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Asymptotic of the Bergman kernel on a projective complex manifold

Chapter 1 Introduction

We are interested in understanding the asymptotic behaviour of the Bergman kernel (restricted to the diagonal of a projective manifold) of twisted tensor powers of a positive line bundle. Although C ∞ convergence is known in this case, our approach, mainly following L.Charles [START_REF] Charles | A note on the Bergman kernel[END_REF], can only give C 0 convergence. The central result of the paper is Theorem 7, from which we derive asymptotic Riemann-Roch theorem as an application.

The scheme of the proof (see Section 3.2) is divided into two parts: an upper bound and a lower bound. For the upper bound, basically we use mean value inequality, which is rather elementary. For the lower bound, we apply the "peak section" method originated by Tian in his thesis [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]. We illustrate this scheme again by strengthening a theorem of Liu (see Theorem 18). The last part is devoted to asymptotic behavior of tensor powers of a Nakano positive vector bundle of higher rank (at least when the base manifold is a Riemann surface, see Theorem 17).

Notations

Throughout the paper, unless otherwise stated, Greek letters α, β, . . . , run through 1, . . . , r and letters i, j, k, l . . . run through 1, . . . , n. We use µ 0 to denote the Lebesgue measure on Euclidean spaces. By [n] we mean the set {1, 2, . . . , n}. The permutation group on [n] is denoted by S n .

We always use column vectors unless otherwise specified. The Landau notation O(α) for matrices means each entry is a usual O(α). For a matrix A ∈ C m×n , we put A H := ĀT . If A is a hermitian positive definite (resp. semi-positive) matrix, we write A > 0 (resp. A ≥ 0). For a square matrix A, let ρ(A) be the spectral radius of A.

Put ∆ n (a) = {z ∈ C n : |z i | < a, i ∈ [n]}, which is an open polydisc. All hermitian inner product is anti-linear about the second argument. For a complex manifold M , we write M n to mean dim C M = n. Its holomorphic tangent vector bundle is denoted by T h M . For a line bundle L and k ∈ Z, to ease notation we write L k for L ⊗k . For a vectoc bundle E → M , by abuse of notation, we denote the smooth sections of E by C ∞ (M, E).

Chapter 2 Preliminaries

We suggest the reader refer to this elementary section only as necessary when reading the main text.

Linear Algebra

Proposition 1 (Rayleigh-Ritz). If A ∈ M n (C) is a hermitian matrix, and x ∈ C n , x = 0, we form the Rayleigh quotient R(A, x) = x H Ax x H x , then

max x∈C n ,x =0 R(A, x) = λ max (A)
is the maximal eigenvalue of A. Idem for minimum. In particular, if further A ≥ 0, then max

x∈C n ,x =0 R(A, x) = ρ(A).
Let V be a finite dimensional complex vector space whose dual is denoted by V * . Definition 1 (Conjugate space). The complex conjugate V of V is a complex vector space satisfying: there is a morphism V → V by v → v that is an R-linear isomorphism, and (a + ib)v = (a -ib)v for any v ∈ V ; a, b ∈ R.

If further V is endowed with a hermitian inner product h, then V → V * by v → h(•, v) is a C-linear isomorphism. We put

Herm + (V, h) = {A ∈ End(V ) : A ≥ 0}.
The partial order on Herm + (V, h) is defined by: A ≥ B means A -B ∈ Herm + (V, h).

Exercise 1. Then V × V → C by (v, ū) → h(v, u) is bilinear, so induces a morphism V ⊗ C V → C.
The morphism V × V → End(V ) by (v, ū) → A where A(w) = h(w, u)v is bilinear, so induces a morphism C : V ⊗ V → End(V ) which is an isomorphism. For any s ∈ V , C(s ⊗ s) ∈ Herm + (V, h).

We have a commutative diagram

V × V End(V ) C (v,ū) →h(•,u)v (v,ū) →h(v,u)

Tr

In virtue of Exercise 1, we usually identify V ⊗ V with End(V ) without mentioning the isomorphism C in between.

Exercise 2. If A ∈ M n (C) and A > 0, v ∈ C n , then

A -1 v T Av ≥ vv H .
Proof. Let (, ) be the standard inner product on C n . Then (u, w) A = (Au, w) defines another inner product. For any u ∈ C n

(A -1 v T Avu, u) = v T Av(A -1 u, u) = (v, v) A (A -1 u, A -1 u) A , (vv H u, u) = v H u(v, u) = (u, v)(v, u) = |(u, v)| 2 = |(A -1 u, v) A | 2 .
By Cauchy-Schwarz inequality,

|(A -1 u, v) A | 2 ≤ (v, v) A (A -1 u, A -1 u) A .
Thus we get the desired inequality (A -1 v T Avu, u) ≥ (vv H u, u).

Definition 2 (linear Bergman kernel). For a linear subspace U ⊂ V , we define B(U, h| U ) = n i=1 e i ⊗ē i , where {e 1 , . . . , e n } is an orthonormal basis of (U, h| U ). Linear Bergman kernel is well-defined by the following Exercise.

Exercise 3.

1. For another basis {v 1 , . . . , v n } of U ,

B = kl v k ⊗ vl A lk ,
where A is the inverse of the size n Gram matrix G = (h(v i , v j )). In particular, B is independent of the choice of orthonormal basis.

2. Viewed as a linear operator on V , B(U, h| U ) : V → U is the orthogonal projection. In particular, B(U, h| U ) ≤ B(V, h).

Proof. 1.There is P ∈ GL n (C) such that (e 1 , . . . , e n ) = (v 1 , . . . , v n )P , Id = h((e 1 , . . . , e n ) T , (e 1 , . . . , e n )) = h(P T (v 1 , . . . , v n ) T , (v 1 , . . . , v n )P ) = P T G P , then G = P -T P -1 , so A T = P P H .

B(U, h| U ) = (e 1 , . . . , e n ) ⊗ (e 1 , . . . , e n ) H = (v 1 , . . . , v n )P ⊗ P H (v 1 , . . . , v n ) H = kl

(P P H ) kl v k ⊗ vl = kl v k ⊗ vl A lk .
2. Take an orthonormal basis e 1 , . . . , e n of U and v ∈ V . By definition,

B(U, h| U ) = n i=1 e i ⊗ ēi .
So, B(U, h| U )v = n i=1 h(v, e i )e i is the orthogonal projection of v into U .

Complex Geometry and Kähler Geometry

Recall that for a hermitian manifold (M n , h), in local coordinate φ = (z 1 , z 2 ....z n ) : U → C n , its hermitian metric is determined by g i j = h( ∂ ∂zi , ∂ ∂ zj ). The matrix (g i j ) is the transpose-inverse of the positive-definite matrix (g i j ). Then g i j = h(dz i , dz j ). Its fundamental form ω = i jk g j kdz j ∧ dz k and the volume form is µ = ω n n! . Exercise 4. Locally

µ = i n det(g i j )dz 1 ∧ dz 1 • • • ∧ dz n ∧ dz n = 2 n det(g i j )φ * µ 0 . Proof. ω n = i n i1,j1,...,in,jn g i1, j1 . . . g in, jn dz i1 ∧ dz j1 • • • ∧ dz in ∧ dz jn = i n i * ,j * ∈Sn (i * , j * )g i1, j1 . . . g in, jn dz 1 ∧ dz 1 • • • ∧ dz n ∧ dz n = n!i n j * ∈Sn g 1, j1 . . . g n, jn dz 1 ∧ dz 1 • • • ∧ dz n ∧ dz n = i n n!(det g i j )dz 1 ∧ dz 1 ∧ • • • ∧ dz n ∧ dz n .
We get the first equation and the second follows since dz j ∧ dz j = -2idx j ∧ dy j . Definition 3 (Ricci form). Let (M, J) be an hermitian manifold whose Ricci tensor is noted by Ric, then ρ(X, Y ) = Ric(JX, Y ) defines a real 2-form ρ.

Definition 4 (positive form). A smooth real (1, 1) form α on a complex manifold (M, J) is called positive if the symmetric bilinear form (X, Y ) → α(X, JY ) for real tangent vectors X, Y is positive definite. A cohomology class in H 2 dR (M ; R) is positive if it can be represented by a closed positive (1, 1) form.

Some central objects on which we will concentrate are the following.

Definition 5 (positive line bundle). A holomorphic line bundle

L → M is called positive if its first Chern class c 1 (L) is positive.
Definition 6 (Kähler manifold). On a complex manifold (M, J), a real (1, 1) form ω is called Kähler if ω is closed positive and non-degenerate. In that case, g(X, Y ) = ω(X, JY ) defines a Riemann metric on M and ω itself is a symplectic form on M .

To fix notation, we briefly discuss the following example.

Example 1 (complex projective space). Set theoretically CP n is the space of all complex line subspaces of C n+1 . Using homogeneous coordinates

[Z 0 : • • • : Z n ], the standard atlas is {U 0 , . . . , U n }, where U i = {Z i = 0} ⊂ CP n . On U 0 the standard local holomorphic coordinate is z i = Zi Z0 for i = 1, . . . , n, i.e. a biholomorphism φ 0 : U 0 → C n by [Z 0 , . . . , Z n ] → ( Z1 Z0 , . . . , Zn Z0
). Example 2 (tautological line bundle). Let O(-1) be a line bundle on CP n whose transition function from U i to U j is Zj Zi . Concretely O(-1) = {([l], w) ∈ CP n × C n+1 : w ∈ l} viewing CP n as the set of lines in C n+1 . This line bundle O(-1) is called the tautological line bundle of CP n . With this point of view, the standard metric on C n+1 induces a metric h -1 on O(-1). We call σ -1

0 : U 0 → O(-1) by [Z 0 : • • • : Z n ] → ([Z 0 : • • • : Z n ], (1, Z1 Z0 , . . . , Zn Z0 )) the standard frame of O(-1) over U 0 . The local expression of h -1 on U 0 is h -1 (σ -1 0 , σ -1 0 ) = 1 + |z| 2 . Let O(1) be the dual of O(-1) and more generally set O(k) = O(1) ⊗k for k ∈ Z. Then h k is a hermitian metric on O(k). Then (O(k), h k ) is positive if and only if k > 0 by Example 4.
We similarly define the standard frame

σ k i ∈ H 0 (U i , O(k)) of O(k) on U i . Define a map Σ : C[Z 0 , . . . , Z n ] k → H 0 (CP n , O(k)
) by P → s P , where

s P | Ui = P (Z 0 , . . . , Z n ) Z k i σ k i ,
then Σ is a linear isomorphism. In particular, H 0 (CP n , O(k)) has a basis

{s I : |I| = k, I ∈ N n+1 }, s I = Σ(Z I ).
As a result, dim H 0 (CP n , O(k)) = k+n n .

Definition 7 (ample and very ample). On a compact complex manifold M , a line bundle L is called:

1. very ample if there is a projective embedding j : M → CP n such that L is isomorphic to j * O(1);

2. ample if there is m ≥ 1 such that L m is very ample.

Recall the following famous result.

Theorem 1 (Kodaira). On a compact complex manifold M , a line bundle is ample if and only if it is positive. If M admits such a line bundle, then M is projective.

Definition 8 (canonical line bundle). For a complex manifold M n , we denote

K M := det(T * h M ) = Λ (n,0) T * M . On a holomorphic chart (U, z 1 , . . . , z n ), it has a natural frame dz 1 ∧ • • • ∧ dz n . Example 3. The canonical bundle of CP n is O(-n -1). Proof. Let (U 0 , z 1 , . . . , z n ), (U 1 , w 1 , . . . , w n ) be the standard charts of CP n , where w 1 = Z0 Z1 and w l = Z l Z1 for l > 1. Now σ 0 = dz 1 ∧ • • • ∧ dz n (resp.σ 1 = dw 1 ∧ • • • ∧ dw n ) is a local frame of the canonical bundle on U 0 (resp. on U 1 ). On U 0 ∩ U 1 , z 1 = 1 w1 , dz 1 = -w -2
1 dw 1 and for l > 1, z l = w l w1 .

dz l = w 1 dw l -w l dw 1 w 2 1 .
Then σ 0 = -w

-(n+1) 1 σ 1 = -( Z1 Z0 ) (n+1) σ 1 .
From this transition law, we see that the canonical bundle is O(-n -1).

