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Chapter 1

Introduction

We are interested in understanding the asymptotic behaviour of the Bergman
kernel (restricted to the diagonal of a projective manifold) of twisted tensor
powers of a positive line bundle. Although C∞ convergence is known in this
case, our approach, mainly following L.Charles [3], can only give C0 convergence.
The central result of the paper is Theorem 7, from which we derive asymptotic
Riemann-Roch theorem as an application.

The scheme of the proof (see Section 3.2) is divided into two parts: an upper
bound and a lower bound. For the upper bound, basically we use mean value
inequality, which is rather elementary. For the lower bound, we apply the ”peak
section” method originated by Tian in his thesis [26]. We illustrate this scheme
again by strengthening a theorem of Liu (see Theorem 18). The last part is
devoted to asymptotic behavior of tensor powers of a Nakano positive vector
bundle of higher rank (at least when the base manifold is a Riemann surface,
see Theorem 17).

Notations

Throughout the paper, unless otherwise stated, Greek letters α, β, . . . , run
through 1, . . . , r and letters i, j, k, l . . . run through 1, . . . , n. We use µ0 to
denote the Lebesgue measure on Euclidean spaces. By [n] we mean the set
{1, 2, . . . , n}. The permutation group on [n] is denoted by Sn.

We always use column vectors unless otherwise specified. The Landau no-
tation O(α) for matrices means each entry is a usual O(α). For a matrix
A ∈ Cm×n, we put AH := ĀT . If A is a hermitian positive definite (resp.
semi-positive) matrix, we write A > 0 (resp. A ≥ 0). For a square matrix A,
let ρ(A) be the spectral radius of A.

Put ∆n(a) = {z ∈ Cn : |zi| < a, i ∈ [n]}, which is an open polydisc. All
hermitian inner product is anti-linear about the second argument. For a complex
manifold M , we write Mn to mean dimCM = n. Its holomorphic tangent vector
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bundle is denoted by ThM . For a line bundle L and k ∈ Z, to ease notation we
write Lk for L⊗k. For a vectoc bundle E →M , by abuse of notation, we denote
the smooth sections of E by C∞(M,E).
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Chapter 2

Preliminaries

We suggest the reader refer to this elementary section only as necessary when
reading the main text.

2.1 Linear Algebra

Proposition 1 (Rayleigh-Ritz). If A ∈ Mn(C) is a hermitian matrix, and

x ∈ Cn, x 6= 0, we form the Rayleigh quotient R(A, x) = xHAx
xHx

, then

max
x∈Cn,x 6=0

R(A, x) = λmax(A)

is the maximal eigenvalue of A. Idem for minimum. In particular, if further
A ≥ 0, then

max
x∈Cn,x 6=0

R(A, x) = ρ(A).

Let V be a finite dimensional complex vector space whose dual is denoted
by V ∗.

Definition 1 (Conjugate space). The complex conjugate V̄ of V is a complex
vector space satisfying: there is a morphism V → V̄ by v 7→ v̄ that is an R-linear
isomorphism, and (a+ ib)v̄ = (a− ib)v for any v ∈ V ; a, b ∈ R.

If further V is endowed with a hermitian inner product h, then V̄ → V ∗ by
v̄ 7→ h(·, v) is a C-linear isomorphism. We put

Herm+(V, h) = {A ∈ End(V ) : A ≥ 0}.

The partial order on Herm+(V, h) is defined by: A ≥ B means A − B ∈
Herm+(V, h).

Exercise 1. Then V × V̄ → C by (v, ū) 7→ h(v, u) is bilinear, so induces a
morphism V ⊗C V̄ → C.
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The morphism V × V̄ → End(V ) by (v, ū) 7→ A where A(w) = h(w, u)v is
bilinear, so induces a morphism C : V ⊗ V̄ → End(V ) which is an isomorphism.
For any s ∈ V , C(s⊗ s̄) ∈ Herm+(V, h).

We have a commutative diagram

V × V̄ End(V )

C

(v,ū)7→h(·,u)v

(v,ū) 7→h(v,u)

Tr

In virtue of Exercise 1, we usually identify V ⊗ V̄ with End(V ) without
mentioning the isomorphism C in between.

Exercise 2. If A ∈Mn(C) and A > 0, v ∈ Cn, then

A−1vTAv̄ ≥ vvH .

Proof. Let (, ) be the standard inner product on Cn. Then (u,w)A = (Au,w)
defines another inner product. For any u ∈ Cn

(A−1vTAv̄u, u) = vTAv̄(A−1u, u) = (v, v)A(A−1u,A−1u)A,

(vvHu, u) = vHu(v, u) = (u, v)(v, u) = |(u, v)|2 = |(A−1u, v)A|2.

By Cauchy-Schwarz inequality,

|(A−1u, v)A|2 ≤ (v, v)A(A−1u,A−1u)A.

Thus we get the desired inequality

(A−1vTAv̄u, u) ≥ (vvHu, u).

Definition 2 (linear Bergman kernel). For a linear subspace U ⊂ V , we define
B(U, h|U ) =

∑n
i=1 ei⊗ēi, where {e1, . . . , en} is an orthonormal basis of (U, h|U ).

Linear Bergman kernel is well-defined by the following Exercise.

Exercise 3. 1. For another basis {v1, . . . , vn} of U ,

B =
∑
kl

vk ⊗ v̄lAlk,

where A is the inverse of the size n Gram matrix G = (h(vi, vj)). In
particular, B is independent of the choice of orthonormal basis.

2. Viewed as a linear operator on V , B(U, h|U ) : V → U is the orthogonal
projection. In particular,

B(U, h|U ) ≤ B(V, h).
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Proof. 1.There is P ∈ GLn(C) such that (e1, . . . , en) = (v1, . . . , vn)P ,

Id = h((e1, . . . , en)T , (e1, . . . , en)) = h(PT (v1, . . . , vn)T , (v1, . . . , vn)P ) = PTGP̄ ,

then G = P−T P̄−1, so AT = PPH .

B(U, h|U ) = (e1, . . . , en)⊗ (e1, . . . , en)H

= (v1, . . . , vn)P ⊗ PH(v1, . . . , vn)H

=
∑
kl

(PPH)klvk ⊗ v̄l

=
∑
kl

vk ⊗ v̄lAlk.

2. Take an orthonormal basis e1, . . . , en of U and v ∈ V . By definition,

B(U, h|U ) =

n∑
i=1

ei ⊗ ēi.

So, B(U, h|U )v =
∑n
i=1 h(v, ei)ei is the orthogonal projection of v into U .

2.2 Complex Geometry and Kähler Geometry

Recall that for a hermitian manifold (Mn, h), in local coordinate φ = (z1, z2....zn) :
U → Cn, its hermitian metric is determined by gij̄ = h( ∂

∂zi
, ∂
∂z̄j

). The ma-

trix (gij̄) is the transpose-inverse of the positive-definite matrix (gij̄). Then

gij̄ = h(dzi, dzj). Its fundamental form ω = i
∑
jk gjk̄dzj ∧ dz̄k and the volume

form is µ = ωn

n! .

Exercise 4. Locally

µ = in det(gij̄)dz1 ∧ dz̄1 · · · ∧ dzn ∧ dz̄n = 2n det(gij̄)φ
∗µ0.

Proof.

ωn = in
∑

i1,j1,...,in,jn

gi1,j̄1 . . . gin,j̄ndzi1 ∧ dz̄j1 · · · ∧ dzin ∧ dz̄jn

= in
∑

i∗,j∗∈Sn

ε(i∗, j∗)gi1,j̄1 . . . gin,j̄ndz1 ∧ dz̄1 · · · ∧ dzn ∧ dz̄n

= n!in
∑
j∗∈Sn

g1,j̄1 . . . gn,j̄ndz1 ∧ dz̄1 · · · ∧ dzn ∧ dz̄n

= inn!(det gij̄)dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.

We get the first equation and the second follows since dzj ∧ dz̄j = −2idxj ∧
dyj .
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Definition 3 (Ricci form). Let (M,J) be an hermitian manifold whose Ricci
tensor is noted by Ric, then ρ(X,Y ) = Ric(JX, Y ) defines a real 2-form ρ.

Definition 4 (positive form). A smooth real (1, 1) form α on a complex man-
ifold (M,J) is called positive if the symmetric bilinear form (X,Y )→ α(X,JY )
for real tangent vectors X,Y is positive definite. A cohomology class in H2

dR(M ;R)
is positive if it can be represented by a closed positive (1, 1) form.

Some central objects on which we will concentrate are the following.

Definition 5 (positive line bundle). A holomorphic line bundle L → M is
called positive if its first Chern class c1(L) is positive.

Definition 6 (Kähler manifold). On a complex manifold (M,J), a real (1, 1)
form ω is called Kähler if ω is closed positive and non-degenerate. In that case,
g(X,Y ) = ω(X, JY ) defines a Riemann metric on M and ω itself is a symplectic
form on M .

To fix notation, we briefly discuss the following example.

Example 1 (complex projective space). Set theoretically CPn is the space of
all complex line subspaces of Cn+1. Using homogeneous coordinates [Z0 : · · · :
Zn], the standard atlas is {U0, . . . , Un}, where Ui = {Zi 6= 0} ⊂ CPn. On U0

the standard local holomorphic coordinate is zi = Zi
Z0

for i = 1, . . . , n, i.e. a

biholomorphism φ0 : U0 → Cn by [Z0, . . . , Zn] 7→ (Z1

Z0
, . . . , ZnZ0

).

Example 2 (tautological line bundle). Let O(−1) be a line bundle on CPn

whose transition function from Ui to Uj is
Zj
Zi

. Concretely O(−1) = {([l], w) ∈
CPn × Cn+1 : w ∈ l} viewing CPn as the set of lines in Cn+1. This line
bundle O(−1) is called the tautological line bundle of CPn. With this point
of view, the standard metric on Cn+1 induces a metric h−1 on O(−1). We
call σ−1

0 : U0 → O(−1) by [Z0 : · · · : Zn] 7→ ([Z0 : · · · : Zn], (1, Z1

Z0
, . . . , ZnZ0

))

the standard frame of O(−1) over U0. The local expression of h−1 on U0 is
h−1(σ−1

0 , σ−1
0 ) = 1 + |z|2.

Let O(1) be the dual of O(−1) and more generally set O(k) = O(1)⊗k for
k ∈ Z. Then hk is a hermitian metric on O(k). Then (O(k), hk) is positive
if and only if k > 0 by Example 4. We similarly define the standard frame
σki ∈ H0(Ui, O(k)) of O(k) on Ui.

Define a map Σ : C[Z0, . . . , Zn]k → H0(CPn, O(k)) by P 7→ sP , where

sP |Ui =
P (Z0, . . . , Zn)

Zki
σki ,

then Σ is a linear isomorphism. In particular, H0(CPn, O(k)) has a basis

{sI : |I| = k, I ∈ Nn+1}, sI = Σ(ZI).

As a result, dimH0(CPn, O(k)) =
(
k+n
n

)
.
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Definition 7 (ample and very ample). On a compact complex manifold M , a
line bundle L is called:

1. very ample if there is a projective embedding j : M → CPn such that L is
isomorphic to j∗O(1);

2. ample if there is m ≥ 1 such that Lm is very ample.

Recall the following famous result.

Theorem 1 (Kodaira). On a compact complex manifold M , a line bundle is
ample if and only if it is positive. If M admits such a line bundle, then M is
projective.

Definition 8 (canonical line bundle). For a complex manifold Mn, we denote
KM := det(T ∗hM) = Λ(n,0)T ∗M . On a holomorphic chart (U, z1, . . . , zn), it has
a natural frame dz1 ∧ · · · ∧ dzn.

Example 3. The canonical bundle of CPn is O(−n− 1).

Proof. Let (U0, z1, . . . , zn), (U1, w1, . . . , wn) be the standard charts of CPn,
where w1 = Z0

Z1
and wl = Zl

Z1
for l > 1. Now σ0 = dz1 ∧ · · · ∧ dzn (resp.σ1 =

dw1 ∧ · · · ∧ dwn) is a local frame of the canonical bundle on U0 (resp. on U1).
On U0 ∩ U1, z1 = 1

w1
, dz1 = −w−2

1 dw1 and for l > 1, zl = wl
w1

.

dzl =
w1dwl − wldw1

w2
1

.

Then σ0 = −w−(n+1)
1 σ1 = −(Z1

Z0
)(n+1)σ1. From this transition law, we see that

the canonical bundle is O(−n− 1).

Definition 9 (Kähler potential). Let (M,ω) be a Kähler manifold, a local
smooth real-valued function K is called a Kähler potential for (M,ω) if ω =
i
2∂∂̄K.

By complex Poincaré lemma, for any Kähler manifold, locally there is a
Kähler potential.

Definition 10 (Kähler-Einstein manifold). A Kähler manifold (M,ω) is called
Kähler-Einstein if there is a constant λ such that Ric = λg or equivalently the
Ricci form ρ = λω.

If Mn is a Kähler-Einstein manifold: Ric = λg, then its scalar curvature

scal = gij̄Ricij̄ = nλ (2.1)

is constant.
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Example 4 (Fubini-Study). On a complex projective space CPn, the form
ωFS := 2πc1(O(1), h) is a Kähler form, which is called the Fubini-Study form.
It expression on the standard chart (U0, φ0) is

ωFS = i[

n∑
j=1

dzj ∧ dz̄j
1 + |z|2

− 1

(1 + |z|2)2
(

n∑
k=1

z̄kdzk) ∧ (

n∑
l=1

zldz̄l)],

where K = 2 log(1 + |z|2) is a Kähler potential. Its local expression is

gij̄ =
δij(1 + |z|2)− z̄izj

(1 + |z|2)2

or rather

(gij̄) =
1

1 + |z|2
(Idn −

1

1 + |z|2
z̄zT ),

from which we derive that det(gij̄) = (1 + |z|2)−n−1 and its transpose-inverse

(gij̄) = (1 + |z|2)(Idn + zzH), so gij̄ = (1 + |z|2)(δij + ziz̄j).
So,

Ricij̄ = − ∂2

∂zi∂z̄j
log det(gkl̄) = (n+ 1)gij̄ ,

i.e., (CPn, ωFS) is Kähler-Einstein. The scalar curvature is n(n+ 1).
By Exercise 4, its volume form

µ =
2nµ0

(1 + |z|2)n+1
, (2.2)

where µ0 is the pullback of Lebesgue measure along ϕ0. The volume of (CPn, ωFS)
is ∫

Cn

2nµ0

(1 + |z|2)n+1
= 2nArea(S2n−1)

∫ ∞
0

r2n−1

(1 + r2)n+1
dr =

(2π)n

n!
.

