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Highlights

MAM3SLAM: Towards underwater-robust multi-agent visual SLAM
Juliette Drupt,Andrew I. Comport,Claire Dune,Vincent Hugel

e MAM3SLAM, a new fully centralized multi-agent and multi-map monocular Visual Simultaneous Localiza-
tion And Mapping (VSLAM) framework based on ORB-SLAMS3 (Campos et al., 2021), is introduced as
a solution for the localization of multiple underwater Remotely Operated Vehicles (ROVs) deployed in a
common area.

e Multi-agent evaluation metrics are introduced to provide an extensive evaluation of the proposed approach
compared to the state-of-the-art approach. These criteria consider individual and relative localization and
an evaluation of mapping collaboration.

e Three new underwater two-agent datasets for multi-agent VSLAM benchmarking, including two in a pool
and one in the sea, were recorded and released.

e MAM3SLAM is evaluated and compared to two competing works, namely ORB-SLAMM (Daoud et al.,
2018) and CCM-SLAM (Schmuck and Chli, 2019). This evaluation is performed on two agent scenarios
and uses one standard airborne dataset and three new underwater ones. It uses the set of criteria defined
previously. Evaluation results show that MAM3?SLAM outperforms the two competing works and is notably
more robust to underwater visual conditions.
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ABSTRACT

Some underwater applications involve deploying multiple underwater Remotely Oper-
ated Vehicles (ROVs) in a common area. Such applications require the localization of
these vehicles, not only with respect to each other but also with respect to a previously
unknown environment. To this end, this work presents MAM®SLAM, a new fully
centralized multi-agent and multi-map monocular Visual Simultaneous Localization
And Mapping (VSLAM) framework. Multi-agent evaluation metrics are introduced to
provide an extensive evaluation of the proposed approach compared to the state-of-
the-art multi-agent visual SLAM on four two-agent scenarios, including one standard
airborne dataset and three new underwater datasets recorded in a pool and the
sea. The results show that MAMB3SLAM is robust to underwater visual conditions
and tracking failures, outperforms the other evaluated methods in estimating the
individual and relative poses of the agents and in collaborative mapping accuracy.
Tndeed, MAM3SLAM reaches an accuracy of less than 3 cm on three out of the four
test sequences, and it is the only algorithm able to produce a consistent output on all
the test sequences. MAMBSLAM’s source code is made available, as are the underwater

datasets.

1. Introduction

In underwater robotics, the most common mis-
sions involve covering large areas, for instance ex-
ploration and mapping, biological or archaeological
sample collection or marine infrastructures inspection
and maintenance. A now well-accepted strategy for
speeding up large-area mapping is to use fleets of
robots (Murphy et al., 2012). Multiple ROVs can also
be deployed to manage the cable which provides real-
time wired communication between a ROV and a
teleoperation station (Laranjeira et al., 2020; Drupt
et al., 2022). These ROVs are then chained along the
cableto control its shape, prevent entanglement, and
counteract the forces generated by the drag on the
cable. The aforementioned applications need individual
but also inter-robot localization within their environ-
ment to operate safely, hence the interest in multi-
agent simultaneous localization and mapping (SLAM)
algorithms. Conversely, multiple agents involve largest
region coverage with multiple views, such that multi-
agent SLAM can be expected to map a wider area in a
restrained time, and with an improved robustness due
to the multiplication of the viewing points. However,
underwater multi-agent SLAM is generally addressed in
the case of Autonomous Underwater Vehicles (AUVs)
which have limited communication through the water
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medium (Song and Mohseni, 2014; Mangelson et al.,
2018; Ozkahraman and Ogren, 2022). The specificity of
the present work is to consider ROVs instead of AUVs,
allowing real time communication between the robots
and a central surface server.

Underwater SLAM usually relies on multi-sensor
fusion, including visual, inertial, depth and acoustic
measurements, but some works highlight the interest
of visual SLAM for underwater applications (Joshi
et al., 2019). Cameras have low cost, weight, and
power consumption compared to acoustic technologies.
In addition, they provide rich information about their
environment, and monocular cameras are the main
feedback sensors used for remotely operated struc-
ture inspection and scientific exploration. While visual
SLAM (VSLAM) is widely investigated for airborne
applications, underwater visual conditions are more
challenging due to backscattering, selective color ab-
sorption, turbidity, and the effect of embedded light
on the scene aspect in deep sea missions. However,
recent works demonstrate that VSLAM algorithms
based on ORB-SLAM (Mur-Artal and Tardos, 2017)
can be robust to underwater conditions to some extent,
even in the monocular case (Quattrini Li et al., 2017;
Joshi et al., 2019; Hidalgo et al., 2018). In particular,
ORB-SLAM Atlas (Elvira et al., 2019) is identified
as a promising solution for underwater, monocular
VSLAM (Drupt et al., 2023), which can cope with most
tested scenarios.

Building on ORB-SLAM Atlas (Elvira et al., 2019),
this paper presents a new multi-agent and multi-map

monocular VSLAM framework, namely MAM3SLAM,
as a solution for the localization of multiple ROVs
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operating in a common area. In this multi-ROV sce-
nario, allowing real-time communication with a pow-
erful server without communication restrictions, the
proposed approach is fully centralized, meaning that all
the computations are performed on this central server.
The contributions of the current work can be listed as
follows:

e The introduction and release of MAM3SLAM',
which extends ORB-SLAM Atlas to a multi-agent
case, where multiple agents can localize in the
same maps and access and update their data
collaboratively

e The collection and release of an underwater
benchmark dataset for two-agent systems,
composed of two pool sequences and one sea
sequence?

e The proposal of several multi-agent SLAM
evaluation metrics; an evaluation of MAM?SLAM
on one standard airborne dataset and these
three new underwater sequences® and an
intensive  comparison with state-of-the-art
CCM-SLAM (Schmuck and Chli, 2019) and
ORB-SLAMM (Daoud et al., 2018) works,
resulting in the first comparative benchmark of
these approaches in the literature, to the authors’
knowledge.

While the introduction of MAM3SLAM is more of an
engineering contribution to demonstrate the potential
of ORB-SLAM Atlas-based multi-agent SLAM for un-
derwater, visually challenging scenarios, the recording
and release of the underwater datasets and the pro-
posed benchmark are the main contributions of the
current work.

Section 2 presents the related work, including VS-
LAM for underwater applications and the correspond-
ing specificities, and the state-of-the-art in terms of
multi-agent VSLAM. Section 3 describes the algorithm
of MAM3SLAM. Underwater multi-agent datasets col-
lection is detailed in Section 4 and multi-agent VSLAM
evaluation methodology is given in Section 5. Evalua-
tion results are presented and discussed in Section 6,
before concluding in Section 7.

2. Related work

The first mention of visual-based SLAM for un-
derwater applications can be found in (Eustice et al.,
2005, 2006), where the wreck of the Titanic was
mapped using a visual-based SLAM information filter,
combined with navigation measurements involving a

Thttps://github.com/LaboratoireCosmerTOULON /MAMMM-

SLAM
2https://github.com/LaboratoireCosmerTOULON /2-agent-
datasets
3https://youtu.be/tmDzvdISuMk

tilt sensor, a magnetometer, a Doppler Velocity Log
(DVL), and pressure and altitude sensors. In line with
this first work, many more recent underwater visual-
based SLAM algorithms rely on additional navigation
sensors (Zhang et al., 2022) and are, therefore, not
purely visual works, such that they are finally out of
the scope of the VSLAM definition. Although VSLAM
is widely investigated for airborne applications, only a
few works focus on underwater VSLAM, and even fewer
ones investigate multi-agent VSLAM for underwater.

