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Abstract

Every year, wildfires accentuated by global warming, cause economic
and ecological losses, and often, human casualties. Increasing opera-
tional capacity of firefighter crews is of utmost importance to better
face the forest fire period that yearly occurs. In this study, we inves-
tigate the real-world firefighters timetabling problem of the INFOCA
institution, Andalusia (Spain). The main issue is to achieve maximum
operational capability while taking into account work regulation con-
straints. This paper proposes an Integer Linear Programming (ILP)
formulation that makes it feasible to solve small/medium instances
to optimality. We put forward a matheuristic (ILPH) based on the
ILP formulation, and we obtain solutions for larger instances. We pro-
pose an Adaptive Large Neighbourhood Search metaheuristic (ALNS)
to obtain better results for larger instances and we use a version of
the ILPH as one of the constructive methods. The ALNS obtains
all the optimal solutions found by the ILP on small instances. It
yields better solutions than the ILPH matheuristic on larger instances
within shorter processing times. We report on experiments performed
on datasets generated using real-world data of the INFOCA insti-
tution. The work was initiated as part of the GEO-SAFE project∗.

Keywords: Timetabling, Firefighters, ILP, Matheuristic, Adaptive Large
Neighborhood Search

∗ https://geosafe.lessonsonfire.eu/
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1 Introduction

In this study, we consider the FireFighters Timetabling Problem (FFTP) of
the INFOCA institution in Andalusia (Spain) whose mission is to fight against
forest fires. We are given a number of firefighter crews, types of shifts and
demands for these daily working shifts over a planning horizon. The objective
is to build a schedule for every crew of firefighters, hence a full timetable
for the forest fire period where wildfires yearly occur. Unfortunately, today’s
planning horizon is set to be broadened as a result of global warming, further
motivating the need for an effective planning solution.

The members of a crew use to face wildfires under extreme conditions.
Mutual confidence is the keystone of a firefighter crew, each crew member has
as his/her first responsibility the live of the other members. The members of a
firefighter crew are stable over the forest fire period, they use to train together
to strengthens the crew cohesion.

The firefighter crews can be assigned to six different types of shifts (e.g.
helicopter work, night work, or work on demand). There are different time
slots and durations. Moreover, we need to fairly assign rest days and addi-
tional compensation days, granted when a number of hours have been worked.
The overall operational capacity has to be ensured while strictly respecting
the minimum demands and the regulatory constraints imposed by the insti-
tution. These relate to forbidden shift successions, maximum workload over
the planning period, compensation days to be granted and maximum num-
ber of consecutive working days. Constraints of good practice have also to be
considered to make the timetable adequate for the crews. These relate to the
grouping of assignments for a same type of shift within consecutive days (or
shifts starting at the same time) or the allocation of compensation days after
rest days. For the sake of fairness, the workload should also be balanced over
the planning period, both in term of numbers of assignments on the types of
shifts and in term of working time differences since not all the types of working
shifts have the same duration.

The minimum demands ensure a minimum overall capacity over the forest
fire period. However, if there exists a room for improvement while respecting
all of the strict constraints expressed, the institution wishes to balance the
extra assignments over the types of shift. For a day, it would be preferable to
balance the operational capacity over the types of shift rather than assigning
all the crews that can be mobilized above the minimum demands on a unique
type of shift.

To the best of our knowledge, the timetabling problem of firefighter crews
for institutions whose mission is to fight against forest fires has not been yet
studied in the literature. Due to climate change, the forest fire period increases
and forest fire grows in number and intensity. Increasing the operational capac-
ity of firefighter crews is likely to become an issue. One way to do this is to
build better crew plannings by taking into account work regulation constraints
but also good practice constraints to ensure fairness. The contributions of this
work are summarized as follows:
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• first, we propose an Integer Linear Programming model for the FireFighters
Timetabling Problem (FFTP) that we address. The ILP is designed for
modeling purposes and with the aim of obtaining good quality solutions for
some instances to be used as reference solutions. However, ILP solvers may
face difficulties in attaining feasible solutions within reasonable processing
times;

• second, we use the ILP as a basis to put forward a matheuristic. We propose
three neighborhoods to make the solver working on subproblems with the
aim of obtaining feasible solutions for all of the instances within reasonable
processing time. We propose to explore the search space using a variable
neighborhood descent (VND) approach based on the three neighborhoods;

• third, we propose an Adaptive Large Neighbourhood Search metaheuristic
(ALNS) to investigate a second solution approach. We conduct preliminary
experiments to tune the parameters of the components of the ALNS. We
make use of a version of the matheuristic as one of the construction method.
We investigate the contribution of components of the ALNS.

• finally, we show that the ALNS solution approach obtains all of the optimal
solutions that can be attained by the ILP, and better solutions than those
of matheuristic are obtained within shorter processing time. As such, it
can serve as a good basis to improve the operational capacity of firefighter
institutions over the forest fire period.

The remainder of this paper is organized as follows. In Section 2 an overview
of related work on personnel scheduling problems is presented. Section 3
presents the constraints and the parameters of the FireFighters Timetabling
Problem that we address. Section 4 presents the ILP that we use to provide a
formal model, and Section 5 describes the ILPH matheuristic we put forward
based on the ILP model. The ALNS that we propose to address the problem
we face here is described in Section 6 and several components are explained in
detail. The computational experiments are reported and commented in Section
7 and the effectiveness of components of the ALNS is displayed. The conclusion
and perspectives for further research direction are to be found in Section 8.

2 Related work

In a wide range of situations like health care, protection services, railways or
warehouse, employees or crews are required to work in different shifts to cover
demands. Thus, many different versions of Personnel Scheduling Problems
(PSP) have been described in the literature. In the reviews, hundred of papers
addressing different kinds of problems are classified (Afshar-Nadjafi (2021);
Brucker et al. (2011); Burke et al. (2004); De Bruecker et al. (2015); Ernst et al.
(2004a,0); Heil et al. (2020); Qin et al. (2015); Van den Bergh et al. (2013)).

Usually, in the literature, cyclic cases are distinguished from acyclic cases.
For example, in the cyclical case, a one-week schedule must be set initially and
identically repeated over the planning horizon. In the acyclic case, the plan-
ning must be directly constructed by considering all the planning horizon. The
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choice of considering a cyclic or acyclic schedule depends on the specifications
of the problem. The addressed FFTP in this paper is acyclic, since it is all
the planning horizon of several months of the forest fires period must be con-
sidered. The INFOCA institution prefer to have acyclic schedules in order to
have more flexibility and a better schedule considering its specific constraints.
For example, firefighter crews preferences are specified for all the days of the
planning horizon and cannot be cyclic. Also, compensation days assignments
differ over the planning horizon since the firefighter crews must work in order
to accumulate compensation days, and this constraint made the addressed
problem acyclic.

Some of PSP have received most attention because of publicly available
datasets that can be used to compare search methods (Curtois (2014); Fages
and Lapègue (2014); Krishnamoorthy et al. (2012); Lapègue et al. (2013); Smet
et al. (2014)). For instance, the shift minimization personnel task schedul-
ing problem (SMPTSP) consists in assigning tasks to multi-skilled employees,
tasks need to be assigned to shifts that are already predefined with the aim
to minimize the total number of assigned employees. Equity objective and the
scheduling of breaks may also be considered as for the Shift Design and Per-
sonnel Task Scheduling Problem with Equity objective (SDPTSP-E) defined
in Lapègue et al. (2013).

Table 1 presents a synthetic overview of some recent works on acyclic
problems.

Table 1 Related studies on acyclic personnel/crew scheduling problems.

No. Literature Problem characteristics Optimization method

Skill Shift Task P/C H Data Obj

1 Guerriero and Guido (2022) ✓ ✓ P 1w RD MO/SO MO EA: MIP

2 Zucchi et al. (2021) ✓ ✓ P 2w RD SO EA: MIP

3 Chandrasekharan et al. (2021) ✓ ✓ ✓ P 1d LB SO MA

4 Kletzander and Musliu (2020) ✓ ✓ ✓ P 2-52w LB SO MH: SA

5 Porto et al. (2019) ✓ ✓ P 1w RD SO EA: MIP

6 Tadumadze et al. (2019) ✓ P 1d RD SO EA: MIP H

7 Hoffmann and Buscher (2019) ✓ ✓ C 1d RD SO EA: ILP

8 Demirović et al. (2019) ✓ P 1-52w LB SO MO MaxSat

9 Hojati (2018) ✓ ✓ ✓ P 1d LB SO H:G

10 Pour et al. (2018) ✓ ✓ C 10-40d RD SO EA: CP MIP

our ✓ C 135d RD SO EA: ILP MA MH: ALNS

Note :

- Skill, Shift, Task, P/C(Person, Crew), H(Horizon, week/day).
- Data: RD(Real Data), LB(Literature Benchmark).
- Obj: SO(Single-Objective), MO(Multi-Objective).
- Optimization method: EA(Exact Algorithm), H(Heuristics), MA(Matheuristic),

MH(Metaheuristics), MO(Model).
- G(Greedy), CP(Constraint Programming), ILP(Integer Linear Programming),

MIP(Mixed Integer Program), ALNS(Adaptive Large Neighborhood Search).

