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ABSTRACT
Dependency graphs support software maintenance and software
ecosystem analysis. Several metrics can be used on top of these
graph models but the set of such metrics is to evolve over time. Fur-
ther, some metrics have a dynamic nature, requiring being able to
“rewind” dependency graphs at some point in time. To address these
issues we propose the Goblin framework. It is composed of a de-
pendency graph metamodel with time-related information, a miner
to retrieve the graph fromMaven Central, and a tool for on-demand
metric weaving into dependency graphs. As a whole, Goblin is a
customizable framework for ecosystem and dependency analysis.
This is illustrated with a set of complementary experiments. Our
tools, datasets, and experiments are freely available online.
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software ecosystem, dependency graph, framework, dataset, mining
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1 INTRODUCTION
Software reuse reduces development time and improves software
quality [1]. Using package managers, it is simple to reuse code as
project dependencies. Yet, these direct dependencies may them-
selves depend on other packages, yielding indirect dependencies.
It may then become complex to get a grasp of the whole set of
dependencies of a project. Further, dependency interplay, such as
incompatibilities between versions, hamper maintenance when it
comes to updating dependencies.
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To help, one may rely on dependency graphs (DG). We list and
compare several DG metamodels in the next section. Their com-
mon base is the representation of artifacts, releases (versions), and
dependency relations. On top of these models, it is needed to com-
pute different metrics before being able to measure the quality of
a project (from a dependency perspective) and to support or even
suggest updates. There are several metrics of interest here. The
set of CVEs (Common Vulnerabilities and Exposures) concerning a
dependency is central for security. Other metrics incorporate time,
e.g., freshness [3] or rhythm [5].

These metrics could be part of a DG metamodel. Yet, they are
numerous and evolve over time (and research). We believe that a
better solution is to weave them on-demand over DG models. Some
of these metrics have a dynamic nature, e.g., CVEs, freshness, and
rhythm, are all not constant in time given some package. Depen-
dencies may support ranges (instead of requiring version g:a:1.0
of a dependency, one may require any version between 1.0 and
2.0, not included). The version of a package that ends up being
used at some point in time may then change with different releases
being made. This means that it should be possible to “rewind” a DG
model at some point in the past.

As a solution to these requirements, we propose a DG framework,
Goblin.1 We apply Goblin to the Java Maven Central ecosystem
to demonstrate its use and because it is part of a requirement for
the analysis and update of DG models of our enterprise partner.
Goblin includes: a DG metamodel (Goblin-DG), a miner (Goblin-
Miner) to generate the whole DG model for Maven Central, and an
on-demand metrics weaver (Goblin-Weaver) that supports both
project-related scenarios and ecosystem-wide analysis.

In Section 2, we introduce Goblin-DG and compare it to existing
datasets. Section 3 presents the architecture of Goblin, Goblin-
Miner, and Goblin-Weaver. Section 4 aims to demonstrate the use
of Goblin on typical DG-related applications.

2 MAVEN CENTRAL DATASETS COMPARISON
This section aims to provide a comparative list of Maven Central DG
datasets, including ours. The first part of Table 1 is relative to avail-
ability and reproducibility. All datasets are available except for one
for which only the generation code is. We were able to regenerate
two of the datasets: ours on October 5th, 2023, and the one from [10]
on October 6th, 2023, with the “Artifact-to-Package” configuration
to get a graph architecture comparable to ours. The former (ours)
1Our framework, which weaves metrics into DG models, is named after Manufacture
des Gobelins, which produced weaved goods for the kings.
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Table 1: Comparison of Maven Central dependency graph datasets

Ref. External features Internal features

Link Date Can be Computation Can be Node types Edge types Available additional information (for nodes or for edges)

(dataset / code) (of dataset) recomputed time (at 10/2023) incremented Dependency Version Scopes Ranges Ghosts Release Date Access to Latest R

[11] data.4tu.nl (dataset) 2011-07-30 − n/a − R/P/C/M R→R R→R − − ✓ − indirect

[2] zenodo.org (dataset) 2019-09-10 ✓ unknown − R R→R R→R ✓ − − ✓ indirect

[4] zenodo.org (dataset) 2022-09-20 − n/a − R R→R − ✓ − − − indirect

[10] github.com (code) n/a ✓ 6.8 hours ✓ A/R R→A A→R − − − − direct (A→R)

