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1 Introduction

This is the Master 2 thesis of the author, completed under the guidance of
Professor Philippe Bich.

In this master thesis, we present, and sometimes generalize, some recent
fixed-point theorems. Most of them are generalizations of Brouwer fixed-point
theorem allowing discontinuities. Many existence results in economic (e.g. gen-
eral equilibrium) or in game theory (e.g. Nash equilibrium) rely upon fixed-point
theorems. Allowing discontinuities is important since, for example, many payoff
functions are discontinuous in game theory.

We establish an existence theorem of Yannelis-Prabhakar type (Theorem
22) for maximal element. From this result, we can easily derive several existing
theorems in the literature. Inspired by [28] and [5], we introduce a new relaxed
definition of continuity (Definition 17) which guarantees the existence of a fixed-
point on Hausdorff linear spaces (Theorem 29). In Section 6, we generalize a
theorem of Herings et al. [25]: the authors proved a fixed-point theorem for
certain discontinuous self mappings on polytopes in Rn. Then [6] generalized it
to compact convex subsets of Rn, and we extend it further to arbitrary inner
product space (Theorem 38). In Section 7 we discuss approximate fixed-points.
And we end with some applications to game theory.

2 Preliminaries

In this chapter, we recall some definitions and results useful for the subsequent
sections. By vector space we mean a real one. In a vector space, we write co(C)
for the convex hull of a subset C, and ri(A) for the relative interior of a convex
subset A. When X is a topological space and f : X → R is a function, we
denote by Supp(f) the closure of {x ∈ X : f(x) ̸= 0}.

2.1 Topology

Definition 1. Let X be a topological space. We call X Hausdorff if for every
distinct points a, b ∈ X, there exist two disjoint open sets U, V ⊂ X such that
a ∈ U, b ∈ V . We call X normal if for every disjoint closed subsets A,B ⊂ X,
there exist two disjoint open sets U, V ⊂ X such that A ⊂ U,B ⊂ V .

Lemma 1 (Urysohn’s Lemma). A topological space X is normal if and only
if for every two disjoint closed subsets A,B ⊂ X, there exists a continuous
function f : X → [0, 1] such that A ⊂ f−1(0), B ⊂ f−1(1).

Theorem 1 (Tiezte Extension Theorem). A topological space X is normal if
and only if for every closed set A ⊂ X and every continuous function f : A →
[0, 1], there exists a continuous function f̄ : X → [0, 1] such that f̄ |A = f .

Definition 2 (Paracompact). A topological space X is called paracompact if
every open cover {Uα}α∈A of X admits a locally finite refinement, that is an
open cover {Vβ}β∈B such that
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• refinement : for every β ∈ B, there is α ∈ A such that Vβ ⊂ Uα;

• locally finite : for every x ∈ X, there is an open neighborhood W ⊂ X of
x such that W intersects with only finitely many Vβ.

Every compact space is paracompact.

Theorem 2 (Stone). A metric space is paracompact.

Theorem 3 (Jean Dieudonné [17]). A Hausdorff paracompact space is normal.

Lemma 2 (Partition of Unity). Let X be a Hausdorff paracompact space with
an open cover {Uα}α∈A, then there exists a collection of continuous functions
{fα : X → [0, 1]}α∈A such that:

• for every α, we have Supp(fα) ⊂ Uα;

• for every x ∈ X, there is an open neighborhood V ⊂ X of x such that the
set {α ∈ A : V ∩ Supp(fα) ̸= ∅} is finite;

•
∑

α∈A fα = 1 on X. (By the previous point, the sum is finite everywhere
and hence well-defined.)

Lemma 3 (Partition of Unity). Let X be a normal topological space with a
finite open cover {Ui}ni=1. Then there exist continuous functions h1, . . . , hn :
X → [0, 1] with the following properties:

•
∑n

i=1 hi = 1 on X;

• for each 1 ≤ i ≤ n, Supp(hi) ⊂ Ui.

Although this result is classical, we recall the well-known proof for the con-
venience of readers. Below are two lemmas needed.

Lemma 4. If X is a normal topological space with an open cover {U1, U2}, then
there is a closed cover {F1, F2} of X with F1 ⊂ U1, F2 ⊂ U2.

Proof. In X, the two subsets U c
1 and U c

2 are disjoint and closed. By normality,
there exist two disjoint open subsets V1 and V2 of X with U c

i ⊂ Vi for i = 1, 2.
Now take Fi = V c

i . For each i, Fi is closed in X and contained in Ui. As V1

and V2 are disjoint, we have X = F1 ∪ F2.

Lemma 5 (bump function). Let X be a normal topological space, F ⊂ X closed
and U ⊂ X open. If F ⊂ U , then there is a continuous function h : X → [0, 1]
such that h = 1 on F and Supp(h) ⊂ U .

Proof. In X, the two subsets F and U c are disjoint and closed. By normality,
there exist two disjoint open subsets V and W of X with F ⊂ V and U c ⊂ W .
Applying Lemma 1 to the disjoint closed subsets F and V c, we find a continuous
function h : X → [0, 1] such that h = 1 on F and h = 0 on V c. The latter shows
{h ̸= 0} ⊂ V ⊂ W c, so Supp(h) ⊂ W c ⊂ U .
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Then we prove Lemma 3.

Proof. We prove it by induction on n. The case n = 1 being trivial, we start
with n = 2. We take a closed cover F1, F2 given by Lemma 4 and take a
function h1 : X → [0, 1] by applying Lemma 5 to F1 ⊂ U1, so h1 = 1 on F1 and
Supp(h1) ⊂ U1. Then we define h2 = 1 − h1. Since {h2 ̸= 0} = {h1 ̸= 1} ⊂
F c
1 ⊂ F2, we have Supp(h2) ⊂ F2 ⊂ U2.
Now suppose that the case with at most n (n ≥ 2) open subsets is proved,

we proceed to the case with n + 1 open subsets U1, . . . , Un+1. By inductive
hypothesis, for the cover with two open subsets V = ∪n

i=1Ui and Un+1, there
exist two continuous functions f, hn+1 : X → [0, 1] with f + hn+1 = 1 on X
such that C := Supp(f) is contained in V and Supp(hn+1) ⊂ Un+1. As a
closed subset of a normal space, C is normal with a cover by the n open subsets
C ∩ U1, . . . , C ∩ Un. By induction hypothesis again, there exist continuous
functions g1, . . . , gn : C → [0, 1] with

n∑
i=1

gi = 1 (1)

on C and SuppC(gi) ⊂ C ∩Ui for each 1 ≤ i ≤ n. By Tietze extension theorem,
each gi has a continuous extension ḡi : X → [0, 1]. Define continuous functions
hi = fḡi : X → [0, 1] for 1 ≤ i ≤ n. By (1) and that f |Cc = 0, we have∑n

i=1 hi = f on X and hence
∑n+1

i=1 hi = 1. For i ≤ n, we have

{hi ̸= 0} = {f ̸= 0} ∩ {ḡi ̸= 0} ⊂ C ∩ {ḡi ̸= 0} ⊂ SuppC(gi).

So, Supp(hi) ⊂ SuppC(gi) ⊂ Ui. Thus, the case with n + 1 open subsets is
proved. The induction is completed.

We state a corollary that we use repeatedly.

Corollary 1. [23, Exercise 5,Ch.6,p.81][37, Theorem 2.13] If X is compact
Hausdorff, then the result of Lemma 3 still holds.

Proof. In fact, by Theorem 3, a compact Hausdorff space is normal. Then we
apply Lemma 3.

Corollary 2 (Shrinking Lemma). If X is compact Hausdorff with a finite open
cover U1, . . . , Un, then there exists a finite closed cover F1, . . . , Fn with Fi ⊂ Ui

for each i.

Proof. Take hi given by Corollary 1. Then each Fi := Supp(hi) is contained in
Ui. Since

∑
i hi = 1, we have X = ∪iFi.

Lemma 6 (Tube Lemma). Suppose X,Y are two topological spaces, A ⊂ X
and B ⊂ Y are compact subsets. If N is an open subset of X × Y containing
A×B, then there exist an open subset U of X containing A and an open subset
V of Y containing B such that U × V ⊂ N .
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Definition 3. A topological space X is called separable if there exists a countable
subset A ⊂ X such that Ā = X.

Lemma 7. Every compact metric space is separable. A subspace of a separable
metric space is separable.

Then we recall Baire’s category theorem.

Definition 4. In a topological space X, a subset N is called nowhere dense if its
closure N̄ has an empty interior. A countable union of nowhere dense subsets
of X is called meagre (also called first category) in X.

Exercise 1. Let X be a topological space, S ⊂ X a subset, then S is nowhere
dense in X if and only if S̄c is dense in X.

Proof. Indeed, S is nowhere dense ⇐⇒ InteriorS̄ = ∅ ⇐⇒ (InteriorS̄)c =

X ⇐⇒ S̄c = X ⇐⇒ S̄c is dense of X.

Theorem 4 (Baire’s Category Theorem). If A is a meagre subset of a Hausdorff
compact space X, then Ac is dense in X.

Exercise 2. Let X be a topological space, then the following properties are
equivalent:

• For every sequence of dense open subsets U1, U2, . . . in X, the intersection
∩i≥1Ui is dense in X.

• If A ⊂ X is meagre, then Ac is dense in X.

Proof. Assume the first. Since A is meagre, then A = ∪i≥1Fi, where each Fi is
nowhere dense in X. By Exercise 1, each F̄ c

i is open and dense in X. So ∩i≥1F̄
c
i

is contained in Ac and dense by assumption. Thus Ac is dense in X.
Assume the second. Let A = ∪i≥1U

c
i . By Exercise 1, each U c

i is nowhere
dense in X, so A is meagre in X. By assumption, ∩iUi = Ac is dense in X.

2.2 Convex analysis

Below, we remind the readers about two classical concepts: quasiconvexity and
strict quasiconvexity. At the same time, we introduce a new one, which we call
strong quasiconvexity serving as an intermediate between the two.

Definition 5 (Quasiconvex Function). Let S be a convex subset of a vector
space and f : S → R a function. The function f is called quasiconvex if for
every x, y ∈ S, every λ ∈ (0, 1), we have

f(λx+ (1− λ)y) ≤ max(f(x), f(y)).

The function f is called strongly quasiconvex if it is quasiconvex and for every
x, y ∈ S with f(x) ̸= f(y), every λ ∈ (0, 1), we have

f(λx+ (1− λ)y) < max(f(x), f(y)).
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The function f is called strictly quasiconvex if for every x, y ∈ S with x ̸= y,
every λ ∈ (0, 1), we have

f(λx+ (1− λ)y) < max(f(x), f(y)).

Note that strictly quasiconvex functions are strongly quasiconvex, and strongly
quasiconvex functions are quasiconvex. If f is quasiconvex, then for each a ∈ R,
the sublevel set {x : f(x) < a} is convex.

For instance, convex functions, hence linear functions are strongly quasicon-
vex. Constant functions are strongly quasiconvex but not strictly quasiconvex.
Strictly convex functions are strictly quasiconvex. We can similarly define qua-
siconcave functions used in Section 8.

Exercise 3. If f, g : S → R are two quasiconvex (resp. strongly quasiconvex)
functions, then h = max(f, g) is also quasiconvex (resp. strongly quasiconvex).

Proof. Fix x, y ∈ S, λ ∈ (0, 1) and put z = λx+ (1− λ)y.
Case 1: If f, g are quasiconvex: then

f(z) ≤ max(f(x), f(y)) ≤ max(h(x), h(y)).

Likewise, we have g(z) ≤ max(h(x), h(y)), so h(z) ≤ max(h(x), h(y)). Thus h
is quasiconvex.

Case 2: If f, g are strongly quasiconvex: we suppose h(x) > h(y). By
symmetry, we may assume f(x) ≥ g(x), then h(x) = f(x) > h(y) ≥ f(y). As f
is strongly quasiconvex, we have f(z) < f(x) = h(x).

If g(x) = g(y), then g(z) ≤ max(g(x), g(y)) ≤ h(y) < h(x); if g(x) ̸= g(y),
then g(z) < max(g(x), g(y)) ≤ max(h(x), h(y)) = h(x). In both cases, g(z) <
h(x) and hence h(z) < h(x). Thus h is strongly quasiconvex.

Theorem 5 (Carathéodory). Let A be a subset of Rn. Fix a ∈ A and x ∈ co(A),
then there is a subset B ⊂ A with #B ≤ n+ 1 and a ∈ B such that x ∈ co(B).

Corollary 3. If A ⊂ Rn is a compact subset, then co(A) is compact.

Proof. Define ∆ = {(λ1, . . . , λn+1)|λi ≥ 0,
∑

i λi = 1}, then ∆ is a compact sub-
set of Rn+1. Define ϕ : An+1×∆ → co(A) by ((a1, . . . , an+1), (λ1, . . . , λn+1)) 7→∑

i λiai, then ϕ is continuous. By Theorem 5, ϕ is surjective, so co(A) is com-
pact.

Definition 6 (Inward/Outward Set). Let C be a subset of a vector space E.
For x ∈ E, the inward set of C at x is IC(x) = ∪λ>0λC +(1−λ)x. Dually, the
outward set of C at x is OC(x) = ∪λ<0λC + (1− λ)x.

Note that C ⊂ IC(x) and if x ∈ InteriorC, then IC(x) = E.

Exercise 4. If C is convex in a vector space E and x ∈ E, then IC(x) is also
convex.
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Proof. For every z1, z2 ∈ IC(x), we can write

z1 = λ1c1 + (1− λ1)x;

z2 = λ2c2 + (1− λ2)x

for some c1, c2 ∈ C, λ1, λ2 > 0. For every ρ ∈ (0, 1), we put µ := ρλ1 + (1 −
ρ)λ2 > 0. Since C is convex, c := ρλ1

µ c1 +
(1−ρ)λ2

µ c2 ∈ C. Therefore, we have

ρz1 + (1− ρ)z2 = µc+ (1− µ)x ∈ IC(x). This completes the proof.