2.1. Challenges in underwater vision

VSLAM algorithms usually assume that the scene is
rigid, static and Lambertian. However, these assump-
tions are challenged by underwater visual conditions.
Light propagation through the water is affected by
back-scattering, selective color absorption, and turbid-
ity (Akkaynak et al., 2017; Wang et al., 2019). This
phenomenon can be compensated by estimated the wa-
ter model from one view and the corresponding depth
map (Akkaynak and Treibitz, 2019) or multiple views
of the scene (Boittiaux et al., 2023b). Although very
efficient, those techniques require a prior dense 3D map-
ping of the scene and are therefore not straightforward
for the usual online monocular VSLAM algorithms.
Attempts of image restoration steps in VSLAM works
will be further discussed in Section 2.2.

The presence of embedded lights in deep sea mis-
sions also affects the aspect of the scene (Ferrera et al.,
2019) and, conversely, scenes in shallow water can
feature surface effects, known as flickering. As a result,
the image of an underwater three-dimensional point
depends on different factors including its position with
respect to the camera, its depth with respect to the
surface, but also the weather conditions. In extreme
cases, a camera placed in open water or too far from
the surrounding objects may not be able to observe the
seabed or any other environment feature. This scenario
can occur when a robot moves down the water column
towards its working depth or if the camera is facing
away from any landmark. Such a dropout example is
given in Figures 1.

(a) Before dropout (b) During dropout

Figure 1: Visual dropout in the sea, off the coast of Saint-
Raphael, France (Drupt et al., 2023)
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In addition, while most airborne VSLAM works
investigate indoor, industrial, or urban landscapes fea-
turing few mobile objects and mostly artificial envi-
ronments, underwater applications can feature a large
variety of landscapes, including low-textured, natu-
ral environments and mobile elements including fish,
seaweeds, and suspended particles, as illustrated in
Figure 2.

(a) Suspended particles

(b) Fishes and
seaweeds (Joshi et al.,
2019)

Figure 2: Examples of mobile objects in underwater, natural
environments

2.2. Monocular VSLAM for underwater

Coping with the aforementioned underwater-
specific visual conditions is crucial when applying
VSLAM  techniques underwater. Some  works
investigate an image restoration step for each
incoming frame (Salvi et al., 2008; Cho and Kim,
2018) to correct underwater visual distortion effects.
However, this operation is always an approximation
and can be computationally expensive, depending
on the physical accuracy of the model used. As a
result, an interest has been shown for off-the-shelf,
underwater robust algorithms. Evaluations of state-of-
the-art monocular VSLAM algorithms on underwater
scenarios demonstrate that VSLAM works based
on ORB-SLAM (Mur-Artal et al., 2015), and more
specifically ORB-SLAM Atlas (Elvira et al., 2019;
Campos et al., 2021) can be robust to underwater
visual conditions (Joshi et al., 2019; Drupt et al.,
2023).

ORB-SLAM (Mur-Artal et al., 2015; Mur-Artal and
Tardos, 2017) is a monocular VSLAM algorithm based
on ORB features (Rublee et al., 2011), which strongly
impacted VSLAM by providing a publicly available
algorithm able to perform tracking, local mapping in
KeyFrame (KF) windows, a tracking failure recovery
module based on relocalization and loop detection and
closing, along with outstanding accuracy. Relocaliza-
tion and loop detection are performed by a Bags-
of-Words (BoW) place recognition module based on
DBoW2 (Galvez-Lopez and Tardos, 2012), where can-
didate matches are validated a second time according
to consistency criteria over a window of connected KFs
to reject bad loop closures. Even though it is quite

robust to underwater visual conditions, ORB-SLAM
is still reported to suffer from critical tracking failures
caused by incorrect feature matching and triangulation
or visual dropouts, from which the system fails to
recover. Indeed, ORB-SLAM'’s tracking failure recovery
consists of a relocalization attempt in the map, which
becomes useless when the camera moves outside the
already mapped area.

ORB-SLAM Atlas (Elvira et al., 2019) extends
ORB-SLAM with a new, improved tracking failure
recovery strategy, designed to handle relocalization
failures. If lost, ORB-SLAM Atlas initially tries to
relocalize in the KF database, similarly to ORB-SLAM,
but initializes a new map if relocalization fails within
a timed window. All KFs are stored in the same
database, which is queried by DBoW2 at each new
KF insertion with the same place recognition module
as ORB-SLAM’s loop closure. Two matched maps are
fused into one through a global bundle adjustment.
The system can thus reuse previous mapping data after
a fusion between the current map and an old one.
In addition, ORB-SLAM Atlas extends relocalization
to all maps of the system. An implementation of
ORB-SLAM Atlas is provided in the ORB-SLAM3
library (Campos et al., 2021), which unifies recent
developments on ORB-SLAM. Underwater evaluations
of this work demonstrate that the new, multi-map
SLAM recovery strategy of ORB-SLAM Atlas makes
it significantly more robust to tracking inconsistencies
and visual dropouts than ORB-SLAM (Drupt et al.,
2023), making it a promising candidate for underwater
visual-based localization and mapping.

2.3. Multi-agent SLAM architectures

Multi-agent SLAM systems involve several robotic
agents moving around in the same area and providing
local information to the system. The multi-agent SLAM
problem consists of localizing these multiple agents
while building a consistent map of the scene using
these multiple local observations inputs. On the one
hand, multi-agent SLAM allows the localization of
several agents with respect to each other and their
environment, while on the other hand, multiple agents
involve larger scene coverage and multiple viewing
angles, which is expected to increase mapping accuracy
by fusing observations with wide baselines (Cieslewski
et al., 2018; Schmuck and Chli, 2019). In the current
underwater application target, these properties can be
expected to reduce tracking failures by relying on a
more accurate map.

Two kinds of measurements can be involved in
multi-agent SLAM systems. Intra-agent, or individual
measurements only characterize the localization and
local surroundings of the agent performing the mea-
surement. Conversely, inter-agent, or relative measure-
ment, characterizes the relative localization of several
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Agents

(a) Centralized

Server

Agents

(b) Partially decentralized

(c) Fully decentralized

—> Communication

- » Optional communication

I Computations

[ No computations, only measurements

Figure 3: Multi-agent SLAM communication schemes

agents (Cieslewski et al., 2018). In addition, multi-
agent SLAM approaches can be classified according
to the distribution of their computations among the
agents and an optional central server, as illustrated
in Figure 3. In fully centralized approaches, all com-
putations are done on a central server, which can
be one of the agents or an external server. Other
agents only perform measurements and send their
data to the server. Optionally, the server can send
back the estimated locations to the agents. Centralized
approaches strongly rely on the server having sufficient
computational resources and bandwidth. As a result,
they are not scalable to many agents and are not robust
to communication failures. Conversely, decentralized
approaches distribute the computations among the
agents (fully decentralized) or between the agents and
a central server (partially decentralized). The main
motivations of partially decentralized approaches are
to reduce the server’s computational payload and pro-
vide better robustness to communication failures since
agents can keep estimating a localization based on their
measurements if the server is unavailable (Schmuck
and Chli, 2019). The scalability of such methods still
depends on the server’s computation resources and
requires to exchange significant amounts of data. Fully
decentralized algorithms do not involve any servers.
Agents communicate their measurements and, option-
ally, a state prior to each other, and all computations
are distributed among them. Such approaches are
motivated to reduce the communication bandwidth and
computational requirements for a more scalable multi-
agent localization scheme. Decentralized works focus
on reducing bandwidth requirements through commu-
nication sparsification, data marginalization, and inter-
robot data exchanges condensation to improve scalabil-
ity and robustness to communication restrictions (Luft
et al., 2018; Dubois et al., 2019; Ozkahraman and
Ogren, 2022). However, fully decentralized algorithms
are less accurate than those involving a central server
since observations are never fused at a global scale.

2.4. Multi-agent Visual SLAM

Historically, multi-agent VSLAM has been investi-
gated alongside single-agent VSLAM (Zou et al., 2019).
Individual measurements are provided by embedded
cameras and, in a few works, camera views from
multiple neighbor agents are used to provide a relative
measurement using multiple-view geometry (Zou and
Tan, 2013; Cieslewski et al., 2018). Although some
recent Bayesian works investigate fully decentralized
approaches (Leonardos and Daniilidis, 2017; Cieslewski
et al., 2018), most works, including the ones based on
ORB-SLAM, are centralized or only partially decen-
tralized (Li et al., 2018; Daoud et al., 2018; Schmuck
and Chli, 2019).