This zenodo.org (dataset) 2023-10-05 ✓ 4.1 days ✓ A/R R→A A→R ✓ ✓ ✓ ✓ indirect

contains 588,185 artifacts, 12,154,070 releases and 98,190,646 depen-
dencies. To be compared to 606,608 artifacts, 11,771,269 releases and
77,622,145 dependencies for the latter. The difference is probably
due to the retrieval methods. There is however a notable differ-
ence in computation time (measured on a Red Hat Enterprise Linux
8.7, 64BG memory, 16 CPUs Intel(R) Xeon(R) CPU E7-8880 v4 @
2.20GHz, machine, with 12 allocated threads). Yet, Goblin-miner
has the ability to update a dataset without regenerating it from
scratch, which makes it more amenable to regular use. For instance,
to update our dataset from October 05, 2023, to October 14, 2023,
1h06m was necessary to add 50,427 new releases. From April 14,
2023, to October 14, 2023, (six months), 6h23m to add 1,179,148 new
releases. From October 14, 2022, to October 14, 2023, (one year),
11h27m to add 2,378,414 new releases.

The second part of the table describes the graph’s structure and
the information it holds.We identify several node types: Artifacts (A,
with group:artifact information), Releases (R, with version infor-
mation), Packages (P), Classes (C), and Methods (M). All datasets
include dependency edges, but their representation varies, either
release-to-release (R→R) or release-to-artifact (R→A). We may
also find version-related edges, either release-to-release (i.e., a next
relation) or artifact-to-releases (i.e., versions of an artifact). Addi-
tionally, other pieces of information can be present: scopes (e.g.,
compile or test), ranges (version range specifications), ghost de-
pendency information (i.e., dependencies to an artifact not found
on the ecosystem), release dates, and methods to determine an ar-
tifact’s latest version (available either directly or through edges
navigation).

The dataset from [11] stands out with richer information about
classes and methods, but it is older and its generation code is un-
available. The other four datasets vary based on their inclusion
of only releases, or both artifacts and releases. We opted for both,
with R→A dependencies, for greater flexibility. In addition to incor-
porating target versions (including ranges) on dependency edges,
this enables us to accurately represent dependency requirements. It
should be noted that the DG metamodel from [10] is the only one
with genericity mechanisms (multiple ecosystems, multiple formats:
Package-to-Package, Artifact-to-Package and Artifact-to-Artifact).

Our DG metamodel is presented in Figure 1. It is implemented
as a Neo4J graph.2 The release timestamps enable us to track time-
based changes and “rewind” in time (both being among our objec-
tives). Dependency contexts (including ranges) are also important
for this. Scopes help in filtering out non-essential dependencies (e.g.,

2Hence the PrimitiveObsession† use of Strings, and long for timestamps.

tests). Unlike the other datasets, ours combines all these three criti-
cal pieces of information.

scope: Scope
targetVersion: String // e.g. [1.0,2.0)

DependencyContext

id: String // g:a

found: boolean

Artifact
id: String // g:a:v

timestamp: long
version: String

Release

COMPILE, PROVIDED, 
RUNTIME, SYSTEM, TEST

<<enum>>
Scope

1..*version

* *dependency

Figure 1: Goblin dependency graph metamodel

3 THE GOBLIN FRAMEWORK
In this section, we present the architecture, the main tools, and the
use ofGoblin. This is illustrated in Figure 2. TheGoblin framework
is composed of a DG metamodel (Sect. 2), a miner for DG dataset
generation and updates (Sect. 3.1), and an on-demand weaver that
enables one to both add metrics to a DG and query it (Sect. 3.2).

3.1 Goblin-Miner
To create our dataset, we developed a Java program that builds
the DG in two steps. First, we retrieve all releases in the Lucene

GRAPH MANAGER
(Neo4J)

ADDED VALUE RELATED
DATA SOURCES

GOBLIN
MINER

GOBLIN
WEAVER

ECOSYSTEM
REPOSITORY

REGULAR
UPDATES

INFORMATION
SOURCES

USER
APPLICATION

REST API calls

Database API

Database API

Graph database API
(Cypher)

Graph database API
(Cypher)

Figure 2: Architecture of the Goblin framework

2

https://data.4tu.nl/articles/_/12698027/1
https://zenodo.org/record/3820487
https://zenodo.org/record/7626653
https://github.com/sse-labs/dgmf
https://zenodo.org/records/10291589


233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Goblin: A Framework for Enriching andQuerying the Maven Central Dependency Graph MSR 2024, April 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Maven Central Index archive3, extract the data from it, and create
the artifact and the release nodes, together with the version edges,
in a Neo4J database. Then, we go through all releases to retrieve
their direct dependencies with the org.eclipse.aether library.
Updating our dataset works the same way: we download the latest
Lucene archive fromMaven Central and carry out the same process,
but only for releases with a timestamp higher than the highest
timestamp present in the DG. Goblin is, by now, focused on Maven
and Java. Yet, our DG structure can be used for other ecosystems,
and our framework has been designed to be extensible.