For a hermitian manifold M and f ∈ C2(M), we define the Laplacian by

∆f = 2
∑
i,j

gij̄
∂2f

∂zi∂z̄j
. (2.3)

For a hermitian manifold M , (cf.[27, Section 1.2]) its Chern curvature (cor-
responding to Riemann curvature if M is Kähler) components are

RMij̄kl̄ := g(RM (
∂

∂zi
,
∂

∂z̄j
)
∂

∂z̄l
,
∂

∂zk
)

= gkm̄
∂Γm̄

j̄l̄

∂zi

= −
∂2gij̄
∂zk∂z̄l

+ gpq̄
∂giq̄
∂zk

∂gpj̄
∂z̄l

.

(2.4)

9



Proof. R(∂i, ∂j̄)∂l̄ = ∇i∇j̄∂l̄ = ∇i(Γmjl∂m̄) =
∂Γmjl
∂zi

∂m̄, soRij̄kl̄ = g(
∂Γmjl
∂zi

∂m̄, ∂k) =

gkm̄
∂Γmjl
∂zi

.

They enjoy symmetries below (cf.[25, Exercise 1.21]):

Rij̄kl̄ = Rkj̄il̄ = Ril̄kj̄ . (2.5)

Define Rm̄
k̄q,j̄

by R(∂k̄, ∂q)
∂
∂zj

= ∇k̄∇q∂j̄ −∇q∇k̄∂j̄ = Rm̄
k̄q,j̄

∂m̄, we find that

Rl̄k̄q,j̄ = −
∂Γlkj
∂zq

.

The Ricci curvature components are

RicMkl̄ = gij̄RMij̄kl̄ = −
∂2 log det(gij̄)

∂zk∂z̄l
= −∂Γkik

∂z̄j
.

The scalar curvature is
scal = gij̄RicMij̄ (2.6)

. If M is Kähler, then We can define Christoffel symbols by

∇ ∂
∂zj

∂

∂zk
=

n∑
i=1

Γijk
∂

∂zi
,

the symmetry Γijk = Γikj . By [25, Lemma 1.19]

Γijk = gil̄
∂gkl̄
∂zj

, Γīj̄k̄ = Γijk = gīl
∂gk̄l
∂z̄j

and other Christoffel symbols of mixed type vanish. By [25, Example 1.17],

∇ ∂
∂z̄i

= −
∑
j

Γ̄kijdz̄
j . (2.7)

Definition 11. For a complex manifold M , the first Chern class of M is defined
to be c1(M) := c1(K∗M ). Given moreover a hermitian form ω, its first Chern
form c1(M,ω) := c1(K∗M , h), where h is the induced metric on K∗M .

Theorem 2 (Chern). Let (M,ω) be a Kähler manifold, then its Ricci form
ρ = 2πc1(M,ω). In local expression

ρ = −i∂∂̄ log det(gij̄) = iRickl̄dzk ∧ dz̄l.

In particular, the class [ρ] is independent of the choice of Kähler form ω.

Proof. Take a holomorphic chart (U, z1, . . . , zn) of M , then K∗M has a holomor-
phic frame σ = ∂

∂z1
∧ · · · ∧ ∂

∂zn
. Then |σ|2h = det(gij̄). Therefore,

ρ = i∂̄∂ log det(gij̄) = 2πc1(M,ω).
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Theorem 3 (K-coordinate). [19, Proposition 2.2] Let (M,ω) be a Kähler man-
ifold with ω real analytic, then given x ∈ M , there is a unique (up to affine
transformation) local holomorphic coordinate (U ; z1, . . . , zn) centered in x with a
Kähler potential 2ϕ such that in the Taylor expansion of ϕ, all the (0, l), (1, l), (l, 1), (l, 0)
terms (l ∈ N) vanish except for (1, 1) term which equals to |z|2. If ω is only
smooth, then for any A ∈ N+, the previous statement still holds with 0 ≤ l ≤ A.

Remark 1. Tian used this theorem with A = 4 in [26, (1.3)].

Exercise 5. [25, Section 7.2, p.132] In that case,

ϕ(z) = ϕ4(z) +O(|z|5)

where

ϕ4 = |z|2 − 1

4

∑
ijkl

RMij̄kl̄(p)ziz̄jzkz̄l.

Moreover,

det(gij̄) = 1−
∑
k,l

Rickl̄zkz̄l +O(|z|3).

Proof. By Theorem 3, we may find a chart such that (1, 1)-term of ϕ is |z|2 and
all the other (0, l), (1, l), (l, 1), (l, 0) terms vanish for 0 ≤ l ≤ 3. In particular,

ϕ = |z|2 − 1

4

∑
ijkl

cijklziz̄jzkz̄l +O(|z|5)

for certain constants cijkl satisfying symmetries cijkl = ckjil = cilkj . Then

gij̄ =
∂2ϕ

∂zi∂z̄j
= δij −

∑
k,l

cijklzkz̄l +O(|z|3); (2.8)

∂3ϕ

∂zi∂z̄j∂zk
(p) = 0; (2.9)

∂3ϕ

∂zi∂z̄j∂z̄l
(p) = 0; (2.10)

∂4ϕ

∂zi∂z̄j∂zk∂z̄l
= −cijkl +O(|z|). (2.11)
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Thus by (2.4) we find cijkl = RM
ij̄kl̄

(p). We calculate

det(gij̄) =
∑

J=(j1,...,jn)∈Sn

ε(J)g1j̄1 . . . gnj̄n

=
∑
J

ε(J)(δ1j1 −
∑
k1,l1

R1j̄1k1 l̄1(p)zk1
z̄l1 +O(|z|3)) . . . (δnjn −

∑
kn,ln

Rn,j̄n,kn,l̄n(p)zkn z̄ln +O(|z|3))

=
∑
J

ε(J)(δ1j1 . . . δn,jn −
n∑

m=1

∑
km,lm

Rm,j̄m,km,l̄mzkm z̄lmδ1j1 . . . δ̂m,jm . . . δn,jn +O(|z|3))

= 1−
n∑

m=1

∑
km,lm

Rm,m̄,km,l̄mzkm z̄lm +O(|z|3)

= 1−
∑
k,l

Rick,l̄(p)zkz̄l +O(|z|3).

To avoid confusion, we recall some definitions.

Proposition 2 (Chern connection). For a holomorphic vector bundle E →M
with hermitian metric hE on a complex manifold M , there is a unique connection
∇ on E which is

1. hermitian: for any s, t ∈ C∞(M,E),

d(s, t)hE = (∇s, t)hE + (s,∇t)hE .

In local expression

∂

∂zk
(s, t)hE = (∇ ∂

∂zk

s, t)hE + (s,∇ ∂
∂z̄k

t)hE .

2. compatible with the holomorphic structure: for any smooth field U ∈
T 0,1M , s ∈ C∞(M,E), we have

∇Us = ∂̄Es(U).

Definition 12 (Chern curvature). The curvature form RE = Θ(E, hE) of
the Chern curvature given by Proposition 2 is called the Chern curvature of

(E, hE). Define the first Chern curvature form by c1(E, hE) = iTr(RE)
2π =

c1(det(E), hdet(E)) and the first Chern class c1(E) = [c1(E, hE)] ∈ H2
dR(M ;R).

In local expression,

REα,β̄,i,j̄ = −
∂2hα,β̄
∂zi∂z̄j

+ hλ,µ̄
∂hα,µ̄
∂zi

∂hλ,β̄
∂z̄j

.

Note that when E = ThM , we recover last line of (2.4). Consider the partic-
ular case of a hermitian line bundle (L, h). For a local frame σ ∈ H0(U,L),

12



∂̄∂(log |σ|2h) is a (1, 1)-form on U independent of the choice of s and over vari-
ous U they glue to a global (1, 1)-form, which is exactly the Chern curvature of
(L, h).

Exercise 6. If in addition (M,ω) is a hermitian manifold, we recall the Lef-
schetz operator L on Λ∗,∗(T ∗M)⊗E by (ω∧)⊗Id and its adjoint Λ with respect
to the hermitian metric therein induced by ω and hE. Then

(iΛRE)α,β = gij̄REα,β,i,j̄ .

In particular, when E = ThM and hE is the hermitian metric of M , then
Tr(iΛRE) = scal.

Proof. Take {wj} a smooth orthonormal frame of ThM . Expand it in a local
holomorphic chart (z1, . . . , zn):

(w1, . . . , wn) = (
∂

∂z1
, . . . ,

∂

∂zn
)P,

then Id = PTGP̄ , where G = (gij̄). Thus G−1 = P̄PT , so gkl̄ =
∑n
j=1 P̄ljPkj .

By [15, (1.4.32)],

iΛRE =

n∑
j=1

RE(wj , w̄j) =
∑
j,k,l

RE(Pkj
∂

∂zk
, P̄lj

∂

∂z̄l
)

=
∑
k,l

REkl̄(

n∑
j=1

P̄ljPkj) =
∑
k,l

REkl̄g
kl̄.

.

We proved the first and the second follows from (2.6).

Proposition 3 (normal coordinate frame). [5, Ch.V, Proposition 12.10] Let
M be a complex manifold and (E, h) a hermitian holomorphic vector bundle of
rank r on M . For any local holomorphic coordinates (z1, z2, ....zn) centered in
p ∈ M , there exists a holomorphic frame v1, ...vr of E in a neighborhood of p
such that

RE(p) =
∑
α,β,j,l

REα,β,j,l̄(p)vα ⊗ v̄β ⊗ (dzj ∧ dz̄l)(p), (2.12)

h(vα, vβ) = δα,β −
n∑

j,l=1

REα,β,j.l̄(p)zj z̄l +O(|z|3). (2.13)

Let HE be the Gram matrix (h(vα, vβ)). Let

HE
2 (z) = (δα,β −

n∑
j,l=1

REα,β,j,l̄(p)zj z̄l), (2.14)

then we can rewrite (2.13) as HE = HE
2 +O(|z|3).

13



Let M be a hermitian manifold, then there is an induced hermitian metric
on the space of global smooth (p, q) forms Ωp,q(M). Let (E, h) be a holomorphic
hermitian vector bundle on M .

Definition 13 (anti-holomorphic Kodaira-Laplacian). [15, Definition 1.4.9] Let
∂̄E,∗ be the formal adjoint of the Dolbeault operator ∂̄E. Define an operator on
the space of smooth forms Ω∗,∗(M,E) by

�E = [∂̄E , ∂̄E,∗].

Theorem 4 (Hodge decomposition). [15, Thm 1.4.1] If M is in addition com-
pact, then we have an orthogonal decomposition

C∞(M,E) = H0(M,E)⊕ Im(�E |C∞(M,E)).

Moreover, H0(M,E) is a finite dimensional C-vector space.

The following inequality relies on Bochner-Kodaira-Nakano identity.

Theorem 5 (Nakano’s inequality). [15, Theorem 1.4.14] If in addition M is

Kähler, take s ∈ Ω
(p,q)
c (M,E) an arbitrary compactly supported smooth E-valued

(p, q)-form, then
〈2Es, s〉 ≥ 〈[iRE ,Λ]s, s〉,

where the global scalar product is defined in (1.3.14) loc.cit.

2.3 Stationary phase method

Theorem 6 (Hörmander). [18, Theorem 13.3.2][10, Theorem 7.7.5] Let U ⊂
Rd be an open neighborhood of 0 ∈ Rd and ϕ,A be smooth functions on U
such that Re(ϕ) ≥ 0 on U . Furthermore, suppose that on supp(A), ϕ has a
unique stationary point at 0 and ϕ(0) = 0. Suppose the Hessian H of ϕ at 0
is nonsingular (i.e., 0 is a non-degenerate critical point of ϕ.) Define a second
order differential operator

D =

d∑
p,q=1

(H−1)p,q
∂2

∂xp∂xq

and ϕ = ϕ(x)− (x,Hx)/2. Set

Lj(Aϕ) = (−1)j
∑

0≤l≤2j

Dl+j(Aϕl)(0)

2l+j l!(l + j)!
,

then for each M ∈ N+, let N = M + dd/2e, for k ∈ R+, we have

|
∫
U

A(x)e−kϕ(x)µ0−[det(
kH

2π
)]−1/2

∑
j<M

k−jLj(Aϕ)| ≤ C(ϕ)k−M
∑

|I|≤2N,I∈Nd
sup |∂IxA|.

Here the constant C(ϕ) is bounded when ϕ stays in a bounded set in C3N+1.
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The following result play the same role in the proof of main theorem, but
with integral domain shrinking with the growth of k.

Lemma 1. [14, Lemma 4.1] Let A be a symmetric function on [n]p×[n]p. Then∑
I,J∈[n]p

∫
|z|≤ log k√

k

AI,Jz
I z̄J |z|2qe−k|z|

2

µ0 = πn(
∑
I∈[n]p

AI,I)
p!(n+ p+ q − 1)!

(p+ n− 1)!kn+p+q
+O(e− log2 k).

We collect some consequences of this lemma.∫
B(0, log k√

k
)

e−k|z|
2

µ0 =
πn

kn
+O(e−(log k)2

) (2.15)

∑
i,j

∫
B(0, log k√

k
)

RicMi,j̄(p)ziz̄je
−k|z|2µ0 = (

π

k
)nscal(p) + kn +O(e−(log k)2

) (2.16)∫
B(0, log k√

k
)

e−k|z|
2

|z|4O(k)(
∑
j,l

REα,β,j,l̄)zj z̄ldet2µ0 = O(k−n−2) (2.17)∫
B(p, log k√

k
)

e−k|z|
2 ∑

REα,β,j,l̄zj z̄lµ0 = (iΛRE)α,β
πn

kn+1
+O(e−(log k)2

) (2.18)∫
B(0, log k√

k
)

e−kϕ4(|z|5O(k) +O(|z|3))µ0 = O(k−n−3/2) (2.19)

∑
i,j̄

REα,β,i,j̄

∫
B(p, log k√

k
)

e−k|z|
2

ziz̄j(O(|z|3) + |z|4O(k))µ0 = O(k−n−2), (2.20)

where for (2.18) we use Exercise 6.
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Chapter 3

Bergman kernel

Let (Mn, g) be a compact hermitian manifold whose volume form is denoted by
µ, and P →M be a holomorphic vector bundle with hermitian metric h = hP .
Endow C∞M,P ) a hermitian inner product by

〈s, t〉 =

∫
M

(s, t)µ.