With regards to underwater applications, some
works investigate the problem of multi-agent VSLAM
for AUVs (Mangelson et al., 2018; Ozkahraman and
Ogren, 2022), where the main challenge consists in
managing information sharing between AUVs under the
bandwidth limitations of underwater wireless communi-
cations in a distributed, sparsely communicating man-
ner. However, by allowing real-time, large-bandwidth
communication with a surface server, multi-ROV ap-
plications fit the standard communication configuration
of airborne multi-agent VSLAM systems, where inter-
agent data fusion can be performed on a central server
in a centralized or partially decentralized scheme (Zou
et al., 2019). In addition, having a physical connection
between the ROVs and the server reduces the risk
of data transmission failure between the agents and
the server. According to this configuration and the
observations reported in Section 2.2, we focus only on
ORB-SLAM-based multi-agent works in the following.

ORB-SLAM being both efficient, highly accurate,
and open source, it is used as a basis for multiple
multi-agent works (Li et al., 2018; Daoud et al., 2018;
Schmuck and Chli, 2019; Cao et al., 2023). There-
fore, these works implement the main functionalities
involved in ORB-SLAM, including (i) tracking, (ii)
local mapping, (iii) loop closing, and (iv) an optional
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Table 1

Communication schemes and computations distribution in recent ORB-SLAM-based multi-agent works CORB-SLAM (Li et al.,
2018) ,ORB-SLAMM (Daoud et al., 2018), CCM-SLAM (Schmuck and Chli, 2019) and SwarmMap (Cao et al., 2023), where
‘T’ stands for ‘tracking’, ‘LM’ for ‘local mapping’, ‘LC" for ‘loop closing’, ‘MM’ for ‘map merging' and ‘R’ for ‘recovery’.

Communications Category Computations on agents Computations on server
CORB-SLAM  Maps: agents — server Partially decentralized T, LM, LC MM
ORB-SLAMM  Frames: agents — server Centralized 0 T, LM, LC, MM, R
CCM-SLAM KFs: agents <> server Partially decentralized T, LM LC, MM
SwarmMap Map operations: agents — server Partially decentralized T, LM. LC, MM

tracking failure recovery module. In addition, mul-
tiple agents involve a need to fuse local mapping
information from each agent and, therefore, a map
merging module. Communication schemes and com-
putation distributions in these works are given in
Table 1. CORB-SLAM (Li et al., 2018) introduces the
first ORB-SLAM-based multi-agent architecture. Each
agent runs ORB-SLAM individually and builds its own
maps. These maps are sent to a central server, which
tries to detect overlapping regions using a DBoW2
place recognition similar to ORB-SLAM’s loop closure.
Matched maps are then fused into a single common
map. The global map is sent to the agents after each
update. ORB-SLAMM (Daoud et al., 2018) is a fully
centralized algorithm designed for single or multiple
agents. It implements a multi-map tracking failure
recovery strategy that systematically creates of a new
map in case of tracking failure, which is intended to be
aligned with the previous maps by a place recognition
module. Conversely, CCM-SLAM (Schmuck and Chli,
2019) implements a monocular, partially decentralized
framework to apply to vehicles with limited onboard
memory and computational resources under commu-
nication bandwidth constraints. Each agent conducts
ORB-SLAM’s tracking and local mapping and only
maintains a window of local KFs. New, local map
information is returned to the server, which stores map
information and handles loop closing and map merging.
A key contribution to that work is the ability of the
agents to keep performing individual visual odometry
if communication with the server is broken. A downside
of this approach is that no SLAM failure handling
strategy is implemented. Extending the scalability of
such multi-agent approaches is also a challenge, which
has been investigated recently in SwarmMap (Cao
et al.,, 2023). This work presents a partially decen-
tralized architecture similar to the one of CCM-SLAM
but reduces the communication costs significantly by
not sending the local maps to the server but rather
the operations to be performed on the global map,
given the local observations. These map update tasks
are then handled by the server using a SLAM-specific
task scheduling module. Their implementation is open
source but not straightforward for existing systems
because it relies on CUDA (NVIDIA et al., 2020).

2.5. Map merging in multi-map VSLAM

Environment mapping can be decomposed into
several disconnected local maps in multi-map SLAM
systems. Such systems include some multi-agent SLAM
algorithms, like ORB-SLAMM (Daoud et al., 2018) and
CCM-SLAM (Schmuck and Chli, 2019), but also SLAM
algorithms with a multi-map tracking failure recovery
strategy, like single-agent ORB-SLAMM (Daoud et al.,
2018), ORB-SLAM Atlas (Elvira et al., 2019) or Dual-
SLAM (Huang et al., 2020). In order to produce
consistent environment mapping, multi-map SLAM
systems implement map merging algorithms, which
include region overlap detection between disconnected
maps and map alignement.

These map merging algorithms can differ from
a SLAM system to another. In Dual-SLAM (Huang
et al., 2020), where new map creation is triggered
by tracking failure, map merging is driven by spatial
and temporal consistency using a backward SLAM to
reach the previous map and connect it to the new
one. Other works mainly rely on a loop-closing-like
map merging, where inter-map place recognition is
performed similarly to loop closure detection, and map
and loop fusions are conducted similarly. This second
category of map merging algorithms, implemented in all
other aforementionned ORB-SLAM-based works, does
not involve a spatial or temporal prior and is thus more
suitable for fusing multiple maps created by multiple
agents, where such a prior is usually unavailable.

In ORB-SLAMM (Daoud et al., 2018), a map
merging thread continuously iterates place recogni-
tion among all KFs from all maps. This thread is
unique in the system and considers all KFs inde-
pendently from their agent creator. ORB-SLAMM’s
map overlap detection is similar to ORB-SLAM’s loop
closure by DBoW2 (Galvez-Lopez and Tardos, 2012)
for KF matching and deducing an initial-guess inter-
map transformation from this match. However, un-
like ORB-SLAM’s loop closure, ORB-SLAMM does
not implement inter-map place recognition consistency
validation over a window of connected KFs, reducing
place recognition computational cost and decreasing its
robustness by making it quite permissive. In addition,
ORB-SLAMM does not fuse inter-map points obser-
vations when computing map alignment, and merged
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maps remain distinct entities with separate KFs and
BoW databases. Therefore, data from old maps cannot
be reused in the localization process. It should also be
noted that the computational cost of ORB-SLAMM'’s
map merging thread is unnecessarily high because it
continuously loops over all KFs from all maps to try to
find a match instead of querying the KF database only
at new KF insertion.

CORB-SLAM  (Li et al, 2018), CCM-
SLAM (Schmuck and Chli, 2019) and ORB-SLAM
Atlas (Schmuck and Chli, 2019) implement an almost
identical map-merging strategy, which is very similar
to ORB-SLAM’s loop closure, both with regards
to map overlap detection, but also transformation
estimation between the matched KFs, including
several steps of validation checks and transformation
refinement. In addition, merged maps become a single
entity such that, in CCM-SLAM (Schmuck and Chli,
2019), multiple agents can localize in the same map
simultaneously. Although SwarmMap relies on a quite
different map information aggregation pipeline, its
map-merging strategy is similar to these works.