Definition 9 (Kähler potential). Let (M, ω) be a Kähler manifold, a local smooth real-valued function K is called a Kähler potential for (M, ω) if ω = i 2 ∂ ∂K.

By complex Poincaré lemma, for any Kähler manifold, locally there is a Kähler potential.

Definition 10 (Kähler-Einstein manifold). A Kähler manifold (M, ω) is called Kähler-Einstein if there is a constant λ such that Ric = λg or equivalently the Ricci form ρ = λω.

If M n is a Kähler-Einstein manifold: Ric = λg, then its scalar curvature scal = g i j Ric i j = nλ (2.1) is constant.
Example 4 (Fubini-Study). On a complex projective space CP n , the form ω F S := 2πc 1 (O(1), h) is a Kähler form, which is called the Fubini-Study form. It expression on the standard chart (U 0 , φ 0 ) is

ω F S = i[ n j=1 dz j ∧ dz j 1 + |z| 2 - 1 (1 + |z| 2 ) 2 ( n k=1 zk dz k ) ∧ ( n l=1 z l dz l )],
where K = 2 log(1 + |z| 2 ) is a Kähler potential. Its local expression is

g i j = δ ij (1 + |z| 2 ) -zi z j (1 + |z| 2 ) 2
or rather

(g i j ) = 1 1 + |z| 2 (Id n - 1 1 + |z| 2 zz T ),
from which we derive that det(g i j ) = (1 + |z| 2 ) -n-1 and its transpose-inverse

(g i j ) = (1 + |z| 2 )(Id n + zz H ), so g i j = (1 + |z| 2 )(δ ij + z i zj ).
So,

Ric i j = - ∂ 2 ∂z i ∂ zj log det(g k l) = (n + 1)g i j ,
i.e., (CP n , ω F S ) is Kähler-Einstein. The scalar curvature is n(n + 1). By Exercise 4, its volume form

µ = 2 n µ 0 (1 + |z| 2 ) n+1 , (2.2) 
where µ 0 is the pullback of Lebesgue measure along ϕ 0 . The volume of (CP n , ω F S ) is

C n 2 n µ 0 (1 + |z| 2 ) n+1 = 2 n Area(S 2n-1 ) ∞ 0 r 2n-1 (1 + r 2 ) n+1 dr = (2π) n n! .
For a hermitian manifold M and f ∈ C 2 (M ), we define the Laplacian by ∆f = 2 i,j

g i j ∂ 2 f ∂z i ∂ zj . (2.3) 
For a hermitian manifold M , (cf.[27, Section 1.2]) its Chern curvature (corresponding to Riemann curvature if M is Kähler) components are

R M i jk l := g(R M ( ∂ ∂z i , ∂ ∂ zj ) ∂ ∂ zl , ∂ ∂z k ) = g k m ∂Γ m jl ∂z i = - ∂ 2 g i j ∂z k ∂ zl + g pq ∂g iq ∂z k ∂g p j ∂ zl .
(2.4)

Proof. R(∂ i , ∂j)∂l = ∇ i ∇j∂l = ∇ i (Γ m jl ∂ m) = ∂Γ m jl ∂zi ∂ m, so R i jk l = g( ∂Γ m jl ∂zi ∂ m, ∂ k ) = g k m ∂Γ m jl ∂zi .
They enjoy symmetries below (cf. [START_REF] Székelyhidi | An Introduction to Extremal Kähler Metrics[END_REF]Exercise 1.21]):

R i jk l = R k ji l = R i lk j . (2.5) Define R m kq, j by R(∂k, ∂ q ) ∂ ∂zj = ∇k∇ q ∂j -∇ q ∇k∂j = R m kq, j ∂ m, we find that R l kq, j = - ∂Γ l kj ∂z q .
The Ricci curvature components are

Ric M k l = g i j R M i jk l = - ∂ 2 log det(g i j ) ∂z k ∂ zl = - ∂Γ k ik ∂ zj .
The scalar curvature is scal = g i j Ric M i j

(2.6)

. If M is Kähler, then We can define Christoffel symbols by

∇ ∂ ∂z j ∂ ∂z k = n i=1 Γ i jk ∂ ∂z i , the symmetry Γ i jk = Γ i kj . By [25, Lemma 1.19] Γ i jk = g i l ∂g k l ∂z j , Γ ī jk = Γ i jk = g īl ∂gk l ∂ zj
and other Christoffel symbols of mixed type vanish. By [25, Example 1.17],

∇ ∂ ∂ zi = - j Γk ij dz j .
(2.7) Definition 11. For a complex manifold M , the first Chern class of M is defined to be c 1 (M ) := c 1 (K * M ). Given moreover a hermitian form ω, its first Chern form c 1 (M, ω) := c 1 (K * M , h), where h is the induced metric on K * M . Theorem 2 (Chern). Let (M, ω) be a Kähler manifold, then its Ricci form ρ = 2πc 1 (M, ω). In local expression

ρ = -i∂ ∂ log det(g i j ) = iRic k ldz k ∧ dz l .
In particular, the class [ρ] is independent of the choice of Kähler form ω. 

Proof. Take a holomorphic chart (U, z 1 , . . . , z n ) of M , then K * M has a holomor- phic frame σ = ∂ ∂z1 ∧ • • • ∧ ∂ ∂zn . Then |σ| 2 h = det(g i j ). Therefore, ρ = i ∂∂ log det(g i j ) = 2πc 1 (M, ω).
ϕ(z) = ϕ 4 (z) + O(|z| 5 )
where

ϕ 4 = |z| 2 - 1 4 ijkl R M i jk l(p)z i zj z k zl . Moreover, det(g i j ) = 1 - k,l Ric k lz k zl + O(|z| 3 ).
Proof. By Theorem 3, we may find a chart such that (1, 1)-term of ϕ is |z| 2 and all the other (0, l), (1, l), (l, 1), (l, 0) terms vanish for 0 ≤ l ≤ 3. In particular,

ϕ = |z| 2 - 1 4 ijkl c ijkl z i zj z k zl + O(|z| 5 )
for certain constants c ijkl satisfying symmetries c ijkl = c kjil = c ilkj . Then

g i j = ∂ 2 ϕ ∂z i ∂ zj = δ ij - k,l c ijkl z k zl + O(|z| 3 ); (2.8) ∂ 3 ϕ ∂z i ∂ zj ∂z k (p) = 0;
(2.9) 

∂ 3 ϕ ∂z i ∂ zj ∂ zl (p) = 0; (2.10) ∂ 4 ϕ ∂z i ∂ zj ∂z k ∂ zl = -c ijkl + O(|z|). ( 2 
+ O(|z| 3 )) = 1 - n m=1 km,lm R m, m,km, lm z km zlm + O(|z| 3 ) = 1 - k,l Ric k, l(p)z k zl + O(|z| 3 ).
To avoid confusion, we recall some definitions.

Proposition 2 (Chern connection). For a holomorphic vector bundle E → M with hermitian metric h E on a complex manifold M , there is a unique connection ∇ on E which is

1. hermitian: for any s, t ∈ C ∞ (M, E), d(s, t) h E = (∇s, t) h E + (s, ∇t) h E .
In local expression

∂ ∂z k (s, t) h E = (∇ ∂ ∂z k s, t) h E + (s, ∇ ∂ ∂ zk t) h E .
2. compatible with the holomorphic structure: for any smooth field U ∈ T 0,1 M , s ∈ C ∞ (M, E), we have

∇ U s = ∂E s(U ).
Definition 12 (Chern curvature). The curvature form R E = Θ(E, h E ) of the Chern curvature given by Proposition 2 is called the Chern curvature of (E, h E ). Define the first Chern curvature form by

c 1 (E, h E ) = iTr(R E ) 2π = c 1 (det(E), h det(E) ) and the first Chern class c 1 (E) = [c 1 (E, h E )] ∈ H 2 dR (M ; R). In local expression, R E α, β,i, j = - ∂ 2 h α, β ∂z i ∂ zj + h λ,μ ∂h α,μ ∂z i ∂h λ, β ∂ zj .
Note that when E = T h M , we recover last line of (2.4). Consider the particular case of a hermitian line bundle (L, h). For a local frame σ ∈ H 0 (U, L),

∂∂(log |σ| 2 h
) is a (1, 1)-form on U independent of the choice of s and over various U they glue to a global (1, 1)-form, which is exactly the Chern curvature of (L, h). Exercise 6. If in addition (M, ω) is a hermitian manifold, we recall the Lefschetz operator L on Λ * , * (T * M ) ⊗ E by (ω∧) ⊗ Id and its adjoint Λ with respect to the hermitian metric therein induced by ω and h E . Then

(iΛR E ) α,β = g i j R E α,β,i, j .
In particular, when E = T h M and h E is the hermitian metric of M , then Tr(iΛR E ) = scal.

Proof. Take {w j } a smooth orthonormal frame of

T h M . Expand it in a local holomorphic chart (z 1 , . . . , z n ): (w 1 , . . . , w n ) = ( ∂ ∂z 1 , . . . , ∂ ∂z n )P, then Id = P T G P , where G = (g i j ). Thus G -1 = P P T , so g k l = n j=1 Plj P kj . By [15, (1.4.32)], iΛR E = n j=1 R E (w j , wj ) = j,k,l R E (P kj ∂ ∂z k , Plj ∂ ∂ zl ) = k,l R E k l( n j=1 Plj P kj ) = k,l R E k lg k l.
. We proved the first and the second follows from (2.6).

Proposition 3 (normal coordinate frame). [5, Ch.V, Proposition 12.10] Let M be a complex manifold and (E, h) a hermitian holomorphic vector bundle of rank r on M . For any local holomorphic coordinates

(z 1 , z 2 , ....z n ) centered in p ∈ M , there exists a holomorphic frame v 1 , ...v r of E in a neighborhood of p such that R E (p) = α,β,j,l R E α,β,j, l(p)v α ⊗ vβ ⊗ (dz j ∧ dz l )(p), (2.12 
)

h(v α , v β ) = δ α,β - n j,l=1 R E α,β,j. l(p)z j zl + O(|z| 3 ). (2.13) Let H E be the Gram matrix (h(v α , v β )). Let H E 2 (z) = (δ α,β - n j,l=1 R E α,β,j, l(p)z j zl ), (2.14) 
then we can rewrite (2.13) as

H E = H E 2 + O(|z| 3 ).
Let M be a hermitian manifold, then there is an induced hermitian metric on the space of global smooth (p, q) forms Ω p,q (M ). Let (E, h) be a holomorphic hermitian vector bundle on M . 

C ∞ (M, E) = H 0 (M, E) ⊕ Im( E | C ∞ (M,E) ).
Moreover, H 0 (M, E) is a finite dimensional C-vector space.

The following inequality relies on Bochner-Kodaira-Nakano identity.

Theorem 5 (Nakano's inequality). [15, Theorem 1.4.14] If in addition M is Kähler, take s ∈ Ω (p,q) c (M, E) an arbitrary compactly supported smooth E-valued (p, q)-form, then 2 E s, s ≥ [iR E , Λ]s, s ,
where the global scalar product is defined in (1.3.14) loc.cit.

Stationary phase method

Theorem 6 (Hörmander). [18, Theorem 13.3.2][10, Theorem 7.7.5] Let U ⊂ R d be an open neighborhood of 0 ∈ R d and ϕ, A be smooth functions on U such that Re(ϕ) ≥ 0 on U . Furthermore, suppose that on supp(A), ϕ has a unique stationary point at 0 and ϕ(0) = 0. Suppose the Hessian H of ϕ at 0 is nonsingular (i.e., 0 is a non-degenerate critical point of ϕ.) Define a second order differential operator

D = d p,q=1 (H -1 ) p,q ∂ 2 ∂x p ∂x q and ϕ = ϕ(x) -(x, Hx)/2. Set L j (Aϕ) = (-1) j 0≤l≤2j D l+j (Aϕ l )(0) 2 l+j l!(l + j)! , then for each M ∈ N + , let N = M + d/2 , for k ∈ R + , we have | U A(x)e -kϕ(x) µ 0 -[det( kH 2π )] -1/2 j<M k -j L j (Aϕ)| ≤ C(ϕ)k -M |I|≤2N,I∈N d sup |∂ I x A|.
Here the constant C(ϕ) is bounded when ϕ stays in a bounded set in C 3N +1 .

