galvez-López and Tar-
dos, 2012) for KF matching and deducing an initial-guess
inter-map transformation from this match. However, unlike
ORB-SLAM’s loop closure, ORB-SLAMM does not im-
plement inter-map place recognition consistency validation
over a window of connected KFs, reducing place recognition
computational cost and decreasing its robustness by making
it quite permissive. In addition, ORB-SLAMM does not fuse
inter-map points observations when computing map align-
ment, and merged maps remain distinct entities with separate
KFs and BoW databases. Therefore, data from old maps
cannot be reused in the localization process. It should also be
noted that the computational cost of ORB-SLAMM’s map
merging thread is unnecessarily high because it continuously
loops over all KFs from all maps to try to find a match instead
of querying the KF database only at new KF insertion.

CORB-SLAM (Li et al., 2018), CCM-SLAM (Schmuck
and Chli, 2019) and ORB-SLAM Atlas (Schmuck and Chli,
2019) implement an almost identical map-merging strategy,
which is very similar to ORB-SLAM’s loop closure, both
with regards to map overlap detection, but also transforma-
tion estimation between the matched KFs, including several
steps of validation checks and transformation refinement.
In addition, merged maps become a single entity such that,
in CCM-SLAM (Schmuck and Chli, 2019), multiple agents
can localize in the same map simultaneously. Although
SwarmMap relies on a quite different map information ag-
gregation pipeline, its map-merging strategy is similar to
these works.
2.6. Multi-agent VSLAM benchmarking

Multi-agent VSLAM benchmarking involves both
datasets and evaluation metrics. Multi-agent VSLAM
datasets can be either recorded using multiple devices,
or simulated by simultaneously playing several video
sequences recorded in the same environment. The first
solution features real multi-agent cases, where agents may
see each other. Such datasets can also integrate dynamic
changes in the environment, which will be observed
synchronously by the multiple agents. However, they
represent a higher acquisition cost and are quite rare in
the literature. While some works record their multi-agent
datasets for evaluation (Schmuck and Chli, 2019), there
is no such public dataset at the time of writing, to the
best of the authors’ knowledge. The second solution above
is less realistic for a real multi-robot application, but is
far easier to obtain. On the one hand, it is impossible for
the simulated agents to observe each other, and possible
dynamic changes in the environments will be observed out
of sync among the simulated agents. On the other hand, their
acquisition only involves deploying a single device or can
be realized from existing sequences recorded in the same
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static environment. In (Schmuck and Chli, 2019), several
sequences of the EuRoC Machine Hall dataset (Burri et al.,
2016) are used to simulate multiple agents, while other
works rely on the KITTI odometry dataset (Geiger et al.,
2012), including (Cieslewski et al., 2018; Daoud et al.,
2018).

However, while airborne VSLAM evaluation can rely on
standard, public datasets recorded in different environments,
featuring several sequences in each of these environments
and visual conditions with various trajectories of gradual
difficulty (Geiger et al., 2012; Burri et al., 2016; Schubert
et al., 2018), there is no equivalent yet in the underwater
field, because of the important cost and resources required
for acquiring such data. Although a few underwater visual
datasets have been released these past few years (Quattrini Li
et al., 2017; Joshi et al., 2019; Ferrera et al., 2019; Boittiaux
et al., 2023a), none of them include overlapping sequences
without significant visual conditions or environment change.
As a result, existing public underwater datasets do not allow
multi-agent VSLAM evaluation in underwater conditions.

Regarding evaluation metrics, most multi-agent works
use the Root-Mean-Square (RMS) Absolute Position
Error (APE) to characterize the localization accuracy
of each agent’s trajectory or individual localization
accuracy (Cieslewski et al., 2018; Daoud et al., 2018;
Schmuck and Chli, 2019; Dubois et al., 2019). However,
while relative localization is crucial when deploying multi-
agent systems, a criterion based on relative localization is
usually missing, notably in (Daoud et al., 2018; Schmuck
and Chli, 2019). Mapping accuracy and collaboration of
each agent to the map — denoted collaborative mapping
— is also rarely considered and is not studied in (Daoud
et al., 2018; Schmuck and Chli, 2019). Some collaborative
mapping criteria can, however, be found in collaborative
exploration strategy validation (Yu et al., 2022), such as
ratio of areas explored by the agents to the entire explorable
space, the average overlapping explored area over each
pair of agents, or the duration required for having a given
percentage of the scene mapped. Although these criteria are
defined to evaluate active exploration efficiency of agents
with adaptive trajectories, they may be used as a basis for
collaborative mapping efficiency characterization in the
VSLAM works under consideration.

Finally, it is worth noticing that, to date, there is no
comparative reference for ORB-SLAM-based multi-agent
work.

3. MAM3SLAM algorithm
MAM3SLAM builds on the ORB-SLAM Atlas (Elvira

et al., 2019) implementation provided by ORB-
SLAM3 (Campos et al., 2021). MAM3SLAM algorithm is
represented in Figure 4.