2.6. Multi-agent VSLAM benchmarking

Multi-agent VSLAM benchmarking involves both
datasets and evaluation metrics. Multi-agent VSLAM
datasets can be either recorded using multiple devices
or simulated by playing simultaneously several video
sequences recorded in the same environment. The first
solution features real multi-agent cases, where agents
may see each other. Such datasets can also integrate
dynamic changes in the environment, which will be
observed synchronously by the multiple agents. How-
ever, they represent a higher acquisition cost and are
quite rare in the literature. While some works record
their multi-agent datasets for evaluation (Schmuck and
Chli, 2019), there is no such public dataset at the
time of writing, to the best of the authors’ knowledge.
The second solution above is less realistic for a real
multi-robot application, but is far easier to obtain.
On the one hand, it is impossible for the simulated
agents to observe each other, and possible dynamic
changes in the environments will be observed out of
sync among the simulated agents. On the other hand,
their acquisition only involves deploying a single device
or can be realized from existing sequences recorded in
the same static environment. In (Schmuck and Chli,
2019), several sequences of the EuRoC Machine Hall
dataset (Burri et al., 2016) are used to simulate multi-
ple agents, while other works rely on the KITTI odom-
etry dataset (Geiger et al., 2012), including (Cieslewski
et al., 2018; Daoud et al., 2018).

However, while airborne VSLAM evaluation can
rely on standard, public datasets recorded in different
environments, featuring several sequences in each of
these environments and visual conditions with various

trajectories of gradual difficulty (Geiger et al., 2012;
Burri et al., 2016; Schubert et al., 2018), there is no
equivalent yet in the underwater field, because of the
important cost and resources required for acquiring
such data. Although a few underwater visual datasets
have been released these past few years (Quattrini Li
et al., 2017; Joshi et al., 2019; Ferrera et al., 2019;
Boittiaux et al., 2023a), none of them include over-
lapping sequences without significant visual conditions
or environment change. As a result, existing public
underwater datasets do not allow multi-agent VSLAM
evaluation in underwater conditions.

Regarding evaluation metrics, most multi-agent
works use the Root-Mean-Square (RMS) Absolute
Position Error (APE) to characterize the localization
accuracy of each agent’s trajectory or individual
localization accuracy (Cieslewski et al., 2018; Daoud
et al., 2018; Schmuck and Chli, 2019; Dubois et al.,
2019). However, while relative localization is crucial
when deploying multi-agent systems, a criterion
based on relative localization is usually missing,
notably in (Daoud et al., 2018; Schmuck and Chli,
2019). Mapping accuracy and collaboration of each
agent to the map — denoted collaborative mapping
— is also rarely considered and is not studied
in (Daoud et al., 2018; Schmuck and Chli, 2019). Some
collaborative mapping criteria can, however, be found
in collaborative exploration strategy validation (Yu
et al., 2022), such as ratio of areas explored by the
agents to the entire explorable space, the average
overlapping explored area over each pair of agents, or
the duration required for having a given percentage of
the scene mapped. Although these criteria are defined
to evaluate active exploration efficiency of agents with
adaptive trajectories, they may be used as a basis for
collaborative mapping efficiency characterization in
the VSLAM works under consideration.

Finally, it is worth noticing that, to date, there is
no comparative reference for ORB-SLAM-based multi-
agent work.

3. MAM?3SLAM algorithm

MAM3SLAM  builds on the ORB-SLAM
Atlas (Elvira et al., 2019) implementation provided
by ORB-SLAMS3 (Campos et al., 2021). MAM3SLAM
algorithm is represented in Figure 4.

3.1. Overall architecture

MAMB3SLAM is a central multi-agent SLAM, mean-
ing all computations are performed on a central server.
Agents only send frames to the server. A tracking
thread and a local mapping thread are run for each
agent, on the central server. Loop closing and map
merging tasks are conducted by one unique, common
thread in the multi-agent system. A system of n agents
then runs on 2n + 1 threads, including n tracking
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Figure 4: MAM3SLAM multi-map representation and workflow. LBA, GBA and MP stand,

Adjustment,” ‘Global Bundle Adjustment,’ and ‘Map Points'.

threads (one per agent), n local mapping threads (one
per agent), and 1 single, common loop closing and map
merging thread. Similarly to ORB-SLAM Atlas, an
additional global bundle adjustment thread is launched
after a loop correction or map merging. The differences
between ORB-SLAM Atlas and MAM3SLAM are the
following;:

e The main contribution lies in creating multi-agent
VSLAM instances and making maps a shared
resource between multiple agents, which was not
implemented in ORB-SLAM Atlas. To this end,
multiple agents can localize on the same map and
access and update its data.

e Multi-threading support was implemented to al-
low concurrent map access and update, hence
the need to protect the map from concurrent
modification.

e A new KF insertion algorithm was implemented
for agents locating on the same map. This in-
volves protection from concurrent modifications.

respectively, for ‘Local Bundle

3.2. Shared multi-map resources

Maps are initialized individually by the server for
each agent but are shared among them using the multi-
map representation proposed in ORB-SLAM Atlas and
denoted as the Atlas. KFs from all maps are stored
in a common database to which all agents contribute.
When a new KF is inserted, a place recognition query is
performed over the KF database. If a match is found, a
loop closing or a map merging operation is performed,
depending on whether the matched KF belongs to the
same map or not. ORB-SLAMS3 inspires this process
since having multiple agent inputs does not modify
the intrinsic behavior of the Atlas. Two matched maps
M; and M; become a single map M, that includes
all KFs from the original M; and M, and merges
their map point observations. All the data originally
contained in M; and M; is thus made available for
tracking and local mapping via My. Making the Atlas
a central resource for multiple agents allows fusing
maps created by different agents, enabling any agent to
reuse the map KFs and map points created by another
agent in its tracking process. If lost, agents can also
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relocalize on any map, even if they never contributed
to it. Furthermore, several agents can localize on the
same map, enabling relative localization estimation and
collaborative map incrementation.

A map is called active if at least one agent is cur-
rently localizing on it. Active maps are being updated
by new KF insertions and local mapping. Contrary
to ORB-SLAM3, where map fusion can only happen
between the currently active map and an old released
map, MAM3SLAM allows the fusion of two active
maps. This operation is, however, fully consistent with
the ORB-SLAM3 merging algorithm and does not
affect the SLAM. When several agents localize on the
same map, the map is protected from concurrent up-
dates from agents’ local mapping threads by a mutex.

3.3. New KF insertion

In ORB-SLAM3, a new KF is inserted if (i) less
than 90% of the map points of the current reference
KF are visible in the current frame and if either (ii)
more than 1 second has passed since the last insertion
or (iii) the local mapping is idle. The local mapping
thread periodically checks if some new KFs are to be
inserted and processes them individually within a given
period. However, in a multi-agent scenario, two agents
on the same map may slow down their local mapping
due to the need to wait for the mutex, thus delaying
the insertion of new KFs. Therefore, in MAM3SLAM,
KF insertion is modified so that the local mapping
inserts all KFs into an insertion queue at each iteration.
If many KFs are inserted, however, this may reduce
the idle time of the local mapping, resulting in a
decreasing number of new KF creation. As a result,
in MAM3SLAM, the KF insertion criterion of ORB-
SLAM3 is modified to force KF insertion if more than
five consecutive frames satisfy criterion (i) but not (ii)
or (iii).

4. Underwater multi-agent datasets
collection

As reported in Section 2.6, only a few public
underwater VSLAM datasets are available, and un-
fortunately, none of them includes sequences recorded
in the exact same environment or that may be di-
vided into several disconnected sequences with spa-
tial overlap. Evaluating the robustness of multi-agent
works to underwater visual conditions and trajectory
constraints was not straightforward. There was thus
a need for creating underwater multi-agent VSLAM
datasets. Because of the operational cost of deploying
multiple underwater robots simultaneously, we priv-
ileged playing multiple agents from multiple videos
acquired on the same site without major aspect changes
in the environment. Three two-agent datasets were
collected this way, featuring different environments and
challenges, denoted Tank 1, Tank 2 and Sea diving, and

illustrated in Figures 5, 6 and 7 respectively. The main
characteristics of the three datasets are summarized in
Table 2.