Guerriero and Guido (2022) proposed models to address staff scheduling
problems by taking into consideration new criteria involved by the Covid-
19 pandemic situation. The initial model aims at optimizing on-site and
remotely work days, considering constraints as limitation of office capacities.
The authors next proposed derived MIP models to investigate scenarios. To
optimize the criteria associated with a scenario, the implemented MIP model
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makes use of a sum of weighted terms. Computational results are obtained
using real data of a department of the University of Calabria (Italy).

Zucchi et al. (2021) also investigate staff scheduling problems during
Covid-19 pandemic for a company that provides pharmaceutical products to
hospitals. The objective is to minimize the sum of the deviations from the
contractual amount of working hours of each worker. The authors proposed a
MIP formulation with constraints that aim at limiting a contagion risk which
is estimated using a network of relationships between employees.

Chandrasekharan et al. (2021) proposed a constructive matheuristic
(CMH) to address SMPTSP based on decomposition where sub-problems are
solved to optimality using integer programming. An employee-based decom-
position and a time-based decomposition are proposed. Based on this later,
an automatic time-based constructive matheuristic is derived. The automatic
time-based CMH proved to be efficient, high quality solutions over all datasets
are obtained and for some instances new optimal solutions are attained.

Kletzander and Musliu (2020) proposed a framework to solve the general
employee scheduling problem using simulated annealing (SA). Different prob-
lems from literature that cover different types of demand and constraints are
investigated. All the hard constraint violations are penalized by using a spe-
cific hard constraint weight provider which has been used to tune the weights
for each data set. The authors implemented a set of moves in the general
framework. The approach obtained good results against tailored algorithms.

Porto et al. (2019) evaluated the potential benefits of incorporating labor
flexibility into personnel scheduling in a retail store context. The objective
is to minimize the levels of over and understaffing considering a multiskilled
workforce that has flexible contract to achieve cost-effective operations. The
authors proposed a MIP model and investigated scenarios for evaluating
several strategies on human resource management.

Tadumadze et al. (2019) investigated mixed-integer models for integrating
workforce planning and truck scheduling. The problem is similar to multi-mode
RCPSP with additional constraints involved by a truck distribution center (e.g.
cross-docking), moreover truck-related objectives are specific. The authors also
proposed a formulation based on interval scheduling, next investigated heuris-
tics for interval selection. Three alternative workforce planning approaches for
different settings and scenarios are compared.

Hoffmann and Buscher (2019) studied a railway crew scheduling problem
with attendance rates. The aim is to find a minimum cost shift schedule satisfy-
ing operating conditions and taking into account work regulation constraints.
The authors proposed an arc flow ILP model and valid inequalities. Small-
sized instances are solved to optimally, valid inequalities proved to be effective
to speed-up the solution process and improved the bounds.

Demirović et al. (2019) investigated modeling based on weighted partial
boolean maximum satisfiability (maxSAT) problems for the PSP variants
introduced by Curtois (2014). A comparison of different cardinality constraint
encodings is performed to show their applicability. Optimal solutions are
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obtained for two of the instances and obtained solutions for two very large
instances. The results for many instances are currently not competitive when
compared to tailored solution approaches based on ILP.

Hojati (2018) proposed a greedy heuristic solution method for the
SMPTSP. A reduced problem is solved iteratively by selecting the best possible
assignment of tasks to one worker. At each iteration, the worker with maxi-
mum objective value is chosen. For very large instances, the proposed Greedy
heuristic method performs very well compared to other solution approaches
that require a commercial ILP Solver.

Pour et al. (2018) addressed a preventive signal maintenance crew schedul-
ing problem (Danish railway). The authors proposed a MIP model, a
Constraint Optimization Problem (COP) model, and a hybrid CP/MIP solu-
tion approach. The hybridization of CP to build an initial solution for
warm-starting the MIP obtained the best results.

After presenting recent works on PSP addressed in the literature, we move
on to discussing the techniques employed for their solution. Table 1 shows that
many different search methods have been applied, ranging from exact meth-
ods, matheuristics, heuristics, metaheuristics, and hybrid techniques. Exact
methods are able to find optimal solution for small and medium size instances
but may face difficulty in obtaining solution for larger instances within reason-
able processing time. Matheuristics can help with this problem according to
the characteristics of the problem. However, in some cases, heuristics or meta-
heuristics approaches are need to obtain solutions of good quality for larger
instance.

There are a large variety of PSP, ranging from well defined problems, on
the basis on real problems, for which data sets are publicly available, to specific
ones that are addressed to respond to a need. The problem we are dealing with
correspond to this latter case.

In our problem, a crew can be viewed as a super employee composed of peo-
ple with multiple highly specialized skills. These people constitute an extremely
welded unit, trained to have group automations to be effective in extreme situ-
ations. The number of crew is fixed and not to be minimized. On the contrary,
the purposes are to increase operational capacity while considering a limited
number of crew, to maintain equity between crews and to make possible the
grouping of day-off when feasible.

3 Problem definition

Firefighters do dangerous and difficult work, the institution aims to increase
operational capacity but at the same time wants to respect as much as possible
the preferences they express and all of the soft constraints that aim to build a
fair timetable.

A formal definition of the addressed FFTP problem can be set as follows:
we consider a set of crews C, a set of shifts S, a set of days D, a set of hard
constraints HD and a set of soft constraints SC. The problem consists in



Effective ALNS for a firefighters timetabling problem 7

producing an assignation for each crew c ∈ C to a shift s ∈ S for each day
d ∈ D while satisfying all the hard constraints hd ∈ HD and minimizing the
soft constraints violations sc ∈ SC.

We give the set of daily working shifts to be considered, we introduce the
hard constraints to be respected and the soft constraints used to assess the
quality of a solution. The notation used for the types of shifts are as follows:

(T12) from 8 am to 4 pm at fire station, regular daily shift;
(T16) from 3 pm to 10 pm at fire station, regular daily shift;
(H) from 8 am to 4 pm at fire station, regular daily shift, assigned to a
helicopter;
(N) from 10 pm to 8 am at fire station, regular night shift;
(G7) from 7 am to 3 pm at fire station, stand-by to face instantly any extra
urgent request;
(G24) 24h guard, crew stay at home but may be mobilized to face any urgent
situation;
(A3) from 8 am to 6 pm at fire station (or elsewhere) for training purposes;
(R) rest day;
(C) additional compensation day granted when a number of hours have been
worked.

The hard constraints that relate to work regulation and to local regulation
of the INFOCA institution are as follows:

(H1) one shift a day: a firefighter crew can only be assigned to one shift a
day;
(H2) minimum demands: each daily shift has a minimum demand of
firefighter crews;
(H3) forbidden shift successions: some shift assignments on consecutive
days are forbidden;
(H4) maximum workload: over the planning horizon, a maximum workload
for every crew should not be exceeded;
(H5) compensation: compensation days are granted according to the hours
worked, they should be used;
(H6) maximum consecutive working days: every firefighter crew has a
maximum number of consecutive working days.

Some consecutive shift assignments are forbidden for a crew, for instance a
night shift (N) ends at 8 am and cannot be followed by any shift which begins
at 8 am.

Figure 1 shows a representative example with six crews (C1 to C6), three
types of shift and a minimum demand of one for each type of shift. The types
of shift are T12 (vertical hatch), T16 (diagonal hatch) and N (black). The
forbidden shift successions are (N, T12) and (N, T16). Figure 1 depicts a part
of the timetable computed using the BuildFeasibleSchedule() heuristic we
present in Section 6.
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Fig. 1 A representative example with six crews and three types of shift.

Soft constraints are constraints of good practice that should be satisfied
as best as possible. The violation of any soft constraint induces a penalty. A
weighted sum of the penalties measures the quality of the solution produced.
For the studied firefighters timetabling problem, the soft constraints are the
following:

(S1) shift grouping: assignments of a crew to the same shift should be
grouped. Each shift assignment change between two consecutive days is
penalized;
(S2) same start time: start times should be the same whatever the working
shifts over consecutive working days. Each starting time change for working
shifts between two consecutive days is penalized;
(S3) compensation assignments: compensation day assignments should be
right after the rest days, the aim is to allow firefighters to have a short vacation
during the planning period. Each assignment of compensation not right after
rest days is penalized.
(S4) period fairness: for the sake of fairness the workload should be bal-
anced between the crews over the planning period. The unbalance of workload
between crews should be minimized;
(S5) preferences: each crew assignment to an undesired shift is penalized;
(S6) evenly balance extra daily shifts: assigning of extra crews to the
different types of shifts should be balanced each day. The unbalance on extra
assignment to different shifts should be minimized each day.

The increase of overall operational capacity may not be obtained at the
expense of what is considered as a good timetable by the crews. The shift
grouping (S1) and the same start time (S2) are soft constraints that aim at
produce a more regular timetable for a crew.

The compensation (H5) hard constraint and the maximum consecutive
working days (H6) hard constraint are institutional one’s, the later enforces the
rest days (R). Since compensation days (C) are to be granted, the compensa-
tion assignment (S3) soft constraints aims at grouping the compensation days
right after the rest days, that makes it possible to obtain larger off-periods.

The period fairness (S4) soft constraint relates to equity both in the amount
of hours worked and to equity in the number of working shifts that are assigned.
These concerns have to be faced by the institution to be equally fair with all
of the crews.
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Although they are trained to perform any shift, some crews can express
preferences, this is the soft constraint preference (S5). This is important for
the institution to take (S5) into consideration.