3.1. Overall architecture
MAM3SLAM is a central multi-agent SLAM, meaning

all computations are performed on a central server. Agents
only send frames to the server. A tracking thread and a
local mapping thread are run for each agent, on the central
server. Loop closing and map merging tasks are conducted
by one unique, common thread in the multi-agent system. A
system of 𝑛 agents then runs on 2𝑛 + 1 threads, including
𝑛 tracking threads (one per agent), 𝑛 local mapping threads
(one per agent), and 1 single, common loop closing and map
merging thread. Communication schemes and computations
distribution in MAM3SLAM are summarized in Table 1 for
comparison to the state-of-the-art works. Similarly to ORB-
SLAM Atlas, an additional global bundle adjustment thread
is launched after a loop correction or map merging. The
differences between ORB-SLAM Atlas and MAM3SLAM
are the following:

• The main contribution lies in creating multi-agent
VSLAM instances and making maps a shared resource
between multiple agents, which was not implemented
in ORB-SLAM Atlas. To this end, multiple agents can
localize on the same map and access and update its
data.

• Multi-threading support was implemented to allow
concurrent map access and update, hence the need to
protect the map from concurrent modification.

• A new KF insertion algorithm was implemented for
agents locating on the same map. This involves pro-
tection from concurrent modifications.

3.2. Shared multi-map resources
Maps are initialized individually by the server for each

agent but are shared among them using the multi-map repre-
sentation proposed in ORB-SLAM Atlas and denoted as the
Atlas. KFs from all maps are stored in a common database
to which all agents contribute. When a new KF is inserted, a
place recognition query is performed over the KF database.
If a match is found, a loop closing or a map merging oper-
ation is performed, depending on whether the matched KF
belongs to the same map or not. ORB-SLAM3 inspires this
process since having multiple agent inputs does not modify
the intrinsic behavior of the Atlas. Two matched maps 𝑖and 𝑗 become a single map 𝑘 that includes all KFs
from the original 𝑖 and 𝑗 , and merges their map point
observations. All the data originally contained in 𝑖 and
𝑗 is thus made available for tracking and local mapping via
𝑘. Making the Atlas a central resource for multiple agents
allows fusing maps created by different agents, enabling
any agent to reuse the map KFs and map points created by
another agent in its tracking process. If lost, agents can also
relocalize on any map, even if they never contributed to it.
Furthermore, several agents can localize on the same map,
enabling relative localization estimation and collaborative
map incrementation.

A map is called active if at least one agent is currently
localizing on it. Active maps are being updated by new KF
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Figure 4: MAM3SLAM multi-map representation and workflow. LBA, GBA and MP stand, respectively, for ‘Local Bundle
Adjustment,’ ‘Global Bundle Adjustment,’ and ‘Map Points’.

insertions and local mapping. Contrary to ORB-SLAM3,
where map fusion can only happen between the currently
active map and an old released map, MAM3SLAM allows
the fusion of two active maps. This operation is, however,
fully consistent with the ORB-SLAM3 merging algorithm
and does not affect the SLAM. When several agents localize
on the same map, the map is protected from concurrent
updates from agents’ local mapping threads by a mutex.
3.3. New KF insertion

In ORB-SLAM3, a new KF is inserted if (i) less than
90% of the map points of the current reference KF are visible
in the current frame and if either (ii) more than 1 second has
passed since the last insertion or (iii) the local mapping is
idle. The local mapping thread periodically checks if some
new KFs are to be inserted and processes them individually
within a given period. However, in a multi-agent scenario,
two agents on the same map may slow down their local
mapping due to the need to wait for the mutex, thus delaying
the insertion of new KFs. Therefore, in MAM3SLAM, KF
insertion is modified so that the local mapping inserts all
KFs into an insertion queue at each iteration. If many KFs

are inserted, however, this may reduce the idle time of the
local mapping, resulting in a decreasing number of new KF
creation. As a result, in MAM3SLAM, the KF insertion
criterion of ORB-SLAM3 is modified to force KF insertion
if more than five consecutive frames satisfy criterion (i) but
not (ii) or (iii).

4. Underwater multi-agent datasets collection
As reported in Section 2.6, only a few public underwater

VSLAM datasets are available, and unfortunately, none of
them includes sequences recorded in the exact same envi-
ronment or that may be divided into several disconnected
sequences with spatial overlap. Evaluating the robustness
of multi-agent works to underwater visual conditions and
trajectory constraints was not straightforward. There was
thus a need for creating underwater multi-agent VSLAM
datasets. Because of the operational cost of deploying multi-
ple underwater robots simultaneously, we privileged playing
multiple agents from multiple videos acquired on the same
site without major aspect changes in the environment. Three
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(a) (b) (c)
Figure 5: Overview of the Tank 1 dataset

(a) (b) (c)
Figure 6: Overview of the Tank 2 dataset

two-agent datasets were collected this way, featuring differ-
ent environments and challenges, denoted Tank 1, Tank 2 and
Sea diving, and illustrated in Figures 5, 6 and 7 respectively.
The main characteristics of the three datasets are summa-
rized in Table 2.

Tank 1 and Tank 2 datasets are both recorded in a pool
using the embedded camera of a BlueROV2. Tank 1 is quite
an easy sequence featuring slow motion around a highly
textured artificial marine reef. The agents move around the
reef with different radii and depths (Figure 9a). This dataset
allows for evaluation of the SLAM with easy underwater vi-
sual conditions and validation of the proposed collaborative
mapping approach.

The Tank 2 dataset features fast motion, including pure
rotations, around submarine spare parts. It is recorded at
a low frame rate (5 Hz), and the camera sometimes faces
poorly textured areas. In addition, it simulates the visual
dropouts that may occur in open water (see Section 2.1) by
occasionally facing only the low-textured walls of the pool,
as represented in Figure 8. This dataset is thus particularly
difficult. Agents’ trajectories are represented in Figure 9b.
In addition, Agent 1’s sequence is easier than Agent 0’s,
with more global scene views and less motion blur. This
dataset aims to evaluate the robustness of the SLAM in
particularly difficult visual conditions leading to repeated
tracking failure and to show the interest of collaborative

mapping in improving individual localization when one of
the agents has difficult visual conditions.