The following result play the same role in the proof of main theorem, but with integral domain shrinking with the growth of k.

Lemma 1. [14, Lemma 4.1] Let A be a symmetric function on [n] p ×[n] p . Then I,J∈[n] p |z|≤ log k √ k A I,J z I zJ |z| 2q e -k|z| 2 µ 0 = π n ( I∈[n] p A I,I ) p!(n + p + q -1)! (p + n -1)!k n+p+q +O(e -log 2 k ).
We collect some consequences of this lemma.

B(0, log k √ k ) e -k|z| 2 µ 0 = π n k n + O(e -(log k) 2 ) (2.15) i,j B(0, log k √ k ) Ric M i, j (p)z i zj e -k|z| 2 µ 0 = ( π k ) n scal(p) + k n + O(e -(log k) 2 ) (2.16) B(0, log k √ k ) e -k|z| 2 |z| 4 O(k)( j,l R E α,β,j, l)z j zl det 2 µ 0 = O(k -n-2 ) (2.17) B(p, log k √ k ) e -k|z| 2 R E α,β,j, lz j zl µ 0 = (iΛR E ) α,β π n k n+1 + O(e -(log k) 2 ) (2.18) B(0, log k √ k ) e -kϕ4 (|z| 5 O(k) + O(|z| 3 ))µ 0 = O(k -n-3/2 ) (2.19) i, j R E α,β,i, j B(p, log k √ k ) e -k|z| 2 z i zj (O(|z| 3 ) + |z| 4 O(k))µ 0 = O(k -n-2 ), (2.20)
where for (2.18) we use Exercise 6.

Chapter 3

Bergman kernel

Let (M n , g) be a compact hermitian manifold whose volume form is denoted by µ, and P → M be a holomorphic vector bundle with hermitian metric h = h P . Endow C ∞ M, P ) a hermitian inner product by

s, t = M (s, t)µ.
Define s 2 h = s, s . Let L 2 (M, P ) be the completion of (C ∞ M, P ), , ). By Theorem 4, H 0 (M, P ) is finite dimensional. Choose an orthonormal basis (e 1 , ...., e N ) of H 0 (M, P ). Definition 14 (Bergman kernel). For p, q ∈ M the Bergman kernel of P is

Π(p, q) = N i=1 e i (p) ⊗ ēi (q) = N i=1 h q (•, e i (q))e i (p) : P q → P p . Write B(p) = Π(p, p) ∈ End(P p ),
where we use the identification given by Exercise 1.

In this mémoire, we are interested only in diagonal values. By Exercise 1, B(p) ∈ Herm + (P p , h p ). Note that B ∈ C ∞ (M, End(P )). For λ a positive constant, if we use the metric λg instead g on M n (i.e., a constant scaling), the new volume form is λ n µ, the new scalar curvature is scal λ and new Bergman kernel is λ -n B.

Exercise 7. Use another hermitian metric h conformal to h, i.e., there is a real function f on M such that h (v, v) = e 2f h(v, v) for any smooth section v of P . Let B be the Bergman kernel of P with respect to h . If h , h are of the same Chern curvature form, then f is a constant and the corresponding Bergman kernels B and B coincide. (Note that if P is a line bundle, the conformal condition is automatic.) Proof. Recall that R(P, h ) = ∂(h -1 • ∂h ) = 2( ∂∂f )Id + R(P, h), so ∂∂f ≡ 0. By (2.3), ∆f = 0. The manifold M being compact, by Stoke's formula,

M (f ∆f + |∇f | 2 )µ = 0.
We see that f is a constant. In particular, {e -f e i |i = 1, . . . , N } is an orthonormal basis of H 0 (M, P ) with respect to h . For any p ∈ M ,

B (p) = N i=1 h p (•, e -f e i (p))e -f e i (p) = N i=1 h p (•, e i (p))e i (p) = B(p). Remark 2. If s 1 , . . . , s N is a basis of H 0 (M, P ), where s q+1 (p) = • • • = s N (p) = 0, then by Exercise 3, B(p) = q k,l=1 s k (p) ⊗ sl (p)A lk ,
where A is the inverse of the size N Gram matrix ( s i , s j ). This observation serves as a motivation of the peak section method firstly raised by Tian in [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]. In particular, if furthermore s 1 (p), . . . , s q (p) form an orthonormal basis of P p , then B(p) kl = A lk . This approach is taken in [11, §3]. As an analogue of Exercise 3 (2), we have an interpretation of Bergman kernel.

Exercise 8. The finite dimensional H 0 (M, P ) being a closed subspace of L 2 (M, P ), there exists an orthogonal projection (so called Bergman projection)

π : L 2 (M, P ) → H 0 (M, P ).
Then Bergman kernel Π is the reproducing kernel function of π, i.e., for any s ∈ L 2 (M, P ),

(πs)(p) = M Π(p, q)s(q)µ(q). Proof. We calculate M Π(p, q)s(q)µ(q) = M n i=1 (s, e i )(q)e i (p)µ(q) = n i=1 e i (p) s, e i = (πs)(p).
We begin with a well-known generalization of [3, Lemma 3.1], which is an extremal characterization of Bergman kernel. Proof. Take u ∈ P p ,

(B(p)u, u) = N i=1 (u, e i (p))(e i (p), u) = N i=1 |(u, e i (p))| 2 . For s ∈ H 0 (M, P ) \ 0, let s = N i=1 λ i s i with λ ∈ C N \ {0}, then s 2 = |λ| 2 . ( s(p) ⊗ s(p) s 2 h (u), u) = 1 |λ| 2 (( i λ i s i (p)) ⊗ ( j λ j s j (p))u, u) = 1 |λ| 2 ( i,j λ i λj (u, s j (p))(s i (p), u) = 1 |λ| 2 (λ T A λ), where A = ww H w = ((s 1 (p), u), . . . (s N (p), u)) t ∈ C N . Therefore max s∈H 0 (M,P )\0 s(p) ⊗ s(p) s 2 h u, u = max s =0 (s(p) ⊗ s(p)u, u) s 2 = max λ∈C N \0 λ T A λ |λ| 2 = ρ(A) = ρ(w H w) = w H w = i=1...N |(s i (p), u)| 2 = (B(p)u, u),
where we used Proposition 1.

Main Theorem

The setting for Section 3.1 is the following: Let M n be a projective manifold, (L, h L ) (resp. (E, h E ) be a hermitian holomorphic line (resp. vector) bundle with Chern curvature R L (resp. R E ). Assume that M is polarized by L, i.e., iR L is the Kähler form of M (so that (L, h L ) is positive). Let r be the rank of E, scal : M → R be the scalar curvature. We state the main result of the paper.

Theorem 7 (main theorem). The Bergman kernel B k of L k ⊗ E has an asymptotic expansion

B k (p) = k 2π n (Id r + k -1 [ scal 2 Id r + iΛR E )(p)] + O(k n-2 ).
Corollary 1. There is k 0 ≥ 1 such that for any k ≥ k 0 , L k ⊗ E has no base points.

We recall the following celebrated result.

Theorem 8 (Catlin-Zelditch). [2, Theroem 2][31, Theorem][14, Theorem 1.1]
The Bergman kernel admits a complete asymptotic expansion

B k (p) ∼ k n ( l≥0 a l (p)k -l ),
where a l are universal polynomials in the curvature of (M, g), R E as well as their successive covariant derivatives at p. Each a l (p) is a self-adjoint matrix with respect to h E . More precisely, for each s, l ∈ N, there is a constant C = C(s, l, M ) such that for any p ∈ M ,

|B k (p) - s j=0 a j (p)k n-j | C l ≤ Ck n-s-1 .
The convergence of Bergman metrics is one of the motivations for search of such expansion in the history. As a corollary of this theorem, we recover Tian's result ([26, Theorem A,Theorem B], for C 2 convergence) and Ruan's result ( [START_REF] Ruan | Canonical coordinates and Bergman metrics[END_REF] for

C ∞ convergence). Say N k = dim H 0 (M, L k ) -1 and choose an orthonormal basis {s k,0 , . . . , s k,N k } of H 0 (M, L k ), then when k is large enough, the Kodaira map φ k : M → CP N k by x → [s k,0 (x) : • • • : s k,N k (x)]
is a holomorphic embedding. We call 1 k φ * k ω F S a Bergman mertic of M with respect to L. Theorem 9. [25, Corollary 7.5] The set of Bergman metrics is dense in the set of polarized Kähler metrics. In fact,

1 k φ * k ω F S -ω C ∞ = O(k -2
).

An informal proof ! By assumption,

kω = ikR L = iR L k = i ∂∂ log |s k,0 | 2 .
On the open φ -1

k (Z 0 = 0)(⊂ M ), s k,0 is a frame of L k . By Example.4, φ * k ω F S = i∂ ∂ log(1 + N k j=1 | s k,j s k,0 | 2 ) = i∂ ∂ log B k |s k,0 | 2 = i∂ ∂ log B k + kω.
(This is the content of [START_REF] Székelyhidi | An Introduction to Extremal Kähler Metrics[END_REF]Lemma 7.3].) By Theorem 7 and Theorem 8,

i∂ ∂ log B k C ∞ = O( 1 k ), so 1 k φ * k ω F S -ω C ∞ = 1 k i∂ ∂ log B k C ∞ = O( 1 k 2 ).
We give a quick application of our main result.

Definition 15 (Euler-Poincaré characteristic). The Euler-Poincaré character- istic of E is χ(M, E) = j≥0 (-1) j dim C H j (M, E).
Theorem 10 (Serre vanishing theorem). [22, n.66, Théorème 2] There is k 0 ≥ 1 such that any k ≥ k 0 , any q > 0, H q (M, L k ⊗ E) = 0.

At present we have adequate tools for the famous result below.

Corollary 2 (Asymptotic Riemann-Roch).

χ(M, L k ⊗E) = k n rk(E) n! M c 1 (L) n + k n-1 rk(E) 2(2π) n M scalµ+ k n-1 (2π) n M Tr(iΛR E )µ+O(k n-2 ).
Proof. By Theorem 10, χ(M, L k ⊗E) = dim H 0 (M, L k ⊗E) when k is sufficiently large. Then Theorem 7 and Proposition 4 gives the result.

Example

We illustrate Theorem 7 with a concrete example. On (CP n , ω F S ),

L = O(1), h L = h the one given in Example 2. E = O(l) with h E = h l .
By Example 2, on U 0 , (s I , s J ) = z I zJ (1+|z| 2 ) k , where I = (i 1 , . . . , i n ) is a truncation of the multi-index I = (i 0 , . . . , i n ). so by (2.2),

s I , s J = U0 (s I , s J )µ = C n z I zJ (1 + |z| 2 ) n+1+k 2 n µ 0 .
Change variables: z j = r j e iθj , then µ 0 = r 1 . . . r n dr 1 . . . dr n dθ 1 . . . dθ n , By Exercise 9, when I = J ,

C n z I zJ (1 + |z| 2 ) n+1+k 2 n µ 0 = 2 n (2π) n R n + r 2I+ 1 (1 + |r| 2 ) n+1+k dr 1 . . . dr n = (2π) n Γ(1 + i 1 ) . . . Γ(1 + i n )Γ(1 + i 0 ) Γ(n + k + 1)
.

When I = J we get s I , s J = 0. Fix p = [1 : 0 : • • • : 0] ∈ U 0 , consider the special multi-index I 0 = (k, 0, . . . , 0), then s I (p) = 0 when I = I 0 .

By Remark 2, the Bergman kernel of

L k ⊗E = O(k+l) is B k (p) = |s I0 (p)| 2 A, where 
A -1 = (2π) n (k + l)! (n + k + l)! .
So, we find the Bergman kernel of

L k ⊗ E B k (p) = (n + k + l)! (2π) n (k + l)! = (2π) -n (k + n + l)(k + n + l -1) . . . (k + l + 1) = ( k 2π ) n (1 + k -1 ( n(n + 1) 2 + nl) + O(k -2 )).
Note that the scalar curvature is constant n(n + 1) and iΛR E = nl in this case.

Exercise 9. For a real number A > 0, a multi-index I = (i 1 , . . . , i n ) ∈ N n , 1.

R n + r I (A 2 + |r| 2 ) b dr = A n+|I|-2b 2 n Γ(j 1 ) . . . Γ(j n )Γ(b -k j k ) Γ(b) ,
where j l = 1+i l 2 . 2.