Tank 1 and Tank 2 datasets are both recorded in
a pool using the embedded camera of a BlueROV2.
Tank 1 is quite an easy sequence featuring slow motion
around a highly textured artificial marine reef. The
agents move around the reef with different radii and
depths (Figure 9a). This dataset allows for evaluation of
the SLAM with easy underwater visual conditions and
validation of the proposed collaborative mapping ap-
proach.

The Tank 2 dataset features fast motion, including
pure rotations, around submarine spare parts. It is
recorded at a low frame rate (5 Hz), and the camera
sometimes faces poorly textured areas. In addition,
it simulates the visual dropouts that may occur in
open water (see Section 2.1) by occasionally facing only
the low-textured walls of the pool, as represented in
Figure 8. This dataset is thus particularly difficult.
Agents’ trajectories are represented in Figure 9b. In
addition, Agent 1’s sequence is easier than Agent 0s,
with more global scene views and less motion blur.
This dataset aims to evaluate the robustness of the
SLAM in particularly difficult visual conditions leading
to repeated tracking failure and to show the interest
of collaborative mapping in improving individual lo-
calization when one of the agents has difficult visual
conditions.

Finally, the Sea diving dataset extends the evalua-
tion to a real underwater field scenario. It is recorded
by divers with a GoPro in the Mediterranean Sea, at
shallow depth, in clear water. Suspended particles, fish,
and a second diver appear in some frames. Different
agent recordings are made, moving slowly around a
rock with quite similar trajectories at slightly different
altitudes (Figure 9c).

As shown in Table 2, the volumic coverage of
the two tank datasets is limited to 70 and 48 m3,
respectively, due to pool size limitations and size of the
submerged objects. However, the volumic coverage of
the Sea diving dataset is significantly larger, reaching
approximately 200 m3, which is consistent with the
size of a small wreck or, for instance, an underwater
wind turbine. This spatial span also matches the order
of magnitude of usual SLAM datasets recorded with
aerial drones (Burri et al., 2016). Although the volumes
and durations of our new datasets may be considered
short with regard to the vastness of the oceans, we
argue that the main objective of these new datasets is
not to account for the long-term exploration of large
fields but rather for the specificities of underwater
visual conditions. Long-term maintenance and reuse
of underwater maps is a significantly different prob-
lem than the one addressed here since the aspect of
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(a) (b) (c)

Figure 5: Overview of the Tank 1 dataset

Figure 6: Overview of the Tank 2 dataset

an underwater site can change significantly in a few
hours, depending on the weather conditions at visiting
times. We, therefore, believe that our new datasets are
sufficient for extending multi-agent SLAM algorithm
validation to the underwater field.

Generating ground truth is particularly challeng-
ing in underwater environments. Similarly to (Fer-
rera et al., 2019), a comparative baseline for SLAM
evaluation is computed for all of our new under-
water datasets using the Structure-from-Motion soft-
ware Colmap (Schonberger and Frahm, 2016), which
performs an offline reconstruction of the scene with
exhaustive matching between images and outputs an
accurate estimation of the camera trajectory. This

output is not ground truth but is still a fair reference
for online SLAM evaluation. The scaling factor is
retrieved from the known dimensions of the submerged
objects. The trajectories of the agents are represented
in Figure 9 with respect to the surrounding objects.

5. Evaluation methodology

In order to evaluate MAM3SLAM and compare
its performances with respect to state-of-the-art
multi-agent and multi-map VSLAM works, a choice
of datasets and evaluation criteria is necessary.
Section 5.1 presents the competing multi-agent works
evaluated, Section 5.2 indicates the evaluation datasets
used and Section 5.3 introduces evaluation criteria.

Figure 7: Overview of the Sea diving dataset
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Table 2

Underwater multi-agent datasets description. All of them are recorded with an RGB camera and between 1 and 5 m depth,
without embedded lights. Trajectory span is characterized by the volumetric and horizontal coverage of the sequence, abbreviated

‘vol." and ‘horiz.," respectively.

Camera Duration Trajectory span  Description
- ) 3
Tank 1 i30:|<2640 pixels 100 s Ezlr.i.z7-02(r)nm2 Textured fake reef in pool. Slow motion.
Submarine spare parts, in pool. Some poorly
Tank 2 480 %640 pixels 75 < vol.: 48 m? textured areas (walls, floor). Fast motion and
5 Hz horiz.: 16 m? motion blur. Agent 1's sequence easier than
Agent O’s.
. Around a rock, at sea, at shallow depth, in
. 3 . , .
Sea diving 380640 pixels 100 s vol.: 189 m clear water. Presence of suspended particles,

8 Hz

horiz.: 52 m?

fishes and a fellow diver.

(a) Before dropout

(b) During dropout

Figure 8: Simulation of a visual dropout in the Tank 2 dataset
(Agent 1)

5.1. Competing works

Following the state-of-the-art multi-agent VSLAM
presented in Section 2, we select ORB-SLAMM (Daoud
et al., 2018) and CCM-SLAM (Schmuck and Chli,
2019) for conducting a comparative evaluation with
MAM3SLAM. While, to the best of our knowledge,
ORB-SLAMM is the only state-of-the-art multi-agent
VSLAM work with a multi-map recovery strategy,
CCM-SLAM is the most complete state-of-the-art real-
time multi-agent VSLAM framework at the time of
writing. The main differences between these two works
and MAM3SLAM are summarized in Table 3.

5.2. Datasets

In order to evaluate MAM3SLAM on a standard
VSLAM benchmark, a first evaluation is conducted
using the Machine Hall (MH) sequences from the
EuRoC MAV Dataset (Burri et al., 2016). In a second
part, the underwater evaluation is performed on the
three new underwater datasets introduced in Section 4.
The EuRoC MH sequences are captured in the same
industrial environment with the same lighting condi-
tions and are provided with a ground truth position
from a Leica Total Station. Similarly to (Schmuck and
Chli, 2019), sequences MH_02 and MH_03 were used to
simulate two agents. The agents start from a close
position, but do not overlap much after takeoff, each

exploring a different part of the hall. An overview of
this dataset is given in Figure 10, and a brief summary
in Table 4 and the corresponding trajectories per agent
in Figure 11.

5.3. Evaluation criteria

Two evaluations are conducted: localization and
mapping performances and real-time performances. In
related multi-agent VSLAM works (Daoud et al., 2018;
Schmuck and Chli, 2019), localization and mapping
performances are only evaluated by the RMS Abso-
lute Position Error (APE) on each agent’s trajectory.
However, multi-agent SLAM also aims to estimate
inter-agent relative poses and their collaborative envi-
ronment mapping. This is why additional comparison
metrics are introduced here.

Individual localization is evaluated by the RMS
APE and the RMS Relative Position Error (RPE)
between two consecutive frames and the percentage
of localization failure with respect to the number of
frames.

Relative localization is characterized by the percent-
age of the sequence for which the agents are localized
on the same map, and by the RMS Absolute Relative
Position Error (ARPE) between the two agents. If the
system fails to merge all maps into a single one, these
metrics are given both as a statistic over all maps and
for the map with the largest number of KFs, denoted
as the main map.

Collaborative mapping is first evaluated by the
number Ny,qps of unmerged maps at the end of the
sequence. Additional metrics are computed on the main
map. Agent contribution and map size are character-
ized by the number of KFs created by each agent. The
map’s spatial cover L,y is computed as the sum of
the edges of the minimum spanning tree among the
positions of the KF in the map, and evaluates the size
of the mapped area. Ly, is computed using the ground
truth pose of the KF to avoid introducing a bias due
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Figure 9: Agent trajectories on sequences. The black points in Fig. 9a, 9b, and 9c are a sub-sample of the SfM reconstruction
and give an idea of the position of the surrounding objects with respect to the agents' trajectories.

Table 3

Competing algorithms. Unless otherwise stated, tracking (T), local mapping (LM), loop closing (LC), place recognition (PR),
and GBA operations are the same as the one implemented in ORB-SLAM. Map merging is abbreviated into MM.