Provided the minimum demand (H2) is respected, the idea beyond (S6) is
to ensure a balance between shift assignments. If we can assign three extra
crews in a day, it is preferable to assign the crews to three different types of
shifts rather than assigning the three crews to a same type of shift.

This makes it possible to refine the quality of the solution by better spread
crews over the types of shift.

The main goal is the increase of overall operational capacity over the forest
fire period while providing to crews fair and good timetables.

4 ILP model for FFTP

In this section we present the ILP model for minimizing the criteria we detailed
in Section 3. We first introduce data and parameters that correspond to the
description of the problem, then the main decision variables that we use to
check the hard constraints (H1)-(H6). Next, we introduce data, parameters
and variables we use to assess the soft constraints.

Data and parameters:

C set of firefighter crews, size nc;
D set of days of the planning period, a day d ∈ [1, · · · , nd], size nd;
D− set of days of the planning period, except the last day nd;
S set of types of shifts, {T12, T16, H, N, G7, G24, A3, R, C}, size ns;
Sw set of types of working shifts, {T12, T16, H, N, G7, G24, A3}, size nw;
F set of couples of forbidden consecutive shift assignments, e.g. (N,H) ∈ F ;
rs daily minimum demand for a working shift s ∈ Sw;
ls duration of shift s (length in hours);
L maximum workload for any crew over the planning period;
MAXd maximum number of consecutive work days for a crew (see H6);
WHC number of worked hours giving a compensation day.

The primary boolean and integer decision variables are as follows:

• Xcsd ∈ {0, 1}, one if crew c works on shift s in day d, zero otherwise;
• ρcd ∈ N number of worked hours of crew c from the first day to day d.

Compensation days are granted using ρcd integer variables.

Data and parameters that relate to soft constraints are as follows:

ts start time of shift s;
pcsd = 1 if crew c does not prefer to work on shift s on day d, zero otherwise.

The main objective is to increase overall operational capacity while mini-
mizing the soft constraints violations. We introduce first the variables we used
to assess the operational capacity and those we use to assess the (S1)-(S3) soft
constraints violations:
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• λd ∈ {0, · · · , nc}, for a day d, the difference between the maximum number
of assignable crew (nc) to working shifts Sw and those assigned;

• αcd ∈ {0, 1}, one if crew c works on shift s in day d and works on a different
shift s′ in day d+ 1, zero otherwise (see S1, shift grouping);

• βcd ∈ {0, 1}, one if crew c works on shift s in day d and works on a different
shift s′ in day d+ 1 with ts ̸= ts′ , zero otherwise (see S2, same start time) ;

• γcd ∈ {0, 1}, one if the crew c works on shift s in day d with s ̸= R and is
assigned to shift s′ = C in day d+ 1, zero otherwise (see S3, compensation
assignment).

At most nc crews per day can be assigned to working shifts Sw. Hence,
minimizing the sum of the λd is the same as maximizing the overall operational
capacity all over the horizon.

The equity concern relates to fairness in the amount of hours worked and
to fairness in the number of working shifts that are assigned (see S4, period
fairness). For a crew c, we introduce integer variables as follows:

• θc ∈ N, total working time of crew c over the planning period;
• δc ∈ N, total number of worked shifts for crew c over the planning period.

We introduce the last integer variables as follows:

• ϕcc′ ∈ N, number of shift assignment difference between the crews c and c′;
• φcc′ ∈ N, working time difference between the crews c and c′;
• ψss′ ∈ N, unbalance of assignments between the s and s′ shifts.

The first two variables are used to assess the two concerns on fairness. The
ψss′ variables are used to address “evenly balance extra daily shifts” (S6). No
additional variables are required to assess the crews’ preferences (S5).

Finally, we introduce the weights as follows:

• woc operating capacity weight;
• wsg shift grouping violation weight (S1);
• wsst same start time change violation weight (S2);
• wca compensation assignments violation weight (S3);
• wp preferences violation weight (S5).

We propose the following ILP to address this problem:
Min

woc ·
∑
d∈D

λd (1a)

+
∑
c∈C

∑
d∈D

(wsg · αcd + wsst · βcd + wca · γcd) (1b)

+wp ·
∑
c∈C

∑
s∈Sw

∑
d∈D

pcsd ·Xcsd (1c)

+
∑
c∈C

∑
c′∈C

(ϕcc′ + φcc′) (1d)
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+
∑
s∈Sw

∑
s′∈Sw

ψss′ (1e)

Subject to:
Xcsd, αcd, βcd, γcd ∈ {0, 1} (2)

λd, ϕcc′ , φcc′ , ψss′ , δc, θc, ρcd ∈ N (3)∑
s∈S

Xcsd = 1 ∀c ∈ C, ∀d ∈ D (4)

∑
c∈C

Xcsd ≥ rs ∀d ∈ D, ∀s ∈ Sw (5)

Xcsd +Xcs′(d+1) ≤ 1 ∀(s, s′) ∈ F, ∀c ∈ C, ∀d ∈ D− (6)∑
s∈S

∑
d∈D

ls ·Xcsd ≤ L ∀c ∈ C (7)

∑
s∈Sw

∑
d′∈D,d′≤d

ls ·Xcsd = ρcd ∀c ∈ C, ∀d ∈ D (8)

WHC ·
∑

d′∈D,d′≤d

Xcsd ≤ ρcd s = C, ∀c ∈ C, ∀d ∈ D (9)

∑
d∈D

Xcsd =
⌊ ρc(ld)
WHC

⌋
+ 1 s = C,∀c ∈ C (10)

∑
s∈Sw

∑
d′≤1+MAXd, d+d′≤nd

Xcsd ≤MAXd ∀c ∈ C, ∀d ∈ D (11)

∑
c∈C

∑
s∈Sw

Xcsd = nc − λd ∀d ∈ D (12)

Xcsd +Xcs′d+1 ≤ 1 + αcd ∀c ∈ C,∀d ∈ D−,∀s, s′ ∈ Sw, s ̸= s′ (13)

Xcsd +Xcs′d+1 ≤ 1 + βcd ∀c ∈ C,∀d ∈ D−,∀s, s′ ∈ Sw, s ̸= s′ with ts ̸= ts′

(14)

Xcsd +Xcs′d+1 ≤ 1 + γcd ∀c ∈ C, ∀d ∈ D− ∀s ∈ Sw, s
′ = C (15)∑

s∈Sw

∑
d∈D

Xcsd = δc ∀c ∈ C (16)

∑
s∈Sw

∑
d∈D

ls ·Xcsd = θc ∀c ∈ C (17)



12 Effective ALNS for a firefighters timetabling problem

δc − δc′ ≤ ϕcc′ ∀c, c′ ∈ C, c ̸= c′ (18)

θc − θc′ ≤ φcc′ ∀c, c′ ∈ C, c ̸= c′ (19)

(∑
c∈C

Xcsd − rs

)
−

(∑
c∈C

Xcs′d − rs′

)
≤ ψss′ ∀d ∈ D, ∀s, s′ ∈ Sw (20)

The five terms of the objective function aim at maximizing operational
capacity while minimizing the soft constraints violations. The terms (1a) to
(1e) refers to the penalization of the soft constraints presented in Section 3.

The hard constraints (H1) to (H6) are enforced by Constraints (4)-(11).
The Soft constraints (S1) to (S6) are enforced by Constraints (12)-(20).

This model is an improvement of a first model presented in Ouberkouk et al.
(2021), fewer variables are used and we achieve better results on the smaller
instances. For the ILP presented in Ouberkouk et al. (2021), the number of
each variable α, β and γ is equal to nc · ns · ns · nd. Here, the number of each
of these variables is equal to nc · nd.

In the following, we denote Obj(S) as the function that computes the
quality of a solution S as presented in equations (1a)-(1e).

5 ILP based matheuristic

ILP solvers may face difficulties to run the proposed ILP model as the instances
grow in size, and feasible solutions may be difficult to obtain within reasonable
processing times. The use of ILP solvers in a heuristic context for producing
good solutions has been investigated for some personnel scheduling problems as
nurse rostering (Santos et al., 2016), maintenance crew scheduling (Pour et al.,
2018) and aircraft maintenance (De Bruecker et al., 2018). The general idea
is to make the solvers working on subproblems so as to perform local searches
with the aim of obtaining good feasible solutions within shorter processing
time than the ILP does (fix-and-optimize strategy).

The ILP based matheuristic that we propose consists of two subsequent
phases: a construction phase to create a subproblem and a local search phase
that uses the ILP we proposed in Section 4.

Given a feasible current solution, a subproblem is obtained by fixing a sub-
set of variables that relate to firefighter crews allocations (hard-fixation), next
the subproblem is solved to optimality unless a given time limit is attained. A
subproblem allows us to explore a certain neighborhood of a solution and we
propose to investigate three neighborhoods: Fix Day, Fix Shift and Fix Crews.

The neighborhoods we propose create subproblems by fixing of a given
set of variables of a current solution. Next, the ILP based matheuristic, we
denoted as ILPH, is presented. The overall idea is to explore the search space
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using a variable neighborhood descent (VND) approach based on these three
neighborhoods.