C n z I zJ (1 + |z| 2 ) s µ 0 = 0. when I = J. Proof. 1. Induction on n. When n = 1, is R+ r i (A 2 + r 2 ) b dr = π/2 0 A tan(t) i (A 2 / cos(t) 2 ) b A/ cos 2 (t)dt = A 1+i-2b 1 2 B(j, b -j) by r = A tan(t), done. If true for n -1. Integrating r n first, we get Γ(j n )Γ(b -j n ) 2Γ(b) R n-1 + r I (A 2 + |r | 2 ) b-jn dr ,
where r = (r 1 , . . . , r n-1 ) and I = (i 1 , . . . , i n-1 ), then use induction hypothesis to conclude.

2. Mimic the proof of Exercise 10.

Proof of Main Theorem

Once for all, we choose a local frame σ of L and a chart around p, ϕ := -2 log |σ| h such that ϕ is as in Exercise 5 (cf. [26, (2.2)]); a frame {v 1 , . . . , v r } of E as in Proposition 3 and use notations therein. Let det 2 = 1 -Ric k l(p)z k zl given by Exercise 5. Note that at p,

g i j = δ ij , (3.1) j R M j jk l = Ric k l, (3.2) 
i

Ric M i ī = scal. (3.3)
Use our proof below but with higher order approximation of H E and ϕ, we can find the coefficient of k n-2 in the expansion of B k (p) explicitly, cf.[28, Theorem 4.2].

Upper bound

The goal of this section is to derive an upper bound for B k .

In each term of ϕ 4 , H E 2 , the power of z and of z are the same. This simple observation leads to the following vanishing identity, which should be compared to [26, Lemma 2.2].

Exercise 10.

1. For any multi-index I( = 0) ∈ N n , ψ a bounded measurable function on C n . Assume ψ is rotationally invariant, i.e., ψ(z) depending only in |z|. Then 2.We apply 1. Take ψ to be the characteristic function of B and use the Taylor expansion of f .

C n ψe -kϕ4 z I H E 2 det 2 µ 0 = 0. ( 3 

Method 1: Tian

The following generalization of [START_REF] Charles | A note on the Bergman kernel[END_REF]Lemma 3.3] will lead to the upper bound we seek. Note carefully we use this lemma to control the point difference of smooth and holomoprhic peak sections in Section 3. 

√ k ). For any s ∈ H 0 (B, L k ⊗ E), s(p) ⊗ s(p) ≤ M (k) B |s| 2 µ,
where the matrix

M (k) = ( k 2π ) n (Id r + k -1 ( scal 2 Id r + iΛR E ) + O((log k) 5 k -3 2 )).
(See Exercise 6 for Λ.) Taking trace we get

|s| 2 (p) ≤ Ck n B |s| 2 µ (3.5)
All the implicit constants are uniform in p ∈ M and independent of k.

Proof. Put

C(k) = e -C(log k) 5 k -3 2 (1 + C(log k) 3 k -3 2 ) 2 = 1 + O((log k) 5 k -3 2 ), Write s = r α=1 f α (σ k ⊗ v α )
, where f α are holomorphic functions on B. Note

σ ⊗ σ = |σ| 2 = e -ϕ . Let f = (f 1 , . . . , f r ) T .
The left hand side is

α f α (σ k ⊗ v α ) ⊗ ( β f β (σ k ⊗ v β )(p) = f f H (p).
The point-wise norm

|s| 2 = h L k ⊗E ( α f α (σ k ⊗ v α ), β f β (σ k ⊗ v β )) = e -kϕ f T H E f.
The integral on the right J(k)

:= B |s| 2 µ = B e -kϕ f T H E f µ.
There is a constant C > 0 such that 

-ϕ 4 ≤ -ϕ + C|z| 5 (3.6) H E 2 ≤ (1 + C|z| 3 )H E (3.7) 2 n det 2 1 + C|z| 3 ≤ µ µ 0 . ( 3 
J(k) ≥ 2 n C(k) B e -kϕ4 f T H E 2 ¯ f det 2 µ 0 . ( 3 
e -kϕ4 f T H E 2 ¯ f det 2 µ 0 = B e -kϕ4 det 2 [ f (p) T H E 2 f (p) + ( f -f (p)) T H 2 ( f -f (p))]µ 0 ≥ f T (p)( B e -kϕ4 H E 2 det 2 µ 0 ) f (p), (3.10) 
where the first equation is from Exercise 10. We now calculate

B e -kϕ4 H E 2;α,β det 2 µ 0 = S(k)δ α,β -T α,β (k),
where S(k) := B e -kϕ4 det 2 µ 0 and T α,

β (k) = B e -kϕ4 i,j R E α, β,i, j (p) 
z i zj det 2 µ 0 . By [3, (5)]

S(k) = π k n 1 - scal(p) 2k + O(k -2 ) .
(Note his µ Leb = 2 n µ 0 .) Since

e -kϕ4 det 2 = e -k|z| 2 (1 + |z| 4 O(k))(1 + O(|z| 2 )) = e -k|z| 2 (1 + |z| 4 O(k)), T α,β (k) = B e -k|z| 2 (1+|z| 4 O(k)) i,j R E α, β,i, j z i zj µ 0 = (iΛR E ) α,β π n k n+1 +O(k -n-2 )
by (2.17) and (2.18). Therefore

A : = 2 n C(k) B e -kϕ4 H E 2 det 2 µ 0 = C(k) 2π k n (Id r -k -1 (iΛR E + scal(p) 2 Id r ) + O(k -2 )) = M (k) -1 .
(3.11) We conclude as follows.

M (k) B |s| 2 µ = M (k)J(k) ≥ M (k)2 n C(k) B e -kϕ4 f T H 2 ¯ f det 2 µ 0 ≥ M (k)2 n C(k) f T (p)( B e -kϕ4 H E 2 det 2 µ 0 ) f (p) = A -1 v T Av ≥ vv H = s(p) ⊗ s(p), (3.12) 
where the inequalities are from (3.9),(3.10) and Exercise 2.

Method 2: L.Charles

We can prove a weaker version of Lemma 3 using Theorem 6. 

s(p) ⊗ s(p) ≤ M (k) U |s| 2 µ,
Proof. We may shrink U to find a holomorphic chart (z 1 , . . . , z n ) over U . There is a > 0 such that the ball B(p, a) ⊂ U . Take a smooth cutoff function η : R → [0, 1] supported in (-a, a) with η ≡ 1 near 0. Define ψ : M → [0, 1] by ψ(z) = η(|z|) for z ∈ U and ψ(q) = 0 for q / ∈ U . Then ψ is smooth. Put

J(k) := M ψ|s| 2 µ = U ψe -kϕ f H E f µ.
Note that J(k) ≤ U |s| 2 µ. As in (3.9),(3.10), we get

J(k) ≥ 2 n C(k) f T (p)( U ψe -kϕ4 H E 2 det 2 µ 0 ) f (p).
We calculate with the help of Theorem 6

U ψe -kϕ4 H E 2 det 2 µ 0 = π k n (Id r -k -1 ( scal 2 Id r + iΛR E ) + O(k -2 )).
The rest part is similar to that of Lemma 3, which we omit.

Corollary 3 (upper bound).

B k (p) ≤ k 2π n (Id r + k -1 [ scal 2 Id r + iΛR E ](p) + O(k -3/2 log 5 k))
Proof. Combine Lemma 2 and 4.

Lower bound and peak sections

We derive a Kodaira-Hörmander type estimate, which is essential to the construction of peak sections.

Theorem 11. Let 2 k be the Kodaira-Laplacian (see Definition 13) on Ω * , * (M, L k ⊗ E), then there is C > 0 such that any k ≥ 0, 0 ≤ q ≤ n,

1. 2 k ≥ (kq -C)Id on Ω n,q (M, L k ⊗ E); 2. 2 k ≥ (kq -C)Id on Ω 0,q (M, L k ⊗ E),
where we use L 2 inner products.

Proof. 1.Since M is compact, there is C = C(M, ω, E, h E ) > 0 such that [iR E , Λ] ≥ -CId. As iR L = ω, [iR L , Λ] = q on Ω n,q (M, L k ⊗ E). Because R L k ⊗E = kR L + R E , we have 2 k ≥ [iR L k ⊗E , Λ] = k[iR L , Λ] + [iR E , Λ] ≥ (kq -C)Id r , (3.13) 
where the first line is from Theorem 5.

2. Note that Ω n,q (M,

L k ⊗ E ⊗ K -1 M ) = Ω 0,q (M, L k ⊗ E) and the action of 2 L k ⊗E⊗K -1
M on the left is compatible with the action of 2 k on the right. Then 2 follow from the 1 using this identification.

The following theorem is a generalization of [3, Theorem 2.2]. It will play the role of classical ∂-estimates.

Theorem 12. There is

C = C(M, ω, E, h E ) > 0 such that for any s ∈ C ∞ (M, L k ⊗ E) orthogonal to H 0 (M, L k ⊗ E), we have (k -C) s 2 ≤ ∂s 2 .
Proof. Let C be given by Theorem 11. We may assume k > C. When 1 ≤ q ≤ n, always on Ω 0,q (M, L k ⊗ E), 2 k ≥ (kq -C)Id is positive-definite. By a variant of [25, Theorem 2.13], 2 k is invertible.

When q = 1, this fact gives t ∈ Ω 0,1 (M, L k ⊗ E) such that 2 k t = ∂s. As

2 k ∂t = ∂2 k t = ∂ ∂s = 0,
the fact with q = 2 implies ∂t = 0. Therefore,

∂ ∂ * t = 2 k t = ∂s,
or equivalently s -∂ * t ∈ H 0 (M, L k ⊗ E) is holomorphic. In particular, s, s -∂ * t = 0 which gives (*) below.

s 2 = s, s ( * ) = s, ∂ * t = ∂s, t = 2 k t, t .
By Cauchy-Schwarz inequality

2 k t t ≥ 2 k t, t ≥ (k -C) t 2 , so 2 k t ≥ (k -C) t . Now ∂s 2 = 2 k t 2 ≥ (k -C) 2 k t t ≥ (k -C) 2 k t, t = (k -C) s 2 .

Method 1: Tian

The following construction is a twisted version of [26, Lemma 1.2]. Fix p ∈ M and a holomorphic chart (U, z 1 , . . . , z n ) centered in p, for v a local section of E on U , we will construct a peak section.

Take a smooth cutoff function η : R + → [0, 1] with η(x) = 1 on x < 1 and η(x) = 0 when x ≥ 1 and -3 < η ≤ 0. Let

ψ k (z) = η( |z| 2 k log 2 k ) for z ∈ U and ψ k (q) = 0 for q ∈ M \ U . Then ψ k : M → [0, 1] is a smooth function. ψ k is supported in B(p, √ 2 log k √ k ) and ψ ≡ 1 on B(p, log k √ k ). So, ∂ψ k is supported in the annulus log k √ k ≤ |z| ≤ √ 2 log k √ k . On U , ∂ψ k = k log 2 k η ( k|z| 2 log 2 k ) n i=1 z i dz i . For each i, |dz i | ≤ C(M ) in the annulus. Thus, on M | ∂ψ k | ≤ C √ k log k (3.14) Note that ψ k (σ k ⊗ v) ∈ C ∞ (M, L k ⊗ E).
We call it a smooth section peaked at p. Now we construct a holomorphic peak section from it.

Let

ψ k (σ k ⊗ v) = s k + t k (3.15)
be the Hodge decomposition given by Theorem 4, where

s k ∈ H 0 (M, L k ⊗ E). Because near p, ϕ(z) = |z| 2 + O(|z| 4 ), µ µ 0 = 2 n + O(|z| 2 ), when k is large, ϕ(z) ≥ |z| 2 /2, µ ≤ Cµ 0 (3.16) in B(p, √ 2 log k √ k
). An important estimate in the annulus is

e -kϕ ≤ k -log k 2 , By (3.15), ∂t k = ( ∂ψ k )(σ k ⊗ v), | ∂t k | 2 = | ∂ψ k | 2 e -kϕ |v| 2 h E ≤ C(M, v, h E ) k log 2 k k -(log k)/2 .
Therefore,

∂t k 2 = M | ∂t k | 2 µ = log k √ k ≤|z|≤ √ 2 log k √ k | ∂t k | 2 µ ≤ C(M, v, h E ) k log 2 k k -(log k)/2 log k √ k ≤|z|≤ √ 2 log k √ k µ 0 ≤ C(M, v, h E ) k log 2 k k -(log k)/2 ( log k √ k ) 2n
.