Define ‖s‖2h = 〈s, s〉. Let L2(M,P ) be the completion of (C∞M,P ), 〈, 〉).
By Theorem 4, H0(M,P ) is finite dimensional. Choose an orthonormal ba-
sis (e1, ...., eN ) of H0(M,P ).

Definition 14 (Bergman kernel). For p, q ∈M the Bergman kernel of P is

Π(p, q) =

N∑
i=1

ei(p)⊗ ēi(q) =

N∑
i=1

hq(·, ei(q))ei(p) : Pq → Pp.

Write
B(p) = Π(p, p) ∈ End(Pp),

where we use the identification given by Exercise 1.

In this mémoire, we are interested only in diagonal values. By Exercise
1, B(p) ∈ Herm+(Pp, hp). Note that B ∈ C∞(M,End(P )). For λ a positive
constant, if we use the metric λg instead g on Mn (i.e., a constant scaling),
the new volume form is λnµ, the new scalar curvature is scal

λ and new Bergman
kernel is λ−nB.

Exercise 7. Use another hermitian metric h′ conformal to h, i.e., there is a real
function f on M such that h′(v, v) = e2fh(v, v) for any smooth section v of P .
Let B′ be the Bergman kernel of P with respect to h′. If h′, h are of the same
Chern curvature form, then f is a constant and the corresponding Bergman
kernels B and B′ coincide. (Note that if P is a line bundle, the conformal
condition is automatic.)
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Proof. Recall that R(P, h′) = ∂̄(h′−1 · ∂h′) = 2(∂̄∂f)Id + R(P, h), so ∂̄∂f ≡ 0.
By (2.3), ∆f = 0. The manifold M being compact, by Stoke’s formula,∫

M

(f∆f + |∇f |2)µ = 0.

We see that f is a constant. In particular, {e−fei|i = 1, . . . , N} is an orthonor-
mal basis of H0(M,P ) with respect to h′. For any p ∈M ,

B′(p) =

N∑
i=1

h′p(·, e−fei(p))e−fei(p) =

N∑
i=1

hp(·, ei(p))ei(p) = B(p).

Remark 2. If s1, . . . , sN is a basis of H0(M,P ), where sq+1(p) = · · · =
sN (p) = 0, then by Exercise 3,

B(p) =

q∑
k,l=1

sk(p)⊗ s̄l(p)Alk,

where A is the inverse of the size N Gram matrix (〈si, sj〉). This observation
serves as a motivation of the peak section method firstly raised by Tian in [26].
In particular, if furthermore s1(p), . . . , sq(p) form an orthonormal basis of Pp,
then B(p)kl = Alk. This approach is taken in [11, §3].

Example 5. If p ∈M is a base point of P , i.e., all global sections of P vanish
at p, then clearly B(p) = 0.

Proposition 4. dimH0(M,P ) =
∫
M

Tr(B(p))µ.

Proof. By Exercise 1, Tr(B(p)) =
∑N
i=1 |ei|2(p). Taking integral∫

M

Tr(B(p))µ =

N∑
i=1

‖ei‖2 =

N∑
i=1

1 = dimH0(M,P ).

As an analogue of Exercise 3 (2), we have an interpretation of Bergman
kernel.

Exercise 8. The finite dimensional H0(M,P ) being a closed subspace of L2(M,P ),
there exists an orthogonal projection (so called Bergman projection)

π : L2(M,P )→ H0(M,P ).

Then Bergman kernel Π is the reproducing kernel function of π, i.e., for any
s ∈ L2(M,P ),

(πs)(p) =

∫
M

Π(p, q)s(q)µ(q).
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Proof. We calculate∫
M

Π(p, q)s(q)µ(q) =

∫
M

n∑
i=1

(s, ei)(q)ei(p)µ(q)

=

n∑
i=1

ei(p)〈s, ei〉 = (πs)(p).

We begin with a well-known generalization of [3, Lemma 3.1], which is an
extremal characterization of Bergman kernel.

Lemma 2.

B(p) = max
s∈H0(M,P )\{0}

s(p)⊗ s̄(p)
‖s‖2h

using the natural partial order of Herm+(Pp, hp).

Proof. Take u ∈ Pp,

(B(p)u, u) =

N∑
i=1

(u, ei(p))(ei(p), u) =

N∑
i=1

|(u, ei(p))|2.

For s ∈ H0(M,P ) \ 0, let s =
∑N
i=1 λisi with λ ∈ CN \ {0}, then ‖s‖2 = |λ|2.

(
s(p)⊗ s̄(p)
‖s‖2h

(u), u) =
1

|λ|2
((
∑
i

λisi(p))⊗ (
∑
j

λjsj(p))u, u)

=
1

|λ|2
(
∑
i,j

λiλ̄j(u, sj(p))(si(p), u)

=
1

|λ|2
(λTAλ̄),

where
A = wwH w = ((s1(p), u), . . . (sN (p), u))t ∈ CN .

Therefore (
max

s∈H0(M,P )\0

s(p)⊗ s̄(p)
‖s‖2h

u, u
)

= max
s6=0

( (s(p)⊗ s(p)u, u)

‖s‖2
)

= max
λ∈CN\0

λTAλ̄

|λ|2

= ρ(A) = ρ(wHw) = wHw

=
∑

i=1...N

|(si(p), u)|2

= (B(p)u, u),

where we used Proposition 1.
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3.1 Main Theorem

The setting for Section 3.1 is the following: Let Mn be a projective manifold,
(L, hL) (resp. (E, hE) be a hermitian holomorphic line (resp. vector) bundle
with Chern curvature RL (resp. RE). Assume that M is polarized by L, i.e.,
iRL is the Kähler form of M (so that (L, hL) is positive). Let r be the rank of
E, scal : M → R be the scalar curvature. We state the main result of the paper.

Theorem 7 (main theorem). The Bergman kernel Bk of Lk⊗E has an asymp-
totic expansion

Bk(p) =
( k

2π

)n
(Idr + k−1[

scal

2
Idr + iΛRE)(p)] +O(kn−2).

Corollary 1. There is k0 ≥ 1 such that for any k ≥ k0, Lk ⊗ E has no base
points.

We recall the following celebrated result.

Theorem 8 (Catlin-Zelditch). [2, Theroem 2][31, Theorem][14, Theorem 1.1]
The Bergman kernel admits a complete asymptotic expansion

Bk(p) ∼ kn(
∑
l≥0

al(p)k
−l),

where al are universal polynomials in the curvature of (M, g), RE as well as
their successive covariant derivatives at p. Each al(p) is a self-adjoint matrix
with respect to hE. More precisely, for each s, l ∈ N, there is a constant C =
C(s, l,M) such that for any p ∈M ,

|Bk(p)−
s∑
j=0

aj(p)k
n−j |Cl ≤ Ckn−s−1.

The convergence of Bergman metrics is one of the motivations for search of
such expansion in the history. As a corollary of this theorem, we recover Tian’s
result ([26, Theorem A,Theorem B], for C2 convergence) and Ruan’s result ([19]
for C∞ convergence). Say Nk = dimH0(M,Lk)− 1 and choose an orthonormal
basis {sk,0, . . . , sk,Nk} of H0(M,Lk), then when k is large enough, the Kodaira

map φk : M → CPNk by

x 7→ [sk,0(x) : · · · : sk,Nk(x)]

is a holomorphic embedding. We call 1
kφ
∗
kωFS a Bergman mertic of M with

respect to L.

Theorem 9. [25, Corollary 7.5] The set of Bergman metrics is dense in the
set of polarized Kähler metrics. In fact,

‖1

k
φ∗kωFS − ω‖C∞ = O(k−2).
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An informal proof! By assumption,

kω = ikRL = iRL
k

= i∂̄∂ log |sk,0|2.

On the open φ−1
k (Z0 6= 0)(⊂M), sk,0 is a frame of Lk. By Example.4,

φ∗kωFS = i∂∂̄ log(1 +

Nk∑
j=1

|sk,j
sk,0
|2) = i∂∂̄ log

Bk
|sk,0|2

= i∂∂̄ logBk + kω.

(This is the content of [25, Lemma 7.3].) By Theorem 7 and Theorem 8,

‖i∂∂̄ logBk‖C∞ = O(
1

k
),

so

‖1

k
φ∗kωFS − ω‖C∞ =

1

k
‖i∂∂̄ logBk‖C∞ = O(

1

k2
).

We give a quick application of our main result.

Definition 15 (Euler-Poincaré characteristic). The Euler-Poincaré character-
istic of E is

χ(M,E) =
∑
j≥0

(−1)j dimCH
j(M,E).

Theorem 10 (Serre vanishing theorem). [22, n.66, Théorème 2] There is k0 ≥
1 such that any k ≥ k0, any q > 0, Hq(M,Lk ⊗ E) = 0.

At present we have adequate tools for the famous result below.

Corollary 2 (Asymptotic Riemann-Roch).

χ(M,Lk⊗E) =
knrk(E)

n!

∫
M

c1(L)n+
kn−1rk(E)

2(2π)n

∫
M

scalµ+
kn−1

(2π)n

∫
M

Tr(iΛRE)µ+O(kn−2).

Proof. By Theorem 10, χ(M,Lk⊗E) = dimH0(M,Lk⊗E) when k is sufficiently
large. Then Theorem 7 and Proposition 4 gives the result.

3.1.1 Example

We illustrate Theorem 7 with a concrete example. On (CPn, ωFS), L = O(1),
hL = h the one given in Example 2. E = O(l) with hE = hl.

By Example 2, on U0, (sI , sJ) = zI
′
z̄J
′

(1+|z|2)k
, where I ′ = (i1, . . . , in) is a trun-

cation of the multi-index I = (i0, . . . , in). so by (2.2),

〈sI , sJ〉 =

∫
U0

(sI , sJ)µ =

∫
Cn

zI
′
z̄J
′

(1 + |z|2)n+1+k
2nµ0.
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Change variables: zj = rje
iθj , then µ0 = r1 . . . rndr1 . . . drndθ1 . . . dθn, By Ex-

ercise 9, when I ′ = J ′,

∫
Cn

zI
′
z̄J
′

(1 + |z|2)n+1+k
2nµ0 = 2n(2π)n

∫
Rn+

r2I+~1

(1 + |r|2)n+1+k
dr1 . . . drn

= (2π)n
Γ(1 + i1) . . .Γ(1 + in)Γ(1 + i0)

Γ(n+ k + 1)
.

When I ′ 6= J ′ we get 〈sI , sJ〉 = 0.
Fix p = [1 : 0 : · · · : 0] ∈ U0, consider the special multi-index I0 =

(k, 0, . . . , 0), then sI(p) = 0 when I 6= I0.
By Remark 2, the Bergman kernel of Lk⊗E = O(k+l) is Bk(p) = |sI0(p)|2A,

where

A−1 = (2π)n
(k + l)!

(n+ k + l)!
.

So, we find the Bergman kernel of Lk ⊗ E

Bk(p) =
(n+ k + l)!

(2π)n(k + l)!
= (2π)−n(k + n+ l)(k + n+ l − 1) . . . (k + l + 1)

= (
k

2π
)n(1 + k−1(

n(n+ 1)

2
+ nl) +O(k−2)).

Note that the scalar curvature is constant n(n+ 1) and iΛRE = nl in this case.

Exercise 9. For a real number A > 0, a multi-index I = (i1, . . . , in) ∈ Nn,
1. ∫

Rn+

rI

(A2 + |r|2)b
dr =

An+|I|−2b

2n
Γ(j1) . . .Γ(jn)Γ(b−

∑
k jk)

Γ(b)
,

where jl = 1+il
2 .

2. ∫
Cn

zI z̄J

(1 + |z|2)s
µ0 = 0.

when I 6= J .

Proof. 1. Induction on n. When n = 1, is∫
R+

ri

(A2 + r2)b
dr =

∫ π/2

0

A tan(t)i

(A2/ cos(t)2)b
A/ cos2(t)dt = A1+i−2b 1

2
B(j, b− j)

by r = A tan(t), done.
If true for n− 1. Integrating rn first, we get

Γ(jn)Γ(b− jn)

2Γ(b)

∫
Rn−1

+

r′I
′

(A2 + |r′|2)b−jn
dr′,
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where r′ = (r1, . . . , rn−1) and I ′ = (i1, . . . , in−1), then use induction hypothesis
to conclude.

2. Mimic the proof of Exercise 10.

3.2 Proof of Main Theorem

Once for all, we choose a local frame σ of L and a chart around p, ϕ := −2 log |σ|h
such that ϕ is as in Exercise 5 (cf.[26, (2.2)]); a frame {v1, . . . , vr} of E as in
Proposition 3 and use notations therein. Let det2 = 1 − Rickl̄(p)zkz̄l given by
Exercise 5. Note that at p,

gij̄ = δij , (3.1)∑
j

RMjj̄kl̄ = Rickl̄, (3.2)

∑
i

RicMīi = scal. (3.3)

Use our proof below but with higher order approximation of HE and ϕ,
we can find the coefficient of kn−2 in the expansion of Bk(p) explicitly, cf.[28,
Theorem 4.2].

3.2.1 Upper bound

The goal of this section is to derive an upper bound for Bk.
In each term of ϕ4, H

E
2 , the power of z and of z̄ are the same. This simple

observation leads to the following vanishing identity, which should be compared
to [26, Lemma 2.2].