Fix Day neighborhood

The subproblems are generated by fixing all the firefighter crews allocations
on |D| − Sizew days in the planning period where Sizew is the size of the
sliding window. Thus, the ILP can be used to optimize the allocations over
Sizew days which is a parameter of the neighborhood.

At the first iteration (i = 0), a subproblem is created from an initial solution
by fixing all crews’ allocations but the ones on the days from dayA = 1 to
dayB = Sizew. The subproblem is then solved using the ILP and a new solution
is obtained.

The sliding of the Sizew window is managed by updating the beginning
dayA and the end dayB of the window as follows:

dayA = 1 + i . Slidew dayB = Sizew + i . Slidew

where i is the number of the current iteration and Slidew is the second
parameter that defines by how many days the window slides between two
consecutive subproblems. When either of dayA or dayB is larger than nd, the
value is set at ld.

The idea is to slide the window and solve to optimality each subproblem
in turn, whether feasible. The value of parameter Slidew is used to determine
nd/Slidew the number of subproblems to be solved that is also the number
of iterations. We compute an incumbent solution Si at iteration i, the best
solution found so far Sbest can be then updated when the solution Si is an
improvement.

The smaller the value of Slidew, the greater the number of subproblems
explored in the neighborhood is. The size of each subproblem is determined by
Sizew. Small values may create subproblems that do not contain any better
solution. Large values may create subproblems for which the solver may face
difficulty in attaining optimal solution within short processing time. Inside the
window, where all the crews’ allocations are free, all the terms of the objective
function are equally considered and none is favored.

Fix Shift neighborhood

The subproblems are created by fixing all the allocations of crews that
relate to all types of shifts but one. The crews’ allocations that relate to a type
of shift are free. This tends to improve for instance the shift grouping (S1)
and to evenly balance of extra daily shifts (S6). We first sort the type of shifts
by their decreasing penalty values in the current solution. Given a sorted list,
at the first iteration, only the crews’ allocations that relate to the first shift
type are free, and so on. There are ns iterations since the number of different
subproblems generated in this neighborhood is equal to the number of types
of shifts.
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Given an incumbent solution Si, it is improved, if any. The best solution
found so far Sbest can be then updated.

Fix Crew neighborhood

The subproblems are created by fixing all the allocations of crews that
relate to all the crews but one. The crews’ allocations that relate to a crew are
free. This tends for instance to improve the compensation assignments (S3)
(See term (1b)). We sort first the crews by their decreasing penalty value in the
current solution. Given a sorted list, at the first iteration, only the crews’ allo-
cations that relate to the first crew are free, and so on. There are nc iterations
since the number of different subproblems generated in this neighborhood is
equal to the number of crews.

Given an incumbent solution Si, it is improved, if any. The best solution
found so far Sbest can be then updated.

Mathematical Integer Programming Heuristic

We conducted preliminary experiments on the neighborhoods one at a time.
We practically observed that the Fix Day neighborhood may obtain more gains
than the Fix Shift and Fix Crew neighborhoods, but at the expense of larger
processing time. This was expected for the Fix Day neighborhood because as
the window size increases the number of unfixed variables increases. The two
later neighborhoods focus on what can be improved by considering one by
one either the crews or the shifts, more variables are fixed, which limits the
possibilities of gain but the processing times are shorter. We have therefore
decided to give priority to Fix Day neighborhood and when an improvement
is obtained to seek additional gains with the other two.

Algorithm 1 shows the proposed Mathematical Integer Programming
Heuristic we denote as ILPH.

Given an initial solution Scur, the Fix Day neighborhood is explored by
performing the while loop that increases the sliding window. When an improve-
ment is met the two other neighborhoods apply. We limit the processing time
of runs using Tl. The time given for a run of Explore F ixday Neighborhood
on a window is twice the time for the others because more gains are expected
(see line 7). Since the Explore F ixshift Neighborhood (see line 10) sorts
the shifts in the decreasing order of potential gains, at most ns number of
runs of the ILP may be performed. That makes it possible to obtain the
most important gains before Tl is attained. The same rationale applies for
Explore F ixcrews Neighborhood (see line 12).

The Fix Day neighborhood does not favor any term of the objective func-
tion while Fix Shift neighborhood is a ”type of shift” oriented and Fix Crew
neighborhood is a ”crew” oriented.

Algorithm 1 first explore small windows, next we explore larger ones. Our
purpose is to gradually improve the solution so that we obtain solution evalu-
ations that will help in pruning the search as the windows increase. This also
makes windows overlapping over the iterations of the ILPH possible. For the
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Input : Scur initial solution, TILPH global time limit, Tl time limit
used to stop the Explore ∗

Output : Sbest best solution found
Variables : Si solution at iteration i, Sizew size of the sliding window,

Slidew by how many days the window slides
1 i := 0
2 Sbest := Scur

/* Si used to fix values of some variables prior optimize */
3 Si := Scur
4 Slidew := 2
5 while (Slidew ≤ nd/2) and (TILPH not reached) do
6 Sizew := 2 . Slidew

/* Sizew, Slidew and i, used to fix variables */
/* At iteration i, the run stops when 2 · Tl is attained */

7 Si := Explore F ixday Neighborhood(Sizew, Slidew, i, Si, 2 · Tl)
8 if Obj(Si) < Obj(Sbest) then
9 Sbest := Si

/* At most ns runs, stop when Tl is attained */
/* All shift assignments are fixed except one */

10 Si := Explore F ixshift Neighborhood(Si, Tl)
11 if Obj(Si) < Obj(Sbest) then Sbest := Si

/* At most nc runs, stop when Tl is attained */
/* All crew assignements are fixed except one */

12 Si := Explore F ixcrews Neighborhood(Si, Tl)
13 if Obj(Si) < Obj(Sbest) then Sbest := Si
14 end
15 Slidew := Slidew + 1
16 end
17 return Sbest

Algorithm 1: ILPH

sake of simplicity, we choose to link the two parameters as Sizew = 2 . Slidew
and we set the initial value of Slidew to 2. The loop increases the value of
Slidew by 1. Provided that a global time limit TILPH is attained or that the
last Slidew value is larger than nd/2, the ILPH stops.

The ILPH that we propose will be evaluated as a matheuristic to deal
with the FFTP. In addition, some components of the ILPH can also be viewed
as a neighborhood component that can also be embedded within the ALNS
approach that we propose further, this will also be investigated.

6 ALNS metaheuristic for the FFTP

Solvers may faced difficulties in attaining good enough solutions within short
processing times running the ILP model and the ILPH matheuristic.

Metaheuristic based solution approaches have been extensively reported in
literature to address a large variety of optimization problems, for a comprehen-
sive survey we invite the reader to refer to Hussain et al. (2019). We propose
an Adaptive Large Neighborhood Search meta-heuristic (ALNS) to compute
solutions of good quality for the FireFighters Timetabling Problem (FFTP).
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For a more general and recent review on the ALNS metaheuristic framework
and its applications, we invite the reader to refer to Mara et al. (2022).

We present in Algorithm 2 its general structure prior to provide insights
on the components.

Input : An instance of FFTP
Output : Sbest best solution found
Parameters: Dlimit limit for diversification degree,
Variables : MaxIter maximum number of iterations without any

improvement prior stopping the ALNS
AcceptIter number of iterations without any improvement

prior accepting a degradation,
Dmax current diversification degree, Md, Mc destruction and

construction methods,
Sold current solution to be improved, Scur solution under work

1 i, i′ := 0 /* i, i′ number of iterations */
2 MaxIter := ε.nc
3 AcceptIter := nc
4 Dmax := 3
5 Sbest, Sold := BuildFeasibleSchedule()
6 while i < MaxIter do
7 Md := ChooseDestructionMethod()
8 k := rand(1,Dmax)
9 Scur := AdaptiveDestruction(Sold, k,Md)

10 Mc := ChooseConstructionMethod()
11 Scur := ApplyConstruction(Scur,Mc) /* insert as many crews as

possible in Scur */
12 if Obj(Scur) < Obj(Sbest) then
13 Sbest, Sold := Scur

14 i, i′ := 0
15 Dmax := 3
16 else
17 if (i′ ≥ AcceptIter and AcceptDegradation(Scur, Sold)) then
18 Sold := Scur

19 i′ := 0
20 end
21 i++

22 i′ ++
23 Dmax := Min(Dmax+1,Dlimit)
24 end
25 UpdateDestructionsScores()
26 end

Algorithm 2: General structure of ALNS for FFTP

An initial solution Sold is computed using the greedy constructive heuris-
tic BuildFeasibleSchedule(). The objective of BuildFeasibleSchedule() is
to obtain a feasible solution without taking into account the objective func-
tion. The general idea is to take crews in turn at random, next each crew is
assigned to the working shifts while complying with the hard constraints (H1
and H3-H6). The algorithm stops as soon as the minimum demands (H2) is
respected. This greedy heuristic is repeated until a feasible solution is met. We
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obtain a feasible initial solution but there is room for improvement especially
in operational capacity.

A destruction method Md is selected at random from among Random
Destruction and Smart Destruction using ChooseDestructionMethod(). The
Smart Destruction method makes use of the Best Insertion Destruction
Criterion (BIDC) to assess the impact of unassigning of crews.