Agents Server Map merging Recovery

Send frames 1 LM thread per agent  Similar to

1 T thread per agent

3 .
MAMSLAM to the server ~ 1LC & MM thread ~ ORB-SLAM3's MM MUlti-map
(1 LC GBA thread)
1 T thread per agent Close to
1 LM thread per agent ORB-SLAM's LC
ORB-SLAMM Send frames 1 LC thread per agent  but with less Multi-ma
(Daoud et al., 2018) to the server (1 LC GBA thread geometric P
per agent) consistency
1 inter-map PR thread  checks
1 T thread 1 inter-map PR thread Similar to
CCM-SLAM 1 LM thread (1 MM GBA thread) ORB-SLAM's 0
(Schmuck and Chli, 2019)  + send new KF  + send local KF LC + GBA

to the server to the agents

Figure 10: Overview of the EuRoC MH dataset
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Table 4

EuRoC MH dataset description. Trajectory span is characterized by the volumetric and horizontal coverage of the sequence,

abbreviated ‘vol." and ‘horiz." respectively.

Camera Duration  Trajectory span  Description
Grayscale 3
EuRoC MH . vol.: 288 m . . . .
(Burri et al., 2016) 480x752 pixels 135s horiz - 144 m? Flying drone in an industrial hall.
20 Hz
’—Agent 0 Agent 1 sequence. Since the different datasets evaluated have
different durations and framerates, the run time of each
10 A ! ! ! ! ! ! ] operation op is characterized by the quantity:
B 1 . t
81 E top = > (2)
B B Z N;
6 [ - i
. B . Because the tracking operation is triggered by a new
E 4r . incoming frame, tr is also the average duration of a
= . 1 tracking operation.
2 |- —
ok | 6. Evaluation
B i A quantitative evaluation of MAM3SLAM is per-
-2 . formed on two-agent scenarios on the four datasets de-
= R scribed in Section 5.2, including one aerial dataset and
= 1 B | three underwater datasets, by comparing MAM?SLAM
. B 1 to multi-agent ORB-SLAMM (Daoud et al., 2018) and
-1 I e B N A A A B to CCM—SLAM (SChIIluCk alld Chh, 2019) These two

-2 0 2 4 6 8 10 12

a [m]

Figure 11: Agent trajectories on the EuRoC MH dataset

to poor estimation of the KF pose. The RMS APE on
the pose of the KFs of the main map is also computed.

Given an error metric e on a set of N poses T; €
SE(3) defined on n disconnected maps denoted M,, i €
{0...n — 1}, the global RMS associated to e is defined
by:

eRMS = %Z > e(T))’ (1)

i=1 T;eEM;

where T; € M; denotes that pose T is defined in map
M;

In order to compare the real time performances of
the algorithms evaluated, the durations of the tracking
(T), local mapping (LM) and place recognition (PR)
operations are recorded. Place recognition includes
inter and intra map loop detection, loop fusion and map
merging. Let t,,, op € {T, LM, PR} denote the total
duration of the op operation summed for all iterations
for all agents on a sequence. Let N;, i € N define the
total number of frames of Agent i during the same

competing works have been selected for the current
evaluation because they are the most recent multi-
agent ORB-SLAM-based work offering a fully func-
tional open-source implementation and not requiring
NVIDIA GPU acceleration (NVIDIA et al., 2020).
In addition, ORB-SLAM3 (Campos et al., 2021) is
used as a reference for individual localization perfor-
mance, as it represents the current state-of-the-art
for monocular single agent VSLAM. Evaluations are
carried out in real-time on a computer with an Intel i7-
10610U CPU @ 1.80GHz x 8, 16 GB RAM, running
Ubuntu 18.04 and ROS Melodic.

6.1. Localization and mapping evaluation
A localization and mapping performance evaluation
is performed according to the metrics described in
Section 5.3. Given the non-deterministic behavior of
multithreaded applications, all localization and map-
ping evaluation metrics are given as their median
values among five runs. The results are reported in
Tables 5, 6, 7 and 8. If there are more than one map in
the system, the RMS APE and RPE on the main map
are indicated in parentheses in the table. Since ORB-
SLAMM does not completely fuse the maps in the sys-
tem but only computes an alignment, the total number
of maps in the system is shown in parentheses in the
table. Estimated and reference trajectories are aligned
using the Sim(3) Umeyama alignment of the EVO
library (Grupp, 2017) to compute the error metrics. In

J. Drupt, A. I. Comport, C. Dune and V. Hugel: Preprint submitted to Elsevier

Page 12 of 21



MAM3SLAM: Towards underwater-robust multi-agent visual SLAM

Table 5
Results on the EuRoC MH dataset
MAM3SLAM  ORB-SLAMM CCM-SLAM ORB-SLAM3
RMSAPE (m) 0.021 1.237 0.055 0.016
#0 | RMSRPE (m)  0.015 0.147 0.008 0.005
failure rate (%)  0.72 0.00 0.00 0.00
RMSAPE (m)  0.034 (0.033) 2.624 0.152 0.027
#1 | RMSRPE (m)  0.011 (0.011) 1.436 0.135 0.010
failure rate (%)  1.55 1.48 0.00 0.00
% same map 99.38 100.00 100.00 0
RMSARPE (m) 0.025 2.841 0.135 0
Niaps 2 1(4) 1 0
KF per agent (#0,#1) 243, 249 306, 479 281, 360 0
Lunap (m) 135.292 150.224 145347 0
KF RMSAPE (m) 0.031 2.162 0.159 0
Table 6
Results on the Tank I dataset
MAM3SLAM ORB-SLAMM CCM-SLAM ORB-SLAM3
RMSAPE (m)  0.026 0.489 0 0.012
#0 | RMSRPE (m)  0.026 0.461 0 0.038
failure rate (%)  0.00 0.00 100.00 0.00
RMSAPE (m) 0.037 0.208 U] 0.011
#1 | RMSRPE (m) 0.038 0.213 0 0.030
failure rate (%)  0.00 3.16 100.00 0.00
% same map 100.00 100.00 0 0
RMSARPE (m) 0.023 0.389 0 0
Nmaps 1 1 (5) 0 0
KF per agent (#0,#1) 101, 128 89, 125 0 0
Lpnap (M) 32.086 29.366 0 0
KF RMSAPE (m) 0.012 0.509 0 0

Tables 5, 6, 7 and 8, the best result for each evaluation
criterion among the multi-agent SLAM works is shown
in bold. If ORB-SLAMS3 (Campos et al., 2021) gives a
better result than the multi-agent approaches, ORB-
SLAMS3’s result is also indicated in bold. A graphical,
synthetic comparison of the performances of the three
multi-agent SLAM works is given in Figure 12.

Figure 13 shows the trajectories estimated by
MAM?3SLAM on one of the five runs, for the four
datasets. Estimated and reference trajectories overlap
particularly well for the EuRoC MH, Tank 1 and
Sea diving datasets.

CCM-SLAM fails to initialize on the Tank 1 and
Tank 2 datasets, denoting a lack of robustness. We
assume that their initialization solver may not have
time to converge due to the number of features, their
layout, or their characteristics.

