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As an emerging mobility-on-demand service, bike-sharing system (BSS) has spread all over the world by providing a lexible,

cost-eicient, and environment-friendly transportation mode for citizens. Demand-supply unbalance is one of the main

challenges in BSS because of the ineiciency of the existing bike repositioning strategy, which reallocates bikes according to a

pre-deined periodic schedule without considering the highly dynamic user demands. While reinforcement learning has been

used in some repositioning problems for mitigating demand-supply unbalance, there are signiicant barriers when extending

it to BSS due to the dimension curse of action space resulting from the dynamic number of workers and bikes in the city.

In this paper, we study these barriers and address them by proposing a novel bike repositioning system, namely BikeBrain,

which consists of a demand prediction model and a spatio-temporal bike repositioning algorithm. Speciically, to obtain

accurate and real-time usage demand for eicient bike repositioning, we irst present a prediction model ST-NetPre, which

directly predicts user demand considering the highly dynamic spatio-temporal characteristics. Furthermore, we propose

a spatio-temporal cooperative multi-agent reinforcement learning method (ST-CBR) for learning the worker-based bike

repositioning strategy in which each worker in BSS is considered an agent. Especially, ST-CBR adopts the centralized learning

and decentralized execution way to achieve efective cooperation among large-scale dynamic agents based on Mean Field

Reinforcement Learning (MFRL), while avoiding the huge dimension of action space. For dynamic action space, ST-CBR

utilizes a SoftMax selector to select the speciic action. Meanwhile, for the beneits and costs of agents’ operation, an eicient

reward function is designed to seek an optimal control policy considering both immediate and future rewards. Extensive

experiments are conducted based on large-scale real-world datasets, and the results have shown signiicant improvements of

our proposed method over several state-of-the-art baselines on the demand-supply gap and operation cost measures.
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1 INTRODUCTION

Bike-sharing system (BSS), as an emerging mobility-on-demand service, has spread all over the world, including
docked systems like the Citi bike in New York City1, Capital bike in Washington2, and dockless systems like
Hellobike3, DiDi Bike4 in China, etc. According to the survey by Bike-sharing Blog5, as of May 2018, there are
more than 1,600 BSS companies in operation around the world, providing a total of more than 18 million bikes
for people to use, and this number is still growing. BSS not only bridges the gap between traditional public
transport hubs (e.g., metro, bus station, and railway station) and the origin/destination, but also provides a lexible,
cost-eicient, and environment-friendly transportation mode for citizens. One of the critical issues in BSS is how
to balance the demand and supply. Bike repositioning is a cost-efective way to reduce the demand-supply gap, by
redistributing bikes between stations in advance according to the prediction of user demand, so as to maximize
the satisfaction of future coming demand. If the superluous bikes of a station are diverted to a station with strong
rent demand, the number of riders served will be signiicantly increased. As a result, both user satisfaction and
platform revenue will improve.

Bike repositioning is a typical sequential decision-making problem. In this scenario, decisions need to be made
sequentially over time to optimally redistribute bikes among diferent stations. The objective is to balance supply
and demand, maximize user satisfaction, and minimize the repositioning costs. Combinatorial optimization
algorithms (e.g., integer programming, linear programming, and genetic algorithms) are usually used to solve this
problem[13, 14], where the goal is to ind the best solution from a inite set of possible repositioning solutions.
These algorithms help in optimizing an objective function by considering various combinations of elements and
selecting the most optimal one. However, combinatorial optimization methods do have certain limitations when
it comes to large-scale dynamic spatio-temporal data and real-time decision-making. More importantly, they are
myopic, only focusing on inding the current optimal solution, without considering the future implications of the
decision. This always leads to sub-optimal decisions.
To address these limitations, deep reinforcement learning (DRL) provides a more lexible and adaptive way

to tackle the dynamic and complex bike repositioning problem. DRL is a combination of deep learning and
reinforcement learning techniques, aimed at solving complex sequential decision-making problems. It enables
agents to learn optimal decision-making policies through interactions with their environment while considering
high-dimensional state and action spaces. Beneiting from the power of DRL that can take both short- and long-
term sequential decision impacts [19, 31] into consideration, DRL performs well compared to other traditional
methods. In recent years, DRL has made signiicant progress in the ield of games playing (e.g., AlphaGo [29]
and its variants [35, 43]), robotics[1, 22, 34], autonomous vehicles[2, 16], and resource allocation[45, 52]. In
light of such advances, several works have tried to apply DRL to solve the bike repositioning problem in BSS
[19, 31]. Li et al. [19] propose a multi-agent reinforcement learning model for bike repositioning, aiming to learn
the optimal worker-based repositioning policy, which closely aligns with our work. However, this multi-agent
approach considers each worker as a separate agent who learns and acts independently while interacting with
the environment, their simpliied problem formulation and agent settings do not adequately capture the intricate
multi-agent interactions and cooperation within bike-sharing systems, resulting in poor performance.
To learn highly eicient repositioning policy for the real-time BSS platform, we summarized the signiicant

technical challenges as follows:

1https://citibikenyc.com/
2https://capitalbikeshare.com/
3https://www.hello-inc.com/
4https://www.didiglobal.com/travel-service/bike
5http://bike-sharing.blogspot.com/
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• Dynamic demand prediction in BSS. Accurate prediction in advance is essential for subsequent DRL-
based decision-making. Even with abundant historical bike usage data, predicting user demand is very
challenging since bike rent and return patterns are very dynamic and inluenced by many complex factors,
including temporal dependencies (e.g., hour of a day, day of a week, holiday), spatial correlations (e.g.,
location, surrounding POIs), even the mixture of these two and other contextual factors (e.g., weather).
How to capture the complex spatio-temporal factor and predict user demand for the next coming period in
such a highly complex and dynamic environment is not easy.

• Large-scale agents. To avoid the dimension curse of action space under a multi-agent setting, each worker
is considered as an independent agent. However, such a setting needs to maintain a large number of agents
interacting with the environment simultaneously, resulting in a non-stationary environment. How to train
large-scale agents and enable them to cooperatively learn eicient repositioning policy is very challenging
in multi-agent reinforcement learning (MARL).

• Dynamic agents & action sets. Traditional MARL models require a ixed number of agents. However, the
number of agents in BSS always changes over time as the status of the agent can be switched between
online and oline depending on whether the repositioning task is completed or not. Moreover, if we model
moving a certain number of bikes from a full station to a hungry station, there is no guarantee of a ixed
action space as the the status of station keeps changing. How to model cooperation among a dynamic
number of agents is challenging, and how to deal with variable actions in MARL is also diicult.

• Immediate & Future Rewards. RL is a reward-driven learning method, the policy determines the sequence
of actions only by analyzing the reward signal from the environment. A key challenge in seeking an optimal
control policy is to ind a trade-of between immediate and future rewards. In the bike repositioning task,
we need to consider not only meeting more customer needs but also workers’ operation costs, i.e., the
repositioning distance from one station to another. Hence, how to carefully design the reward function in
bike repositioning scenarios is challenging.

Speciically, the main contributions of this paper are summarized as follows.

• We propose a novel bike repositioning system, namely BikeBrain, which consists of a demand prediction
model and a spatio-temporal bike repositioning algorithm, for addressing demand-supply unbalance.

• We propose ST-NetPre, a spatio-temporal net demand prediction model. For the bike repositioning task,
compared to solely predicting the rent demand and return demand, we focus more on directly predicting
the net demand (i.e., the diference between return the rent demand, net = return- rent), which avoids the
superposition of twice prediction errors.

• We propose ST-CBR, a spatio-temporal cooperative multi-agent reinforcement learning system for learning
the optimal bike repositioning strategy to minimize the gap between user demand and supply at a low
operation cost. Being more reliable than existing approaches, our proposed ST-CBR solution follows a
centralized learning and decentralized execution way, which not only can efectively capture large-scale
spatio-temporal demand-supply dynamics but also can achieve cooperation among a dynamic number of
agents through Mean Field Reinforcement Learning (MFRL).

• We design a SoftMax selector and a reward function to enable eicient bike-sharing repositioning. A
SoftMax selector is utilized to deal with the dynamic action space by selecting the speciic action, and a
reward function is leveraged to seek an optimal control policy to meet more customer needs at low worker
operation costs.

• Extensive experiments are implemented using large-scale real-world bike usage records datasets from a
typical bike-sharing system, i.e., Citi Bike in NYC) and other multi-source city datasets. Results have shown
that our approach outperforms the state-of-the-art baselines on both the demand-supply gap and operation
cost measures.

ACM Trans. Sensor Netw.
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The rest of this paper is organized as follows: We’ll start with the related work in Section 2. Section 3 gives a
high-level overview of our method. The proposed approach is further elaborated in Section 4. Section 5 displays
the experiment settings and results. The discussion is introduced in Section 6, and the conclusion is enclosed in
Section 7.