2.3 Topological vector spaces

Definition 7 (Inner Product Space). An inner product space is a vector space
E together with an inner product, that is a function ⟨·, ·⟩ : E×E → R satisfying
the following properties : for every x, y, z ∈ E and a, b ∈ R, we have

• ⟨x, y⟩ = ⟨y, x⟩;

• ⟨ax+ by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩;

• if x ̸= 0, then ⟨x, x⟩ > 0.

A complete inner product space is called a Hilbert space.

Definition 8 (Normed Space). On a vector space E, a seminorm is a function
∥ · ∥ : E → [0,+∞) which satisfies

• For every λ ∈ R, v ∈ E, we have ∥λv∥ = |λ| · ∥v∥;

• For every u, v ∈ E, we have ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

A seminorm ∥ · ∥ is called a norm if for every v ∈ E with ∥v∥ = 0, we have
v = 0. In that case, the pair (E, ∥ · ∥) is called a normed space.

An inner product space has a natural induced norm. A complete normed
space is called a Banach space.

Definition 9 (TVS). [38, Section 1.6] Suppose τ is a topology on a vector space
E such that

• {0} is a closed set;

• the addition E × E → E and the scalar multiplication R × E → E are
continuous.

Then we call (E, τ) a topological vector space (henceforth TVS).

For example, a normed space (E, ∥ · ∥) with the topology induced by the
norm is a TVS.

We recall some basic facts about TVS.

Theorem 6. [38, Theorem 1.12] Every TVS is Hausdorff.
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Theorem 7. [12, Ch.IV, §1, Exercise 18] Let (E, τ) be a finite dimensional
TVS, then τ is the standard Euclidean topology.

Theorem 8. [38, Theorem 1.42] Let E′ be a finite dimensional subspace of a
TVS E, then E′ ⊂ E is closed.

Theorem 9. [38, Theorem 1.24] If (E, τ) is a first-countable TVS, then there is
a metric d on E such that d is compatible with the topology τ and d is invariant:
d(x, y) = d(x− y, 0) for every x, y ∈ X.

Lemma 8 (Minkowski functional). If V is a convex neighborhood of 0 in a TVS
E and q : E → [0,+∞) is the associated Minkowski functional:

q(x) = inf{t > 0 : x ∈ tV }.

Then q is a continuous, subadditive, positively homogeneous and convex func-
tion. If V is also closed, then {x ∈ E : q(x) ≤ 1} = V and for every x /∈ V , we
have x

q(x) ∈ ∂V .

Definition 10 (Locally Convex). [38, Definition 1.8 (a)] A TVS E is called
locally convex if for every open neighborhood U ⊂ E of 0, there is a convex open
neighborhood V ⊂ U of 0.

For a TVS E, we write E∗ for its (topological) dual, that is the vector space
of all continuous linear functionals on E. If for every v(̸= 0) ∈ E, there is
p ∈ E∗ with (p, v) := p(v) ̸= 0, then we say that E∗ separates E.

Definition 11. A subset B ⊂ E is called (τ -)bounded if for every neighborhood
V of 0 in E, there is s > 0 such that B ⊂ tV for every t > s.

Theorem 10. [38, Theorem 1.15 (b)] In a TVS, every compact subset is
bounded.

Definition 12 (Weak Topology). Given a TVS (E, τ), let τw be the weakest
topology on E such that for every p ∈ E∗, p : (E, τw) → R is continuous. This
τw is called the weak topology of (E, τ). (The adjective ”weak” is justified since
τw ⊂ τ .)

Self-explanatory expressions such as weakly bounded, original closure, etc.,
will be used to make it clear with respect to which topology these terms are to
be understood.

Theorem 11. Assume that E∗ separates points on a TVS (E, τ), then (E, τw)
is a locally convex TVS whose dual is still E∗. If K ⊂ E is τ -compact, then the
two topologies τ, τw coincide on K.

Proof. The first part is proved in [38, Theorem 3.10], so we only prove the
second part. Since the identity mapping ι : (K, τ) → (K, τw) is a continuous
bijection from a compact to a Hausdorff space, it is a homeomorphism.
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Theorem 12. [20, Theorem 8.2.1, 8.2.2] Let E be a locally convex TVS with
a subset A ⊂ E. Then A is bounded if and only if it is weakly bounded. If A is
convex, then A is closed if and only if it is weakly closed.

Theorem 13 (Hahn-Banach). [38, Theorem 3.4, Theorem 3.21] Suppose A,B
are disjoint nonempty convex sets in a TVS E.

• If A is open, then there exist p ∈ E∗ and r ∈ R such that (p, a) < r ≤ (p, b)
for every a ∈ A, b ∈ B.

• If E is locally convex, A is compact, B is closed, then there exists p ∈
E∗, r1, r2 ∈ R such that (p, a) < r1 < r2 < (p, b) for every a ∈ A, b ∈ B.

• If E∗ separates points on E and A is weakly compact, B is weakly closed,
then there exists p ∈ E∗, r1, r2 ∈ R such that (p, a) < r1 < r2 < (p, b) for
every a ∈ A, b ∈ B.

Corollary 4. [38, Corollary of Theorem 3.4] If a TVS E is locally convex, then
E∗ separates E.

Remark 1. As shown in [38, Exercise 5 (d), Ch.3], there exists a TVS which
is not locally convex, but whose dual separates points.

Exercise 5. Let E be a TVS such that for every x ̸= 0, there is a continuous
quasiconvex function p : E → R such that p(0) < p(x), then E∗ separates E.

Proof. Fix x ∈ E, x ̸= 0. By assumption, there is a continuous quasiconvex
function p : E → R with p(0) < p(x). Then A := {v ∈ E : p(v) < p(x)} is an
open convex subset. Applying Theorem 13 to x and A we get q ∈ E∗ such that
q(a) < q(x) for every a ∈ A. Since 0 ∈ A, we have q(0) < q(x). This completes
the proof.

Exercise 6. Let E be a TVS, A ⊂ C ⊂ E be subsets where A = {c1, c2, . . . }
is countable and dense in C, then Span(C) is separable with a countable dense
subset S = SpanQ(A).

Proof. We write S = ∪A′⊂ASpanQ(A
′), where A′ runs through all finite subset

of A. Each SpanQ(A
′) is countable and A has countably many finite subsets.

Therefore S is indeed countable.
We now prove that SpanQ(C) is in the closure of S inside Span(C). In

fact, for every x ∈ SpanQ(C), there is an expression x =
∑N

i=1 bixi, where
N ∈ N+, bi ∈ Q, xi ∈ C. For every U ⊂ Span(C) open neighborhood of 0,
there exists an open subset V ⊂ E such that V ∩ Span(C) = U and V0 ⊂ V

open such that
∑N

i=1 biV0 ⊂ V . For each i, since A ⊂ C is dense, there exists

an index j(i) such that cj(i) ∈ xi + V0. Consider x′ =
∑N

i=1 bicj(i) ∈ S, then
x′ − x ∈ V ∩ Span(C) = U .

But SpanQ(C) is dense in Span(C), so S is also dense in Span(C).

The following is taken from [1, Theorem 1]. We reproduce their proof here
for the sake of completeness.
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Proposition 1. Let E be a first-countable locally convex TVS, C ⊂ E be a
weakly compact subset. If a mapping f : C → E is weakly sequentially continu-
ous, then f is weakly continuous.

Proof. By Theorem 9, E is metrizable. For every weakly closed subset F ⊂
E, f−1(F ) is weakly relative compact. For every x0 in the weak closure of
f−1(F ) inside E, by Eberlein–Šmulyan theorem [20, Theorem 8.12.4 (b)], there
is a sequence {xn} in f−1(F ) that converges weakly to x0. As f is weakly
sequentially continuous, we have f(xn) → f(x0) weakly, so f(x0) ∈ F , i.e,
x0 ∈ f−1(F ). We see that f−1(F ) is weakly closed in C, from which we deduce
that f is weakly continuous.

2.4 Topologies on dual

Let E be a TVS. For every x ∈ E, let x̃ be the linear form p 7→ (p, x) on E∗.

Definition 13. The weakest topology on E∗ making each x̃ continuous is called
the weak*-topology.

Theorem 14. [38, §3.14] The weak*-topology makes E∗ a locally convex TVS
whose dual set is E.

We introduce a second topology on the dual.

Definition 14 (Compact Convergence Topology). For every p ∈ E∗, every
nonempty compact subset C ⊂ E and every r > 0, we put

B(p, C, r) := {q ∈ E∗ : |(q, x)− (p, x)| < r,∀x ∈ C}.

The topology on E∗ generated by the base {B(p,C,r)} is called the compact con-
vergence topology (or compact-open topology).

Note that each B(p, C, r) is convex, so E∗ with compact convergence topol-
ogy is a locally convex TVS.

Exercise 7. If C ⊂ E is compact and E∗ is endowed with compact convergence
topology, then the canonical mapping C × E∗ → R defined by (x, p) 7→ p(x) is
continuous. In particular on E∗, the weak*-topology is weaker than the compact
convergence topology.

Proof. Fix x ∈ C, p ∈ E∗ and ϵ > 0. Since p : C → R is continuous, U :=
p−1(B(p(x), ϵ/2)) ⊂ C is an open neighborhood of x. Moreover, S = {x′ ∈ C :
|p(x′) − p(x)| ≤ ϵ/2} is closed in C and hence compact. By definition, the set
B(p, S, ϵ/2) is an open neighborhood of p ∈ E∗. For every p′ ∈ B(p, S, ϵ/2), x′ ∈
U , since U ⊂ C we have

|p′(x′)− p(x)| ≤ |p′(x′)− p(x′)|+ |p(x′)− p(x)| < ϵ/2 + ϵ/2 = ϵ.

This shows the joint continuity.
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Mow we introduce the strong topology on E∗. For each nonempty bounded
subset B ⊂ E, each p ∈ E∗, the image p(B) is bounded in R. Define qB : E∗ →
[0,+∞) by p 7→ supx∈B |(p, x)|, then qB is a seminorm on E∗. The family of
seminorms {qB} is separating, that is to each x(̸= 0) ∈ E corresponds at least
one member qB of this family with qB(x) ̸= 0. By [38, Theorem 1.37], this
family induces a topology τp on E∗ making (E∗, τp) a locally convex TVS. We
call τp the strong topology on E∗ and (E∗, τp) the strong dual of (E, τ). For
instance, if E is a normed (or seminormable) space, then τp is the natural norm
topology on E∗.

One can see that the family {qC} where C runs through all nonempty
compact subsets in E induces the compact convergence topology. The family
{q{x}}x∈E induces the weak*-topology. This point of view makes the following
result obvious.

Exercise 8. On E∗, the compact-convergence topology is weaker than the strong
topology.

Proof. Every nonempty compact subset C ⊂ E is bounded by Theorem 10, then
qC is defined above and continuous about τp. Now for every r > 0,

B(0, C, r) = {p ∈ E∗ : ∀x ∈ C, |p(x)| < r} = q−1
C [0, r) ∈ τp,

which allows us to conclude.

Now we introduce reflexivity following [20, §8.4]. The dual of (E∗, τp) is
called the bidual of E and is denoted by E∗∗. For each x ∈ E we have x̃ ∈ E∗∗.

Definition 15 (Semireflexive). A locally convex TVS E is called semi-reflexive
(resp. reflexive) if the canonical mapping cE : E → E∗∗ by x 7→ x̃ is bijective
(resp. is a TVS isomorphism).

Theorem 15. [20, Theorem 8.4.2] A locally convex TVS E is semireflexive if
and only if each bounded weakly closed subset of E is weakly compact.

2.5 Correspondences

Exercise 9. Let S be a topological space with a finite closed cover C1, . . . , Cn

and V be a TVS. For each 1 ≤ j ≤ n, take vj ∈ V . Define a correspondence
F : S ↠ V by F (x) = co(vj |x ∈ Cj). Then F has a closed graph.

This result is used implicitly in proof of [30, Lemma 7.1]. In [2, p.823],
the authors need a similar result. However, they erroneously cite [14, Theorem
17.27] to show their Φ is upper hemicontinuous, which is not sufficient for that
purpose.

Proof. In fact, take any net (xα, zα) → (x, z) in S × V , where zα ∈ F (xα) for
each α. We want to show z ∈ F (x).

We can write zα =
∑n

i=1 a
i
αvi, where each aiα ≥ 0,

∑n
i=1 a

i
α = 1 and aiα = 0

when xα /∈ Ci.
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Since [0, 1] is compact, we may find a subnet (still denoted by the original
one) such that for each i, aiα → ai ∈ [0, 1]. Then

∑
i a

i = 1 and z =
∑

i a
ivi.

If j is an index such that x ∈ Cc
j , then there is α0 such that for every α ≥ α0

we have xα ∈ Cc
j and thus ajα = 0. Taking limit, we get aj = 0. Therefore,

z ∈ co(vi|x ∈ Ci) = F (x).
We give another proof. Fix x0 ∈ S, then U = ∩i:Cc

i ∋x0
Cc

i is an open neigh-
borhood of x0 and for every x ∈ U , we have F (x) ⊂ F (x0). Therefore, the
correspondence F is upper semicontinuous with closed values, and thus has a
closed graph.

Product of topological spaces are always endowed with the product topology.

Exercise 10. Let S be a topological space, {Ti}i∈N be a family of topological
spaces. For each i, let Hi : S ↠ Ti be a closed graph correspondence. Then
H : S ↠

∏
i Ti defined by H =

∏
i Hi has a closed graph.

We don’t think the same holds for upper semicontinuity.

Proof. Take any net (x(α), y(α)) converging in S ×
∏

i Ti to (x, y) with y(α) ∈
H(x(α)) for every α. For every i ∈ N , y(α)i ∈ Hi(x(α)) and (x, y(α)i) → (x, yi)
in S×Ti. Since Hi has a closed graph, we find yi ∈ Hi(x). Thus y ∈ H(x).

