
HAL Id: hal-04392296
https://hal.science/hal-04392296v1

Submitted on 17 Apr 2024 (v1), last revised 27 Sep 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Goblin: A Framework for Enriching and Querying the
Maven Central Dependency Graph
Damien Jaime, Joyce El Haddad, Pascal Poizat

To cite this version:
Damien Jaime, Joyce El Haddad, Pascal Poizat. Goblin: A Framework for Enriching and Querying the
Maven Central Dependency Graph. 21st International Conference on Mining Software Repositories
(MSR), Apr 2024, Libonne, Portugal. �hal-04392296v1�

https://hal.science/hal-04392296v1
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Goblin: A Framework for Enriching andQuerying
the Maven Central Dependency Graph

Damien Jaime
Sorbonne Université, CNRS, LIP6

F-75005, Paris, France
SAP France S.A

F-92300, Levallois-Perret, France
damien.jaime@lip6.fr

Joyce El Haddad
Université Paris Dauphine-PSL,

CNRS, LAMSADE
F-75016, Paris, France

joyce.elhaddad@lamsade.dauphine.fr

Pascal Poizat
Sorbonne Université, CNRS, LIP6

F-75005, Paris, France
Université Paris Lumières, Université

Paris Nanterre
F-92000, Nanterre, France
pascal.poizat@lip6.fr

ABSTRACT
Dependency graphs support software maintenance and software
ecosystem analysis. Several metrics can be used on top of these
graph models but the set of such metrics is to evolve over time. Fur-
ther, some metrics have a dynamic nature, requiring being able to
“rewind” dependency graphs at some point in time. To address these
issues we propose the Goblin framework. It is composed of a de-
pendency graph metamodel with time-related information, a miner
to retrieve the graph fromMaven Central, and a tool for on-demand
metric weaving into dependency graphs. As a whole, Goblin is a
customizable framework for ecosystem and dependency analysis.
This is illustrated with a set of complementary experiments. Our
tools, datasets, and experiments are freely available online.

KEYWORDS
software ecosystem, dependency graph, framework, dataset, mining
software repositories, maven central

ACM Reference Format:
Damien Jaime, Joyce El Haddad, and Pascal Poizat. 2024. Goblin: A Frame-
work for Enriching and Querying the Maven Central Dependency Graph. In
Proceedings of 21st International Conference on Mining Software Repositories
(MSR 2024). ACM, New York, NY, USA, 5 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
Software reuse reduces development time and improves software
quality [1]. Using package managers, it is simple to reuse code as
project dependencies. Yet, these direct dependencies may them-
selves depend on other packages, yielding indirect dependencies.
It may then become complex to get a grasp of the whole set of
dependencies of a project. Further, dependency interplay, such as
incompatibilities between versions, hamper maintenance when it
comes to updating dependencies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR 2024, April 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

To help, one may rely on dependency graphs (DG). We list and
compare several DG metamodels in the next section. Their com-
mon base is the representation of artifacts, releases (versions), and
dependency relations. On top of these models, it is needed to com-
pute different metrics before being able to measure the quality of
a project (from a dependency perspective) and to support or even
suggest updates. There are several metrics of interest here. The
set of CVEs (Common Vulnerabilities and Exposures) concerning a
dependency is central for security. Other metrics incorporate time,
e.g., freshness [3] or rhythm [5].

These metrics could be part of a DG metamodel. Yet, they are
numerous and evolve over time (and research). We believe that a
better solution is to weave them on-demand over DG models. Some
of these metrics have a dynamic nature, e.g., CVEs, freshness, and
rhythm, are all not constant in time given some package. Depen-
dencies may support ranges (instead of requiring version g:a:1.0
of a dependency, one may require any version between 1.0 and
2.0, not included). The version of a package that ends up being
used at some point in time may then change with different releases
being made. This means that it should be possible to “rewind” a DG
model at some point in the past.