2 RELATED WORK

We summarized two types of related works, bike repositioning and multi-agent reinforcement learning (MARL).
Bike repositioning.

Existing bike repositioning studies can be divided into two categories: user-based [12, 31, 36] and worker-based
[14, 19, 25]. The user-based way [12, 31, 36] encourages customers to rent or return bikes at certain locations in
exchange for a monetary beneit, thereby facilitating the redistribution of bikes. Worker-based repositioning
needs to hire some specialized workers to reallocate bikes by trikes. Most of the studies focus on the worker-based
way, as it is more eicient and manageable in practice. From the perspective of the repositioning time, worker-
based works can also be divided into two categories, static bike repositioning [23] and dynamic repositioning
[13, 14, 19]. In static bike repositioning, workers reallocate bikes when the system does not operate or at midnight.
These works focus on using rule-based combinatorial optimization algorithms to get periodic schedules for bike
repositioning [23]. Combinatorial optimization algorithms, such as integer programming, linear programming,
and genetic algorithms, are commonly employed to address the bike-sharing repositioning problem by identifying
the most optimal solution from a inite set of possibilities. These techniques optimize objective functions by
evaluating various element combinations and selecting the most suitable one. However, they possess certain
limitations when dealing with large-scale, dynamic spatio-temporal data and real-time decision-making. Most
notably, these methods are myopic, concentrating solely on determining the current optimal solution without
considering the future consequences of their decisions. This often results in sub-optimal choices. Dynamic
repositioning problems can also be solved by optimization models [13, 14], but they are hard to ind the optimal
solution and cannot deal with the uncertainties that arise during the actual operation process. Some studies
forecast future bike demand and relocate bikes in a greedy or heuristic policy, which is not a smart approach
because it is myopic and may not be optimal over time.
This survey[5] serves as a valuable resource for our proposed research, as it not only ofers an overview of

the state-of-the-art research in data-driven optimization for bike-sharing systems but also highlights potential
opportunities for future research and enhancement. Speciically, it outlines the primary challenges and presents a
comprehensive technical framework for BSS optimization. Distinct from the methods summarized by this survey,
we employ DRL to learn dynamic bike repositioning strategy considering both short- and long-term impacts
[19, 31]. Instead of relying on workers to reposition bikes, Pan et al.[31] aims to incentivize users themselves to
rebalance the bike-sharing system by ofering them rewards. They propose a DRL framework that decides how to
pay diferent users at each time to incentivize users to rebalance the dockless bike-sharing system. Li et al. [17]
investigate the application of policy-gradient-based reinforcement learning to address the rebalancing problem.
Their approach aims to enhance user experience while reducing operational expenses simultaneously. Chen
et al.[4] focus on Dockless Public Bicycle-sharing Systems (DBSS), which allow users to rent and return bikes
without ixed docking stations, and they propose a multi-objective reinforcement learning method to optimize
dispatching by considering costs, truck loads, workload balance, and supply-demand balance. Li et al.[18] propose
a multi-agent reinforcement learning method for dynamic bike repositioning in DBSS. They employ the double
deep q network (DDQN) algorithm and the shadow environment trick to address the non-stationary learning
problem, and the training process is decomposed into sequential independent single-agent training. Li et al.[19]
present a novel spatio-temporal reinforcement learning approach to address the dynamic bike repositioning
problem, which is very close to our work. However, this multi-agent approach considers each worker as a separate

ACM Trans. Sensor Netw.



Eficient Bike-sharing Repositioning with Cooperative Multi-Agent Deep Reinforcement Learning • 5

agent who learns and acts independently while interacting with the environment. Their approach is limited to
accurately modeling the complex interactions and cooperation of agents in BSS. Therefore, their model may
not be able to efectively capture the complexities of real-world bike-sharing operations and decision-making
processes, and further research and development are needed to address these challenges.
Multi-agent reinforcement learning (MARL). In recent years, deep learning has achieved great success

