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Deep neural networks, and especially the Transformer architec-
ture (Vaswani et al., 2017), have brought tremendous progress in 
machine translation (Sutskever et al., 2014; Bahdanau et al., 
2016). Many services based on this technology can produce good 
quality translations, though they are still often literal (Bhardwaj et 
al. 2020), contain contradictions or omissions, and are less per-
tinent in certain specific areas such as the financial and automot-
ive industries.

To improve machine translation for professional purposes, it is 
essential to develop a better European framework based on prac-
tice-oriented metrics and pertinent, absolutely multisectorial 
data. This will entail involving the many actors in the world of 
translation: scholars in NLP and translation studies, companies 
providing translation devices and software, as well as translators 
and translation services. Doing so at the European level is essen-
tial in order to pursue a successful strategy for reducing the tech-
nological inequalities between European languages1 and, above 
all, enabling Europe to take the lead in integrating technologies 
for professional use.

A few words are thus in order concerning current efforts to 
evaluate machine translation, such as the WMT campaigns2, 
which concentrate on evaluating translation technologies and 
output quality, or their IWSLT3 counterparts for spoken lan-
guage translation (interpreting). In the WMT work, data are an-
notated according to the MQM taxonomy by translation profes-
sionals whose tasks include evaluating post-editing effort and 
predicting whether a translation contains so-called ‘cata-
strophic’ errors.

Despite this work, it is still difficult to gauge the results of qual-
ity evaluation efforts. Though some system have gone beyond 
simply detecting errors, few or none analyse them. It thus comes 
as no surprise that a review of the principal research papers deal-
ing with machine translation published between 2010 and 2020 
(Marie et al. 2021) found that BLEU scores (Papineni et al. 2002) 
continue to be used to measure how close a machine translation 
is to a reference human translation by counting the words and 
phrases they share.

Document-level translation quality evaluation is still uncommon 
(Specia et al. 2020; Zerva et al. 2022), though it is extremely use-
ful from a professional standpoint.

1 See the European Language Equality project at https://european-language-
equality.eu/wp-content/uploads/2022/11/ELE___Deliverable_D3_4__SRIIA_and_
Roadmap___final_version_-1.pdf
2 http://www2.statmt.org/wmt23/
3 https://iwslt.org
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Lastly, there are too few studies addressing the management of 
Translation Memories (TMs) and their use in the translation pro-
cess, though they are essential professional tools.

As for how deep learning systems are trained and tested, data 
used for this purpose have been collected from the published 
proceedings of the European Parliament (Koehn 2005), United 
Nations documents (Ziemski et al. 2016) and from parallel cor-
pora harvested from the Internet (Esplà et al. 2019). In addition, 
specific data have been evaluated in the past for particular sec-
tors, for the media, and so forth.

Despite the abundance of this data (at least for some language 
pairs), however, no attention has been devoted to splitting train-
ing and test corpora in any functionally targeted way. Test corpora 
are often packed with stereotype-laden and extremely repetitive 
phrases which, moreover, are already present in the training cor-
pora. This risks ‘contaminating’ the tests, with repercussions that 
include overoptimistic evaluations. Few studies have addressed 
the evaluation of the examples used to train models, where 
quantity trumps quality. And yet, selecting data according to spe-
cific criteria would make it possible to train more robust models 
and build more consistent datasets (in this connection, see the 
exemplary case described by Varshney et al. 2022).

It should also be borne in mind that the document is a second-
ary element in organising data and that corpora are usually seg-
mented in equivalent sentences for language pairs (the so-called 
aligned corpora). This makes it difficult to produce a cohesive 
translated text, given that the basic unit is the sentence.

More generally, developing a single system capable of dealing 
with multiple domains, though increasingly fundamental, is still 
an underinvestigated—and hence unsolved—problem (Pham et 
al. 2021). Most of the studies in this area have addressed a small 
number of highly diverse sectors (biomedicine, finance, techno-
logy) and thus do not encompass the broad array of domains that 
translation services must consider. For example, it has been 
found (Frenette 2021) that a generic neural translation system 
had difficulty in translating texts in several of the sectors handled 
by the Canadian Government’s Translation Bureau, and that tech-
nical attempts to provide the system with further information in 
these sectors proved useless.

Summarising, we can say that despite the undeniable advances 
in machine translation, current frameworks for evaluating MT are 
inadequate, and that a thorough rethinking is required in order to 
develop more useful technologies meeting professional needs. 
This calls for more work in data preparation and annotation, for-
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mulating representative metrics and developing new technolo-
gies (interactive translation and/or TM pre-translation, devices 
for managing translation flows, and so forth.

Undoubtedly, developing a common European evaluation 
framework is an ambitious project requiring synergistic efforts on 
the part of all the actors in the world of translation. But is also a 
challenge that Europe, with its multilingual strengths, is certain to 
overcome.
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