Finally, the Sea diving dataset extends the evaluation to
a real underwater field scenario. It is recorded by divers with
a GoPro in the Mediterranean Sea, at shallow depth, in clear
water. Suspended particles, fish, and a second diver appear in
some frames. Different agent recordings are made, moving
slowly around a rock with quite similar trajectories at slightly
different altitudes (Figure 9c).

As shown in Table 2, the volumic coverage of the two
tank datasets is limited to 70 and 48 m3, respectively, due
to pool size limitations and size of the submerged objects.
However, the volumic coverage of the Sea diving dataset is
significantly larger, reaching approximately 200 m3, which
is consistent with the size of a small wreck or, for instance,
an underwater wind turbine. This spatial span also matches
the order of magnitude of usual SLAM datasets recorded
with aerial drones (Burri et al., 2016). Although the volumes
and durations of our new datasets may be considered short
with regard to the vastness of the oceans, we argue that
the main objective of these new datasets is not to account
for the long-term exploration of large fields but rather for
the specificities of underwater visual conditions. Long-term
maintenance and reuse of underwater maps is a significantly
different problem than the one addressed here since the
aspect of an underwater site can change significantly in a few
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(a) (b) (c)
Figure 7: Overview of the Sea diving dataset

(a) Before dropout (b) During dropout
Figure 8: Simulation of a visual dropout in the Tank 2 dataset
(Agent 1)

hours, depending on the weather conditions at visiting times.
We, therefore, believe that our new datasets are sufficient
for extending multi-agent SLAM algorithm validation to the
underwater field.

Generating ground truth is particularly challenging in
underwater environments. Similarly to (Ferrera et al., 2019),
a comparative baseline for SLAM evaluation is computed
for all of our new underwater datasets using the Structure-
from-Motion software Colmap (Schönberger and Frahm,
2016), which performs an offline reconstruction of the scene
with exhaustive matching between images and outputs an
accurate estimation of the camera trajectory. This output is
not ground truth but is still a fair reference for online SLAM
evaluation. The scaling factor is retrieved from the known
dimensions of the submerged objects. The trajectories of
the agents are represented in Figure 9 with respect to the
surrounding objects.

5. Evaluation methodology
In order to evaluate MAM3SLAM and compare its per-

formances with respect to state-of-the-art multi-agent and
multi-map VSLAM works, a choice of datasets and evalua-
tion criteria is necessary. Section 5.1 presents the competing
multi-agent works evaluated, Section 5.2 indicates the eval-
uation datasets used and Section 5.3 introduces evaluation
criteria.
5.1. Competing works

Following the state-of-the-art multi-agent VSLAM
presented in Section 2, we select ORB-SLAMM (Daoud

et al., 2018) and CCM-SLAM (Schmuck and Chli, 2019) for
conducting a comparative evaluation with MAM3SLAM.
While, to the best of our knowledge, ORB-SLAMM is
the only state-of-the-art multi-agent VSLAM work with
a multi-map recovery strategy, CCM-SLAM is the most
complete state-of-the-art real-time multi-agent VSLAM
framework at the time of writing. The main differences
between these two works and MAM3SLAM are summarized
in Table 3.
5.2. Datasets

In order to evaluate MAM3SLAM on a standard
VSLAM benchmark, a first evaluation is conducted using
the Machine Hall (MH) sequences from the EuRoC MAV
Dataset (Burri et al., 2016). In a second part, the underwater
evaluation is performed on the three new underwater
datasets introduced in Section 4. The EuRoC MH sequences
are captured in the same industrial environment with
the same lighting conditions and are provided with a
ground truth position from a Leica Total Station. Similarly
to (Schmuck and Chli, 2019), sequences MH_02 and MH_03

were used to simulate two agents. The agents start from a
close position, but do not overlap much after takeoff, each
exploring a different part of the hall. An overview of this
dataset is given in Figure 10, and a brief summary in Table 4
and the corresponding trajectories per agent in Figure 11.
5.3. Evaluation criteria

Two evaluations are conducted: localization and map-
ping performances and real-time performances. In related
multi-agent VSLAM works (Daoud et al., 2018; Schmuck
and Chli, 2019), localization and mapping performances are
only evaluated by the RMS Absolute Position Error (APE)
on each agent’s trajectory. However, multi-agent SLAM
also aims to estimate inter-agent relative poses and their
collaborative environment mapping. This is why additional
comparison metrics are introduced here.

Individual localization is evaluated by the RMS APE
and the RMS Relative Position Error (RPE) between two
consecutive frames and the percentage of localization failure
with respect to the number of frames.

Relative localization is characterized by the percentage
of the sequence for which the agents are localized on the
same map, and by the RMS Absolute Relative Position Error
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Table 2
Underwater multi-agent datasets description. All of them are recorded with an RGB camera and between 1 and 5 m depth,
without embedded lights. Trajectory span is characterized by the volumetric and horizontal coverage of the sequence, abbreviated
‘vol.’ and ‘horiz.,’ respectively.

Camera Duration Trajectory span Description

Tank 1
480×640 pixels
10 Hz 100 s

vol.: 70 m3

horiz.: 20 m2 Textured fake reef in pool. Slow motion.