(3.17)

By Theorem 12, t k ≤ ∂t k √ k-C . t k ≤ C √ k -C k 2-2n-log k 4 log n-1 k ≤ Ck -n/2-(log k)/4 log n-1 k. (3.18)
Estimate the point difference between smooth and holomorphic peak section. Note that

t k ∈ H 0 (B(p, log k √ k ), L k ⊗ E), by (3.5), |s k (p) -(σ k ⊗ v)(p)| 2 = |t k (p)| 2 ≤ Ck -(log k)/2 log 2n-2 k. (3.19)
Estimate the outside L 2 norm of smooth peak section.

M -B(p, log k √ k ) |ψ k σ k ⊗ v| 2 µ = log k √ k ≤|z|≤ √ 2 log k √ k |ψ k | 2 e -kϕ |v| 2 µ ≤ log k √ k ≤|z|≤ √ 2 log k √ k Ck -(log k)/2 µ 0 ≤ Ck -(log k)/2 ( log k √ k ) 2n .
(3.20)

We use (3.18), (3.20) to get

M -B(p, log k √ k ) |s k | 2 µ ≤ M -B(p, log k √ k ) |ψ k (σ k ⊗ v)| 2 µ + 2 t k • ψ k (σ k ⊗ v) L 2 (M -B(p, log k √ k )) + t k 2 ≤ Ck -n-(log k)/2 log 2n k (3.21)
Estimate the global L 2 norm of smooth peak section.

ψ k (σ k ⊗ v) 2 = M |ψ k (σ k ⊗ v)| 2 µ = B(p, log k √ k ) |ψ k | 2 e -kϕ |v| 2 µ + M \B(p, log k √ k ) |ψ k | 2 e -kϕ |v| 2 µ ≤ Ck -n + Ck -(log k)/2 ( log k √ k ) 2n ≤ Ck -n , (3.22) 
where we used (3.20), (3.29).

Proof of Theorem 7, Tian's method. Let

ψ k (σ k ⊗ v α ) = s k,α + t k,α
be the Hodge decomposition given by Theorem 4, where

s k,α ∈ H 0 (M, L k ⊗ E).
then by Exercise 3.( 2),

B k (p) ≥ α s k,α ⊗ sk,β (p)A β,α , (3.23) 
where A is the inverse of the Gram matrix G = ( s k,α , s k,β ).

s k,α , s k,β = B(p, log k √ k ) (ψ k (σ k ⊗ v α ), ψ k (σ k ⊗ v β ))µ + M \B(p, log k √ k ) (ψ k (σ k ⊗ v α ), ψ k (σ k ⊗ v β ))µ + M (t k,α , t k,β )µ - M (ψ k (σ k ⊗ v α ), t k,β )µ - M (t k,α , ψ k (σ k ⊗ v β ))µ.
(3.24) Apply Cauchy-Schwarz inequality several times. By (3.20),

| M \B(p, log k √ k ) (ψ k (σ k v α ), ψ k (σ k ⊗ v β ))µ| ≤ Ck -(log k)/2 ( log k √ k ) 2n . (3.25) By (3.18), | M (t k,α , t k,β )µ| ≤ t k,α • t k,β ≤ Ck -n-(log k)/2 log 2n-2 k. (3.26) By (3.18),(3.22), | M (ψ k (σ k ⊗ v α ), t k,β )µ| ≤ t k,β ψ k (σ k ⊗ v α ) ≤ Ck -n-(log k)/4 log n-1 k. (3.27) Because e -kϕ H E µ = e -kϕ4 (1 + |z| 5 O(k))H E 2 • (Id r + O(|z| 3 ))det 2 (1 + O(|z| 3 ))2 n µ 0 = 2 n e -kϕ4 H 2 det 2 (1 + |z| 5 O(k) + O(|z| 3 ))µ 0 , (3.28) we find its integral B e -kϕ H E µ = B 2 n e -kϕ4 H 2 det 2 (1 + |z| 5 O(k) + O(|z| 3 ))µ 0 = ( 2π k ) n (Id r -k -1 (iΛR E + scal(p) 2 Id r ) + O(k -3 2 )), (3.29)
where the last equality is from (3.11), (2.19). Therefore, (3.30), we get an important expansion of G:

G α,β = s k,α , s k,β = B(p, log k √ k ) (ψ k (σ k ⊗ v α ), ψ k (σ k ⊗ v β ))µ + O(k -n-(log k)/4 log n-1 k) = B(p, log k √ k ) e -kϕ H E α,β µ + O(k -n-(log k)/4 log n-1 k) (3.30) By (3.29),
G = B e -kϕ Hµ + O(k -n-log k 4 log n-1 k) = ( 2π k ) n (Id r -k -1 (iΛR E + scal(p) 2 Id r ) + O(k -3 2 )).
(3.31)

Therefore, 

A = G -1 = ( k 2π ) n (Id r + k -1 ( scal(p) 2 Id r + iΛR E ) + O(k -3 2 )). ( 3 
B k (p) ≥ ( k 2π ) n (Id r + k -1 ( scal(p) 2 Id r + iΛR E ) + O(k -3 2 )). ( 3 
B k (p) = ( k 2π ) n (Id r + k -1 ( scal(p) 2 Id r + iΛR E ) + O(k -2 )).
Remark 3. From the proof we see that the smoothness conditions can be relaxed to: h L is C 4 (then ω and µ are C 2 ) and h E is C 2 . Instead of this construction of peak sections, we can also apply [29, Proposition 3.6.1] which is closer to Tian's original way of construction.

Method 2: L.Charles

We present another construction of peak sections. Fix a holomorphic chart (U, z 1 , . . . , z n ) centered at p with a frame σ ∈ H 0 (U, L) and section v ∈ H 0 (U, E). Like (3.16), we fix r 2 > 0 such that B(p, r 2 ) ⊂ U and ϕ(z) ≥ |z| 2 /2 on B(p, r 2 ). Fix a bump function ψ ∈ C ∞ (M, [0, 1]) with ψ ≡ 1 on B(p, r 1 ) for some r 1 ∈ (0, r 2 ) and ψ ≡ 0 on M \ B(p, r 2 ). So, ∂ψ is supported in the annulus B(p, r 2 ) \ B(p, r 1 ) and there is a constant C = C(M ) such that on the whole M , | ∂ψ| 2 ≤ C(M ). In the annulus, e -kϕ ≤ e -kr 2 1 /2 . Then

ψ(σ k ⊗ v) ∈ C ∞ (M, L k ⊗ E). Let ψ(σ k ⊗ v) = s k + t k
be the Hodge decomposition given by Theorem 4, where

s k ∈ H 0 (M, L k ⊗ E). Note that ∂t k = ( ∂ψ)(σ k ⊗ v). (3.34) For z ∈ B(p, r 2 ), | ∂t k | 2 (z) = | ∂ψ| 2 e -kϕ |v| 2 (z) ≤ Ce -kr 2 1 /2 sup |v| 2 ≤ C(v, M )e -kr 2 1 /2 . (3.35) Therefore, ∂t k 2 = M | ∂t k | 2 µ = B(p,r2) | ∂t k | 2 µ ≤ B(p,r2) C(v, M )e -kr 2 1 /2 µ 0 ≤ C(v, M, σ, r 1 , r 2 )e -kr 2 1 /2 .
(3.36)

Apply Theorem 12 to t k we get the estimate

t k ≤ ∂t k √ k -C ≤ C e -kr 2 1 /4 √ k -C . (3.37)
We derive a replacement of (3.19). Now the important observation is that

t k ∈ H 0 (B(p, r 1 ), L k ⊗ E),
so by (3.5) for large k we have

|s k (p) -(σ k ⊗ v)(p)| = |t k (p)| ≤ Ck n/2 t k ≤ k n/2 C √ k -C e -kr 2 1 /4 , (3.38) 
where we used (3.37). By Theorem 6,

ψ(σ k ⊗ v) 2 = M |ψ| 2 e -kϕ |v| 2 µ = O(k -n ). (3.39) 
Proof of Theorem 7, L.Charles' method. The proof is parallel to that via Tian given in Section 3.2.2. Recall the frame {v 1 , . . . , v r } of E. Let

ψ(σ k ⊗ v α ) = s k,α + t k,α
be the Hodge decomposition given by Theorem 4, where s k,α ∈ H 0 (M, L k ⊗ E).

Then by Exercise 3.(2),

B k (p) ≥ α,β∈[r] s k,α ⊗ sk,β (p)A β,α , (3.40) 
where A is the inverse of the Gram matrix G = ( s k,α , s k,β ). Claim:

G α,β = ( M (ψ(σ k ⊗ v α ), ψ(σ k ⊗ v β ))µ)(1 + O(k n-1 2 e -kr 2 1 /4 )). (3.41) 
In fact,

s k,α , s k,β = M (ψ(σ k ⊗ v α ), ψ(σ k ⊗ v β ))µ + M (t k,α , t k,β )µ - M (ψ(σ k ⊗ v α ), t k,β )µ - M (t k,α , ψ(σ k ⊗ v β ))µ. (3.42) 
Apply Cauchy-Schwarz inequality several times. By (3.37),

| M (t k,α , t k,β )µ| ≤ Ce -kr 2 1 /2 k -C . (3.43) By (3.39), | M (ψ(σ k ⊗ v α ), t k,β )µ| ≤ Ck -n/2 e -kr 2 1 /4 √ k -C . (3.44) 
The claim is thus proved.

M (ψ(σ k ⊗ v α ), ψ(σ k ⊗ v β ))µ = U |ψ| 2 e -kϕ H E α,β µ. (3.45) 
We just need to apply Theorem 6 to estimate the right hand side of (3.45), where we take

A = |ψ| 2 µ µ 0 j,l R E α,β,j,l (p)z j zl = 2 n j,l R E α,β,j,l (p)z j zl + O(|z| 4 ). Note H = 2Id 2n , then D = 2 n j=1 ∂ 2 ∂zj ∂ zj is half of the Euclidean Laplacian. L 0 (Aϕ) = A(0) = 0. ϕ = - 1 4 R M i jk l(p)z i zj z k zl + O(|z| 5 ).
vanishes of order 3 at 0 ∈ U . so D 2 (Aϕ)(0) = A(0)D 2 (ϕ)(0) = 0 and D 2 (Aϕ)(0) = 0.

D(A)(0) = 2 n i=1 ∂ 2 ∂z i ∂ zi [2 n j,l R E α,β,j,l (p)z j zl + O(|z| 4 )] = 2 n+1 (iΛR E ) α,β . L 1 (Aϕ) = - D(A)(0) 2 = -2 n (iΛR E ) α,β
We get

U |ψ| 2 e -kϕ j,l R E α,β,j,l (p)z j zl µ = -( 2π k ) n [k -1 (iΛR E ) α,β + O(k -2 )]. (3.46) From [3, Proof of Lemma 3.2], U |ψ| 2 e -kϕ µ = ( 2π k ) n (1 - scal 2k + O(k -2 )). (3.47) Combine (3.46),(3.47) we get 
U |ψ| 2 e -kϕ H E µ = ( 2π k ) n (Id r -k -1 ( scal 2 Id r + iΛR E ) + O(k -2 )). (3.48) Then (3.42),(3.43),(3.44),(3.45),(3.48) result in 
G = ( 2π k ) n (Id r -k -1 ( scal 2 Id r + iΛR E ) + O(k -2 )).
The remaining part is identical to the proof via Tian's method.

Chapter 4

L 2 existence theorem For a hermitian holomorphic vector bundle (E, h E ), we define a section ṘE of

End(E ⊗ T h M ) by (R E (u, v)ξ, η) h E = (. . . R E (ξ ⊗ u), η ⊗ v) for any p ∈ M ; u, v ∈ T 0,1 p M ; ξ, η ∈ E p . Then for each p ∈ M , ṘE p is a hermitian operator.
Definition 16 (Nakano positivity). [15, Definition 1.1.6][12, Definition 6.1.24 (i)] The bundle (E, h E ) is called Nakano positive if ṘE is positive definite everywhere.

For example, for holomorphic line bundles, the notions of positivity and Nakano positivity are equivalent.