Exercise 10. 1. For any multi-index I(6= ~0) ∈ Nn, ψ a bounded measurable
function on Cn. Assume ψ is rotationally invariant, i.e., ψ(z) depending
only in |z|. Then ∫

Cn
ψe−kϕ4zIHE

2 det2µ0 = 0. (3.4)

2. Let B ⊂ Cn be an open ball centered in 0, and f ∈ H(B) a holomorphic
function with f(0) = 0, then∫

B

e−kϕ4f(z)HE
2 det2µ0 = 0.

Proof. 1.Take λ ∈ C with |λ| = 1 and λ|I| 6= 1. Change variable z = λw. Note
that for the integral domain, ψ,ϕ4, H

E
2 ,det2, µ0 are formally invariant under

this change. Denote the integral on the left of (3.4) by J . Under the change of
variable, J = λ|I|J , hence J = 0.

2.We apply 1. Take ψ to be the characteristic function of B and use the
Taylor expansion of f .
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Method 1: Tian

The following generalization of [3, Lemma 3.3] will lead to the upper bound
we seek. Note carefully we use this lemma to control the point difference of
smooth and holomoprhic peak sections in Section 3.2.2, to avoid applying [3,
Theorem 2.1].

Lemma 3. Notation as in Theorem 7. Put B = B(p, ln k√
k

). For any s ∈
H0(B,Lk ⊗ E),

s(p)⊗ s̄(p) ≤M(k)

∫
B

|s|2µ,

where the matrix

M(k) = (
k

2π
)n(Idr + k−1(

scal

2
Idr + iΛRE) +O((log k)5k−

3
2 )).

(See Exercise 6 for Λ.) Taking trace we get

|s|2(p) ≤ Ckn
∫
B

|s|2µ (3.5)

All the implicit constants are uniform in p ∈M and independent of k.

Proof. Put

C(k) =
e−C(log k)5k−

3
2

(1 + C(log k)3k−
3
2 )2

= 1 +O((log k)5k−
3
2 ),

Write s =
∑r
α=1 fα(σk ⊗ vα), where fα are holomorphic functions on B. Note

σ ⊗ σ̄ = |σ|2 = e−ϕ. Let ~f = (f1, . . . , fr)
T .

The left hand side is∑
α

fα(σk ⊗ vα)⊗ (
∑
β

fβ(σk ⊗ vβ)(p) = ~f ~fH(p).

The point-wise norm

|s|2 = hL
k⊗E(

∑
α

fα(σk ⊗ vα),
∑
β

fβ(σk ⊗ vβ)) = e−kϕ ~fTHE ~̄f.

The integral on the right J(k) :=
∫
B
|s|2µ =

∫
B
e−kϕ ~fTHE ~̄fµ.

There is a constant C > 0 such that

−ϕ4 ≤ −ϕ+ C|z|5 (3.6)

HE
2 ≤ (1 + C|z|3)HE (3.7)

2ndet2

1 + C|z|3
≤ µ

µ0
. (3.8)
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Moreover |z| ≤ ln k√
k

in the domain of integral. Then (3.6),(3.7),(3.8) result in

J(k) ≥ 2nC(k)

∫
B

e−kϕ4 ~fTHE
2
~̄fdet2µ0. (3.9)

Recall (2.14), when k is large enough, HE
2 (z) is positive definite at any

z ∈ B(p, ln k√
k

), a fact used in the inequality (3.10). Hence∫
B

e−kϕ4 ~fTHE
2
~̄fdet2µ0

=

∫
B

e−kϕ4det2[~f(p)THE
2
~̄f(p) + (~f − ~f(p))TH2(~f − ~f(p))]µ0

≥ ~fT (p)(

∫
B

e−kϕ4HE
2 det2µ0)~f(p),

(3.10)

where the first equation is from Exercise 10.
We now calculate∫

B

e−kϕ4HE
2;α,βdet2µ0 = S(k)δα,β − Tα,β(k),

where S(k) :=
∫
B
e−kϕ4det2µ0 and Tα,β(k) =

∫
B
e−kϕ4

∑
i,j R

E
α,β̄,i,j̄

(p)ziz̄jdet2µ0.

By [3, (5)]

S(k) =
(π
k

)n(
1− scal(p)

2k
+O(k−2)

)
.

(Note his µLeb = 2nµ0.)
Since

e−kϕ4det2 = e−k|z|
2

(1 + |z|4O(k))(1 +O(|z|2)) = e−k|z|
2

(1 + |z|4O(k)),

Tα,β(k) =

∫
B

e−k|z|
2

(1+|z|4O(k))
∑
i,j

REα,β̄,i,j̄ziz̄jµ0 = (iΛRE)α,β
πn

kn+1
+O(k−n−2)

by (2.17) and (2.18).
Therefore

A : = 2nC(k)

∫
B

e−kϕ4HE
2 det2µ0

= C(k)
(2π

k

)n
(Idr − k−1(iΛRE +

scal(p)

2
Idr) +O(k−2)) = M(k)−1.

(3.11)
We conclude as follows.

M(k)

∫
B

|s|2µ = M(k)J(k)

≥M(k)2nC(k)

∫
B

e−kϕ4 ~fTH2
~̄fdet2µ0

≥M(k)2nC(k)~fT (p)(

∫
B

e−kϕ4HE
2 det2µ0)~f(p)

= A−1vTAv̄

≥ vvH = s(p)⊗ s̄(p),

(3.12)
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where the inequalities are from (3.9),(3.10) and Exercise 2.

Method 2: L.Charles

We can prove a weaker version of Lemma 3 using Theorem 6.

Lemma 4. Notation as in Theorem 7. Fix an open neighborhood U of p ∈M .
There for any s ∈ H0(U,Lk),

s(p)⊗ s̄(p) ≤M(k)

∫
U

|s|2µ,

Proof. We may shrink U to find a holomorphic chart (z1, . . . , zn) over U . There
is a > 0 such that the ball B(p, a) ⊂ U . Take a smooth cutoff function η :
R → [0, 1] supported in (−a, a) with η ≡ 1 near 0. Define ψ : M → [0, 1] by
ψ(z) = η(|z|) for z ∈ U and ψ(q) = 0 for q /∈ U . Then ψ is smooth. Put

J(k) :=

∫
M

ψ|s|2µ =

∫
U

ψe−kϕ ~fHE ~̄fµ.

Note that J(k) ≤
∫
U
|s|2µ. As in (3.9),(3.10), we get

J(k) ≥ 2nC(k)~fT (p)(

∫
U

ψe−kϕ4HE
2 det2µ0)~f(p).

We calculate with the help of Theorem 6∫
U

ψe−kϕ4HE
2 det2µ0 =

(π
k

)n
(Idr − k−1(

scal

2
Idr + iΛRE) +O(k−2)).

The rest part is similar to that of Lemma 3, which we omit.

Corollary 3 (upper bound).

Bk(p) ≤
( k

2π

)n
(Idr + k−1[

scal

2
Idr + iΛRE ](p) +O(k−3/2 log5 k))

Proof. Combine Lemma 2 and 4.

3.2.2 Lower bound and peak sections

We derive a Kodaira-Hörmander type estimate, which is essential to the con-
struction of peak sections.

Theorem 11. Let 2k be the Kodaira-Laplacian (see Definition 13) on Ω∗,∗(M,Lk⊗
E), then there is C > 0 such that any k ≥ 0, 0 ≤ q ≤ n,

1. 2k ≥ (kq − C)Id on Ωn,q(M,Lk ⊗ E);

2. 2k ≥ (kq − C)Id on Ω0,q(M,Lk ⊗ E),
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where we use L2 inner products.

Proof. 1.Since M is compact, there is C = C(M,ω,E, hE) > 0 such that
[iRE ,Λ] ≥ −CId. As iRL = ω, [iRL,Λ] = q on Ωn,q(M,Lk ⊗ E). Because

RL
k⊗E = kRL +RE , we have

2k ≥ [iRL
k⊗E ,Λ]

= k[iRL,Λ] + [iRE ,Λ]

≥ (kq − C)Idr,

(3.13)

where the first line is from Theorem 5.
2. Note that Ωn,q(M,Lk ⊗ E ⊗K−1

M ) = Ω0,q(M,Lk ⊗ E) and the action of

2L
k⊗E⊗K−1

M on the left is compatible with the action of 2k on the right. Then
2 follow from the 1 using this identification.

The following theorem is a generalization of [3, Theorem 2.2]. It will play
the role of classical ∂̄-estimates.

Theorem 12. There is C = C(M,ω,E, hE) > 0 such that for any s ∈ C∞(M,Lk⊗
E) orthogonal to H0(M,Lk ⊗ E), we have

(k − C)‖s‖2 ≤ ‖∂̄s‖2.

Proof. Let C be given by Theorem 11. We may assume k > C. When 1 ≤ q ≤ n,
always on Ω0,q(M,Lk ⊗ E), 2k ≥ (kq − C)Id is positive-definite. By a variant
of [25, Theorem 2.13], 2k is invertible.

When q = 1, this fact gives t ∈ Ω0,1(M,Lk ⊗ E) such that 2kt = ∂̄s. As

2k∂̄t = ∂̄2kt = ∂̄∂̄s = 0,

the fact with q = 2 implies ∂̄t = 0. Therefore,

∂̄∂̄∗t = 2kt = ∂̄s,

or equivalently s− ∂̄∗t ∈ H0(M,Lk ⊗ E) is holomorphic. In particular, 〈s, s−
∂̄∗t〉 = 0 which gives (*) below.

‖s‖2 = 〈s, s〉 (∗)
= 〈s, ∂̄∗t〉 = 〈∂̄s, t〉 = 〈2kt, t〉.

By Cauchy-Schwarz inequality ‖2kt‖‖t‖ ≥ 〈2kt, t〉 ≥ (k − C)‖t‖2, so ‖2kt‖ ≥
(k − C)‖t‖. Now

‖∂̄s‖2 = ‖2kt‖2 ≥ (k − C)‖2kt‖‖t‖ ≥ (k − C)〈2kt, t〉 = (k − C)‖s‖2.
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Method 1: Tian

The following construction is a twisted version of [26, Lemma 1.2].
Fix p ∈ M and a holomorphic chart (U, z1, . . . , zn) centered in p, for v a

local section of E on U , we will construct a peak section.
Take a smooth cutoff function η : R+ → [0, 1] with η(x) = 1 on x < 1 and

η(x) = 0 when x ≥ 1 and −3 < η′ ≤ 0. Let

ψk(z) = η(
|z|2k
log2 k

)

for z ∈ U and ψk(q) = 0 for q ∈ M \ U . Then ψk : M → [0, 1] is a smooth
function. ψk is supported in B(p,

√
2 log k√

k
) and ψ ≡ 1 on B(p, log k√

k
).

So, ∂̄ψk is supported in the annulus log k√
k
≤ |z| ≤

√
2 log k√

k
. On U ,

∂̄ψk =
k

log2 k
η′(

k|z|2

log2 k
)

n∑
i=1

zidz̄i.

For each i, |dz̄i| ≤ C(M) in the annulus. Thus, on M

|∂̄ψk| ≤ C
√
k

log k
(3.14)

Note that ψk(σk⊗v) ∈ C∞(M,Lk⊗E). We call it a smooth section peaked
at p. Now we construct a holomorphic peak section from it.

Let
ψk(σk ⊗ v) = sk + tk (3.15)

be the Hodge decomposition given by Theorem 4, where sk ∈ H0(M,Lk ⊗ E).
Because near p,

ϕ(z) = |z|2 +O(|z|4),
µ

µ0
= 2n +O(|z|2),

when k is large,
ϕ(z) ≥ |z|2/2, µ ≤ Cµ0 (3.16)

in B(p,
√

2 log k√
k

). An important estimate in the annulus is

e−kϕ ≤ k−
log k

2 ,

By (3.15), ∂̄tk = (∂̄ψk)(σk ⊗ v),

|∂̄tk|2 = |∂̄ψk|2e−kϕ|v|2hE ≤ C(M,v, hE)
k

log2 k
k−(log k)/2.
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Therefore,

‖∂̄tk‖2 =

∫
M

|∂̄tk|2µ =

∫
log k√
k
≤|z|≤

√
2 log k√

k

|∂̄tk|2µ

≤ C(M, v, hE)
k

log2 k
k−(log k)/2

∫
log k√
k
≤|z|≤

√
2 log k√

k

µ0

≤ C(M, v, hE)
k

log2 k
k−(log k)/2(

log k√
k

)2n

. (3.17)

By Theorem 12, ‖tk‖ ≤ ‖∂̄tk‖√
k−C .

‖tk‖ ≤
C√
k − C

k
2−2n−log k

4 logn−1 k ≤ Ck−n/2−(log k)/4 logn−1 k. (3.18)

Estimate the point difference between smooth and holomorphic peak section.
Note that

tk ∈ H0(B(p,
log k√
k

), Lk ⊗ E),

by (3.5),

|sk(p)− (σk ⊗ v)(p)|2

= |tk(p)|2

≤ Ck−(log k)/2 log2n−2 k.

(3.19)

Estimate the outside L2 norm of smooth peak section.∫
M−B(p, log k√

k
)

|ψkσk ⊗ v|2µ

=

∫
log k√
k
≤|z|≤

√
2 log k√

k

|ψk|2e−kϕ|v|2µ

≤
∫

log k√
k
≤|z|≤

√
2 log k√

k

Ck−(log k)/2µ0

≤ Ck−(log k)/2(
log k√
k

)2n.

(3.20)

We use (3.18),(3.20) to get∫
M−B(p, log k√

k
)

|sk|2µ

≤
∫
M−B(p, log k√

k
)

|ψk(σk ⊗ v)|2µ+ 2‖tk‖ · ‖ψk(σk ⊗ v)‖L2(M−B(p, log k√
k

)) + ‖tk‖2

≤ Ck−n−(log k)/2 log2n k
(3.21)
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Estimate the global L2 norm of smooth peak section.

‖ψk(σk ⊗ v)‖2 =

∫
M

|ψk(σk ⊗ v)|2µ

=

∫
B(p, log k√

k
)

|ψk|2e−kϕ|v|2µ+

∫
M\B(p, log k√

k
)

|ψk|2e−kϕ|v|2µ

≤ Ck−n + Ck−(log k)/2(
log k√
k

)2n

≤ Ck−n,

(3.22)

where we used (3.20), (3.29).