Tank 2
480×640 pixels
5 Hz 75 s

vol.: 48 m3

horiz.: 16 m2

Submarine spare parts, in pool. Some poorly
textured areas (walls, floor). Fast motion and
motion blur. Agent 1’s sequence easier than
Agent 0’s.

Sea diving
380×640 pixels
8 Hz 100 s

vol.: 189 m3

horiz.: 52 m2

Around a rock, at sea, at shallow depth, in
clear water. Presence of suspended particles,
fishes and a fellow diver.
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(c) Sea diving

Figure 9: Agent trajectories on sequences. The black points in Fig. 9a, 9b, and 9c are a sub-sample of the SfM reconstruction
and give an idea of the position of the surrounding objects with respect to the agents’ trajectories.

(ARPE) between the two agents. If the system fails to merge
all maps into a single one, these metrics are given both as
a statistic over all maps and for the map with the largest
number of KFs, denoted as the main map.

Collaborative mapping is first evaluated by the num-
ber 𝑁𝑚𝑎𝑝𝑠 of unmerged maps at the end of the sequence.
Additional metrics are computed on the main map. Agent
contribution and map size are characterized by the number of
KFs created by each agent. The map’s spatial cover 𝐿𝑚𝑎𝑝 is
computed as the sum of the edges of the minimum spanning
tree among the positions of the KF in the map, and evaluates
the size of the mapped area. 𝐿𝑚𝑎𝑝 is computed using the
ground truth pose of the KF to avoid introducing a bias due
to poor estimation of the KF pose. The RMS APE on the

pose of the KFs of the main map is also computed.
Given an error metric 𝑒 on a set of 𝑁 poses 𝐓𝑗 ∈ 𝑆𝐸(3)

defined on 𝑛 disconnected maps denoted 𝑖, 𝑖 ∈ {0...𝑛−1},
the global RMS associated to 𝑒 is defined by:

𝑒𝑅𝑀𝑆 =

√

√

√

√

√

1
𝑁

𝑛
∑

𝑖=1

∑

𝐓𝑗∈𝑖

𝑒(𝐓𝑗)2 (1)

where 𝐓𝑗 ∈ 𝑖 denotes that pose 𝐓𝑗 is defined in map 𝑖.
In order to compare the real time performances of the

algorithms evaluated, the durations of the tracking (𝑇 ), local
mapping (𝐿𝑀) and place recognition (𝑃𝑅) operations are
recorded. Place recognition includes inter and intra map
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Table 3
Competing algorithms. Unless otherwise stated, tracking (T), local mapping (LM), loop closing (LC), place recognition (PR),
and GBA operations are the same as the one implemented in ORB-SLAM. Map merging is abbreviated into MM.

Agents Server Map merging Recovery

MAM3SLAM
Send frames
to the server

1 T thread per agent
1 LM thread per agent
1 LC & MM thread
(1 LC GBA thread)

Similar to
ORB-SLAM3’s MM Multi-map

ORB-SLAMM
(Daoud et al., 2018)

Send frames
to the server

1 T thread per agent
1 LM thread per agent
1 LC thread per agent
(1 LC GBA thread
per agent)
1 inter-map PR thread

Close to
ORB-SLAM’s LC
but with less
geometric
consistency
checks

Multi-map

CCM-SLAM
(Schmuck and Chli, 2019)

1 T thread
1 LM thread
+ send new KF
to the server

1 inter-map PR thread
(1 MM GBA thread)
+ send local KF
to the agents

Similar to
ORB-SLAM’s
LC + GBA

∅

(a) (b) (c)
Figure 10: Overview of the EuRoC MH dataset

loop detection, loop fusion and map merging. Let 𝑡𝑜𝑝, 𝑜𝑝 ∈
{𝑇 , 𝐿𝑀,𝑃𝑅} denote the total duration of the 𝑜𝑝 operation
summed for all iterations for all agents on a sequence. Let
𝑁𝑖, 𝑖 ∈ ℕ define the total number of frames of Agent 𝑖 during
the same sequence. Since the different datasets evaluated
have different durations and framerates, the run time of each
operation 𝑜𝑝 is characterized by the quantity:

𝑡𝑜𝑝 =
𝑡𝑜𝑝

∑

𝑖
𝑁𝑖

(2)

Because the tracking operation is triggered by a new in-
coming frame, 𝑡𝑇 is also the average duration of a tracking
operation.

6. Evaluation
A quantitative evaluation of MAM3SLAM is performed

on two-agent scenarios on the four datasets described
in Section 5.2, including one aerial dataset and three
underwater datasets, by comparing MAM3SLAM to
multi-agent ORB-SLAMM (Daoud et al., 2018) and
to CCM-SLAM (Schmuck and Chli, 2019). These two
competing works have been selected for the current
evaluation because they are the most recent multi-agent
ORB-SLAM-based work offering a fully functional
open-source implementation and not requiring NVIDIA
GPU acceleration (NVIDIA et al., 2020). In addition,
ORB-SLAM3 (Campos et al., 2021) is used as a reference

Table 4
EuRoC MH dataset description. Trajectory span is characterized by the volumetric and horizontal coverage of the sequence,
abbreviated ‘vol.’ and ‘horiz.’ respectively.