We remove k ≤ Dmax crews at each iteration. We define Dmax as the
degree of diversification. This value is initialized to three and then incremented
after each non-improving iteration up to Dlimit. We choose to set Dlimit =
⌈nc/ns⌉ that represents the average number of crews that can be assigned to
a type of shift for a day. Provided an improvement is found, we reset Dmax to
three to entirely explore the neighborhood of the new solution. This adaptive
diversification mechanism makes it possible to broaden the search around a
solution with the aim to obtain a better solution.

We obtain the current solution under work Scur by applying
AdaptiveDestruction(Sold, k,Md). Some crews have been unassigned, and
some others may be not assigned yet. We therefore can use these crews to find
a better solution.

A construction method Mc is selected at random by using
ChooseConstructionMethod(). The construction methods aim at complet-
ing and improving the current solution. We implement an adaptive Best
Insertion Algorithm (BIA) that also assess feasible assignments using the
Best Insertion Destruction Criterion (BIDC). We also use as a construc-
tion method a version of the matheuristic ILPH (see Section 5). We then
insert as many crews as possible while respecting the hard constraints using
ApplyConstruction(Scur,Mc).

To avoid to be stuck in local optima the ALNS approach requires an accep-
tance procedure that makes feasible to select a solution of low quality with
the aim to explore other parts of the search space. We use a record-to-record-
based approach (Dueck, 1993). Provided that a number AcceptIter iterations
without any improvement is met, and provided that a lower quality solution
is accepted by AcceptDegradation(Scur, Sold), we make feasible to continue
exploring the search space using this lower quality solution. We choose to set
AcceptIter to nc, the general idea is to increase the processing time as nc the
number of crew increases.

The success of destruction methods may vary depending of the instance.
An adaptive choice generally leads to better results rather than fixing the
choices once and for all. Each destruction method has a score which represents
its share in a wheel. The UpdateDestructionsScores() procedure updates the
scores.

When a maximum number of iterations MaxIter without any improvement
is met, the ALNS algorithm stops, and then returns the best solution found so
far within iterations Sbest. We choose to set MaxIter to ε.nc, where ε needs
to be tuned to obtain a good trade-off between good quality solutions and
processing times.
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Adaptive mechanisms for destruction, construction and acceptance proce-
dures are used. Several parameters need to be tuned to obtain a good efficiency
of these adaptive mechanisms.

Best Insertion Destruction Criterion

We make use of the Best Insertion Destruction Criterion (BIDC) in the
Smart Destruction method and in the Best Insertion Algorithm (BIA). Let be
(d, s, c) a triplet for a day, a shift and a crew. Given a solution we evaluate an
unassignment or an assignment of a triplet by computing the BIDC as follows:

(SGα. SST β . CAγ . PF θ. Pω. EBµ)

The BIDC is composed of one term for each soft constraints: SG is for the
Shift Grouping (S1), SST is for the Same Start Time (S2), CA is for the
Compensation Assignments (S3), PF is for the Period Fairness (S4), P is for
the Preferences (S5) and EB is for Evenly Balance extra daily shifts (S6).
The BIDC value is set to +∞ when a hard constraint is violated. The values
of the parameters (α, β, γ, θ, ω, µ) are managed by an adaptive strategy that
relates to the Best Insertion Algorithm (BIA), that makes it possible to adapt
the relative importance of the terms during the course of the algorithm.

Destruction methods and adaptive mechanism for choosing a
destruction method

The AdaptiveDestruction(Sold, k,Md) is used to unassign some crews from
Sold, the solution to be improved. Given a value k for the number of crews to
be unassigned, one among the two following destruction methods apply:

Random Destruction (RD): crews are selected at random;
Smart Destruction (SD): crews are selected using the BIDC.

For the Smart Destruction method, we consider all the (d, s, c) triplets of
assigned crews, and we assess their BIDC scores. We use the parameter set
(α, β, γ, θ, ω, µ) that produced the best solution at the previous iteration of
BIA (see Construction methods). The scores are next used as shares in a
roulette wheel that is used to select the k crews to be unassigned. We aim at
selecting the assigned crews with highest BIDC in the hope of assigning these
crews to better days and shifts.

Fig. 2 A destruction method is applied: assignments (D1, T12, C1) and (D5, T16, C5) are
removed from timetable depicted in Figure 1.
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Figure 2 shows the schedule after applying a destruction method. The
minimum demands may not be met temporarily before a construction method
is applied. This frees up some crews, that makes it possible to find a better
solution.

The selection of a destruction method is managed using an adaptive mech-
anism. Let DeScij be the Destruction Score of method j ∈ {RD,SD} at
iteration i. After each iteration i, the destruction scores are updated by
UpdateDestructionsScores() as follows:

DeScij := (1 + λ)DeSc(i−1)j if Obj(Scur) < Obj(Sbest);
DeScij := (1 + (1/2)λ)DeSc(i−1)j if Obj(Scur) < Obj(Sold) and Obj(Scur) ≥
Obj(Sbest);
DeScij := (1 − (1/2)λ)DeSc(i−1)j if Obj(Scur) ≥ Obj(Sold) and Obj(Scur) ≥
Obj(Sbest);
DeScij := DeSc(i−1)j if the destruction method j is not used.

The aim is to favour the destruction method that obtains the best result
during the course of the algorithm. However, this cannot be done at the defini-
tive expense of one against the other since the relative effectiveness may depend
on the instance and also may change during the course of the algorithm. The
parameter λ is used to smooth the strengthening and needs to be tuned to
obtain an effective adaptive mechanism.

Construction methods

The ApplyConstruction(Scur,Mc) is used to complete the solution under
work Scur by assigning as many crews as feasible. Given a Scur, one of the two
following construction methods apply:

ILPH: using only the Fix Day neighborhood;
BIA: using an adaptive mechanism for managing the (α, β, γ, θ, ω, µ) param-
eters.

The ILPH matheuristic is time consuming, thus we chose to use only the
Fix Day neighborhood to implement a construction method. Moreover, we
fixed the time limit TILPH to one minute so as to avoid to unnecessary waste
processing time in ILP solving. The parameter Sizew needs to be tuned to
obtain a good trade-off between solution quality and processing time. We recall
that the two parameters Sizew and Slidew are linked as Sizew = 2 . Slidew.

The BIA algorithm (see Algorithm 3) uses Scur the partial solution under
work and a parameter set (α, β, γ, θ, ω, µ) as inputs, and it tries to insert as
many unassigned crews c as possible. The BIA makes use of the Best Insertion
Destruction Criterion (BIDC) to assess all the feasible insertions (d, s, c). The
best triplet is retained, if any. The best insertion is performed, then the quality
of the solution is assessed. When no more valid insertion is possible, the BIA
stops. Given a parameter set (α, β, γ, θ, ω, µ), a run of BIA returns Scurbest,
the best solution found which can be then possibly used as the new Scur for
the next iteration of the ALNS.
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Input : Scur a partial solution under work
(α, β, γ, θ, ω, µ) parameter set

Output : Scurbest best solution found over the BIA iterations
Variables : (d,s,c)∗ best triplet, Bsuccess boolean

1 Scurbest := Scur /* store reference solution for BIA */
2 Bsuccess := true
3 while Bsuccess do
4 (d,s,c)∗ := (∅, ∅, ∅)

/* Using BIDC to assess, find the best triplet, if any */
5 foreach d ∈ D do
6 foreach s ∈ S do
7 foreach c ∈ UnassignedCrews(d, s) do
8 ComputeBIDC(d,s,c)
9 UpdateBestTriplet (d,s,c)∗

10 end
11 end
12 end
13 Bsuccess := Insert(Scur, (d,s,c)

∗) /* if no feasible insertion
return false */

/* Comparing Scur and Scurbest, all terms of the objective
function are assessed */

14 if Obj(Scur) < Obj(Scurbest) then
15 Scurbest := Scur
16 end
17 end

Algorithm 3: Best Insertion Algorithm

Figure 3 shows the timetable obtained after applying a construction
method. The solution complies with the minimum demand hard constraint
and more shifts are assigned to crews.

We make use of an adaptive mechanism for managing the construction of
a new Scur using the BIA. We run separately four BIA with different values
of the parameter set (α, β, γ, θ, ω, µ). Let be αi−1, βi−1, γi−1, θi−1, ωi−1 and
µi−1 the best parameter values obtained at a previous iteration of the ALNS.
The α, β, γ, θ, ω and µ values are chosen randomly in the six dimension
space having the center (αi−1, βi−1, γi−1, θi−1, ωi−1, µi−1) and the side length
ϕ. The best solution Scurbest obtained among the four runs is kept, and the
parameter set that produces it is stored to be used for the next iteration. This
best parameter set is used by Smart Destruction when chosen, and is used by
BIA when chosen. This adaptive mechanism makes it possible to speed-up the
convergence of the ALNS algorithm towards a good solution.

Fig. 3 A construction method is applied using the timetable depicted in Figure 2.
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The side length parameter ϕ needs to be tuned to obtain a good perfor-
mance of the adaptive mechanism for the Smart Destruction method and for
the BIA construction method.

Finally, ChooseConstructionMethod() makes use of a parameter ψ for
choosing either the BIA (with a probability ψ) or the version of the ILPH (with
a probability 1 − ψ). The parameter ψ needs to be tuned to obtain a good
trade-off between the use of the BIA or the use of the construction method
based on the ILPH.