Proof of Theorem 7, Tian’s method. Let

ψk(σk ⊗ vα) = sk,α + tk,α

be the Hodge decomposition given by Theorem 4, where sk,α ∈ H0(M,Lk⊗E).
then by Exercise 3.(2),

Bk(p) ≥
∑
α

sk,α ⊗ s̄k,β(p)Aβ,α, (3.23)

where A is the inverse of the Gram matrix G = (〈sk,α, sk,β〉).

〈sk,α, sk,β〉 =

∫
B(p, log k√

k
)

(ψk(σk ⊗ vα), ψk(σk ⊗ vβ))µ

+

∫
M\B(p, log k√

k
)

(ψk(σk ⊗ vα), ψk(σk ⊗ vβ))µ

+

∫
M

(tk,α, tk,β)µ−
∫
M

(ψk(σk ⊗ vα), tk,β)µ−
∫
M

(tk,α, ψk(σk ⊗ vβ))µ.

(3.24)
Apply Cauchy-Schwarz inequality several times. By (3.20),

|
∫
M\B(p, log k√

k
)

(ψk(σkvα), ψk(σk ⊗ vβ))µ| ≤ Ck−(log k)/2(
log k√
k

)2n. (3.25)

By (3.18),

|
∫
M

(tk,α, tk,β)µ| ≤ ‖tk,α‖ · ‖tk,β‖ ≤ Ck−n−(log k)/2 log2n−2 k. (3.26)

By (3.18),(3.22),

|
∫
M

(ψk(σk ⊗ vα), tk,β)µ| ≤ ‖tk,β‖‖ψk(σk ⊗ vα)‖ ≤ Ck−n−(log k)/4 logn−1 k.

(3.27)
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Because

e−kϕHEµ = e−kϕ4(1 + |z|5O(k))HE
2 · (Idr +O(|z|3))det2(1 +O(|z|3))2nµ0

= 2ne−kϕ4H2det2(1 + |z|5O(k) +O(|z|3))µ0,
(3.28)

we find its integral∫
B

e−kϕHEµ

=

∫
B

2ne−kϕ4H2det2(1 + |z|5O(k) +O(|z|3))µ0

= (
2π

k
)n(Idr − k−1(iΛRE +

scal(p)

2
Idr) +O(k−

3
2 )),

(3.29)

where the last equality is from (3.11),(2.19). Therefore,

Gα,β = 〈sk,α, sk,β〉

=

∫
B(p, log k√

k
)

(ψk(σk ⊗ vα), ψk(σk ⊗ vβ))µ+O(k−n−(log k)/4 logn−1 k)

=

∫
B(p, log k√

k
)

e−kϕHE
α,βµ+O(k−n−(log k)/4 logn−1 k)

(3.30)
By (3.29),(3.30), we get an important expansion of G:

G =

∫
B

e−kϕHµ+O(k−n−
log k

4 logn−1 k)

= (
2π

k
)n(Idr − k−1(iΛRE +

scal(p)

2
Idr) +O(k−

3
2 )).

(3.31)

Therefore,

A = G−1 = (
k

2π
)n(Idr + k−1(

scal(p)

2
Idr + iΛRE) +O(k−

3
2 )). (3.32)

By (3.19), (3.23) and (3.32), we get the lower bound

Bk(p) ≥ (
k

2π
)n(Idr + k−1(

scal(p)

2
Idr + iΛRE) +O(k−

3
2 )). (3.33)

By Theorem 8, Bk(p) has only integral power of k. Corollary 3 together with
(3.33) implies

Bk(p) = (
k

2π
)n(Idr + k−1(

scal(p)

2
Idr + iΛRE) +O(k−2)).

Remark 3. From the proof we see that the smoothness conditions can be relaxed
to: hL is C4 (then ω and µ are C2) and hE is C2. Instead of this construction
of peak sections, we can also apply [29, Proposition 3.6.1] which is closer to
Tian’s original way of construction.
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Method 2: L.Charles

We present another construction of peak sections. Fix a holomorphic chart
(U, z1, . . . , zn) centered at p with a frame σ ∈ H0(U,L) and section v ∈ H0(U,E).

Like (3.16), we fix r2 > 0 such that B(p, r2) ⊂ U and ϕ(z) ≥ |z|2/2 on
B(p, r2). Fix a bump function ψ ∈ C∞(M, [0, 1]) with ψ ≡ 1 on B(p, r1) for
some r1 ∈ (0, r2) and ψ ≡ 0 on M \B(p, r2). So, ∂̄ψ is supported in the annulus
B(p, r2) \ B(p, r1) and there is a constant C = C(M) such that on the whole

M , |∂̄ψ|2 ≤ C(M). In the annulus, e−kϕ ≤ e−kr2
1/2.

Then ψ(σk ⊗ v) ∈ C∞(M,Lk ⊗ E). Let

ψ(σk ⊗ v) = sk + tk

be the Hodge decomposition given by Theorem 4, where sk ∈ H0(M,Lk ⊗ E).
Note that

∂̄tk = (∂̄ψ)(σk ⊗ v). (3.34)

For z ∈ B(p, r2),

|∂̄tk|2(z) = |∂̄ψ|2e−kϕ|v|2(z) ≤ Ce−kr
2
1/2 sup |v|2 ≤ C(v,M)e−kr

2
1/2. (3.35)

Therefore,

‖∂̄tk‖2 =

∫
M

|∂̄tk|2µ =

∫
B(p,r2)

|∂̄tk|2µ

≤
∫
B(p,r2)

C(v,M)e−kr
2
1/2µ0

≤ C(v,M, σ, r1, r2)e−kr
2
1/2.

(3.36)

Apply Theorem 12 to tk we get the estimate

‖tk‖ ≤
‖∂̄tk‖√
k − C

≤ C ′e−kr
2
1/4

√
k − C

. (3.37)

We derive a replacement of (3.19). Now the important observation is that

tk ∈ H0(B(p, r1), Lk ⊗ E),

so by (3.5) for large k we have

|sk(p)− (σk ⊗ v)(p)| = |tk(p)|

≤ Ckn/2‖tk‖ ≤ kn/2
C ′√
k − C

e−kr
2
1/4,

(3.38)

where we used (3.37).
By Theorem 6,

‖ψ(σk ⊗ v)‖2 =

∫
M

|ψ|2e−kϕ|v|2µ = O(k−n). (3.39)
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Proof of Theorem 7, L.Charles’ method. The proof is parallel to that via Tian
given in Section 3.2.2. Recall the frame {v1, . . . , vr} of E. Let

ψ(σk ⊗ vα) = sk,α + tk,α

be the Hodge decomposition given by Theorem 4, where sk,α ∈ H0(M,Lk⊗E).
Then by Exercise 3.(2),

Bk(p) ≥
∑

α,β∈[r]

sk,α ⊗ s̄k,β(p)Aβ,α, (3.40)

where A is the inverse of the Gram matrix G = (〈sk,α, sk,β〉).
Claim:

Gα,β = (

∫
M

(ψ(σk ⊗ vα), ψ(σk ⊗ vβ))µ)(1 +O(k
n−1

2 e−kr
2
1/4)). (3.41)

In fact,

〈sk,α, sk,β〉 =

∫
M

(ψ(σk ⊗ vα), ψ(σk ⊗ vβ))µ+

∫
M

(tk,α, tk,β)µ

−
∫
M

(ψ(σk ⊗ vα), tk,β)µ−
∫
M

(tk,α, ψ(σk ⊗ vβ))µ.

(3.42)

Apply Cauchy-Schwarz inequality several times. By (3.37),

|
∫
M

(tk,α, tk,β)µ| ≤ Ce−kr
2
1/2

k − C
. (3.43)

By (3.39),

|
∫
M

(ψ(σk ⊗ vα), tk,β)µ| ≤ Ck−n/2e−kr
2
1/4

√
k − C

. (3.44)

The claim is thus proved.∫
M

(ψ(σk ⊗ vα), ψ(σk ⊗ vβ))µ =

∫
U

|ψ|2e−kϕHE
α,βµ. (3.45)

We just need to apply Theorem 6 to estimate the right hand side of (3.45),
where we take

A = |ψ|2 µ
µ0

∑
j,l

REα,β,j,l(p)zj z̄l = 2n
∑
j,l

REα,β,j,l(p)zj z̄l +O(|z|4).

Note H = 2Id2n, then D = 2
∑n
j=1

∂2

∂zj∂z̄j
is half of the Euclidean Laplacian.

L0(Aϕ) = A(0) = 0.

ϕ = −1

4
RMij̄kl̄(p)ziz̄jzkz̄l +O(|z|5).
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vanishes of order 3 at 0 ∈ U . soD2(Aϕ)(0) = A(0)D2(ϕ)(0) = 0 andD2(Aϕ)(0) =
0.

D(A)(0) = 2

n∑
i=1

∂2

∂zi∂z̄i
[2n
∑
j,l

REα,β,j,l(p)zj z̄l +O(|z|4)] = 2n+1(iΛRE)α,β .

L1(Aϕ) = −D(A)(0)

2
= −2n(iΛRE)α,β

We get∫
U

|ψ|2e−kϕ
∑
j,l

REα,β,j,l(p)zj z̄lµ = −(
2π

k
)n[k−1(iΛRE)α,β +O(k−2)]. (3.46)

From [3, Proof of Lemma 3.2],∫
U

|ψ|2e−kϕµ = (
2π

k
)n(1− scal

2k
+O(k−2)). (3.47)

Combine (3.46),(3.47) we get∫
U

|ψ|2e−kϕHEµ = (
2π

k
)n(Idr − k−1(

scal

2
Idr + iΛRE) +O(k−2)). (3.48)

Then (3.42),(3.43),(3.44),(3.45),(3.48) result in

G = (
2π

k
)n(Idr − k−1(

scal

2
Idr + iΛRE) +O(k−2)).

The remaining part is identical to the proof via Tian’s method.
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Chapter 4

L2 existence theorem

For a hermitian holomorphic vector bundle (E, hE), we define a section ṘE of
End(E ⊗ ThM) by

(RE(u, v̄)ξ, η)hE = (. . . RE(ξ ⊗ u), η ⊗ v)

for any p ∈M ;u, v ∈ T 0,1
p M ; ξ, η ∈ Ep. Then for each p ∈M , ṘEp is a hermitian

operator.

Definition 16 (Nakano positivity). [15, Definition 1.1.6][12, Definition 6.1.24
(i)] The bundle (E, hE) is called Nakano positive if ṘE is positive definite ev-
erywhere.

For example, for holomorphic line bundles, the notions of positivity and
Nakano positivity are equivalent.

Following Hörmander, we use some functional analysis theory to derive L2

existence theorem. For a densely defined closed linear (unbounded) operator
T : Dom(T )(⊂ H1) → H2 between Hilbert spaces H1 and H2, its adjoint T ∗ :
Dom(T ∗)(⊂ H2)→ H1 is also densely defined closed. x Im(T )⊥ = ker(T ∗) and
T ∗∗ = T . For proof, see [20, Theorem 13.9, Theorem 13.12].

Theorem 13. Let F ⊂ H2 be a closed linear subspace with ImT ⊂ F , and
assume there is C > 0 st |T ∗y|1 ≥ C|y|2 for any y ∈ F ∩ Dom(T ∗), then for
any v ∈ F , there is u ∈ Dom(T ) st Tu = v and C|u|1 ≤ |v|2. In particular,
F = ImT .

Proof. Since F ⊂ H2 is closed, we have an orthogonal decomposition H2 =
F ⊕ F⊥. For any y ∈ Dom(T ∗), write y = y1 + y2 where y1 ∈ F, y2 ∈ F⊥.
Because ImT ⊂ F , F⊥ ⊂ (ImT )⊥ = ker(T ∗) ⊂ Dom(T ∗), we find y1 =
y−y2 ∈ F ∩Dom(T ∗). Now |(y, v)2| = |(y1, v)2| ≤ |y1|2|v|2 ≤ C−1|T ∗y1|1|v|2 =
C−1|T ∗y|1|v|2. Therefore, the assignment T ∗y 7→ (y, v)2 defines a bounded
linear functional Im(T ∗) → C of norm at most C−1|v|2. By Hahn-Banach
theorem, this functional extends to the wholeH1 with norm at most C−1|v|2. By
Riesz Representation theorem, there is u ∈ H1 such that for any y ∈ Dom(T ∗),

(T ∗y, u)1 = (y, v)2.
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Therefore, u ∈ Dom(T ∗∗) and T ∗∗u = v. Note that T ∗∗ = T .

For a measurable, bounded from above function ψ on M , consider the point-
wise wighted inner product (s, t)ψ = (s, t)e−ψ on Ω∗,∗(M,E) and global one
〈s, t〉ψ =

∫
M

(s, t)ψµ. Let L2
p,q(M,E;ψ) be the completion of Ωp,q(M,E) under

〈, 〉ψ. Put some Hilbert spaces Hi = L2
0,i−1(M,E;ψ) for i = 1, 2, 3. Define

T : Dom(T )(⊂ H1) → H2 and S : Dom(S)(⊂ H2) → H3 to be the maxi-
mal weak differential operator extension of ∂̄E . Note that Im(T ) ⊂ Dom(S)
and ST = 0 on Dom(T ). If ψ ∈ C(M), then T, S are densely defined closed
operators, cf [9, p99].

Theorem 14 (twisted Bochner–Kodaira–Morrey–Kohn identity). For ψ ∈ C2(M)
and η ∈ Ω0,1(M,E), we have.

|Sη|2ψ + |T ∗η|2ψ = |∇̄η|2ψ

+

∫
M

(i(RE +Ricci(ω) + ∂∂̄ψ)η, η)ωe
−ψµ.

(4.1)

Here Ricci(ω) is the Ricci form of (M,ω). This result is essentially the
Weitzenböck formula. Please compare this result to [17, Theorem 2.10, Theroem 3.1],
[30, (2.36)], [21, Proposition 5.1] and [23, (1.3.3)].

Proof. This proof is a modification of [25, Proof of Lemma 7.7]. We work at a
point x ∈M in K-coordinates and the preferred frame of E, as long as the final
answer is coordinate invariant. Then

|∂̄η|2ψ = gpj̄gqk̄((∇j̄η)k̄, (∇p̄η)q̄ − (∇q̄η)p̄)ψ.