3.2 Goblin-Weaver
When working on a DG, e.g., for dependency quality assessment,
library replacement, or ecosystem analysis, it is required to add
different kinds of information to nodes and/or edges. These can be
of a very different nature. Let us take the example of CVEs that one
can associate with nodes. This metric can be computed either locally
(the CVEs of a release) or aggregated (the CVEs of a release and of
all its direct and indirect dependencies). It can also be computed
at some point in time or derived over a period of time. It is the role
of the weaver to compute such metrics and add them on-demand
since it is not possible to have all of them in the DG (too many of
them, dynamic nature).

The way to call the weaver is using the REST API route:

POST /cypher {"query":QUERY,"addedValues":[(added value)*]}

where QUERY is a Neo4J’s Cypher query. In response:
• the weaver calls the Neo4J graph database where the DG is

stored, using the Cypher query given by the user;
• for each of the objects on which an added value applies (this

can be either nodes or edges), it computes an added value
for it, possibly using a specific database and performing
new Cypher queries transparently to the user;

• it returns the result in JSON format.
Several added-value algorithms are already available:

• direct CVEs (CVE) and aggregated ones (CVE_AGGREGATED),
using a local copy of the OSV dataset4;

• freshness [3], either local (FRESHNESS) or aggregated for di-
rect and indirect dependencies (FRESHNESS_AGGREGATED);

• speed [5] (SPEED).
The weaver is designed to be extensible, allowing a user to eas-

ily compute information specific to their research needs. As an
example (more experiments are given in Sect. 4), let us take the
log4j-core artifact. A query to the weaver that returns all 57
releases of it, with no added value, takes 12ms. With added val-
ues we get 14ms for [CVE], 3s for [CVE_AGGREGATED], 158ms for
[FRESHNESS], and 13s for [FRESHNESS_AGGREGATED]. The compu-
tation of aggregated values takes more time, which is normal since
the weaver has to compute the values for all the direct and indirect
dependencies of the target release before performing aggregation.

Since some Cypher queries are recurrent, one also has the possi-
bility to query “shortcut” routes (with specific parameters). Such
queries are then translated to queries on the /cypher route. A
Swagger documentation is available for the weaver.
3https://maven.apache.org/repository/central-index.html
4https://osv.dev/

3.3 Using Goblin
In order to use Goblin a user has to perform the following steps.
Extension (optional). If the set of added value constructors does
not meet one’s needs, it is possible to create new ones. To achieve
this, one has to develop the new constructor logic in a class that
implements a specific interface and registers it to the weaver. It
is also possible to define new routes for Cypher requests that are
often used. This is the approach we followed when defining the
existing set of routes. Our goal is that, over time, users contribute
new added values and new routes so that the burden of DG analysis
and use mainly lies in the post-processing step.
Calling the weaver. This consists of asking the weaver to query
the Neo4J database and to include some added values at the same
time. We recall that the general form of REST API calls for this is:

POST route {(param:value)*,"addedValues":[(added value)*]}

with different routes (including the low-level /cypher one) hav-
ing different sets of parameters.
Post-processing (optional). Once the information (i.e., a subpart
of the DG extended with added values) is retrieved, the user may
perform post-processing. This can be done in any language since
only calling a REST API and analyzing JSON feedback is required.
For the experiments, below in Section 4, we used Java and Python.

4 EXPERIMENTS
This section provides examples of how to use Goblin. We cover sce-
narios at different target levels: ecosystem, library and project. We
also cover the use of both absolute time and time-derived metrics.

4.1 Experiment 1 - Ecosystem analysis
To test the scalability of Goblin, this first experiment is positioned
at the level of the entire ecosystem. First, we ask “How many of the
12,154,070 releases on Maven Central contain at least one CVE?”. To
answer, we use route /cypher with the following payload:

{ "query": "MATCH (r:Release) RETURN r",
"addedValues": ["CVE"] }

Theweaver returned all release nodeswith their CVE information in
93s. We then did a post-processing to count the number of releases
containing one or more CVEs. The result showed that 0.462% of
releases (56,198 out of 12,154,070) had at least one CVE. As the
weaver returns all node information (including release date), we
created a histogram showing the year-by-year evolution in the
number of CVEs of releases in the ecosystem, as shown in Figure 3.