Acceptance strategy

The acceptance strategy we implemented in AcceptDegradation(Scur, Sold)
is based on the record-to-record approach introduced in Dueck (1993). Pro-
vided that AcceptIter iterations has been performed without improving the
quality of Sold, this solution may be replaced by Scur a solution of poorer
quality. We make use of an acceptance rate τ to be tuned that plays the
role of a deviation parameter. The solution Scur takes place of Sold if
(Scur − Sold)/Sold ≤ τ .

7 Computational experiments

In our experiments, our objectives were: (i) to provide a summary on the tuning
the parameters of the ALNS metaheuristic that makes it possible to obtain
the best results; (ii) to show the efficiency of the adaptive mechanisms we
implemented for the destruction and the construction methods; (iii) to evaluate
the contribution of the destruction methods; (iv) to compare performances
between the ILP model, the ILPH matheuristic and two versions of the ALNS
approach; (v) to assess the quality of the solutions computed by the ILP, the
ILPH and the ALNS on the instances of the datasets compared to previous
approaches.

Tests were done using C++ compiled with gcc version 7.5.0, using STL,
using a CPLEX 12.10 IBM (2020) solver with a single thread and the ILPEm-
phasis parameter set to feasibility, on a machine with an Intel(R) Xeon(R)
X7542 CPU @ 2.6 GHz and 64 GB of RAM.

Datasets overview and weights of the terms of the objective function

We tested the ILP, the ILPH and the ALNS versions on a benchmark
composed of four datasets of seven instances that we generated using real
data of the INFOCA firefighter institution 1. The instances in datasets are
ranged and labelled according to the number of crews nc and to the total
daily number of working shift demands (i.e.

∑
rs). So, instances are denoted

as cXXrY Y (a/b), the (a/b) notation is used whether nc and
∑
rs equals for

two distinct instances which are different in minimum demands distributions.
According to the requirements of the INFOCA institution and to express

the relative importance of the different constraints, we set woc to 2, wsg to 1,

1 https://datasets.hds.utc.fr/project/10
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wsst to 1, wca to 1 and wp to 2. These weights are used to compute Obj(S),
the objective function value (see Equations (1a)-(1e)).

Parameters tuning

The ALNS that we propose makes use of parameters that need to be tuned
to obtain a good efficiency of destruction, construction, adaptive mechanisms
and acceptance procedures. We overview these parameters in Table 2.

Table 2 Parameters ϕ, ε, λ, τ , ψ and Sizew to be tuned for the ALNS for FFTP.

ϕ side length, adaptive mechanism for parameter set (α, β, γ, θ, ω, µ)

ε MaxIter = ε.nc, maximum number of iterations without any improvement

λ adaptive mechanism for managing destruction methods

τ acceptance rate

ψ probability used for choosing from among construction methods

Slidew by how many days the window slides (ILPH)

We carried out preliminary experiments in order to calibrate the param-
eters. Two instances are selected from each dataset at random for tuning.
Since ALNS is a randomized search method, the experiments were repeated
ten times with a different random seed.

We evaluate the tuning of the parameters using the Relative Percentage
Error metric computed as RPE = 100 · Zmin−Zbest

Zbest
, where Zbest denotes the

best result we obtained over all the performed runs for an instance, and Zmin

denotes the best result we obtained among the ten performed runs. The RPE
values are averaged and reported as a percentage in the figures.

We started by tuning the first ϕ, and we then tune each parameter one
after the other considering the order of Table 2. The initial values we use to
first tune ϕ are ε = 5, λ = 1, τ = 0.01, ψ = 0.5 and Slidew = 3. Then, to tune
a parameter we retain the best setting of the other parameters found before
proceeding to tune it.

The value of ϕ, the side length for the adaptive construction mechanism,
may affect significantly the performances of the ALNS. This mechanism makes
it possible to adapt the values of (α, β, γ, θ, ω, µ) parameters so as to the rel-
ative importance of the terms of BIDC may change during the course of the
algorithm.

In Figure 4, we show the impact on the average RPE by varying ϕ from
0.0 to 1.0 with a step of 0.025. When ϕ is lower than 0.1, the four parallel
independent searches use values of (α, β, γ, θ, ω, µ) too closed to the initial one.
When ϕ is larger than 0.1, the average RPE is worsened, as can be seen by the
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Fig. 4 Tuning of ϕ, effect on average RPE. Fig. 5 Tuning of ε, effect on average RPE.

Fig. 6 Tuning of λ, effect on average RPE.

average RPE values. We chose to set ϕ at 0.1 for which the minimum average
RPE is obtained.

The maximum number of iterations without any improvement is
MaxIter = ε.nc where nc is the number of crews. As could be expected, the
processing time increases with the ε value. As would be expected with this
tuning, the average RPE decreases as ε increases. To tune ε, we vary it in
{2, · · · , 20}. As can be seen in Figure 5, the minimum is attained when ε is
equal to ten, then it becomes constant. We chose to set ε to ten so as not to
waste processing time.

The Destruction Score of method is managed by the parameter λ. In Figure
6, we show the evolution of the average RPE by varying λ from 0 to 5 with
a step of 0.5. When the value λ = 0 the score update mechanism is disabled,
and we do not obtain the minimum average RPE but the value is closed to
zero. The RPE values decrease until λ = 1.0, then they are constant for λ
values in [1, 3]. Next, RPE values increase as the λ value increases. The score
update mechanism makes it possible to obtain better results by managing the
selection of the destruction methods. We chose to set λ to =1.0, this suffices
to make the mechanism effective.
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Fig. 7 Tuning of τ , effect on average RPE. Fig. 8 Tuning of ψ, effect on average RPE.

A solution can be replaced by a solution of poorer quality when (Scur −
Sold)/Sold ≤ τ . In Figure 7, we show the evolution of the average RPE by
varying τ from 0 % to 2 % with a step of 0.2 %. When τ = 0 %, the record-
to-record acceptance mechanism is disabled. As it can be seen, we obtain a
good average RPE value with τ = 0%. The RPE values decrease until the
value τ = 1%, next they increase as τ increases. As it could be expected, the
acceptance mechanism based on the record-to-record algorithm plays its role.
We chose to set τ = 1%.

The BIA is chosen with a probability ψ and the ILPH is chosen with a
probability 1 − ψ. In Figure 8, we show the evolution of the average RPE by
varying ψ from 0.0 to 1.0 with a step of 0.1. When ψ = 0.0 the ALNS only
uses the ILPH as a construction method, this is not efficient as can be seen by
the average RPE value. The RPE values decreases up to ψ = 0.7, next they
increase as ψ increases The ILPH contributes to obtain better results that can
be observed in Figure 8. We chose ψ = 0.7, which is a good trade-off between
the construction methods.

Fig. 9 Tuning of Slidew, effect on average
RPE.

Fig. 10 Tuning of Slidew, effect on pro-
cessing time.

We use a version of the ILPH as a construction method with only the Fix
Day neighborhood. We performed experiments by varying Slidew in {1, 7},
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and with one minute for the time limit TILPH . In Figure 9, we show that
when Slidew varies between one and four the RPE value decreases, and in
Figure 10 we show that the processing time decreases. Next, the average RPE
and the processing time values increase as Slidew increases. When Slidew < 4
the windows are too small that does not allow the Fix Day neighborhood to
find better solutions than the ones found by BIA. We waste processing time
running the construction method based on ILPH without any benefit. When
Slidew > 4, the construction method based on ILPH requires more processing
time to obtain solutions. This also negatively impacts the convergence of the
algorithm towards good solutions since we set a time limit in order to avoid
stucking in a hard ILP resolution. We chose to set Slidew to four.

The final calibration values are ϕ = 0.1, ε = 10, λ = 1.0, τ = 0.01, ψ = 0.7
and Slidew = 4. They were used in the sequel for our experiments on all the
benchmark instances, and they were chosen to obtain a good trade-off between
solution quality and processing time.

Evaluation of the ILPH neighborhoods

We evaluate here the effectiveness of the proposed neighborhoods for the
ILPH method. In Table 3 under the “ILPH-Sequ” heading, we show the results
with the three neighborhoods used one after the other. Next, under the “No-
FD”, “No-FS” and “No-FC” headings we show the results by disabling each
of them one at a time. Under the “ILPH” heading, we show the results of
the proposed ILPH we detailed in Algorithm 1. For the sake of compactness,
we computed the average RPE by datasets. For each of the tested versions of
ILPH and for each instance, the computing time limit is set to 3600 seconds.
The best results are shown in bold print.

Table 3 Evaluation of the ILPH neighborhoods, average RPE values by dataset.

ILPH-Sequ No-FD No-FS No-FC ILPH
c18 0.13 0.23 0.16 0.15 0.06
c30 0.15 0.26 0.19 0.19 0.07
c50 0.21 0.32 0.25 0.26 0.11
c70 0.29 0.47 0.36 0.38 0.17

We can see in Table 3 that the ILPH version without Fix Day neighborhood
obtains the worst average RPE values compare to the versions without Fix
Shift or Fix Crews neighborhoods. This means that the Fix Day neighborhood
is more efficient that the two others.

We can also see that ILPH-Sequ version, which runs the three neigh-
borhoods at each iteration obtains poorer results than the ILPH version of
Algorithm 1. We experimentally observed that running all neighborhoods in
turn at each iteration is time consuming and slow the convergence towards
good solutions.
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Hence, we decided to use a hierarchical structure for the ILPH method,
where the most efficient neighborhood (Fix Day) is used at each iteration, and
when a better solution is found, we run the other neighborhoods to try to
improve this solution.