As a solution to these requirements, we propose a DG framework,
Goblin.1 We apply Goblin to the Java Maven Central ecosystem
to demonstrate its use and because it is part of a requirement for
the analysis and update of DG models of our enterprise partner.
Goblin includes: a DG metamodel (Goblin-DG), a miner (Goblin-
Miner) to generate the whole DG model for Maven Central, and an
on-demand metrics weaver (Goblin-Weaver) that supports both
project-related scenarios and ecosystem-wide analysis.

In Section 2, we introduce Goblin-DG and compare it to existing
datasets. Section 3 presents the architecture of Goblin, Goblin-
Miner, and Goblin-Weaver. Section 4 aims to demonstrate the use
of Goblin on typical DG-related applications.

2 MAVEN CENTRAL DATASETS COMPARISON
This section aims to provide a comparative list of Maven Central DG
datasets, including ours. The first part of Table 1 is relative to avail-
ability and reproducibility. All datasets are available except for one
for which only the generation code is. We were able to regenerate
two of the datasets: ours on October 5th, 2023, and the one from [10]
on October 6th, 2023, with the “Artifact-to-Package” configuration
to get a graph architecture comparable to ours. The former (ours)
1Our framework, which weaves metrics into DG models, is named after Manufacture
des Gobelins, which produced weaved goods for the kings.

1

https://orcid.org/0000-0002-7503-4606
https://orcid.org/0000-0002-2709-2430
https://orcid.org/0000-0001-7979-9510
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MSR 2024, April 2024, Lisbon, Portugal Jaime et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Comparison of Maven Central dependency graph datasets

Ref. External features Internal features

Link Date Can be Computation Can be Node types Edge types Available additional information (for nodes or for edges)

(dataset / code) (of dataset) recomputed time (at 10/2023) incremented Dependency Version Scopes Ranges Ghosts Release Date Access to Latest R

[11] data.4tu.nl (dataset) 2011-07-30 − n/a − R/P/C/M R→R R→R − − ✓ − indirect

[2] zenodo.org (dataset) 2019-09-10 ✓ unknown − R R→R R→R ✓ − − ✓ indirect

[4] zenodo.org (dataset) 2022-09-20 − n/a − R R→R − ✓ − − − indirect

[10] github.com (code) n/a ✓ 6.8 hours ✓ A/R R→A A→R − − − − direct (A→R)

This zenodo.org (dataset) 2023-10-05 ✓ 4.1 days ✓ A/R R→A A→R ✓ ✓ ✓ ✓ indirect

contains 588,185 artifacts, 12,154,070 releases and 98,190,646 depen-
dencies. To be compared to 606,608 artifacts, 11,771,269 releases and
77,622,145 dependencies for the latter. The difference is probably
due to the retrieval methods. There is however a notable differ-
ence in computation time (measured on a Red Hat Enterprise Linux
8.7, 64BG memory, 16 CPUs Intel(R) Xeon(R) CPU E7-8880 v4 @
2.20GHz, machine, with 12 allocated threads). Yet, Goblin-miner
has the ability to update a dataset without regenerating it from
scratch, which makes it more amenable to regular use. For instance,
to update our dataset from October 05, 2023, to October 14, 2023,
1h06m was necessary to add 50,427 new releases. From April 14,
2023, to October 14, 2023, (six months), 6h23m to add 1,179,148 new
releases. From October 14, 2022, to October 14, 2023, (one year),
11h27m to add 2,378,414 new releases.

The second part of the table describes the graph’s structure and
the information it holds.We identify several node types: Artifacts (A,
with group:artifact information), Releases (R, with version infor-
mation), Packages (P), Classes (C), and Methods (M). All datasets
include dependency edges, but their representation varies, either
release-to-release (R→R) or release-to-artifact (R→A). We may
also find version-related edges, either release-to-release (i.e., a next
relation) or artifact-to-releases (i.e., versions of an artifact). Addi-
tionally, other pieces of information can be present: scopes (e.g.,
compile or test), ranges (version range specifications), ghost de-
pendency information (i.e., dependencies to an artifact not found
on the ecosystem), release dates, and methods to determine an ar-
tifact’s latest version (available either directly or through edges
navigation).