Following Hörmander, we use some functional analysis theory to derive L 2 existence theorem. For a densely defined closed linear (unbounded) operator T : Dom(T )(⊂ H 1 ) → H 2 between Hilbert spaces H 1 and H 2 , its adjoint T * : Dom(T * )(⊂ H 2 ) → H 1 is also densely defined closed. x Im(T ) ⊥ = ker(T * ) and T * * = T . For proof, see [20, Theorem 13.9, Theorem 13.12]. Theorem 13. Let F ⊂ H 2 be a closed linear subspace with ImT ⊂ F , and assume there is

C > 0 st |T * y| 1 ≥ C|y| 2 for any y ∈ F ∩ Dom(T * ), then for any v ∈ F , there is u ∈ Dom(T ) st T u = v and C|u| 1 ≤ |v| 2 . In particular, F = ImT . Proof. Since F ⊂ H 2 is closed, we have an orthogonal decomposition H 2 = F ⊕ F ⊥ . For any y ∈ Dom(T * ), write y = y 1 + y 2 where y 1 ∈ F, y 2 ∈ F ⊥ . Because ImT ⊂ F , F ⊥ ⊂ (ImT ) ⊥ = ker(T * ) ⊂ Dom(T * ), we find y 1 = y -y 2 ∈ F ∩ Dom(T * ). Now |(y, v) 2 | = |(y 1 , v) 2 | ≤ |y 1 | 2 |v| 2 ≤ C -1 |T * y 1 | 1 |v| 2 = C -1 |T * y| 1 |v| 2 .
Therefore, the assignment T * y → (y, v) 2 defines a bounded linear functional Im(T * ) → C of norm at most C -1 |v| 2 . By Hahn-Banach theorem, this functional extends to the whole H 1 with norm at most C -1 |v| 2 . By Riesz Representation theorem, there is u ∈ H 1 such that for any y ∈ Dom(T * ),

(T * y, u) 1 = (y, v) 2 .
Therefore, u ∈ Dom(T * * ) and T * * u = v. Note that T * * = T . For a measurable, bounded from above function ψ on M , consider the pointwise wighted inner product (s, t) ψ = (s, t)e -ψ on Ω * , * (M, E) and global one s, t ψ = M (s, t) ψ µ. Let L 2 p,q (M, E; ψ) be the completion of Ω p,q (M, E) under , ψ . Put some Hilbert spaces H i = L 2 0,i-1 (M, E; ψ) for i = 1, 2, 3. Define T : Dom(T )(⊂ H 1 ) → H 2 and S : Dom(S)(⊂ H 2 ) → H 3 to be the maximal weak differential operator extension of ∂E . Note that Im(T ) ⊂ Dom(S) and ST = 0 on Dom(T ). If ψ ∈ C(M ), then T, S are densely defined closed operators, cf [9, p99].

Theorem 14 (twisted Bochner-Kodaira-Morrey-Kohn identity). For ψ ∈ C 2 (M ) and η ∈ Ω 0,1 (M, E), we have.

|Sη| 2 ψ + |T * η| 2 ψ = | ∇η| 2 ψ + M (i(R E + Ricci(ω) + ∂ ∂ψ)η, η) ω e -ψ µ. (4.1) 
Here Ricci(ω) is the Ricci form of (M, ω). This result is essentially the Weitzenböck formula. Please compare this result to [17, Theorem 2.10, Theroem 3.1], [30, (2.36)], [21, Proposition 5.1] and [23, (1.3.3)].

Proof. This proof is a modification of [25, Proof of Lemma 7.7]. We work at a point x ∈ M in K-coordinates and the preferred frame of E, as long as the final answer is coordinate invariant. Then | ∂η| 2 ψ = g p j g q k((∇j η)k, (∇ pη) q -(∇ q η) p) ψ .

Let H = H E be the Gram matrix of {v α } Define Christoffel symbols C γ q,α by

∇ q v α = C γ qα v γ , (∂ q H) α,β = (∇ q v α , v β ) = C γ qα H γ,β so C β q,α = ( ∂H ∂zq H -1 ) α,β . Note that R E j,q v α = R E (∂j, ∂ q )v α = ∇ E j ∇ E q v α = ∇ E j (C β qα v β ) = ∂C β qα ∂ zj v β .
At x all the Christoffel symbols vanish

Γ k ij = 0, C β qα = 0. (4.2)
For the adjoint operator,

T * η = -e ψ g j k∇ j (e -ψ ηk).

Note that M g p j g q k((∇j η)k, (∇ pη) q ) ψ µ = ∇η 2 ψ (4.3)

Integration by part

M g p j g q k((∇j η)k, -(∇ q η) p) ψ µ = M g p j g q k(e ψ ∇ q [e -ψ (∇jη)k], η p) ψ µ = M g p j g q k(∇ q [(∇jη)k] - ∂ψ ∂z q (∇jη)k, η p) ψ µ (4.4)
and M g p j g q k(e ψ (∇ q (e -ψ η))k, e ψ (∇ j (e -ψ η)

) p) ψ ]µ = - M g p j g q k(∇j [e ψ (∇ q (e -ψ η))k], η p) ψ µ = - M g p j g q k(∇j [(∇ q η)k] - ∂ 2 ψ ∂ zj ∂z q ηk - ∂ψ ∂z q ∇j(ηk), η p) ψ µ (4.5) By (2.7) ∇jη = ∇j(ηldz l ) = (∇j(ηl))dz l -ηlΓ l jm dz m , (4.6) so (∇jη 
)k = ∇j(ηk) -ηlΓ l jk = ( ∂η α k ∂ zj -η α l Γ l jk )v α and ∇ q [(∇jη)k] = ∇ q (( ∂η α k ∂ zj -η α l Γ l jk )v α ) = ( ∂ 2 η α k ∂z q ∂ zj -η α l ∂Γ l jk ∂z q )v α , (4.7) 
where we use (4.2) for last equation. Similarly, ∇ q η = ∇ q (ηldz l ) = (∇ q (ηl))dz l , so

(∇ q η)k = ∇ q (ηk) = ∂η α k ∂z q v α + η α k C β qα v β ,
and

∇j[(∇ q η)k] = ∇j( ∂η α k ∂z q v α +η α k C β qα v β ) = ∂ 2 η α k ∂ zj ∂z q v α +η α k ∂C β qα ∂ zj v β = ∂ 2 η α k ∂ zj ∂z q v α +R E j,q ηk. (4.8) Note R l q j, k∂l = ∇ q ∇j∂k = ∇ q (Γ l jk ∂l) = ∂Γ l jk ∂z q ∂l, so R l q j, k = ∂Γ l jk ∂zq . All in all, ∇ q [(∇jη)k] -∇j[(∇ q η)k] = -ηlR l q j, k + R E q, j ηk, (4.9) 
where R E = R E q j dz q ∧ dz j . Now, g p j g q k(-ηlR l q j, k, η p) ψ = -g p j g q kg t lR q jt k(ηj , η q ) ψ = -g p j g q kRic p k(ηj , η q ) ψ .

To sum up,

g p j g q k(∇ q [(∇jη)k] -∇j[(∇ q η)k], η p) ψ = g p j g q k((-Ric p kI d r + R E p k)(ηj ), η q ) ψ (4.10) Therefore, M g p j g q k[((∇j η)k, -(∇ q η) p) ψ + (e ψ (∇ q (e -ψ η))k, e ψ (∇ j (e -ψ η)) p) ψ ]µ = M g p j g q k(((-Ric p k + ∂ 2 ψ ∂z p ∂ zk )Id r + R E p k)(ηj ), η q ) ψ µ (4.11)
Finally we get

|Sη| 2 ψ + |T * η| 2 ψ = M g p j g q k[((∇j η)k, (∇ pη) q -(∇ q η) p) ψ + (e ψ (∇ q (e -ψ η))k, e ψ (∇ j (e -ψ η)) p) ψ ]µ = ∇η 2 ψ + M g p j g q k(((-Ric M p k + ∂ 2 ψ ∂z p ∂ zk )Id r + R E p k)(ηj ), η q ) ψ µ (4.12)
Corollary 4 (a priori estimate). If there is C > 0 st i(R E + Ricci(ω) + ∂ ∂ψ) ≥ Cω on C ∞ (M, E), then for any η a smooth E valued (0, 1)-form, we have

|Sη| 2 ψ + |T * η| 2 ψ ≥ C|η| 2 ψ .
We remark that the most important term in (4.12), for our purpose, is M g p j g q k(R E p kηj , η q ) ψ µ.

Under K-coordinate it becomes j,q

(R E j q ηj, η q ) = (. Proof. By Corollary 4, we have the a priori estimate for η ∈ Ω 0,1 (M, E). By Theorem 15, the same estimate holds for any η ∈ Dom(S) ∩ Dom(T * ). Take F = ker(S), then η ∈ F . By Theorem 13, there is ξ ∈ H 1 st ∂ξ = η and

. . R E ( n j=1 ηj∂ j ), n q=1 η q ∂ q ) ≥ λ| n j=1 ηj∂ j | 2 = λ|η| 2 , ( 4 
C|ξ| 2 ψ ≤ |η| 2 ψ .
To show regularity of ∂-solution, we introduce some Sobolev spaces. For l ∈ N and U ⊂ C n an open, let H l (U ) be as in [6, Section 5.2.2,Remarks (i)] and similarly, let H l (U ; loc) be the space of all f ∈ L 2 (U ; loc) such that for each multi-index I, J ∈ N n with |I| + |J| ≤ l, the weak derivative ( ∂ ∂z ) I ( ∂ ∂ z ) J f ∈ L 2 (U ; loc). Lemma 5. If f ∈ L 2 (U ) and its weak derivatives ∂f ∂ zj ∈ L 2 (U ) for all 1 ≤ j ≤ n, then f ∈ H l (U ) and for any j,

| ∂f ∂zj | L 2 (U ) = | ∂f ∂ zj | L 2 (U )
. Let H l p,q (M, E; loc) be the space of measurable E-valued (p, q)-forms, for which there is an atlas of M and a set of frame of E over each chart U , such that the representation functions are in H l (U ; loc). (In fact, due to compactness of M ,H l p,q (M, E; loc) = H l p,q (M, E).) By Sobolev embedding theorem, [6, Section 5.6.3 (ii), Theorem 6], if k > n and 0 < λ < 1, then H k p,q (M, E; loc) ⊂ C k-n-1,λ p,q (M, E; loc) the latter being space of locally λ-Hölder continuous E-valued (p, q)-forms. Lemma 6. Let ψ be a measurable function on M and {ψ (l) } be a decreasing sequence in C 2 (M ) with ψ (l) → ψ. Assume there is C > 0 such that for any l ≥ 1

i(R E + Ricci(ω) + ∂ ∂ψ) ≥ Cω. (4.15)
Then for η ∈ W k 0,1 (M, E; ψ), there is ξ ∈ W k+1 0,0 (M, E) st ∂ξ = η in the distribution sense with C|ξ| 2 ψ ≤ |η| 2 ψ . In particular, if furthermore η ∈ Ω 0,1 (M, E), then the this ξ ∈ C ∞ (M, E) and ∂ξ = η in the classical sense.

Proof. Because e -ψ (l) → e -ψ is a increasing sequence, by Levi convergence theorem η 2 ψ (l) → η 2 ψ . By Theorem 16, there is ξ (l) ∈ Dom(T l ) ⊂ L 2 0,0 (M, E; ψ (l) ) such that T l ξ (l) = η and C ξ (l) 2

ψ (l) ≤ η 2 ψ (l) ,
where T l = ∂E : Dom(T l ) ⊂ L 2 0,0 (M, E; ψ (l) ) → L 2 0,1 (M, E; ψ (l) ) as usual. There is C > 0 such that ψ (l) ≤ C for any l ≥ 1, so

ξ (l) 2 ≤ e S ξ (l) 2 ψ (l) ≤ C -1 e C η 2 ψ (l) .
Thus the sequence {ξ (l) } is bounded in L 2 (M, E). By weak compactness [7, Theorem 1.42], we can find a subsequence of ξ (l) , still denoted by ξ (l) , converging weakly to some ξ ∈ L 2 (M, E).