Evaluation of the ALNS adaptive mechanisms, evaluation of the
destruction methods

We evaluate here the effectiveness of the BIA adaptive mechanism and the
effectiveness of the diversification mechanism for destruction. We also evaluate
the effectiveness of the destructions methods by disabling each of them one
at a time. For these experiments we use all the instances of the four datasets
and we record the best solution found over 15,000 iterations. We performed
ten runs on each benchmark instances.

The parameter set (α, β, γ, θ, ω, µ) is used to compute the BIDC. The adap-
tive construction mechanism aims to guide the search by computing the best
trade-off between the different value of these parameters over consecutive iter-
ations. We conducted experiments with the adaptive construction mechanism
and without the adaptive construction mechanism. In that latter case, the
parameters (α, β, γ, θ, ω, µ) are chosen randomly in [0, 1]. In Figure 11 we show
the average RPE vs. iterations for these two versions.

Fig. 11 Adaptive BIA construction
impact.

Fig. 12 Adaptive destruction impact.

As can be seen in Figure 11, the RPE values are worsened when parameters
(α, β, γ, θ, ω, µ) are chosen at random. The adaptive construction mechanism
with ϕ set at 0.1 significantly speed-up the convergence towards good solutions.

The adaptive diversification mechanism manages the value of Dmax ∈
{3, · · · , Dlimit} (see Algorithm 2). This mechanism makes it possible to explore
in the vicinity of the new solution as soon as an improvement is found and also
makes it possible to explore more distant neighborhood whenever the search is
trapped in a local optimum. We disabled the adaptive diversification mecha-
nism by fixing the Dmax diversification degree to 3. In Figure 12, we show the
average RPE vs. iterations for these two versions. The adaptive diversification
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mechanism always obtains better results as can be seen by the average RPE
values. The adaptive diversification mechanism makes it possible to converge
faster towards good solutions.

In Table 4, we show the results for the destruction methods. For the sake
of comparison, we use the Average Relative Percentage Error computed as
ARPE = 100 · Zavg−Zbest

Zbest
where Zbest denotes the best result we obtained over

all the runs we performed for an instance, and Zavg denotes the average of
the results. This allows us to discuss the results to show whether the ALNS
is stable over the runs. We also use the Relative Percentage Gap criterion
computed as RPG = 100 · Zmin−ZILP

ZILP
where ZILP denotes the value attained

by the ILP for an instance (when possible), and Zmin denotes the best result
obtained among the performed runs. This allows us to show how far from
optimal values the best solutions computed by ALNS are.

In Table 4 under the “ALNS” heading, we show the results with RD and SD
activated. Under the “No RD” and “No SD” headings we show the results by
disabling each of them one at a time. For the sake of compactness, we computed
the average ARPE and RPG values by datasets. The average processing time
is in seconds. The best results are shown in bold print, and nc stands for not
calculable.

Table 4 Evaluation of the destruction methods.

ALNS No RD No SD

ARPE RPG t(s) ARPE RPG t(s) ARPE RPG t(s)

c18 0 0 323.42 0 0 331.45 0.56 1.71 542.31

c30 0.06 0 494.14 0.09 0 511.26 0.89 3.93 788.23

c50 0.20 nc 597.28 0.25 nc 639.43 1.14 nc 923.67

c70 0.43 nc 842.57 0.51 nc 877.54 1.42 nc 1,269.03

The ALNS without Random Destruction (“No RD” heading) obtains
results for ARPE that are below those of ALNS that uses RD and SD, and
the processing times are greater. The Random Destruction makes it possible
to avoid being stuck in a local optimum by performing perturbations.

The ALNS without Smart Destruction (“No SD” heading) obtains results
for ARPE and RPG criteria that are below those of ALNS that uses RD and
SD, and the processing times are greater. As can be seen in Table 4 by com-
paring the “t(s)” columns, the Smart Destruction speeds up the convergence
of the ALNS algorithm and allows us to obtain better solutions.

The RPG values can be used for comparison for the c18 and c30 datasets
for which optimal solutions can be obtained.

The SD method is efficient, we obtain optimal solutions for these datasets.
As it can be observed for c50 and c70 datasets the RD method is needed
since better results are attained in shorter processing times. The Random
Destruction and the Smart Destruction methods are beneficial for exploring the
neighborhood of a solution either by obtaining better results or by shortening
the processing time.
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Comparison of ILP, ILPH and ALNS

All of the proposed solution approaches are run within a time limit set
at 3,600 s. For the experiments conducted with ILPH, the initial solution is
obtained using BuildFeasibleSchedule(), TILPH is set at 3,600 s and Tl is set
at 30 s.

For comparison purposes, we decided to conduct experiments with two
versions of the ALNS, without and with the constructive method based on
ILPH. To shorten the processing time, we only use the Fix Day neighborhood
as a constructive method with Sizew = 8 , Slidew = 4 and Tl = 60s. When we
performed our preliminary experiments, we found that these values are a good
trade-off between expected gain and processing time. We run the two ALNS
versions ten times on each instance.

We use the Relative Percentage Gap (RPG) and Average Relative Percent-
age Error (ARPE) as assessment criteria.

In Table 5, we show the results for the c18 and the c30 datasets for which
the ILP succeeded in obtaining a solution. In Table 6, we show the results
for the c50 and the c70 datasets for which the ILPH succeeded in obtaining
a solution when the ILP failed in attaining a solution within the time limit.
In these tables, ns stands for no solution, nc stands for not calculable, and -
shows that the time limit is attained. The last row of the two tables reports
some average values. The best results are shown in bold print.

Table 5 For c18 and c30 datasets, results of ILP, ILPH matheuristic, ALNS without the
ILPH and ALNS.

ILP ILPH ALNS (no ILPH) ALNS

Obj gap t(s) Obj gap t(s) Zmin RPG ARPE t(s) Zmin RPG ARPE t(s)

c18r09a 1,325 0 1,023 1,432 8.08 - 1,325 0 0 271 1,325 0 0 281

c18r10a 1,359 0 1,001 1,456 7.14 - 1,359 0 0 287 1,359 0 0 292

c18r10b 1,344 0 1,112 1,421 5.73 - 1,344 0 0 301 1,344 0 0 311

c18r11a 1,378 0 1,234 1,456 5.66 - 1,378 0 0 309 1,378 0 0 323

c18r11b 1,420 0 1,787 1,532 7.89 - 1,420 0 0 321 1,420 0 0 341

c18r12a 1,422 0 1,455 1,498 5.34 - 1,422 0 0 341 1,422 0 0 355

c18r12b 1,440 0 1,564 1,562 8.47 - 1,440 0 0 344 1,440 0 0 361

c30r15a 1,754 0 2,892 1,931 10.09 - 1,754 0 0 451 1,754 0 0 455

c30r16a 1,780 0 2,911 1,945 9.27 - 1,780 0 0.04 463 1,780 0 0.03 469

c30r17a 1,810 0 3,002 1,911 5.58 - 1,810 0 0.10 472 1,810 0 0.11 483

c30r18a 1,832 0 3,014 1,934 5.57 - 1,832 0 0.03 481 1,832 0 0.04 495

c30r19a 1,880 0 3,111 1,990 5.85 - 1,880 0 0.05 489 1,880 0 0.12 501

c30r20a 1,932 1.79 - 1,978 4.21 - 1,898 -1.75 0.13 513 1,898 -1.75 0.09 522

c30r21a 1,913 0 3,213 2,005 4.81 - 1,913 0 0.07 502 1,913 0 0.05 534

Avg 0.13 2,208 6.69 3,600 -0.13 0.03 396 -0.13 0.03 408

For each instance, under the “ILP” and the “ILPH” headings, we show the
objective function value, the gap and the processing time (in seconds) that
we obtained for the ILP and the ILPH matheuristic (under “Obj”, “gap” and
“t(s)” columns, respectively).

For each instance, under the “ALNS (no ILPH)” and the “ALNS” headings,
we show the best result obtained among the performed runs (the best Obj
value), the Relative Percentage Gap, the Average Relative Percentage Error
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and the computing time in seconds (under “Zmin”, “RPG”, “ARPE” and
“t(s)” columns, respectively).

In Table 5, we show that the ILP attains optimal solutions for all the
instances except for the c30r20a instance for which the gap is 1.79%. None of
the optimal solutions are obtained by the ILPH matheuristic, and the average
gap is 6.69%. The two versions of the ALNS succeeded in obtaining all the
optimal solutions. A better solution is found for the c30r20a instance when
the ILP cannot attain an optimal solution within the one hour time limit.

The RPG and ARPE values are either equal to zero or to almost zero except
for the c30r20a instance. For the c30r20a instance, the two ALNS versions
succeeded in attaining a better solution, we therefore obtain the negative value
−1.75% for RPG. When we used the solutions found by the two versions of
the ALNS for this instance as initial solutions for the ILP model, we found
that they are optimal ones. For the c30 dataset, the two ALNS versions attain
all of the optimal solutions.

For the c18 and c30 datasets, the ALNS versions are stable when computing
solutions, as can be seen by the ARPE values. The processing times of the
ALNS versions are about five time shorter than those of the ILP in average,
and for all the instances we obtained optimal solutions.