Camera Duration Trajectory span Description

EuRoC MH
(Burri et al., 2016)

Grayscale
480×752 pixels
20 Hz

135 s
vol.: 288 m3

horiz.: 144 m2 Flying drone in an industrial hall.
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Figure 11: Agent trajectories on the EuRoC MH dataset

for individual localization performance, as it represents the
current state-of-the-art for monocular single agent VSLAM.
Evaluations are carried out in real-time on a computer with
an Intel i7-10610U CPU @ 1.80GHz × 8, 16 GB RAM,
running Ubuntu 18.04 and ROS Melodic.
6.1. Localization and mapping evaluation

A localization and mapping performance evaluation is
performed according to the metrics described in Section 5.3.
Given the non-deterministic behavior of multithreaded ap-
plications, all localization and mapping evaluation metrics
are given as their median values among five runs. The results
are reported in Tables 5, 6, 7 and 8. If there are more than
one map in the system, the RMS APE and RPE on the
main map are indicated in parentheses in the table. Since
ORB-SLAMM does not completely fuse the maps in the
system but only computes an alignment, the total number
of maps in the system is shown in parentheses in the table.
Estimated and reference trajectories are aligned using the
𝑆𝑖𝑚(3) Umeyama alignment of the EVO library (Grupp,
2017) to compute the error metrics. In Tables 5, 6, 7 and 8,
the best result for each evaluation criterion among the multi-
agent SLAM works is shown in bold. If ORB-SLAM3 (Cam-
pos et al., 2021) gives a better result than the multi-agent
approaches, ORB-SLAM3’s result is also indicated in bold.
A graphical, synthetic comparison of the performances of
the three multi-agent SLAM works is given in Figure 12.
More statistics on the position errors for the multi-agent
SLAM algorithms are provided in Figure 16, in the form of
box-and-whisker diagrams.

Figure 13 shows the trajectories estimated by
MAM3SLAM on one of the five runs, for the four datasets.

Estimated and reference trajectories overlap particularly
well for the EuRoC MH, Tank 1 and Sea diving datasets.

CCM-SLAM fails to initialize on the Tank 1 and Tank 2
datasets, denoting a lack of robustness. We assume that their
initialization solver may not have time to converge due to the
number of features, their layout, or their characteristics.

MAM3SLAM demonstrates the best individual
localization performances among the multi-agent
approaches evaluated, with the lowest RMS APE and
RPE in all sequences, reaching centimetric accuracy
on the EuRoC MH and Tank 1 datasets. CCM-SLAM’s
performances are close to MAM3SLAMs but still with a
lower accuracy, showing up to ten times higher RMS APE
and RPE on EuRoC MH’s Agent 1 and Sea diving’s both
agents. ORB-SLAMM shows particularly poor individual
localization performances, with RMS APE and RPE
exceeding one meter in EuRoC MH and RMS APE 50
times higher than all other approaches on Sea diving’s
Agent 1. This is mainly due to bad inter-map transformation
estimation caused by the lack of robustness of their inter-map
place recognition and map merging algorithm compared to
the other approaches. An example of ORB-SLAMM map
misalignment is provided in Figure 14, where trajectories
estimated by ORB-SLAMM are aligned with respect
to the reference trajectories using Umeyama alignment.
In Figure 14a, trajectories estimated on different maps
are aligned together using the inter-map transformation
estimated by ORB-SLAMM, and the resulting trajectory is
aligned with respect to the reference ones. In Figure 14b,
trajectories estimated on different maps are aligned
individually with respect to the reference, without using the
inter-map transformation estimate from ORB-SLAMM. It
can be observed that ORB-SLAMM produces inconsistent
inter-map alignments, which deteriorate significantly the
accuracy of the global trajectory. The same phenomenon
happens on all datasets.

One can notice that even if MAM3SLAM and CCM-
SLAM show similar performances, ORB-SLAM3 produces
the most accurate individual localization on the EuRoC MH,
Tank 1, and Sea diving datasets. This can be explained
by the computing resources available since more parallel
computations are required by multi-agent approaches. This
can also explain the non-zero failure rates observed for
multi-agent approaches on these three datasets. However,
MAM3SLAM outperforms ORB-SLAM3 in individual lo-
calization on Tank 2, highlighting the interest in collabo-
rative map construction and map sharing for particularly
difficult sequences. In this dataset, Agent 1’s sequence is
easier than Agent 0’s. As a result, ORB-SLAM3 outputs two
times higher RMS APE and RPE on Agent 0 than on Agent 1.
However, in MAM3SLAM, Agent 0’s localization relies on
more complete and reliable mapping data through the col-
laborative scene mapping. This results in agent performance
smoothing, reaching a similar accuracy of about 10 cm for
both agents.
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Table 5
Results on the EuRoC MH dataset

MAM3SLAM ORB-SLAMM CCM-SLAM ORB-SLAM3

#0
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.021
0.015
0.72

1.237
0.147
0.00

0.055
0.008
0.00

0.016
0.005
0.00

#1
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.034 (0.033)
0.011 (0.011)
1.55

2.624
1.436
1.48

0.152
0.025
0.00

0.027
0.010
0.00

% same map 99.38 100.00 100.00 ∅
RMSARPE (m) 0.025 2.162 0.135 ∅

𝑁𝑚𝑎𝑝𝑠 2 1 (4) 1 ∅
KF per agent (#0,#1) 243, 249 306, 479 281, 360 ∅
𝐿𝑚𝑎𝑝 (m) 135.292 150.224 145.347 ∅
KF RMSAPE (m) 0.031 2.500 0.159 ∅