We check ∂ξ = η in the sense of distribution. In fact, for any t ∈ Ω 0,1 (M, E),

let χ = e ψ (l) t ∈ L 2 0,1 (M, E; ψ (l) ) in (4.14), then M (ξ, ∂ * t)µ = M (ξ, T * l χ) ψ µ = M (η, t)µ.
Now we treat the regularity. Suppose that ξ ∈ W l 0,0 (M, E) for some 0 ≤ l ≤ k (this is true for l = 0), we will show ξ ∈ W l+1 0,0 (M, E). Thus by induction on l we find ξ ∈ W k+1 0,0 (M, E). In fact, for any chart (U, z 1 , . . . , z n ) ⊂ M and any frame {v

α } of E, write ξ = r i=1 ξ α v α . For any χ ∈ C ∞ c (U ), any multi-indices I, J ∈ N n with |I| + |J| ≤ l, ∂j( ∂ ∂z ) I ( ∂ ∂ z ) J (χξ α ) = ( ∂ ∂z ) I ( ∂ ∂ z ) J (χη α j + ξ α ∂jχ) ∈ L 2 (U ) By Lemma 5, ( ∂ ∂z ) I ( ∂ ∂ z ) J (χξ α ) ∈ H 1 (U ). So ξ α ∈ H l+1 (U ; loc) or equivalently ξ ∈ H l+1 (M, E; loc).
By weak lower semi-continuity of norm, for any j ≥ 1, l ≥ j, e -ψ (j) ≤ e -ψ (l) we thus have

ξ 2 ψ (j) ≤ lim l ξ (l) 2 ψ (j) ≤ lim l ξ (l) 2 ψ (l) ≤ lim l C -1 η 2 ψ (l) = C -1 η 2 ψ . Let j → ∞, by Levi convergence theorem again, ξ ψ (j) → ξ ψ , thus ξ 2 ψ ≤ C -1 η 2 ψ .
Remark 4. Note that by Weyl lemma, any solution ξ 0 of ∂ξ 0 = 0 is holomorphic. Then any ∂-solution is in W k+1 0,0 (M, E)

then this decreasing sequence converges to ψ.

We check condition (4.15). We calculate

n -1 ∂ ∂ψ = (5.8) [( k log 2 k ) 2 χ ( k log 2 k |z| 2 ) log( k log 2 k |z| 2 ) + 2 k log 2 k |z| -2 χ ( k log 2 k |z| 2 )]∂|z| 2 ∧ ∂|z| 2
(5.9)

+ k log 2 k χ ( k log 2 k |z| 2 ) log( k log 2 k |z| 2 )∂ ∂(|z| 2 ) (5.10) + χ( k log 2 k |z| 2 )∂ ∂ log(|z| 2 ).
(5.11)

Firstly, the (1, 1)-form

i∂|z| 2 ∧ ∂|z| 2 = i(z j z k dz j ∧ dz k )
is semi-positive, and there is C > 0 st

C|z| 2 ω ≥ i∂|z| 2 ∧ ∂|z| 2 for |z| ≤ 1. We get i × (5.9) ≥ -C k log 2 k ω over M .
Secondly, The form i∂ ∂|z| 2 = idz j ∧ dz j is positive, so i × (5.10) ≥ 0. Thirdly, by Exercise 2, |z| 2 Id n ≥ zz T , so the form i∂ ∂ log |z| 2 = i|z| -4 (|z| 2 δ jk -z j zk )dz k ∧ dz j is semi-positive, so i × (5.11) ≥ 0. The estimation with ψ replace by ψ (l) is similar.

To sum up, there is C > 0 such than for any l ≥ 1,

i∂ ∂ψ (l) ≥ -C k log 2 k ω on M .
Because P is Nakano positive, by (4.13) there is δ > 0 and k 0 ≥ 1 such that when k ≥ k 0 , l ≥ 1 we have Ricci(ω) + i∂ ∂ψ (l) + iR P k ⊗E ≥ δkω.

Note that ( ∂ψ k )u I vanishes at p, so ∂ψ k )u I ψ is finite. By Lemma 6, there is

w I ∈ C ∞ (M, P k ⊗ E) such that ∂w I = ( ∂ψ k )u I with w I 2 ψ ≤ (kδ) -1 ( ∂ψ k )u I 2 ψ < ∞, in particular w I (p) = 0.
Let s I = ψ k u I -w I then s I ∈ H 0 (M, P k ⊗ E) and s I (p) = u I (p). The s I is the peak section we are looking for.

We need some estimates as in Section 3.2.2. For any a ∈ [s], n j,l=1

R P j l,aa z j zl = (. . . R E (u a ⊗ ( j z j ∂ j )), u a ⊗ ( l z l ∂ l )).
Because P is Nakano positive, R P * , * ,aa is a positive definite matrix, so there is

λ > 0 such that on B(p, √ 2 log k √ k ), for each a ∈ [s], n j,l=1
R P j l,aa z j zl ≥ λ|z| 2 .

(5.12) By (5.12), there is λ > 0 such that on B(p, √ 2 log k √ k ) we have

H P α,α = e -R P α,α,i j zi zj (1 + O(|z| 3 )) ≤ e -λ|z| 2 .
Then

|u I | 2 = |v| 2 k j=1 H P ij ,ij ≤ Ce -kλ|z| 2 .
Let A be the annulus log k

√ k ≤ |z| ≤ √ 2 log k √ k . Then kδ w I 2 ≤ kδ w I 2 ψ ≤ ( ∂ψ k )u I 2 ψ = A |( ∂ψ k )u I | 2 e -ψ µ = A |( ∂ψ k )u I | 2 µ ≤ C A k log 2 k e -kδ|z| 2 µ 0 ≤ C( log 2 k k ) n k log 2 k e -δ log 2 k (5.13) Thus w I 2 = O(k -n e -δ log 2 k log 2n-2 k). (5.14) 
For the outside L 2 norm of smooth peak section, as in (3.20), 

M -B |ψ k u I | 2 µ ≤ Ck -n e -λ log 2 k log 2n k. ( 5 
G = G (Id s k r + O(e -λ/2 log k ) log n-1 k), where G I,J = B (ψ k u I , ψ k u J )µ so A = (G ) -1 (Id s k r + O(log n-1 ke -δ/2 log k ))
(5.17) Proof. We compute the upper bound first. We calculate B H ⊗k 2,P µ 0 inside (5.1). By Exercise 11, the diagonal entry at (i 1 , . . . , i k

Calculation

; i 1 , . . . , i k ) position is B e -k j=1 Fi j ,i j |z| 2 µ 0 = π k j=1 F ij ,ij (1-e -log 2 k k k j=1 Fi j ,i j ) = π k j=1 F ij ,ij
(1+O(e -λ log 2 k )).

Consider an off-diagonal entry at (i 1 , . . . , i k ; j 1 , . . . , j k ), say with l ≥ 1 different indices. Then the integral is like B |z| 2l e -a|z| 2 µ 0 = O(k -2 ), where a ≥ (k -l)λ. Therefore 

A.2 Controlling supreme norm

The following Theorem 20 is a start point of complex analysis. For the sake of completeness, we state a generalization of [3, Theorem 2.1], which is used to control peak section constructed loc.cit. Note how we avoid this result in Section 3.2.2. Proposition 5. Let M n be a compact hermitian manifold of volume form µ, L and E be hermitian holomorphic vector bundles with rk(L) = 1. Then there is C > 0 such that for any s ∈ C ∞ (M, L k ⊗ E), any p ∈ M , any (U, z 1 , . . . , z n ) holomorphic chart centered at p, for large k ∈ N + we have .

There is a > 0 such that H E ≥ a 2 Id r and µ ≥ aµ 0 on ∆ n (r 0 ). 

Definition 13 (

 13 anti-holomorphic Kodaira-Laplacian). [15, Definition 1.4.9] Let ∂E, * be the formal adjoint of the Dolbeault operator ∂E . Define an operator on the space of smooth forms Ω * , * (M, E) by E = [ ∂E , ∂E, * ]. Theorem 4 (Hodge decomposition). [15, Thm 1.4.1] If M is in addition compact, then we have an orthogonal decomposition

Example 5 .

 5 If p ∈ M is a base point of P , i.e., all global sections of P vanish at p, then clearly B(p) = 0. Proposition 4. dim H 0 (M, P ) = M Tr(B(p))µ. Proof. By Exercise 1, Tr(B(p)) = N i=1 |e i | 2 (p). Taking integral M Tr(B(p))µ = H 0 (M, P ).

2 h

 2 Lemma 2.B(p) = maxs∈H 0 (M,P )\{0}s(p) ⊗ s(p) s using the natural partial order of Herm + (P p , h p ).

. 4 ) 2 .

 42 Let B ⊂ C n be an open ball centered in 0, and f ∈ H(B) a holomorphic function with f (0) = 0, then B e -kϕ4 f (z)H E 2 det 2 µ 0 = 0. Proof. 1.Take λ ∈ C with |λ| = 1 and λ |I| = 1. Change variable z = λw. Note that for the integral domain, ψ, ϕ 4 , H E 2 , det 2 , µ 0 are formally invariant under this change. Denote the integral on the left of (3.4) by J. Under the change of variable, J = λ |I| J, hence J = 0.

Lemma 3 .

 3 2.2, to avoid applying [3, Theorem 2.1]. Notation as in Theorem 7. Put B = B(p, ln k

. 8 )

 8 Moreover |z| ≤ ln k √ k in the domain of integral. Then (3.6),(3.7),(3.8) result in

Lemma 4 .

 4 Notation as in Theorem 7. Fix an open neighborhood U of p ∈ M . There for any s ∈ H 0 (U, L k ),

.33) By Theorem 8 ,

 8 B k (p) has only integral power of k. Corollary 3 together with (3.33) implies

. 13 ) 2 ψ

 132 where the function λ ∈ C(M ) is the minimal eigenvalue of . . . R E . (Here we used Proposition 1.) Theorem 15 (Hörmander density). [9, Proposition 2.1.1 and p.121][4, Lemma 4.3.2] If ψ ∈ C 2 (M ), then Ω 0,1 (M, E) ⊂ Dom(S) ∩ Dom(T * ) is dense with respect to the graph norm η → |η| ψ + |Sη| ψ + |T * η| Theorem 16 (L 2 existence). If ψ ∈ C 2 (M ) and there is C > 0 such that i(R E + Ricci(ω) + ∂ ∂ψ) ≥ Cω, then for every η ∈ L 2 0,1 (M, E; ψ) with ∂η = 0, there is a ξ ∈ Dom( ∂) ⊂ L 2 0,0 (M, E; ψ) st ∂ξ = η, which means for any χ ∈ Dom(T * ), M (ξ, T * χ) ψ µ = M (η, χ) ψ µ. (4.14) and C|ξ| 2 ψ ≤ |η| 2 ψ . Please compare this to [24, Proposition 2.1(ii)] and [26, Proposition 1.1].

. 15 )

 15 Similarly we have ψ k u I 2 = O(k -n ). Finally we arrive at the lower bound of Bergman kernel. ForI = (i 1 , . . . , i k ; α) ∈ [s] k ⊗ [r], let s I to be the peak section constructed from v α . Then {sI : I ∈ [s] k × [r]} is orthonormal at p. By Exercise 3, B k (p) ≥ I,J s I ⊗ sJ (p)A J,I = A T ,(5.16)where A is the inverse of the Gram matrix G. By the same argument for (3.31), we find

Exercise 11 .

 11 Let B = B(0, log k √ k ) ⊂ C be an open ball, a > 0, then B e -a|z| 2 µ 0 = π a (1 -e -a log 2 k k )In this section, let M be a Riemann surface. In this case, for a = b ∈ [s],H 2,P,a,a = e -Faa|z| 2 ; H 2,P,a,b = -F ab |z| 2 ,where F = . . . R P is a square matrix of size s such that the Chern curvature R P (p) = F dz ∧ dz. Due to our assumption, F is positive definite.Theorem 17. The Bergman kernel ofP k ⊗ E satisfies B k (p) = D ⊗ Id r 2π (Id s k ⊗r + O(k -1/2 log 3 k)),where D is a size s k diagonal matrix whose (i 1 , . . . , i k ) entry is k j=1 F ij ,ij . Example 6. When s = 1, i.e., P is a line bundle, Theorem 17 agrees with[START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF] Theorem 4.1.1].

B H ⊗k 2 ,

 2 P µ 0 = πD -1 + O(k -2 ) = πD -1 (Id s k + O(k -1 )).

Theorem 20 ( 2 .