Exercise 11. Let C be a compact subset of a TVS. Let S be a topological
space, f : S → R be a continuous function and F : S ↠ C be a closed graph
correspondence, then the correspondence S ↠ C defined by x 7→ f(x)F (x) has
a closed graph.

This result is contained in the proof of [3, Lemma A.2] with a minor problem.
They write ”and a fortiori zα → z with y = cz” without justification.

Proof. Take any net (xα, yα) converging in S×C to (x, y) with yα ∈ f(xα)F (xα)
for each α. That means for each α, there is zα ∈ F (xα) with f(xα)zα = yα.
Then xα → x in S. Since f is continuous, we have f(xα) → f(x). Since C is
compact, there is a subnet (still denoted by the original one) zα → z for some
z ∈ C. Because F has a closed graph, we find z ∈ F (x) and y = f(x)z ∈
f(x)F (x).

3 Main Results

We fix notations. From now on, let (E, τ) be a TVS, K ⊂ E be a nonempty
τ -compact convex subset and C ⊂ E be a nonempty subset. The weak topology
of (E, τ) is denoted by τw. A correspondence F : C ↠ E is called a convex-
valued correspondence if for every x ∈ C, the set F (x) is convex. An element
x0 ∈ C is called a maximal element of F if F (x0) is empty. Let Fix(F ) := {x ∈
C : x ∈ F (x)} be the set of fixed-points of F and M(F ) := {x ∈ C : F (x) = ∅}
be the set of maximal elements of F . For two correspondences F,G : C ↠ E,
by F ⊂C G we mean F (x) ⊂ G(x) for every x ∈ C.
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Theorem 16 (Schauder, Singbal). [7, Appendix] If E is locally convex, A is
a nonempty convex subset of E and B is a compact subset of A, then every
continuous mapping f : A → B has a fixed-point.

In [7], the above theorem requires A to be also closed, which is not used in
the proof. To convince the readers, we repeat detailledly the argument.

Proof. Since B is compact and f(A) ⊂ B, we know that the closure f(A) of
f(A) in E is contained in B and compact.

For every convex open neighborhood V of 0 ∈ E, the family {f(x)+V }x∈A is
an open cover of f(A). In fact, for every y ∈ f(A), its open neighborhood y−V
contains f(x) for some x ∈ A and thus y ∈ f(x)+V . As f(A) is compact, we may
find a finite subcover y1 + V, . . . , yn + V , where each yi ∈ f(A). Take functions
h1, . . . , hn : f(A) → [0, 1] given by Corollary 1. We put KV := co(y1, . . . , yn),
which is a polytope. Since each yi ∈ A and A is convex, we find KV ⊂ A.

We define a mapping fV : A → KV by

fV (x) =

n∑
i=1

hi(f(x))yi.

For every x ∈ A, every i with hi(f(x)) > 0, we have f(x) ∈ yi + V . Because V
is convex, we find

f(x)− fV (x) =

n∑
i=1

hi(f(x))(f(x)− yi) ∈ V,∀x ∈ A. (2)

As fV : KV → KV is continuous, by Brouwer theorem there is xV ∈ KV

with fV (xV ) = xV . When V runs through all convex open neighborhoods of
0 ∈ E, we get a net {f(xV )} in B. Since B is compact, we find a subnet (still
denoted by the original one) f(xV ) → x0 for some x0 ∈ B. By (2), we have
f(xV )−xV ∈ V , so xV → x0 in A. By continuity of f , we have f(xV ) → f(x0).
Since E is Hausdorff by Theorem 6, the two limits x0 and f(x0) of the same
net {f(xV )} coincide. Or equivalently, x0 is a fixed-point of f .

We apply it to get a generalization of Rothe’s fixed-point theorem [36, Fix-
punktsatz, p.186], where the ambient space is a Banach space and C is the
closed unit ball of E. Rothe proves it using degree argument.

Theorem 17 (Rothe). Assume E is locally convex and C ⊂ E is a convex
closed subset with nonempty interior InteriorC. Let f : C → E be a continuous
mapping such that f(∂C) ⊂ C and A := f(C) is compact, then f has a fixed-
point.

Proof. By translation, we may assume that 0 ∈ InteriorC. By Theorem 10,
there is a > 1 such that A ⊂ aC. Let q : E → [0,+∞) be the Minkowski
functional associated to C. Define r : E → C by

r(x) =
x

max(1, q(x))
.
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By Lemma 8, r is continuous, r|C = IdC and for every x /∈ C we have r(x) ∈ ∂C.
(The construction of r is inspired by [48, Lemma 2.4].)

Define g : aC → A by g(x) = f ◦ r(x). By Theorem 16, there is x0 ∈ aC
such that g(x0) = x0. Suppose that x0 /∈ C, then r(x0) ∈ ∂C and x0 =
g(x0) = f ◦ r(x0) ∈ C (by assumption), a contradiction. Thus x0 ∈ C. Then
f(x0) = g(x0) = x0, which shows that x0 is a fixed-point of f .

Conjecture 1 (Schauder). [29, Problem 54] A continuous mapping f : K → K
admits fixed-point.

R. Cauty in [11] proposed an answer to the Schauder’s Conjecture. In the
international conference of Fixed-Point Theory and its Applications in 2005, T.
Dobrowolski remarked that there is a gap in the proof. After proving Theorem
17, we found a very similar result [26, Theroem 2] in the literature. However,
his proof uses Cauty’s doubtful result.

Another proof of Schauder’s conjecture given in [21] relies on [48, Theorem
2.13], which seems questionable for the following reasons.

First of all, the first line of the proof of Theorem 2.13 given in [48] says that
by their Lemma 2.3, we can assume 0 is in the relative interior of C. But in fact,
their Lemma 2.3 is not sufficient for this purpose. For example, take s = p = 1
and 0 ̸= x0 ∈ C not in the relative interior of C in their Lemma 2.3, then 0 is
not in the relative interior of their D = C − x0.

Secondly, Lemma 2.12 also plays an important role in the proof of Theorem
2.13 given in [48] but it seems unreliable. In fact, they said ”Without loss of
generality we suppose that {xn}∞n=1 is linearly independent.” However, consider
an one dimensional example: s = p = 1, X = R1, D = [−1, 1], then there are at
most one vector linearly independent in R1, say x1. But then D ⊂ co(0, x1) is
impossible! The existence of their M∗

n is also doubtful. Moreover, as X0 ⊂ X is
not closed in general, D ∩X0 need not to be compact and their F−1

0 may not
be continuous on F0(D ∩X0).

Besides, a result similar to [48, Theorem 2.13] is [4, Theorem 34, p.64], but
unfortunately its proof seems false, too. In fact, the d(x, λf(x)) on the last line
of the proof can be 0, making his V empty!

The following variant of [47, Theorem 1] can be proved using the same
(classical) argument: gluing local sections to be a global one via Lemma 2. It
also generalizes [50, Theorem 3.1] where they assume existence of local constant
selections.

Theorem 18 (Selection). Let X be a Hausdorff paracompact space and Y a
subset of a TVS E. Suppose that F : X ↠ E is a convex valued correspondence
such that for every x ∈ X, there exist an open neighborhood U ⊂ X of x and a
continuous (local) selection s : U → Y of F . If either Y is convex or F takes
value in Y , then F has a continuous (global) selection f : X → Y .

Theorem 19 (Max-Fix Alternative). Assume Schauder’s conjecture for
E. Let F : K ↠ E be a convex-valued correspondence. If for every x ∈ K \
(Fix(F ) ∪M(F )), there exist U ⊂ K open neighborhood of x, and a continuous
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mapping s : U → K such that for every x′ ∈ U \ (Fix(F ) ∪ M(F )) we have
s(x′) ∈ F (x′), then F has a maximal element or a fixed-point.

For example, when E∗ separates E, then Schauder’s conjecture is known for
E and hence Theorem 19 contains [46, Corollary 3.2] as a corollary.

Proof. Assume the opposite. By Theorem 18, there exists a continuous selection
f : K → K of F . If Schauder’s conjecture is true, then f and hence F admits
a fixed-point, a contradiction!

For readers who prefer to avoiding Schauder’s conjecture, we list a weaker
version of last result whose proof is also a direct adaption. In the sequel, we
will only use this weaker version.

Theorem 20. Let F : K ↠ E be a convex-valued correspondence. If for every
x ∈ K \ (Fix(F ) ∪ M(F )), there exist U ⊂ K an open neighborhood of x and
y ∈ K such that for every x′ ∈ U \ (Fix(F ) ∪M(F )), we have y ∈ F (x′). Then
F has a maximal element or a fixed-point.

Proof. Assume the contrary. For every x ∈ K, there exist Ux ⊂ K an open
neighborhood of x and yx ∈ K such that yx ∈ F (x′) for every x′ ∈ Ux. Since K
is compact, the open cover {Ux}x∈K admits a finite subcover U1, . . . , Un, with
corresponding points x1, . . . , xn and elements y1, . . . , yn.

Take functions hi given by Lemma 1. Denote K0 = co(y1, . . . , yn), then K0

is a finite dimensional convex compact contained in K. We define a continuous
mapping f : K → K0 by

f(x) =

n∑
i=1

hi(x)yi.

For every x ∈ K, every index i with hi(x) > 0, we have x ∈ Ui, so yi ∈ F (x).
Since F (x) is convex, we have f(x) ∈ F (x), i.e., f is a selection of F . By
Brouwer’s theorem, f |K0

, and hence F , admits a fixed-point, a contradiction.

Corollary 5 (Urai). [43, Theorem 1] Let G : K ↠ E be a correspondence. If
G satisfies the following condition (K*), then G has a fixed-point :

• (K*) There is a convex valued correspondence F : K ↠ E such that for
each x ∈ K \ Fix(G), there exist a neighborhood U ⊂ K of x and y ∈ K
such that x′ /∈ F (x′) and y ∈ F (x′) for each x′ ∈ U .

Proof. Otherwise, for each x ∈ K, x /∈ F (x) and there exists some y ∈ F (x), or
equivalently F has neither fixed-point nor maximal element. But then condition
(K*) contradicts Theorem 20.

Remark 2. Actually, Urai added an unnecessary condition in (K*), namely
G ⊂U F .
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Moreover, [43, Theorem 2, (NK*)] is certainly false. For example, take
I = {1, 2}, X1 = X2 = [0, 1] ⊂ E = R and let ϕ1 = Φ1 : X = [0, 1]2 → X1 be
constant mapping 0, ϕ2 = Φ2 : [0, 1]2 → X2 given by

ϕ2(a, b) =

{
1 b < 1;

0 b = 1.
.

Clearly, Urai’s (NK*) condition holds because for each z ∈ X, 0 ∈ Φ1(z).
However, contrary to his statement, ϕ = ϕ1 × ϕ2 has no fixed-point.

The following result generalizes simultaneously Theorem 16, [47, Corollay 3]
and [50, Theorem 3.2], who assume in addition that for every x ∈ X, there exist
U ⊂ X open neighborhood of x and y ∈ Y such that for every x′ ∈ U , we have
y ∈ F (x′).

Theorem 21 (Yannelis-Prabhkar, Wu-Shen). Assume E is locally convex, X ⊂
E is convex and Y ⊂ X is compact. If F : X ↠ Y is a convex-valued corre-
spondence such that for every x ∈ X \ (Fix(F ) ∪ M(F )), there exist U ⊂ X
an open neighborhood of x and a continuous mapping s : U → Y such that for
every x′ ∈ U \ (Fix(F )∪M(F )), we have s(x′) ∈ F (x′). Then F has a maximal
element or a fixed-point.

Proof. Assume the contrary. Denote A = co(Y ). As X is convex, we have
A ⊂ X. By [18, Lemma 1], A is paracompact. By Theorem 18, F |A : A ↠ Y
admits a continuous selection f : A → Y . By Theorem 16, f hence F admits a
fixed-point on A, which is a contradiction.

We derive quickly the main result of [22].

Corollary 6. [22, Theorem 1, p.557] Assume K ⊂ C and F : C ↠ E is a
correspondence. Put S = C \ Fix(F ) and suppose that G : S ↠ K is another
correspondence with nonempty convex values satisfying that for every x ∈ S,
there exist U ⊂ S an open neighborhood of x and y ∈ E such that for every
x′ ∈ U , we have y ∈ G(x′) and x′ /∈ G(x′). Then F admits a fixed-point.

Proof. Otherwise, S = C and G : C ↠ K has neither fixed-point nor maximal
element. But in that case, G|K contradicts Theorem 20!

Theorem 22 (Majorization). Let F : K ↠ E be a correspondence and f :
K \M(F ) → K be a mapping. If for every x ∈ K \M(F ), there exist U ⊂ K
an open neighborhood of x and G : U ↠ E a correspondence

• with convex values;

• without fixed-points ;

• for every x′ ∈ U \M(F ), we have that G−1(f(x′)) is a neighborhood of x′

in U and F (x′) ⊂ G(x′).

Then F admits a maximal element.
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Proof. The proof is essentially that of [8, Corollary 1]. Assume the contrary.
For every x ∈ K, there exist Ux and Gx as in the assumption. Take finite
subcover U1, . . . , Un, points x1, . . . , xn and correspondences G1, . . . , Gn. Take
closed subsets F1 = Supp(h1), . . . , Fn = Supp(hn) given by Lemma 1.

For each i, define Hi : K ↠ K by

Hi(x) =

{
Gi(x), x ∈ Fi;

E, x /∈ Fi.

Then F ⊂K Hi and Hi is of convex value. For every x ∈ K and every i,
H−1

i (f(x)) is a neighborhood of x in K. In fact, if x ∈ Fi, then G−1
i (f(x)) ⊂

H−1
i (f(x)) and the former is a neighborhood by our assumption; if x /∈ Fi, then

F c
i ⊂ H−1

i (f(x)) and again the former is a neighborhood.
DefineH = ∩Hi another correspondenceK ↠ E. ThenH has convex values

and F ⊂K H. For every x ∈ K, H−1(f(x)) = ∩n
i=1H

−1
i (f(x)) is a neighborhood

of x in K. Therefore, there is U ⊂ H−1(f(x)) open neighborhood of x in K,
such that every x′ ∈ U , f(x) ∈ H(x′).