Table 6
Results on the Tank 1 dataset

MAM3SLAM ORB-SLAMM CCM-SLAM ORB-SLAM3

#0
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.026
0.026
0.00

0.489
0.461
0.00

∅
∅
100.00

0.012
0.038
0.00

#1
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.037
0.038
0.00

0.208
0.213
3.16

∅
∅
100.00

0.011
0.030
0.00

% same map 100.00 100.00 ∅ ∅
RMSARPE (m) 0.023 0.389 ∅ ∅

𝑁𝑚𝑎𝑝𝑠 1 1 (5) ∅ ∅
KF per agent (#0,#1) 101, 128 89, 125 ∅ ∅
𝐿𝑚𝑎𝑝 (m) 32.086 29.366 ∅ ∅
KF RMSAPE (m) 0.012 0.509 ∅ ∅

MAM3SLAM also outperforms the other evaluated
methods on inter-agent relative localization. All methods
localize the two agents on the same map in almost 100%
of the EuRoC MH and Tank 1 datasets, but MAM3SLAM
outperforms the other approaches on relative pose estimation
with centimetric precision. It is also the only SLAM
approach capable of localizing the two agents on the same
map for some periods of time on the Tank 2 dataset, with
a fair 20 cm accuracy. Finally, on the Sea diving dataset,
MAM3SLAM and CCM-SLAM localize the agents in
the same map 100 % of the sequence and with a similar
relative localization accuracy, whereas ORB-SLAMM fails
to fuse all maps of the system, resulting in a very small
sequence percentage for which a relative localization can be
computed.

Considering collaborative mapping, ORB-SLAMM pro-
duces inaccurate map alignments and sometimes fails to
detect map overlap, as with the Tank 2 and the Sea diving
datasets. Map merging is far more robust in MAM3SLAM
and CCM-SLAM, which output a common, single map in

most sequences. It is, however, worth noticing that CCM-
SLAM’s agents cannot initialize a new map, limiting the
maximum number of maps in the system to two agents.
One can see that MAM3SLAM produces two maps on the
EuRoC MH dataset but localizes the agents on the same
map during almost all the sequence. This is explained by
the failure of one of the agents to track the scene soon after
initialization and its relocalization in the map initialized
by the other agent, which is incremented collaboratively
along the sequence. The second map is thus very small,
with a median size of 3 KF. Finally, in the general case,
MAM3SLAM produces a more accurate main map than the
other approaches for an equivalent number of KF per agent
and map size 𝐿𝑚𝑎𝑝.
6.2. Discussion on ORB-SLAM3 localization

accuracy
As mentioned in Section 6.1, ORB-SLAM3 shows

slightly better individual localization accuracy on the
EuRoC MH, Tank 1, and Sea diving datasets. The purpose
of this section is to discuss these results in more details.
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Table 7
Results on the Tank 2 dataset

MAM3SLAM ORB-SLAMM CCM-SLAM ORB-SLAM3

#0
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.125 (0.142)
0.139 (0.152)
27.78

0.217 (0.327)
0.127 (0.158)
33.33

∅
∅
100.00

0.204 (0.241)
0.143 (0.159)
24.18

#1
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.115 (0.026)
0.043 (0.021)
23.08

0.286 (0.174)
0.099 (0.066)
18.85

∅
∅
100.00

0.074 (0.022)
0.050 (0.025)
26.28

% same map 13.92 0.00 ∅ ∅
RMSARPE (m) 0.204 ∅ ∅ ∅

𝑁𝑚𝑎𝑝𝑠 4 6 (6) ∅ ∅
KF per agent (#0,#1) 74, 30 41, 0 ∅ ∅
𝐿𝑚𝑎𝑝 (m) 8.412 2.855 ∅ ∅
KF RMSAPE (m) 0.107 0.327 ∅ ∅

Table 8
Results on the Sea diving dataset

MAM3SLAM ORB-SLAMM CCM-SLAM ORB-SLAM3

#0
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.040
0.042
5.41

0.722 (0.601)
0.325 (0.168)
0.75

0.046
0.186
0.00

0.032
0.041
0.00

#1
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.039
0.051
0.00

1.492 (1.770)
0.139 (0.155)
1.88

0.034
0.179
0.00

0.026
0.049
0.00

% same map 100.00 6.00 100.00 ∅
RMSARPE (m) 0.041 0.538 0.062 ∅

𝑁𝑚𝑎𝑝𝑠 1 5 (6) 1 ∅
KF per agent (#0,#1) 269, 285 21, 187 199, 202 ∅
𝐿𝑚𝑎𝑝 (m) 49.051 20.132 44.706 ∅
KF RMSAPE (m) 0.078 1.722 0.061 ∅

On the one hand, one can expect that using multiple maps
from different agents will result in better accuracy since
it will bring additional mapping information and a wider
variety of viewing poses. On the other hand, running one
instance of single-agent ORB-SLAM3 requires less compu-
tational resources than running any of the compared multi-
agent SLAM works on a 2-agent sequence. As a result, the
computational resources available for agent-level operations
have decreased. Because the system is bound to real-time
by the image input, the SLAM threads are intended to
make more computations in the same limited time. Although
the difference in processing time available for agent-level
operations is minor, it is still sufficient to have the multi-
agent SLAM outputs slightly less optimized than the ones
of a single-agent ORB-SLAM3.