A little more tricky now, we are going to ask “Howmany of the latest
releases of each artifact contain at least one CVE?”. To answer, we
modified the Cypher query to get, for each artifact, its last release
based on the timestamp as follows:

{ "query": "MATCH (a:Artifact) WITH a MATCH
(a)-[:relationship_AR]->(r:Release) WITH a
, r ORDER BY r.timestamp DESC WITH a,
COLLECT(r)[0] AS mostRecentRelease RETURN
mostRecentRelease",
"addedValues": ["CVE"] }

3
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Figure 3: Evolution of vulnerability in Maven Central

The result, obtained in 49s, showed that 0.031% of last releases (176
out of 567,315) had at least one CVE. Note here that this request,
more complex, could have been an API route.

4.2 Experiment 2 - Choice of a library
We operate now at library level, with time-derived metrics, asking
“How to choose between two libraries with the same features?”. We
compared two popular JSON processing libraries (Jackson-databind
and Gson) by examining their aggregated CVEs and the number
of their dependents in Maven Central for their last 20 releases. We
first gathered these most recent 20 releases of each artifact with
their aggregated CVEs, excluding release candidates, using a query
of the form:

/cypher {"query":"...","addedValues":["CVE_AGGREGATED"]} ×2
Execution takes 337ms for Jackson-databind and 140ms for Gson.
Now for each release Ri, we ask for its dependents using:

/release/dependents {"gav":"Ri","addedValues":[]} ×2×20
It takes respectively 10s (for the 20 Jackson-databind releases) and
17s (for the 20 Gson releases). Finally, we post-process the result to
get Figure 4 which displays the evolution of aggregated CVE and
dependents for both packages.

Figure 4: JSON libraries Comparison

4.3 Experiment 3 - Relative release rhythm
4.3.1 Client side. Let us now operate at project level, with time-
derived metrics again, by asking “Based on the direct dependencies of

a project, what would be the best rhythm to update them all at once?”.
This can assist developers in planning their dependency manage-
ment strategies and anticipating potential updates or changes.

To answer this, we retrieve the direct dependencies present in a
pom.xml file and ask the weaver to provide us with the correspond-
ing artifacts (GAi) and their speed (number of releases per day) [5]
by using:

/artifact {"ga":"GAi","addedValues":["SPEED"]} ×2

Using this speed information, we may display the average, min-
imum, and maximum release rhythm of their dependencies. For
example, for a project with two direct dependencies, the execution
time was 64ms and the average release time for new versions of the
project’s dependencies was 21.88 days. It would hence be healthy
to check the dependencies of this project every 22 days.

4.3.2 Provider side. Here, we are also at project level, with a time-
derived metric, by asking “In the viewpoint of a package provider,
what would be the best rhythm to release a new version?”. We start
by identifying the provider P speed by using:

/artifact {"ga":"P","addedValues":["SPEED"]}

and then the speed of all the provider dependents Di by using:

/cypher {"query":"...Di...","addedValues":["SPEED"]} ×4883

For this experiment, we examined the httpcore artifact, which is in
the top 100 in popularity on Maven Central with 4,883 dependents.
Execution time was 16s, the provider speed was 112 days while on
average its clients’ speed was 65.08 days.

5 AVAILABILITY
Our Goblin-DG dataset for Maven Central is available at [6]. Our
tools are available at [7] (Goblin-miner) and at [8] (Goblin-weaver).
Our experiments repository is at [9] with results at [6].

6 CONCLUSION
In this paper we have presented the Goblin framework. It includes
a DG metamodel, an ecosystem miner, and an on-demand metrics
weaver. Goblin has been applied to the Maven Central ecosystem.
In order to demonstrate the use ofGoblin, we have designed several
experiments corresponding to typical use cases: ecosystem analysis,
library comparison, and client-provider rhythm analysis.

The primary limitation of Goblin is the cost of computing tran-
sitive values. While this is not a major issue for individual projects
or libraries, it becomes significant when analyzing an entire ecosys-
tem. We are studying possible optimizations such as memoization
and transitive edge pre-computation. A work in progress is to apply
Goblin to other software ecosystems. NPM is required at our en-
terprise partner. The study of dependency ranges will also be more
of interest there (this feature is seldom used in Maven Central).
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