in various ields [50, 51]. By leveraging the power of deep learning to approximate complex functions and the
ability of reinforcement learning to learn optimal policies through interactions with the environment, DRL
achieved state-of-the-art performance in various domains. The success of AlphaGo [29], AlphaGo Zero [35],
and AlphaStar [43] demonstrates the efectiveness of DRL [8, 28, 42, 46, 48, 49]. Diferent from the traditional
DRL setting, MARL means there is a group of agents in the environment. The main challenges in MARL are the
non-stationarity between independent agents [40, 41] and the exponential increase in state and action space.
Training multi-agent using independent DRL is a straightforward method [40, 41], where agents interact with
the environment autonomously and take action based on their own observations and policies. However, this
is not a good solution, because all of the agents are simultaneously learning and inluencing the environment,
making the environment non-stationary. It’s diicult for agents to learn useful knowledge in such an unstable
environment. Most of the existing studies use multi-agent centralized learning to enable cooperation among
agents, which learns the joint policy by agents’ joint state and action [15]. Unfortunately, the joint state and
action grow exponentially as the number of agents increases. Even applying it to a small-scale problem could
already be computationally intensive. And, the centralized learning setting is inadequate in real-world scenarios,
because the joint policy is always subject to a synchronous constraint of all agents, whereas the agents are usually
asynchronous in practice. Furthermore, as the status of the agent can be switched between online and oline
depending on whether the repositioning task is completed or not, the number of agents in BSS always changes
over time, which is challenging for traditional MARL approaches in such a dynamic environment. Moreover, as
the number of bikes at each station is constantly changing, it is not ixed whether the status of the station will be
too full or hungry, and how many bikes need to be moved from a full station to a hungry station is also variable.
As a result, the action space for the repositioning task is dynamic. It is diicult to deal with variable actions in
MARL.
Existing studies have proposed several approaches to mitigate the efects of these challenges, e.g., the policy

parameters sharing [15], value-decomposition Networks [39], monotonic value function factorization [33]. A
subset of these methods follows the łcentralized planning with decentralized execution way [11, 26, 32]. A typical
method, i.e., MADDPG [26] extends DDPG [27] into a multi-agent setting. To enhance learning, the critic is not
only fed the agent’s own information, but also the actions of other agents to learn the centralized Q-function
during the training phase. After the training, agents can directly use the learned policy (the actor) to select actions
based on their own observations. ThoughMARL has made signiicant progress in various challenging applications,
e.g., games [26, 39], in complex real-world urban scenarios, MARL is rarely used due to the complexity of the urban
decision-making problem. [20] use reinforcement learning to learn the courier management policy in express
systems. For an electric carsharing system, [44] propose a repositioning and charging management method based
on RL. Lin et al. solve the leet management problem through MARL. Moreover, most of these approaches have
limitations for the problems with large-scale agents, dynamic number of agents, and variable actions. To address
this, Yang et al.[47] introduce a new method that combines MARL with mean ield approximations. To verify
the efectiveness of this way, they also proved its convergence by theoretical analysis. Li et al.[20] address the
large-scale order dispatching problem using mean ield approximations. These methods, however, cannot be
directly applied to our bike-sharing repositioning task.

ACM Trans. Sensor Netw.
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(a) Station 1. (b) Station 2. (c) Station 1 & Station 2.

Fig. 1. Bike usage paterns of diferent stations in one week.

3 DATA ANALYSIS AND FRAMEWORK DEVELOPMENT

3.1 Preliminary

Deinition 1: Time slot. We split the whole day into a sequence of small time slots, each of which represents a
ixed time duration, e.g., one hour, denoted by � .
Deinition 2: Station capacity. �� is one of the stations in the city (�� ∈ �). Station capacity represents the number
of total docks at each station, denoted by |�� |.
Deinition 3: Station status. The station status indicates how many bikes and empty docks are available at each

station. Let �
� (� )
� and �

� (� )
� represent the number of available bikes and available docks of station �� respectively

during time slot � .

Deinition 4: Station bike demand. Let �
� (� )
� and �

� (� )
� represent the number of rents and returns of station ��

during time slot � . To better understand the unbalance of the station, let �
� (� )
� denote the net demands, which is

deined as the number of returns minus the number of rents in a time slot � :

�
� (� )
� = �

� (� )
� − �

� (� )
� . (1)

3.2 Data-Driven Investigation

We initially performed extensive investigations and analyses based on a real-world dataset to better understand
the critical issues in forecasting user demand and learning scheduling strategies. In a typical bike-sharing system,
there are ive parties involved, i.e., the operator, users, bikes, docks, and service stations. The operator can monitor
the real-time status of BSS and record all the users’ behaviors on the platform. When a user rents or returns a
bike via the mobile application, there is a bike usage record generated and uploaded to the platform, meanwhile,
the status of the station is updated.
In this research, we use the dataset from Citi Bike, a real-world bike-sharing system in New York City. The

dataset includes 1-year bike usage record data, from January to December 2016, including a complete list of all
users’ bike usage records. The details of the order are contained in each record, e.g., the bike ID, the start and
end station ID, longitude, latitude, timestamp, trip duration, and user proiles. We conduct a comprehensive data
study based on the rich historical dataset to better understand the research challenges existing in the current BSS
and to motivate our solution. The details are as follows:

Highly dynamic bike usage paterns. Fig. 1 displays the bike rent and return trends of several stations over
the course of a week. In particular, we found there are two important factors inluencing bike usage. (i) Time
factors. The daily rent and return patterns luctuate largely in diferent hours on diferent days. In one day, the
bike usage patterns have a distinct characteristic of morning and evening peaks. For example, as shown in Fig.