For every x ∈ K, there is i with x ∈ Fi. As Gi has no fixed-point on Ui,
we have x /∈ Gi(x) = Hi(x) and hence x /∈ H(x). That means H admits no
fixed-point on K. By (weak version of) Theorem 20, there is x0 ∈ K with H(x0)
empty, so F (x0) empty.

Definition 16 (Class L). [50, Definition 5.1] A correspondence F : C ↠ C is
called of class L if is

• irreflexive: for every x ∈ C, x /∈ co(F (x));

• of open preimage: for every y ∈ C, F−1(y) := {x ∈ C : y ∈ F (x)} is open
in C.

A correspondence G : C ↠ C is called L-majorized if for every x ∈ C \M(G),
there exist an open neighborhood U ⊂ C of x and H : C ↠ C a correspondence
of class L with G ⊂U H.

Obviously, a correspondence of class L is L-majorized. The following result,
due to Yannelis and Prabhakar, is very handy in practice. Now we show that
Theorem 22 is a natural extension of it.

Theorem 23 (Yannelis-Prabhkar). [50, Corollary 5.1] If F : K ↠ K is an
L-majorized correspondence, then F admits maximal element.

Proof. Otherwise, for every x ∈ K, F (x) is nonempty, so there exists a selec-
tion f of F . Fix x ∈ K, there exist U ⊂ K open neighborhood of x and a
correspondence G : K ↠ K of class L with F ⊂U G. For every x′ ∈ U , since
f(x′) ∈ F (x′) ⊂ G(x′) and G has open preimages, we find G−1(f(x′)) is an
open neighborhood of x′ in K. Define H : K ↠ K by H = co(G). Then H is
convex-valued and F ⊂U H. For every x′ ∈ U , H−1(f(x′)) ⊃ G−1(f(x′)) is a
neighborhood of x′ in K. By irreflexivity of G, H admits no fixed-point. Now
we can conclude by Theorem 22.
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To illustrate the power of Theorem 22, we give two applications. This first
is inspired by [28, Theorem 4.1].

Theorem 24 (Li). If a mapping f : K → K satisfies: for every x ∈ K \Fix(f),
there exist an open neighborhood Ux ⊂ K of x and a continuous quasiconvex
function p : E → R such that p(0) < p(x′ − f(x′)) for all x′ ∈ Ux \ Fix(f), then
f admits fixed-point.

Proof. Otherwise, fix any x ∈ K, there is such p with p(0) < p(x − f(x)). By
continuity of p and f , there is an open neighborhood U ⊂ K of x such that for
every x′ ∈ U we have p(f(x′)− f(x)) < p(x′ − f(x)).

Define G : K ↠ K by G(x′) = {y ∈ K : p(y − f(x)) < p(x′ − f(x))}, then
f ⊂U G and G has no fixed-point. Since p is quasiconvex, G is of convex value.
Since p is continuous, G is of open preimage. Therefore, G is of class L and f
is L-majorized which contradicts Theorem 23!

As a second application, we give an alternative proof of the main result of
[45].

Theorem 25. [45, Theorem 1] Assume E is locally convex and F : K ↠ K is a
correspondence without maximal element. Endow E∗ with compact convergence
topology. Assume for every x ∈ K \ Fix(F ), there exist an open neighborhood
U ⊂ K of x and a compact-valued upper semi-continuous correspondence P :
U ↠ E∗ without maximal element such that for every x′ ∈ U, y′ ∈ F (x′), p ∈
P (x′), we have (p, x′ − y′) < 0. Then F has fixed-point.

Proof. Otherwise, fix any x ∈ K, there exists U and P as in the above theorem.
Define G : U ↠ K by Gx(x

′) = {y ∈ K : (p, x′ − y) < 0,∀p ∈ P (x′)}. Then G
is convex valued without fixed-point and F ⊂U G.

We show that G has open preimages. In fact, fix y0 ∈ K and x0 ∈ G−1(y0),
then every p ∈ P (x0), we have (p, x0 − y0) < 0. By Exercise 7, the map-
ping ϕ : K × E∗ → R defined by (x, p) 7→ p(x − y0) is continuous. So,
ϕ−1(−∞, 0) ⊂ K × E∗ is open and contains {x0} × P (x0). By Lemma 6
there exist open neighborhoods V ⊂ K of x0 and U ⊂ E∗ of P (x0) such that
V × U ⊂ ϕ−1(−∞, 0). Or equivalently, for every x′ ∈ V, q ∈ U , we have
(q, x′ − y0) < 0. (These details are omitted in [45].)

As P is upper semi-continuous, there exists a neighborhood V1 ⊂ V of x0

such that for every x1 ∈ V1, P (x1) ⊂ U . Thus, (q, x1−y0) < 0 for all q ∈ P (x1),
which means V1 ⊂ G−1(y0). Hence G−1(y0) is open.

By Theorem 22, F has a maximal element, a contradiction.

For our purpose, we need the following.

Theorem 26. If we have a family of quasiconvex functions {Tx}x∈K on K such
that for every v ∈ K, the function K → R defined by

u 7→ Tu(u)− Tu(v)

is continuous, then there is x0 ∈ K such that Tx0
(x0) ≤ Tx0

(x) for every x ∈ K.
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Proof. Define a correspondence F : K ↠ K by

F (x) := {y ∈ K : Tx(x)− Tx(y) > 0}.

For every x ∈ K, since Tx is quasiconvex, the set F (x) is convex. Clearly, F
has no fixed-points. For every y ∈ K, by our continuity assumption, F−1(y) =
{x ∈ K : Tx(x) − Tx(y) > 0} is open in K. We find that F is of class L. By
Theorem 23, there is a maximal element x0 ∈ M(F ), i.e., for every x ∈ K we
have Tx0

(x0) ≤ Tx0
(x).

Corollary 7 (Browder). Let T : K → E∗ be a mapping such that for every
v ∈ K, the function K → R defined by u 7→ (T (u), u − v) is continuous. Then
there is x0 ∈ K such that for every x ∈ K, (T (x0), x− x0) ≥ 0.

This result is similar to [9, Theorem 2], where Browder confusingly talks
about the continuity of T : K → E∗ without specifying the topology on E∗.

Proof. Define a family of linear functions by Tx = T (x)|K for x ∈ K. For every
v ∈ K, the function K → R defined by u 7→ Tu(v) − Tu(u) = (T (u), v − u) is
continuous. We conclude by Theorem 26.

Example 1. If (E; ⟨, ⟩) is a Hilbert space, and fix v ∈ E, we define T : K → E∗

by T (x) = ⟨v − x, ∗⟩. Then the x0 given by Corollary 7 is unique. In fact, it is
the projection of v into K, i.e., |v − x0| = minx∈K |v − x|.

The following two results generalize Lemma 1 and Theorem 6 of [9] respec-
tively, in the sense that E may not be locally convex.

Lemma 9. Endow E∗ with compact convergence topology. Let A ⊂ E be convex
and B ⊂ E∗ be convex compact. If for every p ∈ B, there is a ∈ A with
(p, a) < 0, then there is a0 ∈ A such that (p, a0) < 0 for every p ∈ B.

Proof. For every a ∈ A, let Ua = {p ∈ B : (p, a) < 0}. Then Ua ⊂ B is
weak*-open hence open in compact convergence topology by Exercise 7. By our
assumption, {Ua}a∈A is an open cover of B. Since B is compact, it admits a
finite subcover U1, . . . , Un corresponding to points a1, . . . , an ∈ A. Take func-
tions hi given by Corollary 1. Define a continuous mapping f : B → A by
f(b) =

∑n
i=1 hi(b)ai.

For every p ∈ B, every i with hi(p) > 0, we have p ∈ Ui and hence (p, ai) < 0.
Therefore, (p, f(p)) < 0.

Define a correspondence F : B ↠ B by F (p) = {b ∈ B : (b, f(p)) ≥ 0}.
By last paragraph, F has no fixed-point. F has convex values. By Exercise 7,
the canonical pairing f(B) × E∗ → R is continuous, so is ϕ : B × B → R by
(p, b) 7→ b(f(p)). The graph of F is ϕ−1[0,+∞) hence closed in B × B. Recall
that E∗ is a locally convex TVS. By Kakutani’s theorem, there is b0 ∈ B such
that F (b0) is empty. Then a0 = f(b0) is what we seek.

The following is based on the above lemma.
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Theorem 27 (Browder). Endow E∗ with compact convergence topology. T :
K ↠ E∗ an upper semicontinuous correspondence with nonempty compact con-
vex values. Then there is x0 ∈ K, p0 ∈ T (x0) such that (p0, x0 − u) ≥ 0 for all
u ∈ K.

Proof. Define a correspondence S : K ↠ K by

S(x) := {u ∈ K : ∀p ∈ T (x), (p, u− x) > 0}.

S is of convex value. For each x ∈ K, T (x) is nonempty, so x /∈ S(x). For each
u ∈ K, S−1(u) = {x ∈ K : ∀p ∈ T (x), (p, u− x) > 0} is open.

Indeed, fix any x0 ∈ S−1(u). By Exercise 7, the mapping ϕ : K × E∗ → R
by (x, p) 7→ (p, u−x) is continuous, so ϕ−1(0,+∞) is open in K×E∗ containing
{x0}×T (x0). By Lemma 6, there exist opens U ⊂ K containing x0 and V ⊂ E∗

containing T (x0) such that U × V ⊂ ϕ−1(0,+∞). T is upper semicontinuous,
so U ′ = {x ∈ K : T (x) ⊂ V } is open neighborhood of x0 in K. For every
x ∈ U ∩U ′, we have T (x) ⊂ V , then {x}×T (x) ⊂ ϕ−1(0,+∞), i.e., x ∈ S−1(u).
Thus U ∩ U ′ ⊂ S−1(u).

We have verified that S is of class L. By Theorem 23, there is x0 ∈ K such
that S(x0) is empty. Or equivalently, for every u ∈ K, there is p ∈ T (x0) with
(p, u− x0) ≤ 0. By Lemma 9, there is p0 ∈ T (x0) such that (p0, x0 − u) ≥ 0 for
every u ∈ K.

4 Fixed-Point of Discontinuous Mappings

In this section, the results from the previous one are applied to strength some
earlier fixed-point theorems for discontinuous mappings. We start by general-
izing the finite dimensional result [44, Theorem 2] to arbitrary inner product
space.

Theorem 28 (Urai). Let (E; ⟨, ⟩) be an inner product space. If F : K ↠ K is a
correspondence without maximal element and satisfying the following condition:

• (LDV2) for every x ∈ K \Fix(F ), there exist y ∈ E and an open neighbor-
hood U ⊂ K of x such that ⟨y− x′, y′ − x′⟩ > 0 for every x′ ∈ U \Fix(F ),
and every y′ ∈ F (x′).

Then F admits a fixed-point.

Proof. Otherwise, for every x ∈ K, consider y ∈ E and some neighborhood U
given by the hypothesis (LDV2). Define Gx : K ↠ K by Gx(z) = {w ∈ K :
⟨y − z, w − z⟩ > 0}. Then F ⊂U Gx and Gx is convex-valued and without
fixed-point. For each w ∈ K, G−1

x (w) ⊂ K is open. So, Gx is of class L and
hence F is L-majorized, which contradicts Theorem 23.

Then we introduce some weak continuity definitions.
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Definition 17 (Quasi-continuity). Assume C is convex. A mapping f : C → C
is called quasi-continuous if for every x ∈ C \ Fix(f), there exist a

continuous quasiconvex function p : C → R and an open neighborhood U ⊂ C
of x such that

p(f(x′)) < p(x′)

for every x′ ∈ U \ Fix(f).

This definition is inspired by a similar one :

Definition 18 (Half-continuity). [5, Definition 2.1] A mapping f : C → E is
called half-continuous if for every x ∈ C \ Fix(f), there exist p ∈ E∗ and an
open neighborhood U ⊂ C of x such that

(p, f(x′)− x′) < 0

for every x′ ∈ U \ Fix(f).

For an example of half-continuous mappings that are not continuous, see [40,
Remark 3.5]. Clearly, a half-continuous mapping f : C → C is quasi-continuous.
We don’t know whether quasi-continuous mappings are always half-continuous.

We now provide a trivial generalization of [40, Proposition 3.2], relaxing
continuity to weaker continuity.

Proposition 2. If E∗ separates E, then every continuous mapping f : (C, τ) →
(E, τw) is half-continuous. Conversely, if the zero mapping f0 : E → E is half-
continuous, then E∗ separates E.

Proof. For every x ∈ C with x ̸= f(x), there is p ∈ E∗ such that (p, f(x)) <
(p, x). Now that the function C → R by z 7→ (p, z) − (p, f(z)) is continuous,
thus there exists an open neighborhood U ⊂ C of x such that for every x′ ∈ U ,
(p, f(x′)) < (p, x′).

We now show the second part. For every non zero v ∈ E, since f0(v) ̸= v and
f0 is half-continuous, there is p ∈ E∗ such that (p, f0(v)− v) < 0. In particular,
(p, v) ̸= 0.

Theorem 29. If a mapping f : K → K is quasi-continuous, then there is
x0 ∈ K such that f(x0) = x0.

Proof. (We will give another proof, cf. Proof of Theorem 31.) Suppose f has no
fixed point. By definition, there exist an open neighborhood Ux ⊂ K of x and
a continuous quasiconvex function px : K → R such that px(f(x

′)) < px(x
′) for

every x′ ∈ Ux. We can assume px > 0 by adding a constant. By compactness
of K, the open cover {Ux}x∈K admits a finite subcover, say U1, . . . , Un with
corresponding points x1, . . . , xn ∈ K and functions p1, . . . , pn. Take functions
hi given by Corollary 1. For each x ∈ K, define a function Tx : K → [0,+∞)
by

Tx =
n

max
i=1

hi(x)pi.
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In fact, for every x, y ∈ K, since
∑n

i=1 hi(x) = 1, we have Tx(y) > 0. By
Exercise 3, Tx is quasiconvex.