Let H = HE be the Gram matrix of {vα} Define Christoffel symbols Cγq,α by
∇qvα = Cγqαvγ ,

(∂qH)α,β = (∇qvα, vβ) = CγqαHγ,β

so Cβq,α = ( ∂H∂zqH
−1)α,β . Note that

REj̄,qvα = RE(∂j̄ , ∂q)vα = ∇Ej̄ ∇
E
q vα = ∇Ej̄ (Cβqαvβ) =

∂Cβqα
∂z̄j

vβ .

At x all the Christoffel symbols vanish

Γkij = 0, Cβqα = 0. (4.2)

For the adjoint operator,

T ∗η = −eψgjk̄∇j(e−ψηk̄).

Note that ∫
M

gpj̄gqk̄((∇j̄η)k̄, (∇p̄η)q̄)ψµ = ‖∇̄η‖2ψ (4.3)

35



Integration by part∫
M

gpj̄gqk̄((∇j̄η)k̄,−(∇q̄η)p̄)ψµ

=

∫
M

gpj̄gqk̄(eψ∇q[e−ψ(∇j̄η)k̄], ηp̄)ψµ

=

∫
M

gpj̄gqk̄(∇q[(∇j̄η)k̄]− ∂ψ

∂zq
(∇j̄η)k̄, ηp̄)ψµ

(4.4)

and ∫
M

gpj̄gqk̄(eψ(∇q(e−ψη))k̄, e
ψ(∇j(e−ψη))p̄)ψ]µ

= −
∫
M

gpj̄gqk̄(∇j̄ [eψ(∇q(e−ψη))k̄], ηp̄)ψµ

= −
∫
M

gpj̄gqk̄(∇j̄ [(∇qη)k̄]− ∂2ψ

∂z̄j∂zq
ηk̄ −

∂ψ

∂zq
∇j̄(ηk̄), ηp̄)ψµ

(4.5)

By (2.7)

∇j̄η = ∇j̄(ηl̄dz̄l) = (∇j̄(ηl̄))dz̄l − ηl̄Γljmdz̄
m, (4.6)

so

(∇j̄η)k̄ = ∇j̄(ηk̄)− ηl̄Γljk = (
∂ηα

k̄

∂z̄j
− ηαl̄ Γljk)vα

and

∇q[(∇j̄η)k̄] = ∇q((
∂ηα

k̄

∂z̄j
− ηαl̄ Γljk)vα) = (

∂2ηα
k̄

∂zq∂z̄j
− ηαl̄

∂Γljk
∂zq

)vα, (4.7)

where we use (4.2) for last equation.
Similarly,

∇qη = ∇q(ηl̄dz̄l) = (∇q(ηl̄))dz̄l,
so

(∇qη)k̄ = ∇q(ηk̄) =
∂ηα

k̄

∂zq
vα + ηαk̄C

β
qαvβ ,

and

∇j̄ [(∇qη)k̄] = ∇j̄(
∂ηα

k̄

∂zq
vα+ηαk̄C

β
qαvβ) =

∂2ηα
k̄

∂z̄j∂zq
vα+ηαk̄

∂Cβqα
∂z̄j

vβ =
∂2ηα

k̄

∂z̄j∂zq
vα+REj̄,qηk̄.

(4.8)
Note

Rl̄qj̄,k̄∂l̄ = ∇q∇j̄∂k̄ = ∇q(Γljk∂l̄) =
∂Γljk
∂zq

∂l̄,

so Rl̄
qj̄,k̄

=
∂Γljk
∂zq

. All in all,

∇q[(∇j̄η)k̄]−∇j̄ [(∇qη)k̄] = −ηl̄Rl̄qj̄,k̄ +REq,j̄ηk̄, (4.9)
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where RE = RE
qj̄
dzq ∧ dz̄j .

Now,

gpj̄gqk̄(−ηl̄Rl̄qj̄,k̄, ηp̄)ψ = −gpj̄gqk̄gtl̄Rqj̄tk̄(ηj̄ , ηq̄)ψ = −gpj̄gqk̄Ricpk̄(ηj̄ , ηq̄)ψ.

To sum up,

gpj̄gqk̄(∇q[(∇j̄η)k̄]−∇j̄ [(∇qη)k̄], ηp̄)ψ = gpj̄gqk̄((−Ricpk̄Idr +REpk̄)(ηj̄), ηq̄)ψ
(4.10)

Therefore,∫
M

gpj̄gqk̄[((∇j̄η)k̄,−(∇q̄η)p̄)ψ + (eψ(∇q(e−ψη))k̄, e
ψ(∇j(e−ψη))p̄)ψ]µ

=

∫
M

gpj̄gqk̄(((−Ricpk̄ +
∂2ψ

∂zp∂z̄k
)Idr +REpk̄)(ηj̄), ηq̄)ψµ

(4.11)

Finally we get

|Sη|2ψ + |T ∗η|2ψ

=

∫
M

gpj̄gqk̄[((∇j̄η)k̄, (∇p̄η)q̄ − (∇q̄η)p̄)ψ + (eψ(∇q(e−ψη))k̄, e
ψ(∇j(e−ψη))p̄)ψ]µ

= ‖∇̄η‖2ψ +

∫
M

gpj̄gqk̄(((−RicMpk̄ +
∂2ψ

∂zp∂z̄k
)Idr +REpk̄)(ηj̄), ηq̄)ψµ

(4.12)

Corollary 4 (a priori estimate). If there is C > 0 st i(RE +Ricci(ω)+∂∂̄ψ) ≥
Cω on C∞(M,E), then for any η a smooth E valued (0, 1)-form, we have

|Sη|2ψ + |T ∗η|2ψ ≥ C|η|2ψ.

We remark that the most important term in (4.12), for our purpose, is∫
M

gpj̄gqk̄(REpk̄ηj̄ , ηq̄)ψµ.

Under K-coordinate it becomes∑
j,q

(REjq̄ηj̄ , ηq̄) = (. . . RE(

n∑
j=1

ηj̄∂j),

n∑
q=1

ηq̄∂q) ≥ λ|
n∑
j=1

ηj̄∂j |2 = λ|η|2, (4.13)

where the function λ ∈ C(M) is the minimal eigenvalue of . . . RE . (Here we
used Proposition 1.)

Theorem 15 (Hörmander density). [9, Proposition 2.1.1 and p.121][4, Lemma 4.3.2]
If ψ ∈ C2(M), then Ω0,1(M,E) ⊂ Dom(S) ∩Dom(T ∗) is dense with respect to
the graph norm

η 7→ |η|ψ + |Sη|ψ + |T ∗η|2ψ
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Theorem 16 (L2 existence). If ψ ∈ C2(M) and there is C > 0 such that

i(RE +Ricci(ω) + ∂∂̄ψ) ≥ Cω,

then
for every η ∈ L2

0,1(M,E;ψ) with ∂̄η = 0, there is a ξ ∈ Dom(∂̄) ⊂ L2
0,0(M,E;ψ)

st ∂̄ξ = η, which means for any χ ∈ Dom(T ∗),∫
M

(ξ, T ∗χ)ψµ =

∫
M

(η, χ)ψµ. (4.14)

and
C|ξ|2ψ ≤ |η|2ψ.

Please compare this to [24, Proposition 2.1(ii)] and [26, Proposition 1.1].

Proof. By Corollary 4, we have the a priori estimate for η ∈ Ω0,1(M,E). By
Theorem 15, the same estimate holds for any η ∈ Dom(S) ∩ Dom(T ∗). Take
F = ker(S), then η ∈ F . By Theorem 13, there is ξ ∈ H1 st ∂̄ξ = η and

C|ξ|2ψ ≤ |η|2ψ.

To show regularity of ∂̄-solution, we introduce some Sobolev spaces. For
l ∈ N and U ⊂ Cn an open, let H l(U) be as in [6, Section 5.2.2,Remarks (i)]
and similarly, let H l(U ; loc) be the space of all f ∈ L2(U ; loc) such that for each
multi-index I, J ∈ Nn with |I| + |J | ≤ l, the weak derivative ( ∂∂z )I( ∂∂z̄ )Jf ∈
L2(U ; loc).

Lemma 5. If f ∈ L2(U) and its weak derivatives ∂f
∂z̄j
∈ L2(U) for all 1 ≤ j ≤ n,

then f ∈ H l(U) and for any j, | ∂f∂zj |L2(U) = | ∂f∂z̄j |L2(U).

Let H l
p,q(M,E; loc) be the space of measurable E-valued (p, q)-forms, for

which there is an atlas of M and a set of frame of E over each chart U ,
such that the representation functions are in H l(U ; loc). (In fact, due to com-
pactness of M ,H l

p,q(M,E; loc) = H l
p,q(M,E).) By Sobolev embedding the-

orem, [6, Section 5.6.3 (ii), Theorem 6], if k > n and 0 < λ < 1, then
Hk
p,q(M,E; loc) ⊂ Ck−n−1,λ

p,q (M,E; loc) the latter being space of locally λ-Hölder
continuous E-valued (p, q)-forms.

Lemma 6. Let ψ be a measurable function on M and {ψ(l)} be a decreasing
sequence in C2(M) with ψ(l) → ψ. Assume there is C > 0 such that for any
l ≥ 1

i(RE +Ricci(ω) + ∂∂̄ψ) ≥ Cω. (4.15)

Then for η ∈ W k
0,1(M,E;ψ), there is ξ ∈ W k+1

0,0 (M,E) st ∂̄ξ = η in the distri-
bution sense with

C|ξ|2ψ ≤ |η|2ψ.
In particular, if furthermore η ∈ Ω0,1(M,E), then the this ξ ∈ C∞(M,E) and
∂̄ξ = η in the classical sense.
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Proof. Because e−ψ
(l) → e−ψ is a increasing sequence, by Levi convergence theo-

rem ‖η‖2
ψ(l) → ‖η‖2ψ. By Theorem 16, there is ξ(l) ∈ Dom(Tl) ⊂ L2

0,0(M,E;ψ(l))

such that Tlξ
(l) = η and

C‖ξ(l)‖2ψ(l) ≤ ‖η‖2ψ(l) ,

where Tl = ∂̄E : Dom(Tl) ⊂ L2
0,0(M,E;ψ(l))→ L2

0,1(M,E;ψ(l)) as usual. There

is C ′ > 0 such that ψ(l) ≤ C ′ for any l ≥ 1, so

‖ξ(l)‖2 ≤ eS‖ξ(l)‖2ψ(l) ≤ C−1eC
′
‖η‖2ψ(l) .

Thus the sequence {ξ(l)} is bounded in L2(M,E). By weak compactness [7,
Theorem 1.42], we can find a subsequence of ξ(l), still denoted by ξ(l), converging
weakly to some ξ ∈ L2(M,E).

We check ∂̄ξ = η in the sense of distribution. In fact, for any t ∈ Ω0,1(M,E),

let χ = eψ
(l)

t ∈ L2
0,1(M,E;ψ(l)) in (4.14), then∫
M

(ξ, ∂̄∗t)µ =

∫
M

(ξ, T ∗l χ)ψµ =

∫
M

(η, t)µ.

Now we treat the regularity. Suppose that ξ ∈W l
0,0(M,E) for some 0 ≤ l ≤

k (this is true for l = 0), we will show ξ ∈ W l+1
0,0 (M,E). Thus by induction on

l we find ξ ∈ W k+1
0,0 (M,E). In fact, for any chart (U, z1, . . . , zn) ⊂ M and any

frame {vα} of E, write ξ =
∑r
i=1 ξ

αvα. For any χ ∈ C∞c (U), any multi-indices
I, J ∈ Nn with |I|+ |J | ≤ l,

∂j̄(
∂

∂z
)I(

∂

∂z̄
)J(χξα) = (

∂

∂z
)I(

∂

∂z̄
)J(χηαj̄ + ξα∂j̄χ) ∈ L2(U)

By Lemma 5, ( ∂∂z )I( ∂∂z̄ )J(χξα) ∈ H1(U). So ξα ∈ H l+1(U ; loc) or equivalently
ξ ∈ H l+1(M,E; loc).

By weak lower semi-continuity of norm, for any j ≥ 1, l ≥ j, e−ψ(j) ≤ e−ψ(l)

we thus have

‖ξ‖2ψ(j) ≤ liml‖ξ(l)‖2ψ(j) ≤ liml‖ξ(l)‖2ψ(l) ≤ limlC
−1‖η‖2ψ(l) = C−1‖η‖2ψ.

Let j → ∞, by Levi convergence theorem again, ‖ξ‖ψ(j) → ‖ξ‖ψ, thus ‖ξ‖2ψ ≤
C−1‖η‖2ψ.

Remark 4. Note that by Weyl lemma, any solution ξ0 of ∂̄ξ0 = 0 is holomor-
phic. Then any ∂̄-solution is in W k+1

0,0 (M,E)
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Chapter 5

High rank Bergman kernel

Let P → M be another hermitian holomorphic vector bundle with rk(P ) = s,
we are going to find the first term in the asymptotic of Bk the Bergman kernel
of P k ⊗ E. However, we restrict ourselves to the case of Riemann surface in
Section 5.3 for simplicity of calculation.

We fix a frame {u1, . . . , us} of P as in Proposition 3 and write HP for the

corresponding Gram matrix. For a ∈ [s], let H2,P ;a,a = e−
∑n
j,l=1 R

P
jl̄,aa

zj z̄l and
for a 6= b ∈ [s], let H2,P ;a.b = −

∑n
j,l=1R

P
jl̄,ab

zj z̄l, then HP = H2,P (Ids +

O(|z|3)). Recall that as usual rk(E) = r. Put vI := ui1 ⊗ · · · ⊗ uik ⊗ vα for
each multi-index I = (i1, . . . , ik;α) ∈ [s]k× [r]. Then {vI : I ∈ [s]k× [r]} form a
frame of P k⊗E of Gram matrix H⊗kP ⊗HE . In particular, this preferred frame
is orthonormal at p. We assume that (P, hP ) is Nakano positive.