Table 6 For c50 and c70 datasets, results of ILP, ILPH matheuristic, ALNS without the
ILPH and ALNS.

ILP ILPH ALNS (no ILPH) ALNS

Obj gap t(s) Obj gap t(s) Zmin RPG ARPE t(s) Zmin RPG ARPE t(s)

c50r22a ns nc - 3,876 nc - 3,623 nc 0.22 534 3,623 nc 0.17 566

c50r23a ns nc - 3,845 nc - 3,680 nc 0.14 545 3,680 nc 0.15 579

c50r26a ns nc - 3,854 nc - 3,710 nc 0.15 567 3,710 nc 0.23 543

c50r28a ns nc - 3,911 nc - 3,740 nc 0.33 573 3,740 nc 0.12 567

c50r31a ns nc - 3,967 nc - 3,834 nc 0.27 588 3,830 nc 0.23 591

c50r33a ns nc - 4,034 nc - 3,878 nc 0.31 579 3,878 nc 0.29 563

c50r35a ns nc - 4,211 nc - 3,987 nc 0.21 781 3,987 nc 0.22 772

c70r31a ns nc - 4,931 nc - 4,609 nc 0.39 793 4,609 nc 0.39 832

c70r33a ns nc - 4,976 nc - 4,680 nc 0.43 814 4,680 nc 0.41 801

c70r37a ns nc - 5,011 nc - 4,713 nc 0.47 803 4,713 nc 0.43 844

c70r40a ns nc - 4,988 nc - 4,770 nc 0.52 841 4,770 nc 0.50 866

c70r44a ns nc - 5,113 nc - 4,834 nc 0.37 857 4,834 nc 0.41 811

c70r47a ns nc - 5,134 nc - 4,936 nc 0.58 863 4,936 nc 0.51 867

c70r50a ns nc - 5,178 nc - 5,002 nc 0.34 879 5,002 nc 0.35 877

Avg 0.34 715 0.32 720

In Table 6, we show that the ILP failed in attaining a solution within
the time limit, and the ILPH matheuristic succeeded in obtaining feasible
solutions. The solution quality of the ALNS versions cannot be assessed using
the RPG criterion since the ILP cannot obtain optimal solutions within the
time limit.

Except for the c50r31a instance, the two ALNS versions obtained the same
Zmin values. The computing times are closely the same (about 715 s and 720
s in average), and are at a reasonable extra expense compared to the c18 and



30 Effective ALNS for a firefighters timetabling problem

c30 datasets with smaller instances (about 400 s in average). The two ALNS
versions remain stable as can be seen by the ARPE values that are closely the
same (0.34 and 0.32 in average).

For the c50r31a instance, the ALNS that uses the constructive method
based on ILPH succeeded in attaining a better solution. The constructive
method based on ILPH contributes to obtain better results as shown by
Figure 8 that we presented when tuning of ψ.

The results that we obtained show that the ALNS obtained optimal results
on the smaller instances. For the larger instances, the ALNS obtained results of
better quality within shorter processing time compared with the ones obtained
by the ILPH matheuristic used on its own.

Comparison with the literature

For the sake of compactness the results obtained in Ouberkouk et al. (2021)
have not been presented for each instance in Table 5 and Table 6. Instead, in
Table 7 and Table 8, we compare the solution approaches by dataset.

The ILP we presented in Section 4 improves the formulations of the con-
straints that relate to the variables α, β and γ so as to reduce the number of
these variables. We now have for each of them of the order of nc.nd variables
whereas the previous formulations make use of the order of nc.ns.ns.nd vari-
ables. In Table 7, for each dataset, the “#Variables” column shows the sum of
the number of variables α, β and γ, the “Avg Gap” column shows the average
gap, the ”Avg t(s)” column shows the average processing time in seconds, and
the “#OS” column shows the number of optimal solutions found.

As can be seen in the ‘#Variables” columns, the number of variables is
reduced. Thus, we obtained six new optimal solutions for dataset c30 whereas
no optimal solution was found by the earlier ILP. Moreover, the processing
times are reduced.

Table 7 Earlier ILP versus new ILP.

Earlier ILP New ILP

Dataset #Variables Avg Gap Avg t(s) #OS #Variables Avg Gap Avg t(s) #OS

c18 129,360 0 1,488 7/7 2,640 0 1,311 7/7

c30 216,090 2.67 3,600 0/7 4,410 0.25 3,106 6/7

c50 360,150 nc 3,600 nc 7,350 nc 3,600 nc

c70 504,210 nc 3,600 nc 10,290 nc 3,600 nc

Table 8 AIDCH versus ALNS.

AIDCH ALNS

Dataset Avg Zmin Avg RPG Avg ARPE Avg t(s) Avg Zmin Avg RPG Avg ARPE Avg t(s)

c18 1,384 0 0 374 1,384 0 0 323

c30 1,873 5.97 0.16 602 1,838 0 0.06 494

c50 3,878 nc 0.43 791 3,778 nc 0.20 597

c70 5,185 nc 0.70 1,038 4,792 nc 0.43 843
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In Table 8, we show a comparison between the Adaptive Iterative Destruc-
tion Construction Heuristic (AIDCH) presented in Ouberkouk et al. (2021)
and the ALNS that we proposed. The “Avg Zmin” column shows the aver-
age of the best results obtained among the performed runs, the “Avg RPG”
and the “Avg ARPE” columns show the average RPG and average ARPE
when they can be computed, and the “Avg t(s)” column shows the average
processing time in seconds.

Equivalent (c18) or better results (c30, c50 and c70) are obtained by the
ALNS, as an be seen by the Avg Zmin values. The ALNS is more stable as
can be seen by the average ARPE values. Moreover, the processing times are
reduced. The ALNS performs better than the AIDCH solution approach for
all of the metrics we used.

The AIDCH does not make use of multiple destruction/construction meth-
ods together with the associated adaptive mechanisms. The AIDCH does not
implement an acceptance mechanism of low quality solution. Moreover, the
improvements of the ILP makes it possible to propose a version of the ILPH
that we used as a construction method for the ALNS.

8 Conclusion and future work

In this paper, we addressed the real-world firefighters timetabling problem
(FFTP) of the INFOCA institution for which firefighter crews have to be
scheduled within the yearly forest fire period. The issue faced is to obtain a
maximal operational capacity while considering the constraints that make it
possible to achieve this operational capacity, in addition to the constraints
related to work regulation. We presented an ILP model, an ILPH matheuristic
and an ALNS metaheuristic to address the FFTP of INFOCA. The proposed
approaches were tested using four datasets of increasing difficulty in size that
we generated using real data.

The ILP approach obtained optimal results for the two datasets with small
instances but faced difficulty in obtaining feasible solutions for the larger
instances within reasonable processing time. The ILP model allowed us to
design the ILPH matheuristic that makes it possible to obtain solutions for all
of the instances but of lower quality compared to the optimal solutions that
we obtained, and at the expense of large processing time. To achieve better
results within shorter processing times we then proposed an ALNS metaheuris-
tic solution approach that makes use of both the Best Insertion Algorithm and
of a version of the ILPH matheuristic as constructive methods. Computational
experiments were conducted to tune the parameters to obtain a good trade-off
between solution quality and processing time. Additional computational exper-
iments were conducted to evaluate the effectiveness of the main components
of the ALNS approach, and all these components are necessary to obtain good
solutions within good processing time. The ALNS obtained all of the optimal
results that were obtained using the ILP on the smaller instances. For the
larger instances, the results are of better quality compared with those obtained
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by the ILPH matheuristic, in addition the processing times are significantly
reduced.

A future research direction would be to consider a broarder problem by
considering the schedule of preventive maintenance operations of material
resources, these may impact the availability of some resources thus the number
of some types of shift per day.
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Fages, J.-G. and Lapègue, T. (2014). Filtering atmostnvalue with differ-
ence constraints: Application to the shift minimisation personnel task
scheduling problem. Artificial Intelligence, 212:116–133.



34 Effective ALNS for a firefighters timetabling problem

Guerriero, F. and Guido, R. (2022). Modeling a flexible staff scheduling
problem in the Era of Covid-19. Optimization Letters, 16(4):1259–1279.

Heil, J., Hoffmann, K., and Buscher, U. (2020). Railway crew scheduling: Mod-
els, methods and applications. European journal of operational research,
283(2):405–425.

Hoffmann, K. and Buscher, U. (2019). Valid inequalities for the arc flow for-
mulation of the railway crew scheduling problem with attendance rates.
Computers & Industrial Engineering, 127:1143–1152.

Hojati, M. (2018). A greedy heuristic for shift minimization personnel task
scheduling problem. Computers & Operations Research, 100:66–76.

Hussain, K., Mohd Salleh, M. N., Cheng, S., and Shi, Y. (2019). Meta-
heuristic research: a comprehensive survey. Artificial intelligence review,
52(4):2191–2233.

IBM (2020). Cplex User’s Manual.

Kletzander, L. and Musliu, N. (2020). Solving the general employee scheduling
problem. Computers & Operations Research, 113:104794.

Krishnamoorthy, M., Ernst, A. T., and Baatar, D. (2012). Algorithms for large
scale shift minimisation personnel task scheduling problems. European
Journal of Operational Research, 219(1):34–48.
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