The dataset from [11] stands out with richer information about
classes and methods, but it is older and its generation code is un-
available. The other four datasets vary based on their inclusion
of only releases, or both artifacts and releases. We opted for both,
with R→A dependencies, for greater flexibility. In addition to incor-
porating target versions (including ranges) on dependency edges,
this enables us to accurately represent dependency requirements. It
should be noted that the DG metamodel from [10] is the only one
with genericity mechanisms (multiple ecosystems, multiple formats:
Package-to-Package, Artifact-to-Package and Artifact-to-Artifact).

Our DG metamodel is presented in Figure 1. It is implemented
as a Neo4J graph.2 The release timestamps enable us to track time-
based changes and “rewind” in time (both being among our objec-
tives). Dependency contexts (including ranges) are also important
for this. Scopes help in filtering out non-essential dependencies (e.g.,

2Hence the PrimitiveObsession† use of Strings, and long for timestamps.

tests). Unlike the other datasets, ours combines all these three criti-
cal pieces of information.

scope: Scope
targetVersion: String // e.g. [1.0,2.0)

DependencyContext

id: String // g:a

found: boolean

Artifact
id: String // g:a:v

timestamp: long
version: String

Release

COMPILE, PROVIDED,
RUNTIME, SYSTEM, TEST

<<enum>>
Scope

1..*version

* *dependency

Figure 1: Goblin dependency graph metamodel

3 THE GOBLIN FRAMEWORK
In this section, we present the architecture, the main tools, and the
use ofGoblin. This is illustrated in Figure 2. TheGoblin framework
is composed of a DG metamodel (Sect. 2), a miner for DG dataset
generation and updates (Sect. 3.1), and an on-demand weaver that
enables one to both add metrics to a DG and query it (Sect. 3.2).

3.1 Goblin-Miner
To create our dataset, we developed a Java program that builds
the DG in two steps. First, we retrieve all releases in the Lucene

GRAPH MANAGER
(Neo4J)

ADDED VALUE RELATED
DATA SOURCES

GOBLIN
MINER

GOBLIN
WEAVER

ECOSYSTEM
REPOSITORY

REGULAR
UPDATES

INFORMATION
SOURCES

USER
APPLICATION

REST API calls

Database API

Database API

Graph database API
(Cypher)

Graph database API
(Cypher)

Figure 2: Architecture of the Goblin framework

2

https://data.4tu.nl/articles/_/12698027/1
https://zenodo.org/record/3820487
https://zenodo.org/record/7626653
https://github.com/sse-labs/dgmf
https://zenodo.org/records/10291589

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Goblin: A Framework for Enriching andQuerying the Maven Central Dependency Graph MSR 2024, April 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Maven Central Index archive3, extract the data from it, and create
the artifact and the release nodes, together with the version edges,
in a Neo4J database. Then, we go through all releases to retrieve
their direct dependencies with the org.eclipse.aether library.
Updating our dataset works the same way: we download the latest
Lucene archive fromMaven Central and carry out the same process,
but only for releases with a timestamp higher than the highest
timestamp present in the DG. Goblin is, by now, focused on Maven
and Java. Yet, our DG structure can be used for other ecosystems,
and our framework has been designed to be extensible.

3.2 Goblin-Weaver
When working on a DG, e.g., for dependency quality assessment,
library replacement, or ecosystem analysis, it is required to add
different kinds of information to nodes and/or edges. These can be
of a very different nature. Let us take the example of CVEs that one
can associate with nodes. This metric can be computed either locally
(the CVEs of a release) or aggregated (the CVEs of a release and of
all its direct and indirect dependencies). It can also be computed
at some point in time or derived over a period of time. It is the role
of the weaver to compute such metrics and add them on-demand
since it is not possible to have all of them in the DG (too many of
them, dynamic nature).