The two phenomena depicted have opposite effects on
the result’s accuracy: the first tends to increase it, and the
second tends to decrease it. In the EuRoC MH, Tank 1, and
Sea diving datasets, the second phenomenon is predominant
for different reasons. In EuRoC MH, the agents split into
two different areas of the hall after a few seconds. Their

respective mapping information, therefore, extends the map
but does not provide much observational redundancy that
would improve map accuracy. On the other hand, Tank 1 and
Sea diving feature quite slow motion and mostly easy visual
conditions, allowing an already good reconstruction without
fusing observations from the two agents, and combining
agent information does not improve the map sufficiently to
impact trajectory estimation accuracy. Even though local-
ization and mapping accuracy are not improved in these
datasets by fusing views from multiple agents, one can still
notice that CCM-SLAM and MAM3SLAM accuracy is still
very close to that of ORB-SLAM3 in these datasets.

Conversely, the second depicted phenomenon becomes
predominant in the Tank 2 dataset. Because Agent 1’s motion
is very fast, with a low frame rate, motion blur, and low
textures, a single-agent SLAM using only Agent 1’s data
will have limited accuracy. This can be observed by the
result given by ORB-SLAM3 for this agent in this sequence.
However, because Agent 0 has simpler motion, its camera
input is better suited for computing an accurate map and
trajectory. When running a multi-agent SLAM, map data
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Figure 12: Graphical overview of the performances of the three multi-agent methods compared, on the four test datasets, according
to the quantities reported in Tables 5, 6, 7, and 8. The RMSAPE and failure rate reported in the charts correspond to the mean
value among the two agents. Note that because CCM-SLAM fails to initialize on the Tank 1 and Tank 2, no results are indicated
in Figures 12b and 12c, accounting for a zero performamce. Note also that the results of MAM3SLAM and CCM-SLAM are
overlapping in Figure 12d

created by Agent 0 can be used in Agent 1’s localization,
significantly improving its positioning accuracy.

Lastly, but importantly, ORB-SLAM3 does not allow
locating multiple agents in the same referential frame at
the same time, contrary to the multi-agent works studied.
However, getting this relative localization information is our
main motivation for focusing on multi-agent SLAM.
6.3. Computing time evaluation

In order to compare the real time performances of the
algorithms evaluated, the durations of the tracking (T), local
mapping (LM) and place recognition (PR) operations are
recorded. In the current evaluation, we group under the

name "Place recognition" inter- and intra-map loop detec-
tion via the database queries followed by consistency and
geometrical checks, loop fusion and map merging operations
when they occur, including pose graph optimization. The
total duration of each of these operations is summed for
all iterations for all agents. Figure 15 compares the total
computational time dedicated to T, LM, and PR operations
in processing each one of the test datasets. Since these
datasets have different framerates and duration, the durations
indicated in the figure correspond to the sum of all iteration
durations divided by the number of frames in the sequence.

One can see that tracking durations are quite similar
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Figure 13: Trajectories estimated by MAM3SLAM (solid) and reference trajectories (dashed) on the test datasets, after Umeyama
alignment, showing estimated camera poses every 5s.

from an algorithm to another. For the EuRoC MH, Tank 2,
and Sea diving datasets, tracking duration represents about
10 ms per frame per agent. The tracking duration per
frame is much higher for the Tank 1 dataset, which can
be explained by the high number of ORB features tracked
(5000 ORB features per frame are extracted, vs 1000 for
EuRoC MH, and Sea diving). 5000 ORB features per
frame are extracted for the Tank 2 dataset too, but most of
them are not matched correctly and thus unused for pose
computation, hence having a lower computational duration.

LM total computational duration is higher for
MAM3SLAM. One can see that a significant proportion

of this duration is spent waiting for mutex unlock. In the
evaluated configurations, the maximum duration of local
mapping operations divided by the number of incoming
frames is about 110 ms. This indicates that, in this case,
the system can create a new KF every 9 s, which is still
a satisfying ratio. However, this maximum KF insertion
rate will decrease as the number of agents increases since
more agents will increase the total mutex wait duration.
Our system is thus limited to a small number of agents.
One can notice that the total duration of mutex wait in local
mapping is very low for the Tank 2 dataset. This is due to
the agents being located on the same map simultaneously
more rarely and the low framerate reducing the probability
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(b) Without using ORB-SLAMM’s map alignment
Figure 14: Trajectories estimated by ORB-SLAMM on the EuRoC MH dataset (plain) and ground truth trajectories (dashed).
Trajectories are estimated over 5 maps, which are aligned by the system. Parts of the trajectory from different maps are represented
in a different color.
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Figure 15: Sum of the durations of tracking, local mapping
and place recognition (loop closure and map overlap detection
and fusion) iterations divided by the total number of frames,
for each test dataset.

of a simultaneous KF creation attempt by the two agents.
Lastly, two main observations can be formulated re-

garding PR total computational duration 𝑡𝑃𝑅. First, one can
observe that this quantity is significantly higher for ORB-
SLAMM than for CCM-SLAM and MAM3SLAM. Indeed,
ORB-SLAMM’s inter-map place recognition consists of a

loop over all KF from all maps, which is repeated contin-
uously, while CCM-SLAM and MAM3SLAM only query
the KF database at new KF creation, which prevents unnec-
essary queries if the maps and keyframes are idle. Second,
𝑡𝑃𝑅 depends on the sequence for each SLAM algorithm.
First, Let us consider the cases of MAM3SLAM and CCM-
SLAM, where place recognition is triggered by inserting a
new KF by any of the involved agents. If a map merging or
loop closing candidate is confirmed, the map will be updated
and optimized. The duration of the initial database query
is negligible compared to that of this correction step. The
value of 𝑡𝑃𝑅 thus reflects the ratio of the number of map
merging or loop closing operations compared to the number
of frames, which depends, notably, on camera frame rate and
trajectory. In the case of ORB-SLAMM, place recognition is
not triggered by KF insertion but is an infinite loop over all
Kfs from all maps. Thus, the complexity of a single iteration
of this infinite loop is in 𝑜(𝑛𝐾𝐹