For every x ∈ K, there is an index i0 such that

Tx(f(x)) = hi0(x)pi0(f(x)).

Then hi0(x) > 0 and hence x ∈ Ui0 , so pi0(f(x)) < pi0(x) by our choice of pi0 .
Therefore, we get

Tx(f(x)) < hi0(x)pi0(x) ≤ Tx(x). (3)

Fix v ∈ E, the function K → R defined by

u 7→ Tu(u)− Tu(v) =
n

max
i=1

hi(u)pi(u)−
n

max
j=1

hj(u)pj(v)

is continuous. By Theorem 26, there is x0 ∈ K such that for every x ∈ K, we
have Tx0

(x0) ≤ Tx0
(x). In particular, Tx0

(x0) ≤ Tx0
(f(x0)), which contradicts

(3).

Corollary 8 (Brouwer-Schauder-Tychonoff). If E∗ separates E, a subset C ⊂
E is convex weakly compact, and a mapping f : C → C is τw-continuous, then
there is x0 ∈ C with f(x0) = x0.

Proof. By Theorem 11, (E, τw) is a locally convex TVS with dual E∗. We
conclude by combining Proposition 2 and Theorem 29. Alternatively, we can
apply Tychonoff’s theorem to (E, τw).

Remark 3. The special case where E is locally convex, C is compact and f is
continuous is a celebrated result of Tychonoff in [42, Satz, §2].

Corollary 8 also covers Li’s main result in [28, Theorem 4.1]. In fact, what
Li views as a new concept is actually classical. If a TVS E is quasi-point-
separable in Li’s terminology [28, Definition 3.6 (ii)], then by Exercise 5 E∗

separates E, or rather E is point-separable following Li.

A weaker extension of Tychonoff’s theorem is given by Urai.

Corollary 9 (Urai). [46, Corollary 3.1] If E is such that

• (T) for every x ̸= y ∈ E, there exist two disjoint open neighborhoods
Ux ∋ x, Uy ∋ y, at least one being convex.

Then every continuous function f : K → K has a fixed-point.

Proof. In fact, this condition (T) is stronger than the condition that E∗ sepa-
rates E, so we conclude by applying Corollary 8. Indeed, assume (T), assume
for example Ux is convex, then by Theorem 13, there is p ∈ E∗ such that
p(x′) < p(y) for every x′ ∈ Ux. In particular, p(x) ̸= p(y) and hence E∗ sepa-
rates points.

As another application, we correct a mistake (see Remark 4 for explanation)
in [43].
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Theorem 30. If E∗ separates E and F : K ↠ K is a convex valued corre-
spondence such that for every x ∈ K \Fix(F ), there exist an open neighborhood
U ⊂ K of x, a vector v ∈ E and a function λ : U \ Fix(F ) → (0,+∞) (not
necessarily continuous) such that z + λ(z)v ∈ F (z) for every z ∈ U \ Fix(F ),
then F has a fixed-point.

Proof. Otherwise, for every x ∈ K, there is an open neighborhood Ux ⊂ K of x,
a vector vx and a function λx : Ux → (0,+∞) given by the above assumption.
SinceK is compact, the open cover {Ux}x∈K admits a finite subcover U1, . . . , Un

with corresponding vectors v1, . . . , vn and functions λ1, . . . , λn. Take functions
hi given by Corollary 1. Define a mapping f : K → E by

f(x) = x+

n∑
i=1

hi(x)λi(x)vi.

Fix any x ∈ K and consider the nonempty index set I = {1 ≤ i ≤ n|hi(x) >
0}. For every i ∈ I, we have x ∈ Ui, λi is defined at x and x+ λi(x)vi ∈ F (x).
As F (x) is convex, we find f(x) =

∑
i∈I hi(x)(x + λi(x)vi) ∈ F (x). In other

words, f is a selection of F .
We first show that 0 /∈ C, where C = co(vi|i ∈ I). Otherwise we can write

0 =
∑
i∈I

aivi,

where each ai ≥ 0 and
∑

i∈I ai = 1. Put S =
∑

i∈I
ai

λi(x)
, then S > 0. For j ∈ I,

define bj =
aj

Sλj(x)
. Then each bj ≥ 0 and

∑
j∈I bj = 1. As F (x) is convex, we

find x =
∑

j∈I bj(x+ λj(x)vj) ∈ F (x) which is a contradiction.
We check that f is half-continuous. Applying Theorem 13 to two disjoint

convex weakly compact subsets {0} and C, we find p ∈ E∗ such that p(w) > 0
for every w ∈ C. Then for every i ∈ I, p(vi) > 0 and

∑n
i=1 hi(x)p(vi) =∑

i∈I hi(x)p(vi) > 0. By continuity of the functions hi, there is an open neigh-
borhood V ⊂ K of x such that for every x′ ∈ V we have

∑n
i=1 hi(x

′)p(vi) > 0
and hence

p(f(x′)− x′) =

n∑
i=1

hi(x
′)λi(x

′)p(vi) > 0.

So f is half-continuous at x.
By Theorem 29, f and hence F admits a fixed-point, a contradiction.

Corollary 10 (Urai). Assume E∗ separates E, and F,G : K ↠ K are two
correspondences, where G is convex-valued. If for every x ∈ K \ Fix(F ), there
exists an open neighborhood U ⊂ K of x, a vector v ∈ E and a (possibly non
continuous) function λ : U → (0,+∞) such that for every x′ ∈ U \ Fix(F ), we
have x′ /∈ G(x′) and x′ + λ(x′)v ∈ G(x′), then F has a fixed-point.

Proof. Assume the contrary. By our assumption, G satisfies the assumption of
Theorem 30 but has no fixed-point, a contradiction.
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Remark 4. Corollary 10 is stated in [43, Theorem 1,(K#)] for general TVS.
However, his proof is wrong. Contrary to the claim he made during the proof,
his mapping f may not be continuous nor taking values in his Ê. We don’t
know whether his original statement remains true.

Now we extend Theorem 29 to correspondences.

Definition 19 (Quasi-continuous Correspondence). A correspondence F : C ↠
C is called quasi-continuous if for every x ∈ C with x /∈ F (x), there exist an
open neighborhood U ⊂ C of x and a continuous quasiconvex function p : C → R
such that for every x′ ∈ U \ Fix(F ), every y′ ∈ F (x′), we have

p(y′) < p(x′).

Half-continuous correspondence is similarly defined, see [40, Definition 4.1].

Lemma 10. If F : C ↠ C is quasi-continuous without maximal element, then
it admits a quasi-continuous selection.

Proof. Adopt the construction of [40, Lemma 4.5].

The following generalizes [43, Theorem 1. (K1)], relaxing his half-continuity
property to our quasi-continuity property.

Theorem 31. If F : K ↠ K is a quasi-continuous correspondence without
maximal element, then it admits a fixed-point.

Proof. We conclude by combining Theorem 29 and Lemma 10. Still, we present
another proof. Assume the contrary. For every x ∈ K, there exist an open
neighborhood U ⊂ K of x and a continuous quasiconvex function px : K → R
such that for every x′ ∈ U , every y′ ∈ F (x′), we have px(y

′) < px(x
′). Define

Gx : K ↠ K by Gx(x
′) = {y ∈ K : px(y) < px(x

′)}, then F ⊂U Gx.
Check that Gx is of class L. Since px is quasiconvex, Gx is convex-valued.

Clearly, Gx admits no fixed-point. For every y ∈ K, since px is continuous,
G−1

x (y) = {x′ ∈ K : px(y) < px(x
′)} is open in K.

Therefore, F is L-majoriezd. But then F contradicts Theorem 23.

Example 2. Let E = R, K = [0, 1], F : K ↠ K by F (x) = K \ {x}. Then for
every x ∈ K, there exist an open neighborhood U ⊂ K of x and p ∈ E∗ such
that for every x′ ∈ U , there exists y′ ∈ F (x′) with p(y′) < p(x′). Clearly, F
admits no fixed-point. That is why in Definition 19 we require that the whole
set F (x′) is separated from x′.

As an example, we simplify the proof of another main result in [22].

Theorem 32. [22, Theorem 2, p.559] If K ⊂ C and F : C ↠ E is a corre-
spondence. Put S = C \ Fix(F ). Let G : S ↠ K be a correspondence without
maximal element. If for every x ∈ S, there exist open neighborhood U ⊂ S of x
and p ∈ E∗ such that for every x′ ∈ U , every y′ ∈ G(x′) we have (p, y′−x′) < 0
(in particular x′ /∈ Fix(G)), then F admits a fixed-point.
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Proof. Otherwise, S = C and G|K is half-continuous without fixed-point, which
contradicts Theorem 31.

We generalize [40, Proposition 4.4] by relaxing continuity and weakening
compactness to weakly closedness.

Proposition 3. If E∗ separates E and F : (C, τ) ↠ (E, τw) is upper semi-
continuous with convex weakly closed values, then F is half-continuous.

Proof. Fix any x ∈ C with x /∈ F (x). Since {x} is weakly compact and F (x)
is weakly closed, by Theorem 13 there exist p ∈ E∗ and two reals a < b such
that p(x) > b and for every y ∈ F (x), p(y) < a. As F is upper semi-continuous,
U1 = {x′ ∈ C : F (x′) ⊂ p−1(−∞, a)} is open in C. Also, by continuity of p,
U = U1 ∩ p−1(b,+∞) is an open neighborhood of x in C. For every x′ ∈ U ,
every y′ ∈ F (x′), we have p(y′) < a < b < p(x′). Therefore F is half-continuous
at x.

Theorem 33 (Kakutani-Fan-Glicksberg). Assume E∗ separates E and C ⊂ E
is a weakly compact convex subset. Let F : C ↠ C be a correspondence with
nonempty convex values, whose graph Gr(F ) ⊂ (C, τw)×(C, τw) is closed. Then
F admits a fixed-point.

Proof. This proof is parallel to that of Corollary 8. Use the weak topology
τw on E. Then we conclude by Theorem 31 and Proposition 3 or Kakutani’s
fixed-point theorem with Theorem 11.

The following result generalizes [40, Theorem 5.1]. The ”locally convex”
restriction is removed, continuity is relaxed, and single valued mapping is gen-
eralized to correspondence.

Theorem 34. Let G : K ↠ E be a correspondence such that for every x ∈
K \ Fix(G), the set

(x,G(x)] := {λx+ (1− λ)y : λ ∈ [0, 1), y ∈ G(x)}

intersects K and there exist a continuous strongly quasiconvex function p : E →
R and an open neighborhood U ⊂ K of x such that p(y′) < p(x′) for every
x′ ∈ U, y′ ∈ G(x′). Then G admits a fixed-point.

Proof. Assume the contrary. Define a correspondence F : K ↠ K by F (x) =
(x,G(x)] ∩K. Clearly, F has no fixed-point.

This F is quasi-continuous, which contradicts Theorem 31. In fact, for every
x ∈ K, by assumption on G, there exist an open neighborhood U ⊂ K of x and a
continuous strongly quasiconvex function p : K → R such that for every x′ ∈ U ,
every y′ ∈ G(x′), we have p(y′) < p(x′). As p is strongly quasiconvex, for every
y′′ ∈ F (x′) ⊂ (x′, G(x′)], we have p(y′′) < p(x′). Thus, F is quasi-continuous at
x.
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Corollary 11 (Fan-Kaczynski). If E∗ separates E, C ⊂ E is weakly compact
convex, and g : C → E is a τw-continuous mapping such that for every x ∈ K
with x ̸= g(x), the set

(x, g(x)] := {λx+ (1− λ)y : λ ∈ [0, 1), y ∈ g(x)}

intersects C, then g admits a fixed-point.

This corollary generalizes [40, Corollary 5.3], where the ambient space E is
locally convex, C is compact, g is τ -continuous and hence τw-continuous.

Proof. Use topology τw and we conclude by Theorem 34.

Definition 20 (Weakly Inward/Outward). [33, p.3] A correspondence F : C ↠
E is called weakly inward (resp. weakly outward) if for each x ∈ C \ Fix(F ),
F (x) intersects ĪC(x) (resp. ŌC(x)).

Obviously, a weakly inward correspondence has no maximal element.

Theorem 35. Consider a weakly inward correspondence F : K ↠ E satisfies
: for every x ∈ K \ Fix(F ), there exist U ⊂ K an open neighborhood of x
and p : E → R continuous strongly quasiconvex function such that every x′ ∈
U \ Fix(F ), every y′ ∈ F (x′), we have p(y′) < p(x′). Then F has a fixed-point.

Proof. Assume the contrary. We repeat the proof of Theorem 29 with necessary
modifications. For every x ∈ K, there exist a continuous strongly quasiconvex
function Tx : E → R such that for every y ∈ F (x), Tx(y) < Tx(x). (Note that
we used Exercise 3 implicitly in construction of Tx.) Moreover, there is x0 ∈ K
such that

Tx0
(x0) ≤ Tx0

(x),∀x ∈ K. (4)

Take y0 ∈ F (x0) ∩ ĪK(x0), then

Tx0(y0) < Tx0(x0) (5)

by our assumption. Since Tx0 is continuous, there is an open neighborhood
U ⊂ E of 0 such that for every y ∈ y0 + U , Tx0(y) < Tx0(x0). Choose y ∈
(y0+U)∩ IK(x0), then there is λ > 0, z ∈ K with y = x0+λ(z−x0). If λ ≥ 1,
then z = 1

λy + (1 − 1
λ )x. Since Tx0

is strongly quasiconvex, Tx0
(z) < Tx0

(x0)
which contradicts (4). If λ < 1, then y = (1−λ)x0+λz ∈ K and (4) contradicts
(5).

Corollary 12 (Park). [33, Theorem 3.2, Theorem 5.7] A half-continuous weakly
inward/outward correspondence F : K ↠ E has fixed-point.