ACM Trans. Sensor Netw.



Eficient Bike-sharing Repositioning with Cooperative Multi-Agent Deep Reinforcement Learning • 7

1(a), the number of rents rises at the start of the day and peaks in the morning rush hours (e.g., 06:00-10:00).
The number of returns peaks in the evening rush hours (e.g., 16:00-20:00). In a week, the patterns on weekdays
are diferent from that on weekends. There are more rent and return demands on weekdays than on weekends.
It is easy to understand that users usually need to go to work or go home at that time. Moreover, bike usage
patterns may difer on some special holidays. (ii) Spatial factors. Bike usage patterns may be extremely diferent
at diferent locations. From 1(a), we can see that the rent demands are larger than returns during morning rush
hours at station1, the rent demands are much lower than returns during the evening rush hours. However, as
shown in 1(b), the patterns of station2 are diferent from station1. We display the net demand distributions in
1(c) to understand more about the unbalance in bike usage trends between these two stations. It is clear that the
pattern of station 2 is almost the exact opposite of station 1 in the same time period. Station 1 needs more bikes
in the morning, while station 2 needs more empty docks. That’s because the stations are located in diferent
functional areas. Station 1 is in the residential area, while station 2 is in the CBD district.

Unbalanced Spatio-temporal Bike Usage Paterns. The ine-grained rent and return distributions for various
bike stations at diferent times of the day are investigated further. We use the net demand to represent the
unbalanced demand of a station. As shown in Fig. 2, a circle demonstrates the net demand of a station, where
a red one means the net demand is positive (i.e., the return demand is higher than rent at this station), and
blue circle means the negative net demand (i.e., the return demand is lower than rent). The absolute value of
net demand is shown by the size of each circle. Fig. 2 shows the bike net demand distributions during diferent
time periods of one day (e.g., 06:00-10:00, 11:00-15:00, 16:00-20:00 and 21:00-23:00). Ideally, the net demand of a
self-balanced station will close to zero. However, as can be seen, the majority of stations in NYC are far from being
balanced, particularly during the morning (e.g., 6:00-10:00) and evening rush hours (e.g., 16:00-20:00). The station
demand distribution is uneven both geographically and temporally. For example, there are more rent demands
in residential regions and more returns in CBD areas during the hours of 06:00-10:00. If some stations have
large continuous positive bike demands or negative bike demands, the bike demand distributions will become
seriously unbalanced, which will even cause outage event, e.g., the station becomes empty or full. In order to
satisfy users’ rent and return needs as much as possible, each bike service station should have enough shared
bikes for customers to pick up and suicient empty docks for users to return bikes.

Contextual factors related to user behaviors. In common sense, the frequency of bike usage is related to the
weather, temperature, etc., since it is not convenient for users to ride in bad weather. In order to understand the
correlation between these contextual factors, (e.g., weather, temperature, wind, etc.) and user rent frequency, we
use the Person Correlation Coeicient (PCC) to evaluate it. Fig. 3 shows the results. We can see that all these
factors will inluence the users’ behavior, especially temperature. In demand forecasting, we should take these
factors into account.
Ideally, if there are ininite shared bikes and parking docks launched at each service station, users’ rent and

return demands are easy to meet. However, it is not realistic, as such a large number of bikes and docks increase
will incur huge costs for BSS operators. Extra repositioning eforts are necessary to better meet future user
demand. To achieve this, forecasting future user demand is the primary task, and then learning an optimal
strategy to reposition bikes between service stations to bridge the demand-supply gap. We discovered that the
bike usage patterns are very dynamic and uneven, inluenced by a variety of spatial and temporal factors, which
makes it diicult to forecast user demand and design an eicient bike repositioning system.

3.3 Framework

The framework of BikeBrain is given in Fig. 4, which mainly includes oline prediction, oline repositioning, and
online repositioning.