 202 Cauchy integral formula). Let D be an open subset of C n with 0 ∈ D, for function f ∈ C ∞ c (D), ∂ z1 . . . ∂ zn µ 0 z 1 . . . z n .We give another theorem of same flavor.Theorem 21 (Bochner-Martinelli formula). For ζ, z ∈ C n the Bochner-Martinelli kernel ω(ζ, z) is a differential (n, n -1)-form in ζ defined by ω(ζ, z) = (n -1)! (2πi) n 1 |z -ζ| 2n 1≤j≤n ζj -zj d ζ1 ∧ dζ 1 ∧ • • • ∧ dζ j ∧ • • • ∧ d ζn ∧ dζ n (where the term d ζj is omitted). Let D ⊂ C n be a domain and f ∈ C ∞ c (D). Then for z ∈ D, we have f (z) = -D ∂f (ζ) ∧ ω(ζ, z). Exercise 13. For n ∈ N + , there is a constant C = C(n) > 0 such that for any f ∈ C ∞ (C n ), 1. |f (0)| C ≤ |f | L 1 (∆ n (1),µ0) + sup z∈∆ n (1),I( =∅)⊂[n] ∂ |I| f ∂ zI (z) For any r > 0, |f (0)| C ≤ r -2n |f | L 1 (∆ n (r),µ0) + sup z∈∆ n (r),I( =∅)⊂[n] r |I| ∂ |I| f ∂ zI (z)Proof. By abuse of notation, we use C to denote various positive constant depending only on n.1.Fix a smooth function ρ : C → [0, 1] such that ρ(z) = 1 when |z| < 1/2 and ρ compactly supported on ∆ 1 (1). Set ψ(z 1 , . . . , z n ) := n i=1 ρ(z i ). Apply Theorem 20 to f ψ, f (0) = f (0)ψ(0) = C ∆ n (1) ∂ n (f ψ) ∂z [n] µ 0 z 1 . . . z n By Lebnitz formula, ∂ n (f ψ) ∂z [n] = I⊂[n] ∂ |I| f ∂ zI ∂ n-|I|ψ ∂ z[n]\I . (A). When I = ∅, ∂ n ψ ∂z [n] = n i=1 ∂ρ ∂ z (z i) is non-zero only when |z i | ≥ 1/2 for all 1 ≤ i ≤ n. Thus | ∂ n ψ ∂z[n] 

1

  z1...zn | ≤ C over whole C n . so∆ n (1)f∂ n ψ ∂z[n] 

µ 0 z 1

 1 . . . z n = 1/2≤|zi|<1,∀i f ∂ n ψ ∂z [n]

µ 0 z 1 2 .

 12 . . . z n ≤ C|f | L 1 (∆ n (1),µ0) . 50 (B). When I is nonempty, | ∂ n-|I| ψ ∂ z[n]\I | ≤ C over C n , so ∆ n (1)Let g(z) := f (rz) and apply 1. to g. Remark 6. With similar proof but applying Theorem 21 instead of Theorem 20, we can get rid of higher derivatives. More precisely, there isC = C(n) > 0 such that for any f ∈ C ∞ (C n ) and r > 0, |f (0)| C ≤ r -2n |f | L 1 (B(r),µ0) + r sup z∈B(r) | ∂f |.

1 C

 1 |s(p)| ≤ k n s L 1 (∆ n (r0),µ) + sup z∈∆ n (r0),I( =∅)⊂[n] By Proposition 3, we can choose a frame σ for L in a neighborhood of p ∈ M such that ϕ(z) := -log |σ| 2 h L = O(|z| 2 ), and {v 1 , . . . , v r } as in the Proposition. Expand s= r α=1 f α (σ k ⊗ v α ), where f α ∈ C ∞ near p. |s(z)| 2 h = e -kϕ (f 1 , . . . , f r )H E (f 1 , . . . , f r ) H .

1 C 0 |∂

 10 |f α (p)| ≤ r -2n 0 |f α | L 1 (∆ n (r0),µ0) + sup z∈∆ n (r0),I =∅ r |I| |I| f α ∂ zI (z)| 51There is A > 0 such that in ∆ n (r 0 ), |ϕ(z) -ϕ(0)| ≤ 2Ar 2 0 , so e -kϕ(z) ≥ e -2Akr 2 0 = e -2A

s L 1 ( 2 α0 0 |∂Remark 7 .

 1207 ∆ n (r0),µ) = ∆ n (r0) |s|µ = ∆ n (r0) e -kϕ/2 [(f 1 , . . . , f r )H E (f 1 , . . . , f r ) H ] 1/2 µ ≥ ∆ n (r0) e -A a( r α=1 |f α (z)| 2 ) 1/2 aµ 0 ≥ e -A a 2 ∆ n (r0) r -1/2 α |f α |µ 0 = e -A a 2 r -1/|f α | L 1 (∆ n (r0),µ0) , (A.7)where the last inequality is Cauchy-Schwarz. Note∂ |I| s ∂ zI = α ∂ |I| f α ∂ zI (σ k ⊗ v α ), so | ∂ |I| s ∂ zI | = e -kϕ/2 [( ∂ |I| f 1 ∂ zI , . . . , ∂ |I| f r ∂ zI )H E ( ∂ |I| f 1 ∂ zI , . . . , ∂ |I| f r ∂ zI ) H ] 1/2 ≥ e -A a( α | ∂ |I| f α ∂ zI | 2 ) 1/2 ≥ e -A a| ∂ |I| f α0 ∂ zI |, for any 1 ≤ α 0 ≤ r. Thus sup z | ∂ |I| s ∂ zI | ≥ e -A a sup z | ∂ |I| f α0 ∂ zI |. |f α | L 1 (∆ n (r0),µ0) + sup z∈∆ n (r0),I =∅ r |I| |I| f α ∂ zI (z)|) ≤ k n s L 1 (∆ n (r0),µ) + sup z∈∆ n (r0),I( =∅)⊂[n]By Remark 6, we can show|s(p)| C ≤ k n s L 1 (∆ n (r0),µ) + k -1/2 sup z∈∆ n (r0)| ∂s|.By Cauchy-Schwarz inequalitys L 1 (∆ n (r0),µ) ≤ vol(∆ n (r 0 ), µ) 1/2 s L 2 (∆ n (r0),µ) ≤ Ck -n/2 s L 2 (∆ n (r0),µ) .Therefore, we can deduce |s(p)| C ≤ k n/2 s L 2 (∆ n (r0),µ) + sup z∈∆ n (r0),I( =∅)[n]

  jm,km, lm z km zlm δ 1j1 . . . δ m,jm . . . δ n,jn

	Thus by (2.4) we find c ijkl = R M i jk	l(p). We calculate
	det(g i j ) =	(J)g 1 j1 . . . g n jn
		J=(j1,...,jn)∈Sn	
	=	(J)(δ 1j1 -	R 1 j1k1 l1 (p)z k1 zl1 + O(|z| 3 )) . . . (δ njn -	R n, jn,kn, ln (p)z kn zln + O(|z| 3 ))
	J	k1,l1		kn,ln
			n	
	=	(J)(δ 1j1 . . . δ n,jn -	R m,
	J		m=1 km,lm
					.11)
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Chapter 5

High rank Bergman kernel

Let P → M be another hermitian holomorphic vector bundle with rk(P ) = s, we are going to find the first term in the asymptotic of B k the Bergman kernel of P k ⊗ E. However, we restrict ourselves to the case of Riemann surface in Section 5.3 for simplicity of calculation.

We fix a frame {u 1 , . . . , u s } of P as in Proposition 3 and write H P for the corresponding Gram matrix. For a ∈ [s], let H 2,P ;a,a = e -n j,l=1 R P j l,aa zj zl and for a = b ∈ [s], let H 2,P ;a.b = -n j,l=1 R P j l,ab z j zl , then H P = H 2,P (Id s + O(|z| 3 )). Recall that as usual rk(E) = r.

In particular, this preferred frame is orthonormal at p. We assume that (P, h P ) is Nakano positive.

Upper bound

where the matrix

(5.1)

) be a column vector (of holomorphic functions on B).

There is C > 0 and a neighborhood of p (independent of k) over which

(5.3)

We estimate the integrand on the right hand side. By (5.2) and (5.3), we have

where for the last step we used |z|

where for (5.6) we used some analogue of vanishing identity (Exercise 10). Finally we apply Exercise 2 to conclude.

Corollary 5. The Bergman kernel B k of P k ⊗ E satisfies B k (p) ≤ M (k).

Lower bound: A third construction of peak section

We present yet another construction of peak sections, which is a modification of

The factor n in definition of ψ is to ensure vanishing of ξ (to be constructed) at p. Note carefully that ψ is supported in the ball B(p, log k √ k ) and admits a logarithmic pole at p ∈ M . In addition, ψ ≤ 0 on M . To apply Theorem 16, we approximate ψ by smooth functions. Let

By Corollary, we get the upper bound

We turn to the lower bound. For multi-indices

On the diagonal, i.e. I = J,

) where a ≥ kλ.

Thus by (5.16) and (5.17), we find

We conclude by combining the upper and the lower bound.

Corollary 6 (Asymptotic Riemann-Roch). We have asymptotic expansion

Proof. Recall that z is K-coordinate, µ = idz ∧ dz by Exercise 4, so

We conclude by Proposition 4 and Theorem 17.

Some questions that we don't know: does Catlin-Zelditch expansion (Theorem 8) hold in this high rank case? Do we have vanishing theorem of the form

Chapter 6

An application to Riemann surfaces

We apply the same strategy to generalize [START_REF] Liu | The asymptotic Tian-Yau-Zelditch expansion on Riemann surfaces with constant curvature[END_REF]Theorem 1.1]. Recall that every compact Riemann surface admits a hermitian metric of constant scalar curvature. Lower bound: As in Section 5.2, let s k ∈ H 0 (M, L k ) be the peak section constructed from σ k . Then

where

)) B e -kϕ µ. Combine (6.1) and (6.2) we find that

Case ρ = 0, locally we may assume that ϕ(z) = |z| 2 , then µ = 2µ 0 .

We can also get (6.3) by formally letting ρ → 0 in result of (6.4).

Case ρ = 0, by [13, (3.5)], locally we may assume that

Then

where we used the change of variable z = re iθ and t = 1 + ρ 2 r 2 . In fact, everything involved is of local nature, therefore the same result holds for any (open) Riemann surfaces (with locally uniform convergence), which is a particular case of [1, Corollary 2.4] (when m = 0). Remark 5. It seems possible to improve Theorem 18 with an error term of size O(e -δk ) for certain constant δ > 0 (on Riemann surface). See for instance [8, Theorem A]. The case of hermitian symmetric manifold could also be treated, cf.[16, Theorem 1]. We are grateful to Professor X.Ma for providing us these references. One can ask if a similar result holds for any dimensional manifold endowed with a constant scalar curvature Kähler metric. Exercise 12. [15, (4.1.5)] Let (M n , ω) be a hermitian manifold, E → M a hermitian holomorphic vector bundle of Chern curvature R E , then

Taking trace,

In particular, when E = T h M with h E the hermitian metric of M ,

Proof. We check the identity pointwisely. Fix p ∈ M and a holomorphic chart centered in p and orthonormal at p. Put η l = dz l ∧ dz l for short. At p,

Therefore,

We proved (A.1). For the last equation, apply Exercise 6.

We recall two characteristic classes.

Definition 17 (Todd class). If a complex vector bundle E on a topological space S has α i as its Chern roots, the Todd class

In particular, T d(E) = 1 + c1(E) 2 + . . . For a complex manifold X, define T d(X) := T d(T h X).

Definition 18 (Chern character). [15, (1.3.45)] For a holomorphic vector bundle P → X, define Chern character

where R E is Chern curvature of E. We define the 2j forms c j (E) by

(In particular c 1 (E) = i 2π Tr(R E ), which agrees with Definition 12. And c 0 (E) = rk(E).)

We state the following celebrated theorem.

Theorem 19 (Hirzebruch-Riemann-Roch). [15, Theorem 1.4.6] Let P be a holomoprhic vector bundle over a compact complex manifold X, then χ(X, P ) = X ch(P )T d(X).

Now we derive the desired result as a corollary. Thus we get the said asymptotic expansion.