Proof. If F is weakly inward, then we can apply Theorem 35 directly. Now
assume that F is weakly outward. Define another correspondence G : K ↠ E
by G(x) = 2x − F (x), then G is half-continuous weakly inward. We conclude
by applying Theorem 35.
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Thus we can generalize the result due to Halpern and Bergman [24, Theorem
4.1], where they require that C is compact and f is continuous.

Corollary 13. If E∗ separates E, C convex weakly compact, f : C → E weakly
continuous such that for every x ∈ C, f(x) lies in the weak closure of IC(x),
then f has a fixed-point.

Proof. Apply Corollary 12 to (E, τw).

Remark 5. This corollary differs a bit from [32, Corollary 1]. Park requires
that f(x) lies in the τ -closure of IC(x), which is stronger than f(x) being in
the weak closure of IC(x). In fact, we can replace the original closure by weak
closure in all his three corollaries loc.cit. But the weak continuity of f assumed
by us is stronger than his condition: for each p ∈ E∗, {x ∈ C : p(x) < p(f(x))}
is weakly open in C.

The following corollary generalizes [16, Ch 2, §10, Exercise 4, p.93] and [32,
Corollary 3], where in both cases E is restricted to a reflexive Banach space.

Corollary 14. Let E be a locally convex semi-reflexive TVS with a nonempty
closed bounded convex subset C ⊂ E. Assume a mapping f : C → E is such
that for every x ∈ C, f(x) lies in the weak closure of IC(x). If either

• (1) the mapping f weakly continuous or

• (2) the mapping f is weakly sequentially continuous and E is metrizable,

then f has a fixed-point.

Proof. By Theorem 15, C is weakly compact. Under condition (1), we can
conclude by Corollary 13. Condition (2) implies (1) by Proposition 1.

5 Generalized half-continuity

The following result is of spirit similar to [34, Theorem, p.473].

Theorem 36 (Bich). Let K ⊂ Rn be a convex compact with nonempty interior,
f : K → K be a measurable function such that for every x ∈ K \ Fix(f), there
exist an open neighborhood U ⊂ K of x and p ∈ Rn, such that (p, f(x′)) < (p, x′)

• boundary condition: for all x′ ∈ (U ∩ ∂K) \ Fix(f) and

• inner condition: for almost everywhere (with respect to Lebesgue measure)
x′ ∈ U \ Fix(f),

then f admits a fixed-point.

Proof. Assume that f has no fixed-point. For n ≥ 1, define rn : K → [0, 1]
by rn(x) = min(1/n, d(x,Kc)). Then each rn is continuous and rn > 0 on
InteriorK. Notice that the open ball B(x, rn(x)) ⊂ K.
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For x ∈ InteriorK, r > 0 with B(x, r) ⊂ K, recall that the integral average of

f over the ball B(x, r) is given by I(f, x, r) =

∫
B(x,r)

f(y)dy

Vol(B(x,r)) . Clearly, I(Id, x, r) =

x. Given p ∈ Rn, we have that (p, I(f, x, r)) = I(pf, x, r). Moreover, if g1 < g2
almost everywhere on B(x, r), then

I(g1, x, r) < I(g2, x, r). (6)

We have I(f, x, r) ∈ K. Otherwise by Theorem 13, there is p ∈ Rn such that
(p, c) < (p, I(f, x, r)) for every c ∈ K. In particular, (p, f(y)) < (p, I(f, x, r))
for every y ∈ B(x, r), then by (6), we have p(I(f, x, r)) < p(I(f, x, r)), a con-
tradiction.

Now define fn : K → K by

fn(x) =

{
I(f, x, rn(x)), x ∈ InteriorK;

f(x), x ∈ ∂K.

By absolute continuity of integral, each fn is continuous on InteriorK. Then we
check that fn is half-continuous on K.

Indeed, fix x ∈ ∂K, recall that there is an open neighborhood U ⊂ K of
x, p ∈ Rn such that (p, f(x′)) < (p, x′) for all x′ ∈ U ∩ ∂K and for almost
everywhere x′ ∈ U . There is an open neighborhood U ′ ⊂ U of x such that for
every y ∈ U ′, B(y, d(y,Kc)) ⊂ U . The existence of such U ′ relies on x ∈ ∂K.
Fix x′ ∈ U ′, if x′ ∈ ∂K, then p(fn(x

′)) = p(f(x′)) < p(x′); if x′ ∈ InteriorK,
then B(x′, rn(x

′)) ⊂ B(x′, d(x′,Kc)) ⊂ U . So y ∈ B(x′, rn(x
′)) for almost

everywhere we have (p, f(y)) < (p, y), then by (6),

(p, fn(x
′)) = (p, I(f, x′, rn(x

′))) < (p, I(Id, x′, rn(x
′))) = p(x′).

In both cases we have p(fn(x
′)) < p(x′) which shows fn is half-continuous.

By Theorem 29, there is xn ∈ K fixed-point of fn. As K is compact, there
is x0 ∈ K such that xn → x0. Recall again that there is U0 ⊂ K open neighbor-
hood of x0 and p0 ∈ Rn such that (p0, f(x

′)) < (p0, x
′) for almost every x′ ∈ U0.

When n is large enough, we have B(xn, 1/n) ⊂ U0. Fix one such n. Then
fn(xn) = xn ̸= f(xn), so xn ∈ InteriorK and f(xn) = I(f, xn, rn(xn)). For
almost every y ∈ B(xn, rn(xn)) we have (p0, f(y)) < (p0, y), so (p0, fn(xn)) <
(p0, I(Id, xn, rn(xn))) = (p0, xn) which contradicts fn(xn) = xn.

Example 3. Recall Dirichlet function g : (0, 1) → [0, 1] is defined by

g(x) =

{
1 x ∈ Q;

0 x /∈ Q.

Take K = [0, 1]n ⊂ Rn and define f : K → K by

f(x) =

{
x, x ∈ ∂K;

(g(x1), . . . , g(xn)), x ∈ InteriorK.

Then f satisfies the condition of Theorem 36 but not half-continuous.
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Example 4. Consider K = B(0, 1) ⊂ R2 and the function f : K → K, given
by

f(x, y) =

{
(1, 0), 0 < x ≤ 1, y = 0;

(x/2, y/2), else.

Then f satisfies the condition of Theorem 36 but it is not half-continuous.
In fact, f is continuous on the subset B(0, 1) \ [0, 1]× {0}. The two ends of

the line segment [0, 1] × {0} are fixed. Let g : K → K be g(x, y) = (x/2, y/2).
Then almost everywhere f = g. For any x ∈ (0, 1), f is not half-continuous but
satisfies the condition of Theorem 36 at (x, 0).

Example 5. Consider f : [0, 1] → [0, 1] defined by f(x) = 1 when x < 1 and
f(1) = 0, then for all but one x ∈ [0, 1] we have f(x) > x. But f admits no
fixed-point. This example illustrates that the boundary condition in Theorem 36
is necessary.

We would like to raise the following question: Let K ⊂ Rn be a convex
compact of nonempty interior, f : K → K be a measurable function such that
for every x ∈ K \ Fix(f), there exist an open neighborhood U ⊂ K of x and
p ∈ Rn, such that (p, f(x′)) < (p, x′) for x′ = x and almost everywhere x′ ∈ U .
Does f necessarily admit a fixed-point?

We give another result of similar nature.

Theorem 37 (Bich). If K ⊂ E, f : K → K a mapping such that for every x ∈
K \Fix(f), there exist an open neighborhood U ⊂ K of x, a subset N ⊂ U \ ∂K
meagre in K and p ∈ E∗, such that p(f(x′)) < p(x′) for all x′ ∈ U\(N∪Fix(f)),
then f admits a fixed-point.

The following proof is due to Philippe Bich.

Proof. Assume that f has no fixed-point. Then for every x ∈ K, there exist
an open neighborhood Ux ⊂ K of x, a meagre subset Nx ⊂ Ux ∩ InteriorK
and px ∈ E∗ such that for all x′ ∈ Ux \ Nx, we have p(f(x′)) < p(x′). As K
is compact, the open cover {Ux}x∈K admits a finite subcover U1, . . . , Un with
corresponding points x1, . . . , xn, subsets N1, . . . , Nn, functions p1, . . . , pn. Take
hi given by Corollary 1. Define T : K → E∗ by

T (x) =

n∑
i=1

hi(x)pi.

By Corollary 7, there is x0 ∈ K such that

(T (x0), x0) ≤ (T (x0), x),∀x ∈ K. (7)

Put I = {1 ≤ i ≤ n : hi(x0) > 0}. Then ∩i∈IUi is an open neighborhood of x0.
On the other hand, ∪i∈INi is meagre in K. By Theorem 4, K \∪i∈INi is dense
in K and thus intersects the nonempty open ∩i∈IUi. That is

∩i∈I Ui \ ∪i∈INi ̸= ∅. (8)
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Take any x ∈ ∩i∈IUi\∪i∈INi. Then for each i ∈ I, x ∈ Ui\Ni, pi(f(x)) < pi(x)
by our assumption. Sum up, we have

∑
i∈I hi(x0)(pi, f(x)) <

∑
i∈I hi(x0)(pi, x).

That is
(T (x0), f(x)) < (T (x0), x),∀x ∈ ∩i∈IUi \ ∪i∈INi. (9)

In particular, T (x0) ̸= 0. By (7) we have x0 ∈ ∂K. In particular, x0 ∈
∩i∈IUi\∪i∈INi. By (9), we have (T (x0), f(x0)) < (T (x0), x0) which contradicts
(7). This contradiction finishes the proof.

Remark 6. As one can remark, the only use of ”meagre” assumption is to
derive the nonemptiness in (8). We can replace the adjective ”meagre” by other
properties describing how ”thin” a set is. For example, when E = Span(K) is
finite dimensional, we can use ”of zero measure” at the place of ”meagre”, and
this strategy provides an alternative proof of Theorem 36.

6 Generalization of Herings et al. theorem

Herings et al. [25] proved a fixed-point theorem for polytopes in Rn. Later,
Philippe Bich generalized it to convex compact subsets of Rn. In this section
only, we fix (E; ⟨, ⟩) an inner product space.

Definition 21. [25, Definition 2.1] A correspondence F : C ↠ E is called
locally gross direction preserving if for every x ∈ C \ Fix(F ), there exist U ⊂ C
open neighborhood of x such that for every x1, x2 ∈ U \ Fix(F ) and every y1 ∈
F (x1), y2 ∈ F (x2), we have

⟨y1 − x1, y2 − x2⟩ ≥ 0.

The following theorem generalizes the finite dimensional case in [5, Theo-
rem 3.7] to arbitrary inner product spaces.

Theorem 38. A locally gross direction preserving correspondence F : K ↠ K
admits either maximal element or fixed-point.

Proof. Assume the contrary. Since K is a compact metric space, it is separable
by Lemma 7. By Exercise 6, replacing E with Span(K), we may assume that E
is separable. Again, replacing E by its completion, we may assume E is further
complete. (These replacements do not change the topology of K.)

Check that F is half-continuous. Fix x ∈ K, take U given by Definition 21.
As a subset of E, by Lemma 7 D := {y′ − x′ : x′ ∈ U, y′ ∈ F (x′)} is separable,
so it has a countable dense subset A = {y1 − x1, y2 − x2, . . . , }. Define

p =

+∞∑
i=1

1

2i
yi − xi

|yi − xi|
,

then p ∈ E is a well-defined element since E is complete. Fix x′ ∈ U and
y′ ∈ F (x′), then ⟨p, y′ − x′⟩ ≥ 0. If it is an equality, then for every a ∈ A,
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⟨a, y′ − x′⟩ = 0, so y′ − x′ ∈ Span(A)⊥. By Exercise 6, Span(A) ⊂ Span(D)
is dense in D. Therefore y′ − x′ ∈ Span(D)⊥ ∩ Span(D), so y′ − x′ = 0, i.e.,
x′ ∈ Fix(F ), contradiction. So, we have ⟨p, y′ − x′⟩ > 0 which means F is
half-continuous at x.

Now that F is half-continuous, it contradicts Theorem 31.

Remark 7. It is stated in [39, thm 4.5] that locally gross direction preserving
is equivalent to some half-continuity, which seems false. In R2, two vectors on
the same side of a hyperplane may of negative inner product, so the last line of
the proof therein is invalid.

7 Existence of approximate fixed-points

In this section, we will demonstrate how to deduce the existence of various
approximate fixed-point via half-continuity.

Let V ⊂ E be an open neighborhood of 0. We recall some classical notions.

Definition 22 (V -fixed-point). Fix a correspondence F : C ↠ E. For U ⊂ E
an open neighborhood of 0, if a point xU ∈ C is such that there exists yU ∈ F (xU )
with xU − yU ∈ V +U , then xU is called fixed up to V +U (with respect to F ).
If for every open neighborhood U of 0, there exists a point fixed up to V + U ,
then F is said to admit a V -fixed-point.

Definition 23 (V -continuity). A correspondence F : C ↠ E is called V -
continuous, if for every U ⊂ E open neighborhood of 0, every x ∈ C not fixed
up to V +U , there exist W an open neighborhood of 0 and y0 ∈ F (x) such that
for every x′ ∈ x+W not fixed up to V +U , we have y′ − y0 ∈ V +U for every
y′ ∈ F (x′).

We compare these to [5, Definition 4.1]. When E is a normed space, F is
a mapping and V = B(0, r) is the open ball of radius r > 0, then F admits
V -fixed-point is exactly that F admits r-fixed-point. If F is r-continuous in the
sense of [10, Definition 1.2], then it is V -continuous.

The following theorem generalizes [10, Theorem 3.1] and [27, Theorem 3].
They both are valid in normed spaces. Bula’s result shows that r-continuity
guarantees existence of a 2r-fixed-point and Klee requires strong r-continuity.

Theorem 39 (Klee). If E is locally convex, V ⊂ E is a convex open neigh-
borhood of 0, and F : K ↠ K is a V -continuous correspondence, then F has a
V -fixed-point.