The way to call the weaver is using the REST API route:

POST /cypher {"query":QUERY,"addedValues":[(added value)*]}

where QUERY is a Neo4J’s Cypher query. In response:
• the weaver calls the Neo4J graph database where the DG is

stored, using the Cypher query given by the user;
• for each of the objects on which an added value applies (this

can be either nodes or edges), it computes an added value
for it, possibly using a specific database and performing
new Cypher queries transparently to the user;

• it returns the result in JSON format.
Several added-value algorithms are already available:

• direct CVEs (CVE) and aggregated ones (CVE_AGGREGATED),
using a local copy of the OSV dataset4;

• freshness [3], either local (FRESHNESS) or aggregated for di-
rect and indirect dependencies (FRESHNESS_AGGREGATED);

• speed [5] (SPEED).
The weaver is designed to be extensible, allowing a user to eas-

ily compute information specific to their research needs. As an
example (more experiments are given in Sect. 4), let us take the
log4j-core artifact. A query to the weaver that returns all 57
releases of it, with no added value, takes 12ms. With added val-
ues we get 14ms for [CVE], 3s for [CVE_AGGREGATED], 158ms for
[FRESHNESS], and 13s for [FRESHNESS_AGGREGATED]. The compu-
tation of aggregated values takes more time, which is normal since
the weaver has to compute the values for all the direct and indirect
dependencies of the target release before performing aggregation.

Since some Cypher queries are recurrent, one also has the possi-
bility to query “shortcut” routes (with specific parameters). Such
queries are then translated to queries on the /cypher route. A
Swagger documentation is available for the weaver.
3https://maven.apache.org/repository/central-index.html
4https://osv.dev/

3.3 Using Goblin
In order to use Goblin a user has to perform the following steps.
Extension (optional). If the set of added value constructors does
not meet one’s needs, it is possible to create new ones. To achieve
this, one has to develop the new constructor logic in a class that
implements a specific interface and registers it to the weaver. It
is also possible to define new routes for Cypher requests that are
often used. This is the approach we followed when defining the
existing set of routes. Our goal is that, over time, users contribute
new added values and new routes so that the burden of DG analysis
and use mainly lies in the post-processing step.
Calling the weaver. This consists of asking the weaver to query
the Neo4J database and to include some added values at the same
time. We recall that the general form of REST API calls for this is:

POST route {(param:value)*,"addedValues":[(added value)*]}

with different routes (including the low-level /cypher one) hav-
ing different sets of parameters.
Post-processing (optional). Once the information (i.e., a subpart
of the DG extended with added values) is retrieved, the user may
perform post-processing. This can be done in any language since
only calling a REST API and analyzing JSON feedback is required.
For the experiments, below in Section 4, we used Java and Python.

4 EXPERIMENTS
This section provides examples of how to use Goblin. We cover sce-
narios at different target levels: ecosystem, library and project. We
also cover the use of both absolute time and time-derived metrics.

4.1 Experiment 1 - Ecosystem analysis
To test the scalability of Goblin, this first experiment is positioned
at the level of the entire ecosystem. First, we ask “How many of the
12,154,070 releases on Maven Central contain at least one CVE?”. To
answer, we use route /cypher with the following payload:

{ "query": "MATCH (r:Release) RETURN r",
"addedValues": ["CVE"] }

Theweaver returned all release nodeswith their CVE information in
93s. We then did a post-processing to count the number of releases
containing one or more CVEs. The result showed that 0.462% of
releases (56,198 out of 12,154,070) had at least one CVE. As the
weaver returns all node information (including release date), we
created a histogram showing the year-by-year evolution in the
number of CVEs of releases in the ecosystem, as shown in Figure 3.