5.1 Upper bound

Lemma 7. s ∈ H0(B(p, log k√
k

), P k ⊗ E), write B = B(p, log k√
k

). Then

s⊗ s̄(p) ≤M(k)

∫
B

|s|2µ,

where the matrix

M(k) = 2−n(1 + Ck−1/2 log3 k)[

∫
B

H⊗k2,Pµ0]−1 ⊗ Idr. (5.1)

Taking trace, |s|2(p) ≤ Tr(M(k))
∫
B
|s|2µ.

Proof. Write s =
∑
I∈[s]k×[r] fIvI and let y = (fI : I ∈ [s]k × [r]) be a column

vector (of holomorphic functions on B).
Then

|s|2 = yT (H⊗kP ⊗HE)ȳ
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and s ⊗ s̄(p) = yyH(p). There is C > 0 and a neighborhood of p (independent
of k) over which

H⊗kP ⊗HE ≥
H⊗k2,P ⊗ Idr

(1 + C|z|3)k(1 + C|z|2)
; (5.2)

µ

µ0
≥ 2n

1 + C|z|2
. (5.3)

We estimate the integrand on the right hand side. By (5.2) and (5.3), we have

|s|2µ ≥ yT
H⊗k2,P ⊗ Idr

(1 + C|z|3)k(1 + C|z|2)
yH

2nµ0

1 + C|z|2

≥ 2n(1 + Ck−1/2 log3 k)−1yT (H⊗k2,P ⊗ Idr)ȳµ0,

(5.4)

where for the last step we used |z| ≤ log k√
k

.

Therefore∫
B

|s|2µ ≥ 2n(1 + Ck−1/2 log3 k)−1

∫
B

yT (H⊗k2,P ⊗ Idr)ȳµ0 (5.5)

≥ 2n(1 + Ck−1/2 log3 k)−1yT (p)[

∫
B

(H⊗k2,P ⊗ Idr)µ0]ȳ(p), (5.6)

where for (5.6) we used some analogue of vanishing identity (Exercise 10). Fi-
nally we apply Exercise 2 to conclude.

Corollary 5. The Bergman kernel Bk of P k ⊗ E satisfies Bk(p) ≤M(k).

5.2 Lower bound: A third construction of peak
section

We present yet another construction of peak sections, which is a modification
of [26, Proof of Lemma 1.2].

Recall U,ψk, v from Section 3.2.2. For each I ∈ [s]k, put uI = ui1 ⊗ · · · ⊗
uik ⊗ v to be a holomorphic section of P k ⊗ E. We define a weight function

ψ(z) = nχ(
k|z|2

log2 k
) log(

k|z|2

log2 k
), (χ(x) = η(2x)) (5.7)

The factor n in definition of ψ is to ensure vanishing of ξ (to be constructed)
at p. Note carefully that ψ is supported in the ball B(p, log k√

k
) and admits a

logarithmic pole at p ∈ M . In addition, ψ ≤ 0 on M . To apply Theorem 16,
we approximate ψ by smooth functions. Let

ψ(l) = nχ(
k|z|2

log2 k
) log(

k

log2 k
(
1

l
+ |z|2)),
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then this decreasing sequence converges to ψ.
We check condition (4.15). We calculate

n−1∂∂̄ψ = (5.8)

[(
k

log2 k
)2χ′′(

k

log2 k
|z|2) log(

k

log2 k
|z|2) + 2

k

log2 k
|z|−2χ′(

k

log2 k
|z|2)]∂|z|2 ∧ ∂̄|z|2

(5.9)

+
k

log2 k
χ′(

k

log2 k
|z|2) log(

k

log2 k
|z|2)∂∂̄(|z|2) (5.10)

+ χ(
k

log2 k
|z|2)∂∂̄ log(|z|2). (5.11)

Firstly, the (1, 1)-form

i∂|z|2 ∧ ∂̄|z|2 = i(z̄jzkdz
j ∧ dz̄k)

is semi-positive, and there is C > 0 st

C|z|2ω ≥ i∂|z|2 ∧ ∂̄|z|2

for |z| ≤ 1. We get

i× (5.9) ≥ −C k

log2 k
ω

over M .
Secondly, The form i∂∂̄|z|2 = idzj ∧ dz̄j is positive, so i× (5.10) ≥ 0.
Thirdly, by Exercise 2, |z|2Idn ≥ z̄zT , so the form

i∂∂̄ log |z|2 = i|z|−4(|z|2δjk − zj z̄k)dzk ∧ dz̄j

is semi-positive, so i × (5.11) ≥ 0. The estimation with ψ replace by ψ(l) is
similar.

To sum up, there is C > 0 such than for any l ≥ 1,

i∂∂̄ψ(l) ≥ −C k

log2 k
ω

on M .
Because P is Nakano positive, by (4.13) there is δ > 0 and k0 ≥ 1 such that

when k ≥ k0, l ≥ 1 we have

Ricci(ω) + i∂∂̄ψ(l) + iRP
k⊗E ≥ δkω.

Note that (∂̄ψk)uI vanishes at p, so ‖∂̄ψk)uI‖ψ is finite. By Lemma 6, there
is wI ∈ C∞(M,P k ⊗ E) such that ∂̄wI = (∂̄ψk)uI with

‖wI‖2ψ ≤ (kδ)−1‖(∂̄ψk)uI‖2ψ <∞,
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in particular wI(p) = 0.
Let sI = ψkuI −wI then sI ∈ H0(M,P k ⊗E) and sI(p) = uI(p). The sI is

the peak section we are looking for.
We need some estimates as in Section 3.2.2. For any a ∈ [s],

n∑
j,l=1

RPjl̄,aazj z̄l = (. . . RE(ua ⊗ (
∑
j

zj∂j)), ua ⊗ (
∑
l

zl∂l)).

Because P is Nakano positive, RP∗,∗,aa is a positive definite matrix, so there is

λ > 0 such that on B(p,
√

2 log k√
k

), for each a ∈ [s],

n∑
j,l=1

RPjl̄,aazj z̄l ≥ λ|z|
2. (5.12)

By (5.12), there is λ > 0 such that on B(p,
√

2 log k√
k

) we have

HP
α,α = e−R

P
α,α,ij̄ziz̄j (1 +O(|z|3)) ≤ e−λ|z|

2

.

Then

|uI |2 = |v|2
k∏
j=1

HP
ij ,ij ≤ Ce

−kλ|z|2 .

Let A be the annulus log k√
k
≤ |z| ≤

√
2 log k√

k
. Then

kδ‖wI‖2 ≤ kδ‖wI‖2ψ ≤ ‖(∂̄ψk)uI‖2ψ

=

∫
A

|(∂̄ψk)uI |2e−ψµ

=

∫
A

|(∂̄ψk)uI |2µ

≤ C
∫
A

k

log2 k
e−kδ|z|

2

µ0 ≤ C(
log2 k

k
)n

k

log2 k
e−δ log2 k

(5.13)

Thus
‖wI‖2 = O(k−ne−δ log2 k log2n−2 k). (5.14)

For the outside L2 norm of smooth peak section, as in (3.20),∫
M−B

|ψkuI |2µ ≤ Ck−ne−λ log2 k log2n k. (5.15)

Similarly we have ‖ψkuI‖2 = O(k−n).
Finally we arrive at the lower bound of Bergman kernel. For I = (i1, . . . , ik;α) ∈

[s]k ⊗ [r], let sI to be the peak section constructed from vα. Then {sI : I ∈
[s]k × [r]} is orthonormal at p. By Exercise 3,

Bk(p) ≥
∑
I,J

sI ⊗ s̄J(p)AJ,I = AT , (5.16)
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where A is the inverse of the Gram matrix G.
By the same argument for (3.31), we find

G = G′(Idskr +O(e−λ/2 log k) logn−1 k),

where

G′I,J =

∫
B

(ψkuI , ψkuJ)µ

so
A = (G′)−1(Idskr +O(logn−1 ke−δ/2 log k)) (5.17)

5.3 Calculation

Exercise 11. Let B = B(0, log k√
k

) ⊂ C be an open ball, a > 0, then∫
B

e−a|z|
2

µ0 =
π

a
(1− e−a

log2 k
k )

In this section, let M be a Riemann surface. In this case, for a 6= b ∈ [s],

H2,P,a,a = e−Faa|z|
2

; H2,P,a,b = −Fab|z|2,

where F = . . . RP is a square matrix of size s such that the Chern curvature
RP (p) = Fdz ∧ dz̄. Due to our assumption, F is positive definite.

Theorem 17. The Bergman kernel of P k ⊗ E satisfies

Bk(p) =
D ⊗ Idr

2π
(Idsk⊗r +O(k−1/2 log3 k)),

where D is a size sk diagonal matrix whose (i1, . . . , ik) entry is
∑k
j=1 Fij ,ij .

Example 6. When s = 1, i.e., P is a line bundle, Theorem 17 agrees with [15,
Theorem 4.1.1].

Proof. We compute the upper bound first. We calculate
∫
B
H⊗k2,Pµ0 inside (5.1).

By Exercise 11, the diagonal entry at (i1, . . . , ik; i1, . . . , ik) position is∫
B

e−
∑k
j=1 Fij ,ij |z|

2

µ0 =
π∑k

j=1 Fij ,ij
(1−e−

log2 k
k

∑k
j=1 Fij ,ij ) =

π∑k
j=1 Fij ,ij

(1+O(e−λ log2 k)).

Consider an off-diagonal entry at (i1, . . . , ik; j1, . . . , jk), say with l ≥ 1 dif-

ferent indices. Then the integral is like
∫
B
|z|2le−a|z|2µ0 = O(k−2), where

a ≥ (k − l)λ.
Therefore∫

B

H⊗k2,Pµ0 = πD−1 +O(k−2) = πD−1(Idsk +O(k−1)).
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By Corollary, we get the upper bound

Bk(p) ≤ D ⊗ Idr
2π

(Idsk⊗r +O(k−1/2 log3 k)).

We turn to the lower bound. For multi-indices I = (i1, . . . , ik;α), J =
(j1, . . . , jk;β) ∈ [s]k × [r],

G′I,J =

∫
B

HP
i1,j1 . . . H

P
ik,jk

HE
α,βµ. (5.18)

On the diagonal, i.e. I = J ,

G′II = 2

∫
B

e−
∑k
j=1 Fij ,ij |z|

2

(1 + kO(|z|3))(1 +O(|z|2))µ0

= (

∫
B

e−
∑
F |z|2)(1 +O(k−1/2)) =

2π∑k
j=1 Fij ,ij

(1 +O(k−1/2))

If I 6= J , the integral is at most
∫
B
e−a|z|

2

O(|z|2)µ = O(k−2) where a ≥ kλ.
Thus by (5.16) and (5.17), we find

Bk(p) ≥ D ⊗ Idr
2π

(Idsk⊗r +O(k−1/2)).

We conclude by combining the upper and the lower bound.

Corollary 6 (Asymptotic Riemann-Roch). We have asymptotic expansion

dimH0(M,P k ⊗ E) = sk−1kr

∫
M

c1(P ) +O(skk−1/2 log3 k).

Proof. Recall that z is K-coordinate, µ = idz ∧ dz̄ by Exercise 4, so

c1(P, hP ) =
i

2π
Tr(RP ) =

i

2π
Tr(ṘP )dz ∧ dz̄ =

1

2π
Tr(F )µ.

We conclude by Proposition 4 and Theorem 17.

Some questions that we don’t know: does Catlin-Zelditch expansion (Theo-
rem 8) hold in this high rank case? Do we have vanishing theorem of the form
H>1(M,P k ⊗ E) = 0?
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Chapter 6

An application to Riemann
surfaces

We apply the same strategy to generalize [13, Theorem 1.1]. Recall that every
compact Riemann surface admits a hermitian metric of constant scalar curva-
ture.

Theorem 18. In Theorem 7, if n = 1, E is trivial and (M,ω) is of constant
scalar curvature ρ, then

Bk(p) =
2k + ρ

4π
(1 +O(k−(log k)/4)).

Proof. Again, letB = B(p, log k√
k

) in a fixed holomorphic chart centered in p ∈M .

Upper bound: As in Lemma 3, s = fσk, |s|2 = |f |2e−kϕ. Because ϕ is
rotationally invariant, we argue as in (3.10) to get∫

B

|s|2µ =

∫
B

e−kϕ|f |2µ ≥ |f(p)|2
∫
B

e−kϕµ = |s(p)|2
∫
B

e−kϕµ.

By Lemma 2,

Bk(p) ≤ (

∫
B

e−kϕµ)−1. (6.1)

Lower bound: As in Section 5.2, let sk ∈ H0(M,Lk) be the peak section
constructed from σk. Then

Bk(p) ≥ A, (6.2)

where A−1 = 〈sk, sk〉 = G. By (3.31), G = (1 +O(k−(log k)/4))
∫
B
e−kϕµ.

Combine (6.1) and (6.2) we find that

Bk(p) = (

∫
B

e−kϕµ)−1(1 +O(k−
log k

4 ).
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Case ρ = 0, locally we may assume that ϕ(z) = |z|2, then µ = 2µ0.∫
B

e−kϕµ = 2

∫
B

e−k|z|
2

µ0 =
2π

k
(1− e− log2 k). (6.3)

We can also get (6.3) by formally letting ρ→ 0 in result of (6.4).
Case ρ 6= 0, by [13, (3.5)], locally we may assume that

ϕ(z) =
2

ρ
log(1 +

ρ

2
|z|2).

Then

g =
∂2ϕ

∂z∂z̄
= (1 +

ρ

2
|z|2)−2

and

µ = 2gµ0 =
2

(1 + ρ
2 |z|)2

µ0.

We calculate ∫
B

e−kϕµ =

∫
B

e−
2k
ρ log(1+ ρ

2 |z|
2) 2

(1 + ρ
2 |z|)2

µ0

= 2

∫
B

(1 +
ρ

2
r2)−2− 2k

ρ rdrdθ

= 4π

∫ 1+ ρ
2

log2 k
k

1

t−2− 2k
ρ
dt

ρ

=
4π

2k + ρ
[1− 1

(1 + ρ
2

log2 k
k )1+ 2k

ρ

],

(6.4)

where we used the change of variable z = reiθ and t = 1 + ρ
2r

2.