Proof. Assume the contrary, i.e., assume there is U ⊂ E an open neighborhood
of 0, such that there is no point fixed up to V + U . So, for every x ∈ K, every
y ∈ F (x), we have x− y /∈ V +U . Since E is locally convex, by shrinking U we
may assume U is convex. In particular, U/2 + U/2 ⊂ U and there is no point
fixed up to V + U/2.

We check that F is half-continuous. Fix x ∈ K, since F is V -continuous and
x is not fixed up to V + U/2, there exist an open neighborhood W ⊂ E of 0
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and y0 ∈ F (x) (in particular, F has no maximal element), such that for every
x′ ∈ x+W , we have y′− y0 ∈ V +U/2 for every y′ ∈ F (x′). Applying Theorem
13 to x− y0 and V +U , there is p ∈ E∗ such that p(x− y0) = 1 while for every
z ∈ V + U , p(z) < 1.

For every x′ ∈ x+ (−U
2 ∩W ) and every y′ ∈ f(x′),

y′ − y0 + x− x′ ∈ (V + U/2) + U/2 ⊂ V + U,

so p(y′ − y0 + x− x′) < 1 and

p(x′ − y′) = p(x− y0)− p(y′ − y0 + x− x′) > 0,

which shows that F is half-continuous at x.
By Theorem 29, F admits a fixed-point, contradiction.

Theorem 40. Let K ⊂ E be an n-simplex of vertices {v0, . . . , vn} and f : K →
K be a mapping. Consider g : K → E given by g(x) = f(x) − x, then there is
x0 ∈ K such that 0 ∈ co(g(U)) for every neighborhood U ⊂ K of x0.

Proof. For each N ≥ 1, we take a decomposition KN of K into Nn smaller

simplexes, each of diameter diam(K)
N . Define fN : K → K as follows: for each

vertex v of KN we let fN (v) = f(v). And then extend fN barycentrically to
K. That is, if x lies in a small simplex with vertices u0, . . . , un, we may write
barycentric coordinate of x as x =

∑n
i=0 λi(x)ui where

∑n
i=0 λi(x) = 1 and each

λi(x) ≥ 0, then let

fN (x) =

n∑
i=0

λi(x)f(ui).

In fact, fN is well-defined and continuous. (This construction is inspired by [19,
§3, Example 1].)

By Brouwer’s fixed-point theorem, there is a fixed-point xN ∈ K of fN . As
K is compact, a subsequence of {xN}N≥1 converges to some x0 ∈ K. As the
diameter of decomposition tends to 0, for every neighborhood U ⊂ K of x0,
there exist N ≥ 1, a small simplex with vertices {u0, . . . , un} of KN containing
xN and contained in U . By our construction of fN , we have

n∑
i=0

λi(xN )ui = xN = fN (xN ) =

n∑
i=0

λi(xN )f(ui).

Thus

0 =

n∑
i=0

λi(xN )g(ui).

Therefore, we find 0 ∈ cog(U).

The following result is a generalization of Eaves’ theorem in [31, §3], where
they requires x+ v(x) ∈ InteriorK for every x ∈ ∂K.
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Corollary 15 (Eaves). Let K ⊂ E be an n-simplex of vertices {v0, . . . , vn} and
v : K → E be a mapping such that for every x ∈ ∂K, we have x + v(x) ∈ K,
then there is x0 ∈ K such that 0 ∈ co(v(U)) for every neighborhood U ⊂ K of
x0.

Proof. Define f : K → K as follows. For x ∈ InteriorK, there is λx > 0 such
that x + λxv(x) ∈ K and we let f(x) = x + λxv(x). For x ∈ ∂K, we let
f(x) = x+ v(x). We conclude by Theorem 40.

Urai in [43, Theorem 18] tried to generalize Eaves’ theorem from simplex to
convex compact subsets. The generalization is based on his Lemma 17, whose
proof is false. The px in his proof may not exist. We don’t know whether his
statement is true. The following is a variant of [43, Lemma 17].

Lemma 11. Assume E is locally convex. For every mapping f : K → K, define
g(x) = f(x) − x, then there is x0 ∈ K such that every neighborhood U ⊂ K of
x0, 0 ∈ cog(U).

Proof. Otherwise, for every x ∈ K, there is an open neighborhood Ux ⊂ K of
x such that 0 /∈ cog(U). By Theorem 13, there is px ∈ E∗ such that px(z) < 0
for every z ∈ cog(U). In particular, for every x′ ∈ Ux, px(f(x

′) − x′) < 0,
so f is half-continuous. By Theorem 29, f admits a fixed-point x0 ∈ K, then
0 = g(x0), a contradiction.

Now let E be a normed space. Given a correspondence F : C ↠ E without
maximal element, we recall the measure of discontinuity introduced in [13, §2,
Definition]:

δ(F ) = sup
x∈C

lim sup
r→0

sup
x′∈B(x,r),y∈F (x),y′∈F (x′)

|y′ − y|.

If a mapping f : C → E is r-continuous in the sense of [10, Definition 1.2], then
δ(f) ≤ r. We end up with a generalization of [13, Theorem 2.1 (i)], where the
finite dimensional cases are treated. We give a proof similar to that of Theorem
39.

Theorem 41 (Cromme-Diener). Let F : K ↠ K be a correspondence without
maximal element, then there exists x0 ∈ K, y0 ∈ F (x0) such that |y0 − x0| ≤
δ(F ).

Proof. Assume the contrary. Choose any selection f : K → K of F . Clearly,
δ(f) ≤ δ(F ).

We check that f is half-continuous. Fix x ∈ K, then |f(x)−x| > δ(f). There
is a > 0 such that |f(x)− x| > δ(f) + a. By Theorem 13, there is p ∈ E∗ such
that p(x− f(x)) = 1 and p(z) < 1 for every z ∈ B(0, δ(f) + a). By definition,

δ(f) ≥ lim sup
r→0

sup
x′∈B(x,r)

|f(x′)− f(x)|,
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so there is r0 ∈ (0, a/2) such that

sup
x′∈B(x,r0)

|f(x′)− f(x)| < δ(f) + a/2.

For every x′ ∈ B(x, r0),

|x− x′ + f(x′)− f(x)| ≤ |x− x′|+ |f(x′)− f(x)| < r0 + δ(f) + a/2 < δ(f) + a.

Therefore p(x− x′ + f(x′)− f(x)) < 1 and

p(x′ − f(x′)) = p(x− f(x))− p(x− x′ + f(x′)− f(x)) > 0,

which means f is half-continuous at x.
By Theorem 29, f and hence F admits a fixed-point, a contradiction.

8 Applications to game theory

Let N be an index set. For each index i ∈ N , let Ei be a TVS and Xi ⊂ Ei

be a nonempty convex compact subset. Put E =
∏

i∈N Ei and X =
∏

i∈N Xi.
As the product of a family of TVS E is a TVS. By Tychonoff’s theorem, X is
compact. We use X−i to denote

∏
j ̸=i Xj with typical element x−i. The setting

has a natural interpretation in economy. Namely N is the set of players and
Xi is the pure strategy set for each player i ∈ N . Then X is the set of joint
strategy profiles.

Definition 24 (Qualitative Game). [41, p.101][3, §2] Assume for each player
i ∈ N there is a correspondence Pi : X ↠ Xi, called player i’s preference
correspondence, such that xi /∈ Pi(x) for every x ∈ X. Then we call G =
(Xi, Pi)i∈N a qualitative game.

Definition 25 (Nash equilibrium). A (pure strategy) Nash equilibrium of a
qualitative game G = (Xi, Pi)i∈N is a profile x̄ ∈ X such that Pi(x̄) = ∅ for all
i ∈ N .

Definition 26 (Normal Form Game). If each player i ∈ N has a payoff function
ui : X → R, then we call G = (Xi, ui)i∈N a normal form game.

A normal form game is a special case of qualitative game since ui induces a
total preorder1 ≺i onX by defining x ≺i y if ui(x) < ui(y). In that case, for each
i ∈ N , the preference correspondence is Pi(x) = {yi ∈ Xi|ui(yi, x−i) > ui(x)}.
We define the best reply correspondence Ri : X ↠ Xi of player i by

Ri(x) = {yi ∈ Xi : ui(yi, x−i) = sup
zi∈Xi

ui(zi, x−i)}.

1A preference relation (total preoder) on a set S is a binary relation ≺ satisfies the following
properties:

• Transitivity: for every x, y and z in S, if x ≺ y and y ≺ z then x ≺ z;

• Strong connectedness: for every x and y in S, x ≺ y or y ≺ x.
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Define the joint best reply correspondence R : X ↠ X by R(x) =
∏

i Ri(x).
Then a Nash equilibrium of G is exactly a fixed-point of R.

We introduce Bi : X × R ↠ Xi given by

Bi(x, a) = {yi ∈ Xi : ui(yi, x−i) ≥ a}.

Let πi : E → Ei be the projection mapping. Given a correspondence F
taking value in E, we let Fi = πi ◦ F be the projection correspondence of F
taking value in Ei. If F is convex valued, then so is Fi for each i. For brevity,
we call a correspondence “Kakutani” if it has a closed graph with nonempty
convex values.

The following theorem states the existence of an equilibrium without quasi-
convexity of payoff functions. It generalizes the result of Nishimura and Fried-
man [31, Theorem 1], since the authors assume further that

• N is finite;

• each Ei is finite dimensional;

• each payoff function ui : X → R is continuous.

Theorem 42 (Generalization of Nishimura-Friedman). Let G = (Xi, ui) be a
normal form game such that the best reply correspondence R has no maximal
element. If for every x ∈ X which is not a Nash equilibrium, there exist an
open neighborhood U ⊂ X of x and p ∈ E∗ such that for every x(1), x(2) ∈ U
which are not equilibria, for every y(1) ∈ R(x(1)), y(2) ∈ R(x(2)) we have
(p, y(1)− x(1)) · (p, y(2)− x(2)) > 0, then G admits an equilibrium.

Remark 8. Actually, their proof of Lemma 4 in [31] is false because in the
last paragraph, they only derived β = 1, which is not sufficient for concluding∑l

k=1 αkr = 1 as stated in Lemma 4. Partial problem is that their selection f
is discontinuous. This flaw renders their proof of Theorem 1 incomplete.

Proof. Assume the contrary. For every x ∈ K, take p and U as in the assump-
tion, then either p(y′−x′) > 0 for all x′ ∈ U, y′ ∈ R(x′) or −p(y′−x′) > 0 for all
x′ ∈ U , y′ ∈ R(x′). We see that R is half-continuous. But then R contradicts
Theorem 31.

We give some other existence results without continuity of payoff functions.
First some necessary mathematical preparations.

Theorem 43. Assume that for each i ∈ N , the dual E∗
i separates Ei. Let C be

a subset of X. If for every x ∈ X \C, there exist an open neighborhood Ux ⊂ X
of x and two correspondences Fx, Bx : Ux ↠ X such that:

• (1) Fx is a Kakutani correspondence;

• (2) Bx is convex valued;

• (3) for every y ∈ Ux, there is i ∈ N with yi /∈ Bx,i(y);
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• (4) for every finitely many points x(1), . . . , x(n) ∈ X \ C, every i ∈ N ,
there is 1 ≤ ji ≤ n satisfying Fx(ji),i(z) ⊂ Bx(α),i(z) for every 1 ≤ α ≤ n,
and z ∈ ∩n

α=1Ux(α).

Then C is nonempty.

Proof. Assume the contrary.
We have E∗ separates E. In fact, for every non zero v ∈ E, there is i ∈ N

such that vi ̸= 0. By assumption, there is pi ∈ E∗
i such that pi(vi) ̸= 0. Now

p = pi ◦ πi ∈ E∗ satisfies p(v) ̸= 0.
For each x ∈ X, define B′

x : Ux ↠ X by B′
x =

∏
i Bx,i. Note that Bx ⊂Ux

B′
x. By (2) B′

x is convex valued. By (3) B′
x has no fixed-point. (This is stronger

than Bx has no fixed-point.)
The open cover {Ux}x∈X of X admits a finite subcover {Uα}. By Corollary

2, there is a closed refinement {Fα}. For every x ∈ X, the index set Λ(x) :=
{α : x ∈ Fα} is nonempty. The sets Vx = ∩α:Uα∋xUα and Wx = Vx ∩∩α/∈Λ(x)F

c
α

are open neighborhoods in X of x.
For every x′ ∈ Wx, every α ∈ Λ(x′), x′ ∈ Wx ∩ Fα, so α ∈ Λ(x). We get

Λ(x′) ⊂ Λ(x). (10)

For every i ∈ N, x ∈ X, by (4) there is ji among the finitely many indices α
with x ∈ Uα such that

Fx(ji),i(z) ⊂ Bx(α),i(z) (11)

for every α with x ∈ Uα and every z ∈ ∩Vx. Then we define Hx,i : Vx ↠ Xi

by Hx,i = Fx(ji),i. By (1) Hx,i is a Kakutani correspondence. We may rewrite
(11) as

Hx,i ⊂Vx
Bx(α),i (12)

for every α with x ∈ Uα.
For every x ∈ X we define Hx : Vx ↠ X by Hx =

∏
i∈N Hx,i. Then (12)

gives
Hx ⊂Vx

B′
x(α) (13)

for every α with x ∈ Uα. By Exercise 10, Hx is a Kakutani correspondence.
The open cover {Wx}x∈X of X admits a finite subcover {Wβ} with corre-

sponding points x(β) and correspondences Hβ : Vβ ↠ X. Take functions hβ

given by Corollary 1. We define H : X ↠ X by H(x) =
∑

β hβ(x)Hβ(x), then
by Exercise 11 and [14, Theorem 17.32], H is a Kakutani correspondence.