MAMB3SLAM demonstrates the best individual lo-
calization performances among the multi-agent ap-
proaches evaluated, with the lowest RMS APE and

RPE in all sequences, reaching centimetric accuracy on
the FuRoC MH and Tank 1 datasets. CCM-SLAM’s
performances are close to MAM?SLAMs but still with
a lower accuracy, showing up to ten times higher RMS
APE and RPE on FuRoC MH’s Agent 1 and Sea div-
ing’s both agents. ORB-SLAMM shows particularly
poor individual localization performances, with RMS
APE and RPE exceeding one meter in FuRoC MH and
RMS APE 50 times higher than all other approaches on
Sea diving’s Agent 1. This is mainly due to bad inter-
map transformation estimation caused by the lack of
robustness of their inter-map place recognition and map
merging algorithm compared to the other approaches.
An example of ORB-SLAMM map misalignment is
provided in Figure 14, where trajectories estimated
by ORB-SLAMM are aligned with respect to the
reference trajectories using Umeyama alignment. In
Figure 14a, trajectories estimated on different maps
are aligned together using the inter-map transformation
estimated by ORB-SLAMM, and the resulting trajec-
tory is aligned with respect to the reference ones. In
Figure 14b, trajectories estimated on different maps
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Table 7
Results on the Tank 2 dataset
MAM3SLAM  ORB-SLAMM CCM-SLAM ORB-SLAM3
RMSAPE (m)  0.125 (0.142) 0.217 (0.327) () 0.204 (0.241)
#0 | RMSRPE (m) 0.139 (0.152) 0.127 (0.158) @ 0.143 (0.159)
failure rate (%)  27.78 33.33 100.00 24.18
RMSAPE (m) 0.115 (0.026) 0.286 (0.174) @ 0.074 (0.022)
#1 | RMSRPE (m) 0.043 (0.021) 0.099 (0.066) @ 0.050 (0.025)
failure rate (%)  23.08 18.85 100.00 26.28
% same map 13.92 0.00 0 0
RMSARPE (m) 0.204 0 0 0
Niaps 4 6 (6) 0 0
KF per agent (#0,#1) 74, 30 41,0 0 0
Lap (M) 8.412 2.855 0 0
KF RMSAPE (m) 0.107 0.327 0 0
Table 8
Results on the Sea diving dataset
MAM3SLAM ORB-SLAMM CCM-SLAM ORB-SLAM3
RMSAPE (m) 0.032 0.582 (0.485)  0.037 0.026
#0 | RMSRPE (m) 0.034 0.264 (0.135)  0.151 0.033
failure rate (%)  5.41 0.75 0.00 0.00
RMSAPE (m) 0.031 1.203 (1.428)  0.028 0.021
#1 | RMSRPE (m) 0.041 0.112 (0.125)  0.144 0.040
failure rate (%)  0.00 1.88 0.00 0.00
% same map 100.00 6.00 100.00 0
RMSARPE (m) 0.033 2.088 0.050 0
Npaps 1 5 (6) 1 0
KF per agent (#0,#1) 269, 285 21, 187 199, 202 0
Lumap (m) 39.556 16.235 36.053 0
KF RMSAPE (m) 0.063 0.433 0.049 0

are aligned individually with respect to the reference,
without using the inter-map transformation estimate
from ORB-SLAMM. It can be observed that ORB-
SLAMM produces inconsistent inter-map alignments,
which deteriorate significantly the accuracy of the
global trajectory. The same phenomenon happens on
all datasets.

One can notice that even if MAMB3SLAM and
CCM-SLAM show similar performances, ORB-SLAM3
produces the most accurate individual localization on
the FuRoC MH, Tank 1, and Sea diving datasets. This
can be explained by the computing resources available
since more parallel computations are required by multi-
agent approaches. This can also explain the non-
zero failure rates observed for multi-agent approaches
on these three datasets. However, MAM3SLAM out-
performs ORB-SLAMS3 in individual localization on
Tank 2, highlighting the interest in collaborative map
construction and map sharing for particularly difficult
sequences. In this dataset, Agent 1’s sequence is easier
than Agent 0’s. As a result, ORB-SLAM3 outputs two

times higher RMS APE and RPE on Agent 0 than on
Agent 1. However, in MAM3SLAM, Agent 0’s localiza-
tion relies on more complete and reliable mapping data
through the collaborative scene mapping. This results
in agent performance smoothing, reaching a similar
accuracy of about 10 cm for both agents.

MAM?3SLAM also outperforms the other evaluated
methods on inter-agent relative localization. All meth-
ods localize the two agents on the same map in almost
100% of the EuRoC MH and Tank 1 datasets, but
MAM?3SLAM outperforms the other approaches on
relative pose estimation with centimetric precision. It is
also the only SLAM approach capable of localizing the
two agents on the same map for some periods of time
on the Tank 2 dataset, with a fair 20 cm accuracy.
Finally, on the Sea diving dataset, MAM3SLAM and
CCM-SLAM localize the agents in the same map
100 % of the sequence and with a similar relative
localization accuracy, whereas ORB-SLAMM fails to
fuse all maps of the system, resulting in a very small
sequence percentage for which a relative localization
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Figure 12: Graphical overview of the performances of the three multi-agent methods compared, on the four test datasets, according
to the quantities reported in Tables 5, 6, 7, and 8. The RMSAPE and failure rate reported in the charts correspond to the mean
value among the two agents. Note that because CCM-SLAM fails to initialize on the Tank I and Tank 2, no results are indicated
in Figures 12b and 12c, accounting for a zero performamce. Note also that the results of MAM3®*SLAM and CCM-SLAM are

overlapping in Figure 12d

can be computed.

Considering collaborative mapping, ORB-SLAMM
produces inaccurate map alignments and sometimes
fails to detect map overlap, as with the Tank 2 and
the Sea diving datasets. Map merging is far more
robust in MAM3SLAM and CCM-SLAM, which output
a common, single map in most sequences. It is, how-
ever, worth noticing that CCM-SLAM’s agents cannot
initialize a new map, limiting the maximum number of
maps in the system to two agents. One can see that
MAM?3SLAM produces two maps on the EuRoC MH
dataset but localizes the agents on the same map

during almost all the sequence. This is explained by
the failure of one of the agents to track the scene soon
after initialization and its relocalization in the map
initialized by the other agent, which is incremented
collaboratively along the sequence. The second map is
thus very small, with a median size of 3 KF. Finally,
in the general case, MAM>?SLAM produces a more
accurate main map than the other approaches for an
equivalent number of KF per agent and map size Ly, qp.
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Figure 13: Trajectories estimated by MAM3SLAM (solid) and reference trajectories (dashed) on the test datasets, after Umeyama

alignment, showing estimated camera poses every 5s.

6.2. Discussion on ORB-SLAM3
localization accuracy
As mentioned in Section 6.1, ORB-SLAM3 shows
slightly better individual localization accuracy on the
EuRoC MH, Tank 1, and Sea diving datasets. The
purpose of this section is to discuss these results in
more details.

On the one hand, one can expect that using multiple
maps from different agents will result in better accuracy
since it will bring additional mapping information and
a wider variety of viewing poses. On the other hand,

running one instance of single-agent ORB-SLAMS3 re-
quires less computational resources than running any
of the compared multi-agent SLAM works on a 2-agent
sequence. As a result, the computational resources
available for agent-level operations have decreased.
Because the system is bound to real-time by the image
input, the SLAM threads are intended to make more
computations in the same limited time. Although the
difference in processing time available for agent-level
operations is minor, it is still sufficient to have the
multi-agent SLAM outputs slightly less optimized than
the ones of a single-agent ORB-SLAMS3.
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Figure 14: Trajectories estimated by ORB-SLAMM on the EuRoC MH dataset (plain) and ground truth trajectories (dashed).
Trajectories are estimated over 5 maps, which are aligned by the system. Parts of the trajectory from different maps are represented

in a different color.

The two phenomena depicted have opposite effects
on the result’s accuracy: the first tends to increase it,
and the second tends to decrease it. In the EuRoC
MH, Tank 1, and Sea diving datasets, the second
phenomenon is predominant for different reasons. In
EuRoC MH, the agents split into two different areas of
the hall after a few seconds. Their respective mapping
information, therefore, extends the map but does not
provide much observational redundancy that would
improve map accuracy. On the other hand, Tank 1 and
Sea diving feature quite slow motion and mostly easy
visual conditions, allowing an already good reconstruc-
tion without fusing observations from the two agents,
and combining agent information does not improve the
map sufficiently to impact trajectory estimation accu-
racy. Even though localization and mapping accuracy
are not improved in these datasets by fusing views from
multiple agents, one can still notice that CCM-SLAM
and MAM3SLAM accuracy is still very close to that of
ORB-SLAMS3 in these datasets.