𝑁 ) where 𝑛𝐾𝐹 accounts for
the number of KF in a map, and 𝑁 is the number of maps.
𝑡𝑃𝑅 is thus significantly higher in Tank 2 and Sea diving,
where there are five to six maps in the system. One can also
notice that ORB-SLAMM’s 𝑡𝑃𝑅 is higher in Tank 2 than
in Sea diving. We believe this is caused by ORB-SLAMM
computing one map alignment in Tank 2 versus 0 in Sea
diving.

7. Conclusion and future work
This work focused on the problem of visual-based

simultaneous localization and mapping for underwater
multi-agent scenarios, which require the localization of the
involved vehicles with respect to each other and a previously
unknown environment. Following previous studies of visual

J. Drupt, A. I. Comport, C. Dune and V. Hugel: Preprint submitted to Elsevier Page 17 of 20

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



MAM3SLAM: Towards underwater-robust multi-agent visual SLAM

SLAM underwater capabilities, the current work focuses
on ORB-SLAM-based works. MAM3SLAM, a new
fully centralized multi-agent and multi-map monocular
VSLAM framework based on ORB-SLAM Atlas (Elvira
et al., 2019) and ORB-SLAM3 (Campos et al., 2021),
was introduced as a solution for underwater multi-ROV
localization. In addition, the two most recent state-of-
the-art multi-agent ORB-SLAM-based-works released,
namely CCM-SLAM (Schmuck and Chli, 2019) and
ORB-SLAMM (Daoud et al., 2018), were selected to
perform a comparative benchmark and study the potential
of ORB-SLAM-based multi-agent works for underwater. In
the absence of previous underwater datasets for multi-agent
visual SLAM benchmarking, a key contribution of the
current work was to record and release three underwater
two-agent datasets, including two in a pool and one in
the sea. MAM3SLAM, CCM-SLAM, and ORB-SLAMM
were then evaluated on four two-agent scenarios, including
a standard aerial dataset and our three new underwater
datasets.

A run-time analysis demonstrated that MAM3SLAM’s
place recognition computation time is significantly lower
than competing works, and its tracking computational time
is of the same order of magnitude, up to 10 times lower
than CCM-SLAM’s on the EuRoC MH dataset and about
100 times lower than ORB-SLAMM’s in the general case.
This analysis also shows that MAM3SLAM’s local map-
ping takes significantly more time than that of competing
approaches — up to 1.4 more time in the worst case —
because of the mutex wait imposed to prevent concurrent
map updates from different agents when they localize with
respect to the same map, and some low-level software engi-
neering would be required to extend MAM3SLAM to more
than two agents in future works. This extension would be a
prerequisite for using MAM3SLAM in a real-life underwater
robot chain configuration.

Even though the current implementation did not focus
on handling this scalability problem and left it for future
works, our two-agent MAM3SLAM proved to outperform
the two other evaluated approaches in terms of individual
localization, relative localization, and mapping accuracy and
demonstrates good robustness to poor visual conditions.
Although showing a similar accuracy to CCM-SLAM, up
to 2 cm on some of the datasets, MAM3SLAM proves to
be significantly more robust by successfully processing all
the test sequences, while CCM-SLAM failed to initialize on
two out of the four sequences. In addition, MAM3SLAM
produced significantly more accurate results than ORB-
SLAMM on all sequences, where MAM3SLAM localiza-
tion errors are up to 80 times lower than ORB-SLAMM’s.
Finally, MAM3SLAM proves to be a reliable multi-agent
VSLAM approach for multi-ROV localization, reaching cen-
timetric accuracy on two out of three underwater evaluation
datasets.

In light of these results, MAM3SLAM seems like a

promising solution for multiple ROV localization, for in-
stance, in underwater robot chains. Nonetheless, some low-
level software developments are required to extend this
approach to a larger number of agents while keeping the
overall high-level principle. In addition, future works may
focus on improving the robustness of the system by fusing
multiple inputs to increase its robustness to underwater
visual conditions and estimate the scale of the environment.
In particular, in the specific context of a robot chain, inter-
agent pose constraints might be used at different levels in the
SLAM pipeline, including scale estimation, inter-map place
recognition, and pose estimation optimization. The system
may also be extended to include stereo camera input, fuse
inertial, and, possibly, pressure measurements.
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Figure 16: Position error box-and-whisker diagrams for the three compared multi-agent VSLAM algorithms on the four
datasets.The rectangular box extends from the lower quartile to the upper quartile of the distribution. The median value is
indicated by a plain line inside the box. The whiskers indicate the 5 percentile and 95 percentile. The errors analyzed are the
Absolute Position Error of Agent 0 (APE #0), the Absolute Position Error of Agent 1 (APE #1), the Absolute Relative Position
Error (ARPE) between the two agents and the KF Absolute Position Error (KF APE). These statistics include all runs of each
algorithm. Note that the scale of the horizontal axis can change significantly from a diagram to another.
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