A little more tricky now, we are going to ask “Howmany of the latest
releases of each artifact contain at least one CVE?”. To answer, we
modified the Cypher query to get, for each artifact, its last release
based on the timestamp as follows:

{ "query": "MATCH (a:Artifact) WITH a MATCH
(a)-[:relationship_AR]->(r:Release) WITH a
, r ORDER BY r.timestamp DESC WITH a,
COLLECT(r)[0] AS mostRecentRelease RETURN
mostRecentRelease",
"addedValues": ["CVE"] }

3

https://maven.apache.org/repository/central-index.html
https://osv.dev/

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MSR 2024, April 2024, Lisbon, Portugal Jaime et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: Evolution of vulnerability in Maven Central

The result, obtained in 49s, showed that 0.031% of last releases (176
out of 567,315) had at least one CVE. Note here that this request,
more complex, could have been an API route.

4.2 Experiment 2 - Choice of a library
We operate now at library level, with time-derived metrics, asking
“How to choose between two libraries with the same features?”. We
compared two popular JSON processing libraries (Jackson-databind
and Gson) by examining their aggregated CVEs and the number
of their dependents in Maven Central for their last 20 releases. We
first gathered these most recent 20 releases of each artifact with
their aggregated CVEs, excluding release candidates, using a query
of the form:

/cypher {"query":"...","addedValues":["CVE_AGGREGATED"]} ×2
Execution takes 337ms for Jackson-databind and 140ms for Gson.
Now for each release Ri, we ask for its dependents using:

/release/dependents {"gav":"Ri","addedValues":[]} ×2×20
It takes respectively 10s (for the 20 Jackson-databind releases) and
17s (for the 20 Gson releases). Finally, we post-process the result to
get Figure 4 which displays the evolution of aggregated CVE and
dependents for both packages.

Figure 4: JSON libraries Comparison

4.3 Experiment 3 - Relative release rhythm
4.3.1 Client side. Let us now operate at project level, with time-
derived metrics again, by asking “Based on the direct dependencies of

a project, what would be the best rhythm to update them all at once?”.
This can assist developers in planning their dependency manage-
ment strategies and anticipating potential updates or changes.

To answer this, we retrieve the direct dependencies present in a
pom.xml file and ask the weaver to provide us with the correspond-
ing artifacts (GAi) and their speed (number of releases per day) [5]
by using:

/artifact {"ga":"GAi","addedValues":["SPEED"]} ×2

Using this speed information, we may display the average, min-
imum, and maximum release rhythm of their dependencies. For
example, for a project with two direct dependencies, the execution
time was 64ms and the average release time for new versions of the
project’s dependencies was 21.88 days. It would hence be healthy
to check the dependencies of this project every 22 days.

4.3.2 Provider side. Here, we are also at project level, with a time-
derived metric, by asking “In the viewpoint of a package provider,
what would be the best rhythm to release a new version?”. We start
by identifying the provider P speed by using:

/artifact {"ga":"P","addedValues":["SPEED"]}

and then the speed of all the provider dependents Di by using:

/cypher {"query":"...Di...","addedValues":["SPEED"]} ×4883

For this experiment, we examined the httpcore artifact, which is in
the top 100 in popularity on Maven Central with 4,883 dependents.
Execution time was 16s, the provider speed was 112 days while on
average its clients’ speed was 65.08 days.

5 AVAILABILITY
Our Goblin-DG dataset for Maven Central is available at [6]. Our
tools are available at [7] (Goblin-miner) and at [8] (Goblin-weaver).
Our experiments repository is at [9] with results at [6].

6 CONCLUSION
In this paper we have presented the Goblin framework. It includes
a DG metamodel, an ecosystem miner, and an on-demand metrics
weaver. Goblin has been applied to the Maven Central ecosystem.
In order to demonstrate the use ofGoblin, we have designed several
experiments corresponding to typical use cases: ecosystem analysis,
library comparison, and client-provider rhythm analysis.

The primary limitation of Goblin is the cost of computing tran-
sitive values. While this is not a major issue for individual projects
or libraries, it becomes significant when analyzing an entire ecosys-
tem. We are studying possible optimizations such as memoization
and transitive edge pre-computation. A work in progress is to apply
Goblin to other software ecosystems. NPM is required at our en-
terprise partner. The study of dependency ranges will also be more
of interest there (this feature is seldom used in Maven Central).