For every x ∈ X, every α ∈ Λ(x), every β with hβ(x) > 0, we have x ∈
Wβ ⊂ Vβ , so by (10) α ∈ Λ(x) ⊂ Λ(x(β)), then x(β) ∈ Fα ⊂ Uα. By (13) we
have Hβ(x) ⊂ B′

x(α)(x). The latter is convex, so

H(x) ⊂ B′
x(α)(x). (14)

Recall that E∗ separates E. By Theorem 33, H has a fixed-point x0 ∈ X.
Recall that Λ(x0) is nonempty. Take every α ∈ Λ(x0), then by (14) x0 ∈
H(x0) ⊂ B′

α(x0), a contradiction.
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The reader can see that the only use of the dual separation assumption is
the application of Theorem 33. With this observation the following variant is
immediate.

Theorem 44. If for every x ∈ X \C, there exist an open neighborhood Ux ⊂ X
of x, a finite dimensional subspace E(x) ⊂ E and two correspondences Bx :
Ux ↠ X and Fx : Ux ↠ X ∩ E(x) such that:

• (1) Fx is a Kakutani correspondence;

• (2) Bx is convex valued;

• (3) for every y ∈ Ux, there is i ∈ N with y(i) /∈ Bx,i(y);

• (4) for every finitely many points x(1), . . . , x(n) ∈ X \ C, every i ∈ N ,
there is 1 ≤ ji ≤ n satisfying Fx(ji),i(z) ⊂ Bx(α),i(z) for every 1 ≤ α ≤ n,
and z ∈ ∩n

α=1Ux(α).

Then C is nonempty.

Proof. Repeat last proof. We only indicate the difference. Note thatH : X ↠ X
takes value in a finite dimensional subspace E′ ⊂ E. Then by Theorem 33,
H : X ∩ E′ ↠ X ∩ E′ has a fixed-point.

We derive three results concerning existence of equilibria without continuity
of payoff functions. The first is a generalization of [2, Theorem 2.2], in the sense
that

• we allow infinitely many players;

• the ambient spaces are more general than locally convex ones;

• the payoff functions ui : X → R are not restricted to be bounded.

Corollary 16 (Generalization of Barelli-Meneghel). Assume each E∗
i separates

Ei. Let G = (Xi, ui) be a normal form game. If for every x ∈ X not equilibrium,
there exist αx ∈ RN , an open neighborhood Ux ⊂ X of x and a Kakutani
correspondence Fx : Ux ↠ X such that

• (a) Fx,i(y) ⊂ Bi(y, αx,i) for all i ∈ N , y ∈ Ux;

• (b) for each y ∈ Ux, there is i ∈ N with y(i) /∈ coBi(y, αx,i).

Then G has pure strategy Nash equilibrium.

Proof. Let C ⊂ X be the set of pure strategy Nash equilibrium. We are going
to apply Theorem 43. Our assumption gives condition (1). Define Bx : X ↠ X
by Bx(y) =

∏
i coBi(y, αx,i). Then (2) is verified and (b) becomes condition

(3).
Check (4). For every x(1), . . . , x(n) ∈ X \C, every i ∈ N , there is 1 ≤ ji ≤ n

with αx(ji),i = max1≤j≤n αx(j),i. Then for every 1 ≤ j ≤ N and every z ∈
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Ux(ji), we have αx(j),i ≤ αx(ji),i, so Bx(j),i(z) ⊃ Bi(z, αx(j),i) ⊃ Bi(z, αx(ji),i) ⊃
Fx(ji),i(z), where the last inclusion is provided by (a).

Now that all conditions are verified, we conclude by applying Theorem 43.

Remark 9. Although the authors don’t require that Fx is convex valued and
they emphasize this point after their Definition 2.3, their weak assumption makes
their proof wrong. In fact, their Φ on [2, p.823] is not compact-valued in general,
as shown in [14, Example 5.34].

The following generalizes [30, Theorem 3.4]. Strictly speaking, the authors
do not assume that each Ei is Hausdorff while we need it. Nevertheless, as Reny
acknowledges, this mathematical refinement has not found any known economic
applications yet.

We recall some terminology following [30, §3]. Fix a normal form game G =
(Xi, ui). For each i ∈ N , fix a correspondence Xi : X ↠ Xi, let X =

∏
i Xi and

call it a restriction operator. For each i ∈ N , we define BX ,i, CX ,i : X×R ↠ Xi

by

BX ,i(x, a) = {yi ∈ Xi(x) : ui(yi, x−i) ≥ a} (15)

CX ,i(x, a) = co(BX ,i(x, a)). (16)

When we take X = Id, then BX ,i(x, a) = Bi(x, a).

Corollary 17 (Generalization of McLennan-Monteiro-Tourky). Let G = (Xi, ui)
be a normal form game. Assume for every x ∈ X not equilibrium, there is
open neighborhood Ux ⊂ X of x, a finite dimensional subspace E(x) ⊂ E and
αx ∈ RN such that

• (a) there is a Kakutani correspondence Fx : Ux ↠ X ∩ E(x);

• (b) Fx,i(z) ⊂ CX ,i(z, αx,i) for all z ∈ Ux, i ∈ N ;

• (c) for every z ∈ Ux, there is i ∈ N such that zi /∈ CX ,i(z, αx,i).

Then G has a equilibrium.

Proof. The proof is parallel to that of Corollary 16 except that we apply Theo-
rem 44 at the place of Theorem 43.

Remark 10. There is a subtle minor point. In [30, Definition 3.1-3.3], at the
place of our (a,b) their original assumption is the following:

• (d) there is a finite cover C1, . . . , CJ(x) of Ux, each closed in Ux such
that for each 1 ≤ j ≤ J(x), there is y(x, j) ∈ X such that y(x, j)i ∈
BX ,i(z, αx,i) for all z ∈ Cj.

Given (d), we define Fx : Ux ↠ X by Fx(z) = co(y(j)|z ∈ Fj) then F takes
value in a finite dimensional subspace Ex = Span(y(1), . . . , y(J(x))). For every
z ∈ Ux, i ∈ N , we have Fx,i(z) ⊂ CX ,i(z, αx,i). By Exercise 9 Fx : Ux ↠ X has
closed graph so it is a Kakutani correspondence. Therefore their (d) implies our
(a,b).
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In [49] the following result is proved by reducing to games with finitely many
players.

Corollary 18 (Debreu, Glicksberg, Fan). [49, Theorem 3.1][15, Theorem 1] Let
G = (Xi, ui) be a normal form game. Assume for every i ∈ N , ui is continuous
and ui(·, x−i) is quasiconcave on Xi for every x−i ∈ X−i. Then there exists a
Nash equilibrium.

Proof. We are going to apply Corollary 17. Take the restriction operator X =
Id. For every x ∈ X not equilibrium, there exist ix ∈ N and yix ∈ Xix such that
ui(yix , x−ix) > ui(x). We choose αx,ix = 1

2 (ui(yix , x−ix) + ui(x)). For other
index i ̸= ix, we choose

αx,i = min
z∈X

ui(x). (17)

Sine uix is continuous, there is an open neighborhood Ux ⊂ X of x such that

uix(yix , z−ix) > αx,ix > ui(z). (18)

Define mapping Fx : Ux → X of constant value (yix , x−ix).
Clearly Fx verifies (a). We check (b). If i = ix, then Fix(z) = yix ∈

Bix(z, αx,ix) by (18). If i ̸= ix, then Fx,i(z) = xi ∈ Bi(z, αx,i) by (17).
Since ui(·, z−i) is quasiconcave, each Bi(z, a) is convex. By (18), we have
zix /∈ Bixz, αx,ix) hence (c). Now we can conclude by Corollary 17.

We also generalize [3, Theorem 2.2].

Theorem 45 (Generalization of Barelli-Soza). Assume each E∗
i separates Ei.

Let G = (Xi, Pi) be a qualitative game. For each i ∈ N , fix a convex valued
correspondence Bi : X ↠ Xi. Assume that for every x ∈ X not equilibrium,
there exist an open neighborhood Ux ⊂ X of x, a Kakutani correspondence
Fx : Ux ↠ X and a player ix ∈ N such that

• (a) for every z ∈ X with x ∈ Uz, we have Fz,ix(x) ⊂ Bix(x);

• (b) xix /∈ Bix(x).

Then there exists an equilibrium.

Proof. Assume the contrary. The open cover {Ux}x∈X admits a finite subcover
{Uα} with corresponding correspondence Fα : Uα ↠ X. Take functions hα

given by Corollary 1. Define F : X ↠ X by

F (x) =
∑
α

hα(x)Fα(x).

By Exercise 11 and [14, Theorem 17.32] F is a Kakutani correspondence.
By (a) for every x ∈ X, there is ix ∈ N such that for every α with hα(x) > 0,

x ∈ Uα, so Fα,ix(x) ⊂ Bix(x). The latter is convex valued, so

Fix(x) ⊂
∑
α

hα(x)Fα,ix(x) ⊂ Bix(x).

By (b), x /∈ F (x). But F has a fixed-point by Theorem 33, a contradiction.
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Note that Corollary 16 and 17, Theorem 45 all three of them are generaliza-
tions of the well-known result due to Reny [35, Theorem 3.1]. We end up with
another existence result in qualitative games.

Theorem 46 (Toussaint). Let G = (Xi, Pi) be a qualitative game such that for
every i ∈ N , {x ∈ X|Pi(x) ̸= ∅} is open in X. Assume that for every i ∈ N
and every x ∈ X not equilibrium, there exist U ⊂ X open neighborhood of x
and a correspondence of open preimages Qi : U ↠ Xi such that Pi ⊂U Qi and
x′
i /∈ co(Qi(x

′)) for every x′ ∈ U . Then there exists an equilibrium.

Proof. Assume the contrary. For every x ∈ X let I(x) = {i ∈ N : Pi(x) ̸= ∅}.
By our assumption I(x) is non empty. Define a correspondence F : X ↠ X by

F (x) =
∏

i∈I(x)

Pi(x)
∏

j /∈I(x)

Xj .

Then F has no maximal element. For every x ∈ X, take one ix ∈ I(x). Then
Vx := {y ∈ X|Pix(y) ̸= ∅} is an open neighborhood of x. By assumption, there
is another open neighborhood Ux of x and a correspondence Qix : Ux ↠ Xix of
open preimages such that Pix ⊂Ux

Qix and x′
ix

/∈ co(Qix(x
′)) for every x′ ∈ Ux.

Then Wx = Ux ∩ Vx is an open neighborhood of x. Define a correspondence
Gx : Wx ↠ X by Gx(z) = co(Qix(z))

∏
j ̸=ix

Xj , then Gx is convex valued
without fixed point and F ⊂Wx

Gx. By Theorem 22, F admits a maximal
element, a contradiction.

Remark 11. If for every i ∈ N , Pi is of open preimages and for every x ∈ X,
Pi(x) is convex and xi /∈ Pi(x), then for each x we may take U = X and
Qi = Pi. Then Theorem 46 reduces to [49, Theorem 3.2]. If each Pi is KF
majorized in the sense of [41], for each x ∈ X we may take (U,Qi) to be its
local KF majorant and then we recover [41, Theorem 2.4].
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[17] JA Dieudonné. Une généralisation des espaces compacts. J. Math. Pures.
Appl., 23:65–76, 1944.

[18] Xie Ping Ding, Won Kyu Kim, and Kok-Keong Tan. A selection theo-
rem and its applications. Bulletin of the Australian Mathematical Society,
46(2):205–212, 1992.

[19] B. Curtis Eaves. Properly labeled simplexes. In Studies in Optimization,
volume 10, pages 71–93. The Mathematical Association of America, 1974.

[20] Robert E Edwards. Functional analysis: theory and applications. Courier
Corporation, 2012.

42



[21] Mohamed Ennassik and Mohamed Aziz Taoudi. On the conjecture of
Schauder. Journal of Fixed Point Theory and Applications, 23(4):1–15,
2021.

[22] Takao Fujimoto. Fixed point theorems for discontinuous maps on a non-
convex domain. Metroeconomica, 64(3):547–572, 2013.

[23] Theodore W Gamelin and Robert Everist Greene. Introduction to topology.
Courier Corporation, 1999.

[24] Benjamin R Halpern and George M Bergman. A fixed-point theorem for
inward and outward maps. Transactions of the American Mathematical
Society, 130(2):353–358, 1968.

[25] P Jean-Jacques Herings, Gerard Van Der Laan, Dolf Talman, and Zaifu
Yang. A fixed point theorem for discontinuous functions. Operations Re-
search Letters, 36(1):89–93, 2008.

[26] G. Isac. On Rothe’s fixed point theorem in general topological vector space.
An. St. Univ. Ovidius Constanta, 12(2):127–134, 2004.

[27] Victor Klee. Stability of the fixed-point property. In Colloquium Mathe-
maticum, volume 1, pages 43–46, 1961.

[28] Jinlu Li. The fixed point property of quasi-point-separable topological
vector spaces. arXiv preprint arXiv:2201.00425, 2022.

[29] R Daniel Mauldin. The Scottish Book, volume 4. Springer, 1981.

[30] Andrew McLennan, Paulo K Monteiro, and Rabee Tourky. Games with
discontinuous payoffs: a strengthening of Reny’s existence theorem. Econo-
metrica, 79(5):1643–1664, 2011.

[31] Kazuo Nishimura and James Friedman. Existence of Nash equilibrium in
n person games without quasi-concavity. International Economic Review,
pages 637–648, 1981.

[32] Sehie Park. A generalization of the Brouwer fixed point theorem. Bull.
Korean Math. Soc, 28(1):33–37, 1991.

[33] Sehie Park. A unified generalization of the Brouwer fixed point theorem.
Journal of Fixed Point Theory, 2020. Article ID 5.

[34] T Parthasarathy. On games over the unit square. SIAM Journal on Applied
Mathematics, 19(2):473–476, 1970.

[35] Philip J Reny. On the existence of pure and mixed strategy Nash equilibria
in discontinuous games. Econometrica, 67(5):1029–1056, 1999.

[36] Erich Rothe. Zur Theorie der topologischen Ordnung und der Vektorfelder
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