Conversely, the second depicted phenomenon be-
comes predominant in the Tank 2 dataset. Because
Agent 1’s motion is very fast, with a low frame rate,
motion blur, and low textures, a single-agent SLAM
using only Agent 1’s data will have limited accuracy.
This can be observed by the result given by ORB-
SLAM3 for this agent in this sequence. However,
because Agent 0 has simpler motion, its camera input
is better suited for computing an accurate map and
trajectory. When running a multi-agent SLAM, map
data created by Agent 0 can be used in Agent 1’s local-
ization, significantly improving its positioning accuracy.

Lastly, but importantly, ORB-SLAM3 does not
allow locating multiple agents in the same referential
frame at the same time, contrary to the multi-agent
works studied. However, getting this relative localiza-
tion information is our main motivation for focusing on
multi-agent SLAM.

6.3. Computing time evaluation

In order to compare the real time performances of
the algorithms evaluated, the durations of the tracking
(T), local mapping (LM) and place recognition (PR)
operations are recorded. In the current evaluation,
we group under the name "Place recognition" inter-
and intra-map loop detection via the database queries
followed by consistency and geometrical checks, loop
fusion and map merging operations when they occur,
including pose graph optimization. The total duration
of each of these operations is summed for all iterations
for all agents. Figure 15 compares the total computa-
tional time dedicated to T, LM, and PR operations in
processing each one of the test datasets. Since these
datasets have different framerates and duration, the
durations indicated in the figure correspond to the sum
of all iteration durations divided by the number of
frames in the sequence.

One can see that tracking durations are quite
similar from an algorithm to another. For the FuRoC
MH, Tank 2, and Sea diving datasets, tracking
duration represents about 10 ms per frame per agent.
The tracking duration per frame is much higher for
the Tank 1 dataset, which can be explained by the
high number of ORB features tracked (5000 ORB
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Figure 15: Sum of the durations of tracking, local mapping
and place recognition (loop closure and map overlap detection
and fusion) iterations divided by the total number of frames,
for each test dataset.

features per frame are extracted, vs 1000 for FuRoC
MH, and Sea diving). 5000 ORB features per frame
are extracted for the Tank 2 dataset too, but most of
them are not matched correctly and thus unused for
pose computation, hence having a lower computational
duration.

LM total computational duration is higher for
MAM?3SLAM. One can see that a significant proportion
of this duration is spent waiting for mutex unlock. In
the evaluated configurations, the maximum duration
of local mapping operations divided by the number of
incoming frames is about 110 ms. This indicates that,
in this case, the system can create a new KF every 9 s,
which is still a satisfying ratio. However, this maximum
KF insertion rate will decrease as the number of agents
increases since more agents will increase the total
mutex wait duration. Our system is thus limited to
a small number of agents. One can notice that the
total duration of mutex wait in local mapping is very
low for the Tank 2 dataset. This is due to the agents
being located on the same map simultaneously more
rarely and the low framerate reducing the probability of
a simultaneous KF creation attempt by the two agents.

Lastly, two main observations can be formulated
regarding PR total computational duration ¢pg. First,
one can observe that this quantity is significantly
higher for ORB-SLAMM than for CCM-SLAM and
MAM?3SLAM. Indeed, ORB-SLAMM'’s inter-map place
recognition consists of a loop over all KF from all maps,
which is repeated continuously, while CCM-SLAM and

MAM?3SLAM only query the KF database at new KF
creation, which prevents unnecessary queries if the
maps and keyframes are idle. Second, tpr depends on
the sequence for each SLAM algorithm. First, Let us
consider the cases of MAM3SLAM and CCM-SLAM,
where place recognition is triggered by inserting a new
KF by any of the involved agents. If a map merging
or loop closing candidate is confirmed, the map will
be updated and optimized. The duration of the initial
database query is negligible compared to that of this
correction step. The value of tpp thus reflects the
ratio of the number of map merging or loop closing
operations compared to the number of frames, which
depends, notably, on camera frame rate and trajectory.
In the case of ORB-SLAMM, place recognition is not
triggered by KF insertion but is an infinite loop over
all Kfs from all maps. Thus, the complexity of a single
iteration of this infinite loop is in o(nxr") where nyr
accounts for the number of KF in a map, and N is
the number of maps. tpg is thus significantly higher in
Tank 2 and Sea diving, where there are five to six maps
in the system. One can also notice that ORB-SLAMM’s
tpg is higher in Tank 2 than in Sea diving. We believe
this is caused by ORB-SLAMM computing one map
alignment in Tank 2 versus 0 in Sea diving.

7. Conclusion and future work

This work focused on the problem of visual-based
simultaneous localization and mapping for underwa-
ter multi-agent scenarios, which require the localiza-
tion of the involved vehicles with respect to each
other and a previously unknown environment. Fol-
lowing previous studies of visual SLAM underwa-
ter capabilities, the current work focuses on ORB-
SLAM-based works. MAM3SLAM, a new fully cen-
tralized multi-agent and multi-map monocular VSLAM
framework based on ORB-SLAM Atlas (Elvira et al.,
2019) and ORB-SLAM3 (Campos et al., 2021), was
introduced as a solution for underwater multi-ROV
localization. In addition, the two most recent state-of-
the-art multi-agent ORB-SLAM-based-works released,
namely CCM-SLAM (Schmuck and Chli, 2019) and
ORB-SLAMM (Daoud et al., 2018), were selected
to perform a comparative benchmark and study the
potential of ORB-SLAM-based multi-agent works for
underwater. In the absence of previous underwater
datasets for multi-agent visual SLAM benchmarking, a
key contribution of the current work was to record and
release three underwater two-agent datasets, including
two in a pool and one in the sea. MAM3SLAM, CCM-
SLAM, and ORB-SLAMM were then evaluated on four
two-agent scenarios, including a standard aerial dataset
and our three new underwater datasets.

A run-time analysis demonstrated  that
MAM?3SLAM’s place recognition computation time
is significantly lower than competing works, and
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its tracking computational time is of the same
order of magnitude. This analysis also shows that
MAM3SLAM’s local mapping takes significantly more
time than that of competing approaches because of
the mutex wait imposed to prevent concurrent map
updates from different agents when they localize
with respect to the same map, and some low-level
software engineering would be required to extend
MAM3SLAM to more than two agents in future
works. This extension would be a prerequisite for using
MAM3SLAM in a real-life underwater robot chain
configuration.

Even though the current implementation did not
focus on handling this scalability problem and left it
for future works, our two-agent MAM3SLAM proved
to outperform the two other evaluated approaches in
terms of individual localization, relative localization,
and mapping accuracy and demonstrates good robust-
ness to poor visual conditions. Although showing a sim-
ilar accuracy to CCM-SLAM, up to 2 cm on some of the
datasets, MAM3SLAM proves to be significantly more
robust by successfully processing all the test sequences,
while CCM-SLAM failed to initialize on two out of
the four sequences. In addition, MAM3SLAM produced
significantly more accurate results than ORB-SLAMM
on all sequences, where MAM3SLAM localization er-
rors are up to 80 times lower than ORB-SLAMM’s.
Finally, MAM3SLAM proves to be a reliable multi-
agent VSLAM approach for multi-ROV localization,
reaching centimetric accuracy on two out of three
underwater evaluation datasets.

In light of these results, MAM3SLAM seems like
a promising solution for multiple ROV localization,
for instance, in underwater robot chains. Nonetheless,
some low-level software developments are required to
extend this approach to a larger number of agents while
keeping the overall high-level principle. In addition,
future works may focus on improving the robustness
of the system by fusing multiple inputs to increase
its robustness to underwater visual conditions and
estimate the scale of the environment. In particular,
in the specific context of a robot chain, inter-agent
pose constraints might be used at different levels in the
SLAM pipeline, including scale estimation, inter-map
place recognition, and pose estimation optimization.
The system may also be extended to include stereo
camera input, fuse inertial, and, eventually, pressure
measurements.
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