ACKNOWLEDGMENTS
This work is funded by PhD grant 2021/0047 from ANRT. Experi-
ments have been achieved thanks to machines at SAP France S.A.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Goblin: A Framework for Enriching andQuerying the Maven Central Dependency Graph MSR 2024, April 2024, Lisbon, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why Do Developers Use Trivial Packages? An Empirical Case
Study on Npm. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE ’17). 385–395.

[2] Amine Benelallam, Nicolas Harrand, César Soto-Valero, Benoit Baudry, and
Olivier Barais. 2019. The Maven Dependency Graph: A Temporal Graph-Based
Representation of Maven Central. In Proceedings of the 16th International Confer-
ence on Mining Software Repositories (MSR ’19). 344–348.

[3] Joël Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. 2015. Measuring De-
pendency Freshness in Software Systems. In Proceedings of the 37th International
Conference on Software Engineering (ICSE ’15, Vol. 2). 109–118.

[4] Andreas Dann, Ben Hermann, and Eric Bodden. 2023. UpCy: Safely Updating
Outdated Dependencies. In Proceedings of the 45th International Conference on
Software Engineering (ICSE ’23). 233–244.

[5] Damien Jaime, Joyce El Haddad, and Pascal Poizat. 2022. A Preliminary Study
of Rhythm and Speed in the Maven Ecosystem. In 21st Belgium-Netherlands
Software Evolution Workshop (BENEVOL ’22).

[6] Damien Jaime, Joyce El Haddad, and Pascal Poizat. 2023. Goblin: A Framework
for Enriching and Querying the Maven Central Dependency Graph. https:

//doi.org/10.5281/zenodo.10306054
[7] Damien Jaime, Joyce El Haddad, and Pascal Poizat. 2023. Goblin Ecosystem Depen-

dencies Miner. https://github.com/Goblin-Ecosystem/goblinDependencyMiner
[8] Damien Jaime, Joyce El Haddad, and Pascal Poizat. 2023. Goblin-Weaver. https:

//github.com/Goblin-Ecosystem/goblinWeaver
[9] Damien Jaime, Joyce El Haddad, and Pascal Poizat. 2023. Maven

Dataset And Weaver Experience. https://github.com/Goblin-Ecosystem/
mavenDatasetExperiences

[10] Tobias Litzenberger, Johannes Düsing, and Ben Hermann. 2023. DGMF: Fast
Generation of Comparable, Updatable Dependency Graphs for Software Reposi-
tories. In 20th International Conference on Mining Software Repositories (MSR ’23).
115–119.

[11] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2013. The Maven repos-
itory dataset of metrics, changes, and dependencies. In 10th Working Conference
on Mining Software Repositories (MSR ’13). 221–224.

Received XX January XXXX; revised XX January XXXX; accepted XX Janu-
ary XXXX

5

https://doi.org/10.5281/zenodo.10306054
https://doi.org/10.5281/zenodo.10306054
https://github.com/Goblin-Ecosystem/goblinDependencyMiner
https://github.com/Goblin-Ecosystem/goblinWeaver
https://github.com/Goblin-Ecosystem/goblinWeaver
https://github.com/Goblin-Ecosystem/mavenDatasetExperiences
https://github.com/Goblin-Ecosystem/mavenDatasetExperiences

	Abstract
	1 Introduction
	2 Maven Central Datasets Comparison
	3 The Goblin Framework
	3.1 Goblin-Miner
	3.2 Goblin-Weaver
	3.3 Using Goblin

	4 Experiments
	4.1 Experiment 1 - Ecosystem analysis
	4.2 Experiment 2 - Choice of a library
	4.3 Experiment 3 - Relative release rhythm

	5 Availability
	6 Conclusion
	Acknowledgments
	References