In fact, everything involved is of local nature, therefore the same result holds
for any (open) Riemann surfaces (with locally uniform convergence), which is a
particular case of [1, Corollary 2.4] (when m = 0).

Remark 5. It seems possible to improve Theorem 18 with an error term of size
O(e−δk) for certain constant δ > 0 (on Riemann surface). See for instance [8,
Theorem A]. The case of hermitian symmetric manifold could also be treated,
cf.[16, Theorem 1]. We are grateful to Professor X.Ma for providing us these
references. One can ask if a similar result holds for any dimensional manifold
endowed with a constant scalar curvature Kähler metric.
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Appendix A

Appendix

A.1 An alternative proof of Corollary 2

Following [15, Remark 4.1.4], we give another proof of Corollary 2.

Exercise 12. [15, (4.1.5)] Let (Mn, ω) be a hermitian manifold, E → M a
hermitian holomorphic vector bundle of Chern curvature RE, then

niRE ∧ ωn−1 = (iΛRE)ωn. (A.1)

Taking trace,
Tr(iΛRE)ωn = 2πnc1(E)ωn−1.

In particular, when E = ThM with hE the hermitian metric of M ,

scal · ωn = 2πnc1(ThM)ωn−1.

Proof. We check the identity pointwisely. Fix p ∈ M and a holomorphic chart
centered in p and orthonormal at p. Put ηl = dzl ∧ dz̄l for short. At p,

gij̄ = δij ; ω = i

n∑
l=1

ηl; iΛRE =

n∑
j=1

REjj .

Therefore,

(iΛRE)ωn = in(
∑
j

REjj)n!η1 ∧ · · · ∧ ηn;

niRE ∧ ωn−1 = nin(

n∑
l=1

ηl)
n−1 ∧ (

∑
j,k

REj,k̄dzj ∧ dz̄k) = in(
∑
j

REjj)n!η1 ∧ · · · ∧ ηn.

We proved (A.1). For the last equation, apply Exercise 6.

We recall two characteristic classes.
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Definition 17 (Todd class). If a complex vector bundle E on a topological
space S has αi as its Chern roots, the Todd class Td(E) =

∏
iQ(αi), where

Q(x) = x
1−e−x . In particular, Td(E) = 1 + c1(E)

2 + . . . For a complex manifold
X, define Td(X) := Td(ThX).

Definition 18 (Chern character). [15, (1.3.45)] For a holomorphic vector bun-
dle P → X, define Chern character

ch(E) = Tr exp(
iRE

2π
),

where RE is Chern curvature of E. We define the 2j forms cj(E) by

ch(E) =
∑
j≥0

cj(E).

(In particular c1(E) = i
2πTr(RE), which agrees with Definition 12. And c0(E) =

rk(E).)

We state the following celebrated theorem.

Theorem 19 (Hirzebruch-Riemann-Roch). [15, Theorem 1.4.6] Let P be a
holomoprhic vector bundle over a compact complex manifold X, then χ(X,P ) =∫
X
ch(P )Td(X).

Now we derive the desired result as a corollary.

A second proof of Corollary 2. Note that

ch(Lk ⊗ E) = Tr exp(
iRL

k⊗E

2π
) = exp(

ikRL

2π
)Tr exp(

iRE

2π
) = ekc1(L)ch(E).

By Theorem 19, χ(M,Lk ⊗ E) expands into a degree n polynomial in k.

In this asymptotic expansion, the coefficient of kn is rk(E)
∫
M

cn1 (L)
n! =

rk(E)
(2π)n

∫
M
µ.

By Exercise 12,∫
M

Tr(iΛRE)cn1 (L) = n

∫
M

c1(E)cn−1
1 (L); (A.2)∫

M

scalcn1 (L) = n

∫
M

c1(ThM)cn−1
1 (L). (A.3)

The coefficient of kn−1 is∫
M

cn−1
1 (L)

(n− 1)!
(rk(E)

c1(ThM)

2
+ c1(E))

=
1

n!
[
rk(E)

2

∫
M

scalcn1 (L) +

∫
M

Tr(iΛRE)cn1 (L)]

=
1

(2π)n
[
rk(E)

2

∫
M

scalµ+

∫
M

Tr(iΛRE)µ].

Thus we get the said asymptotic expansion.
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A.2 Controlling supreme norm

The following Theorem 20 is a start point of complex analysis.

Theorem 20 (Cauchy integral formula). Let D be an open subset of Cn with
0 ∈ D, for function f ∈ C∞c (D),

f(0) =
(−1

π

)n ∫
D

∂nf

∂z̄1 . . . ∂z̄n

µ0

z1 . . . zn
.

We give another theorem of same flavor.

Theorem 21 (Bochner-Martinelli formula). For ζ, z ∈ Cn the Bochner-Martinelli
kernel ω(ζ, z) is a differential (n, n− 1)-form in ζ defined by

ω(ζ, z) =
(n− 1)!

(2πi)n
1

|z − ζ|2n
∑

1≤j≤n

(
ζ̄j − z̄j

)
dζ̄1 ∧ dζ1 ∧ · · · ∧ dζj ∧ · · · ∧ dζ̄n ∧ dζn

(where the term dζ̄j is omitted). Let D ⊂ Cn be a domain and f ∈ C∞c (D).
Then for z ∈ D, we have

f(z) = −
∫
D

∂̄f(ζ) ∧ ω(ζ, z).

Exercise 13. For n ∈ N+, there is a constant C = C(n) > 0 such that for any
f ∈ C∞(Cn),

1.
|f(0)|
C

≤ |f |L1(∆n(1),µ0) + sup
z∈∆n(1),I(6=∅)⊂[n]

∣∣∣∣∂|I|f∂z̄I
(z)

∣∣∣∣
2. For any r > 0,

|f(0)|
C

≤ r−2n|f |L1(∆n(r),µ0) + sup
z∈∆n(r),I(6=∅)⊂[n]

r|I|
∣∣∣∣∂|I|f∂z̄I

(z)

∣∣∣∣
Proof. By abuse of notation, we use C to denote various positive constant de-
pending only on n.

1.Fix a smooth function ρ : C → [0, 1] such that ρ(z) = 1 when |z| < 1/2
and ρ compactly supported on ∆1(1). Set ψ(z1, . . . , zn) :=

∏n
i=1 ρ(zi). Apply

Theorem 20 to fψ,

f(0) = f(0)ψ(0) = C

∫
∆n(1)

∂n(fψ)

∂z[n]

µ0

z1 . . . zn

By Lebnitz formula, ∂
n(fψ)
∂z[n] =

∑
I⊂[n]

∂|I|f
∂z̄I

∂n−|I|ψ

∂z̄[n]\I .

(A). When I = ∅, ∂nψ
∂z[n] =

∏n
i=1

∂ρ
∂z̄ (zi) is non-zero only when |zi| ≥ 1/2 for all

1 ≤ i ≤ n. Thus | ∂
nψ

∂z[n]
1

z1...zn
| ≤ C over whole Cn. so∣∣∣∣∣

∫
∆n(1)

f
∂nψ

∂z[n]

µ0

z1 . . . zn

∣∣∣∣∣ =

∣∣∣∣∣
∫

1/2≤|zi|<1,∀i
f
∂nψ

∂z[n]

µ0

z1 . . . zn

∣∣∣∣∣ ≤ C|f |L1(∆n(1),µ0).
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(B). When I is nonempty, |∂
n−|I|ψ
∂z̄[n]\I | ≤ C over Cn, so∣∣∣∣∣

∫
∆n(1)

∂|I|f

∂z̄I
∂n−|I|ψ

∂z̄[n]\I
µ0

z1 . . . zn

∣∣∣∣∣
≤ C sup

z∈∆n(1)

∣∣∣∣∂|I|f∂z̄I

∣∣∣∣ ∫
∆n(1)

µ0

|z1 . . . zn|

= C sup
z∈∆n(1)

∣∣∣∣∂|I|f∂z̄I

∣∣∣∣
(A.4)

and we proved 1.
2. Let g(z) := f(rz) and apply 1. to g.

Remark 6. With similar proof but applying Theorem 21 instead of Theorem
20, we can get rid of higher derivatives. More precisely, there is C = C(n) > 0
such that for any f ∈ C∞(Cn) and r > 0,

|f(0)|
C

≤ r−2n|f |L1(B(r),µ0) + r sup
z∈B(r)

|∂̄f |.

For the sake of completeness, we state a generalization of [3, Theorem 2.1],
which is used to control peak section constructed loc.cit. Note how we avoid
this result in Section 3.2.2.

Proposition 5. Let Mn be a compact hermitian manifold of volume form µ,
L and E be hermitian holomorphic vector bundles with rk(L) = 1. Then there
is C > 0 such that for any s ∈ C∞(M,Lk ⊗E), any p ∈M , any (U, z1, . . . , zn)
holomorphic chart centered at p, for large k ∈ N+ we have

1

C
|s(p)| ≤ kn‖s‖L1(∆n(r0),µ) + sup

z∈∆n(r0),I(6=∅)⊂[n]

r
|I|
0 |

∂|I|s

∂z̄I
|, (A.5)

where r0 = 1/
√
k.

Proof. By Proposition 3, we can choose a frame σ for L in a neighborhood
of p ∈ M such that ϕ(z) := − log |σ|2hL = O(|z|2), and {v1, . . . , vr} as in the
Proposition. Expand s =

∑r
α=1 fα(σk ⊗ vα), where fα ∈ C∞ near p.

|s(z)|2h = e−kϕ(f1, . . . , fr)H
E(f1, . . . , fr)

H .

In particular,

|s(p)| = (
∑
α

|fα(p)|2)1/2 ≤
∑
α

|fα(p)|. (A.6)

By Exercise 13, (2).

1

C
|fα(p)| ≤ r−2n

0 |fα|L1(∆n(r0),µ0) + sup
z∈∆n(r0),I 6=∅

r
|I|
0 |

∂|I|fα
∂z̄I

(z)|
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There is A > 0 such that in ∆n(r0), |ϕ(z)− ϕ(0)| ≤ 2Ar2
0, so

e−kϕ(z) ≥ e−2Akr2
0 = e−2A

.
There is a > 0 such that HE ≥ a2Idr and µ ≥ aµ0 on ∆n(r0).

‖s‖L1(∆n(r0),µ) =

∫
∆n(r0)

|s|µ

=

∫
∆n(r0)

e−kϕ/2[(f1, . . . , fr)H
E(f1, . . . , fr)

H ]1/2µ

≥
∫

∆n(r0)

e−Aa(

r∑
α=1

|fα(z)|2)1/2aµ0

≥ e−Aa2

∫
∆n(r0)

r−1/2
∑
α

|fα|µ0

= e−Aa2r−1/2
∑
α

|fα|L1(∆n(r0),µ0),

(A.7)

where the last inequality is Cauchy-Schwarz.
Note

∂|I|s

∂z̄I
=
∑
α

∂|I|fα
∂z̄I

(σk ⊗ vα),

so

|∂
|I|s

∂z̄I
| = e−kϕ/2[(

∂|I|f1

∂z̄I
, . . . ,

∂|I|fr
∂z̄I

)HE(
∂|I|f1

∂z̄I
, . . . ,

∂|I|fr
∂z̄I

)H ]1/2

≥ e−Aa(
∑
α

|∂
|I|fα
∂z̄I

|2)1/2

≥ e−Aa|∂
|I|fα0

∂z̄I
|,

for any 1 ≤ α0 ≤ r. Thus

sup
z
|∂
|I|s

∂z̄I
| ≥ e−Aa sup

z
|∂
|I|fα0

∂z̄I
|.

Taking sum we get

sup
z
|∂
|I|s

∂z̄I
| ≥ r−1e−Aa

∑
α

sup
z
|∂
|I|fα
∂z̄I

|. (A.8)
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Now

1

C
|s(p)| ≤

∑
α

1

C
|fα(p)|

≤
∑
α

(r−2n
0 |fα|L1(∆n(r0),µ0) + sup

z∈∆n(r0),I 6=∅
r
|I|
0 |

∂|I|fα
∂z̄I

(z)|)

≤ kn‖s‖L1(∆n(r0),µ) + sup
z∈∆n(r0),I( 6=∅)⊂[n]

r
|I|
0 |

∂|I|s

∂z̄I
|

,

where we used (A.6),(A.7),(A.8).

Remark 7. By Remark 6, we can show

|s(p)|
C
≤ kn‖s‖L1(∆n(r0),µ) + k−1/2 sup

z∈∆n(r0)

|∂̄s|.

By Cauchy-Schwarz inequality

‖s‖L1(∆n(r0),µ) ≤ vol(∆n(r0), µ)1/2‖s‖L2(∆n(r0),µ) ≤ Ck−n/2‖s‖L2(∆n(r0),µ).

Therefore, we can deduce

|s(p)|
C
≤ kn/2‖s‖L2(∆n(r0),µ) + sup

z∈∆n(r0),I( 6=∅)[n]

r
|I|
0 |

∂|I|s

∂z̄I
|

from (A.5).

53



Bibliography

[1] Hugues Auvray, Xiaonan Ma, and George Marinescu. Bergman kernels on
punctured Riemann surfaces. Mathematische Annalen, 379(3):951–1002,
2021.

[2] David Catlin. The Bergman kernel and a theorem of Tian. In Analysis and
geometry in several complex variables, pages 1–23. Springer, 1999.

[3] Laurent Charles. A note on the Bergman kernel. Comptes Rendus Mathe-
matique, 353(2):121–125, 2015.

[4] So-Chin Chen and Mei-Chi Shaw. Partial differential equations in several
complex variables, volume 19. American Mathematical Soc., 2001.

[5] Jean-Pierre Demailly. Complex analytic and differential geometry. Citeseer,
1997.

[6] Lawrence C Evans. Partial differential equations and Monge-Kantorovich
mass transfer. Current developments in mathematics, 1997(1):65–126, 1997.

[7] Lawrence C Evans and Ronald F Garzepy. Measure theory and fine prop-
erties of functions. Routledge, 2018.

[8] J Friedman, Jay Jorgenson, and Jürg Kramer. Effective sup-norm bounds
on average for cusp forms of even weight. Transactions of the American
Mathematical Society, 372(11):7735–7766, 2019.
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