ACM Trans. Sensor Netw.
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(a) 6:00-10:00. (b) 11:00-15:00

(c) 16:00-20:00 (d) 21:00-23:00

Fig. 2. Spatio-temporal unbalanced bike usage paterns.

Ofline Prediction and Repositioning. To make decisions eiciently, user future demand prediction is the
irst key task. To deal with this, we propose a prediction model ST-NetPre. Speciically, we collect multi-source
data and extract the ine-grained features related to bike usage based on our previous data investigations and
analysis, mainly including time features, geographic features, and contextual features. We train ST-NetPre oline
based on rich historical multi-source data and inally get a trained predictor.

To get an optimal repositioning policy, we propose ST-CBR, a cooperative multi-agent reinforcement learning
method for bike repositioning. Each worker can be regarded as an agent and interact with the environment
asynchronously. When a worker is idle, i.e., completing a previous repositioning task, it instantly begins a new

ACM Trans. Sensor Netw.
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Fig. 3. Person Correlation Coeficient (PCC) between various contextual factors and rent frequency.

repositioning task generated by ST-CBR depending on its current state, without waiting for other workers. The
state is carefully designed in order to relect the BSS dynamics as well as real-time uncertainties. Speciically, the
state consists of the current BSS status (e.g., current bikes and docks distribution, the status of agents, current
time, etc.) and net demand distribution of the next time slot, which is predicted by the oline trained predictor
ST-NetPre. After completing a task, according to the situation of users rent/return bikes, the agent gets a certain
reward, which can guide the policy to be updated iteratively. We use a multi-agent deep deterministic policy
gradient algorithm to estimate the value function, which allows agents to cooperate through a centralized learning
and decentralized execution way and adaptively learn an optimal long-term repositioning strategy to bridge the
gap between user demand and supply at low operation cost.

Online repositioning. We get a learned policy network after the oline training phase. In the online process,
when an agent is idle and ready for a new repositioning task, we irst generate the current status of BSS and
get the predicted net demand from ST-NetPre. The learned policy network is then used to calculate the best
long-term value for each feasible action under the current state. The most valuable action will be chosen and
returned.

4 METHOD

In this paper, we design BikeBrain, a novel data-driven bike repositioning system for BSS to improve the user
experience and operator proits (e.g., satisfy more user rent and return demands) at low operation cost (e.g.,
minimize the travel distance of workers moving the shared bikes between stations).

4.1 Bike demand prediction

Accurate net demand forecasting is critical because it has a direct impact on future decision-making. As indicated
in the data-driven investigation, the bike usage pattern is highly dynamic in both spatial and temporal dimensions.
Many studies have put efort into the bike demand prediction problem [3, 6, 7]. However, compared to solely
predicting the rent demand and return demand, we focus more on the net demand. On the one hand, it is more
eicient to forecast the net demand directly. On the other hand, it avoids the superposition of twice prediction
errors. Hence, in this paper, we develop a spatio-temproal net demand prediction model ST-NetPre. We calculate

the net low �
� (� )
� of a station in each time slot � based on real-world bike usage records. Furthermore, ST-NetPre

takes diferent complex factors that are highly related to users’ behaviors into consideration.
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Fig. 4. Overview of BikeBrain.

4.1.1 Feature Engineering. We perform a comprehensive feature engineering and extract four types of features

to predict the net demand �
� (� )
� .

Temporal Features � � : We extract three temporal features, including time of a day, day of a week, and holiday
[37, 38].

Spatial Features � � : Assuming that a station can inluence the surrounding circle area of radius 1 kilometer.
For each station, we measure the spatial features of the surrounding area by analyzing the set of places that lie
in the surrounding circle. From the ine-grained perspective, we choose the number of each POI category near
the station as spatial features to characterize the stations. There are 30 POI categories, e.g., residence, education,
medical care, park, police station, gas station, bank, library, cinema, sports center, hotel, restaurant, bar, shopping
mall, supermarket, electronics store, pharmacy, boutique, clothes store, enterprise, government, conference center,
church, museum, theater, entertainment place, scenic spots, parking lot, life service, transportation hub.

Contextual Features � � :We also found that contextual features like weather, temperature, andwind conditions
also have great impacts on users’ behaviors. Hence, we collect meteorology data and extract ive types of ine-
grained contextual features: weather, temperature, wind speed, wind direction, and humidity.

Historical Usage Features � � : Since the bike usage shows a typical weekly pattern, we utilize our long-term
record data to capture the historical bike usage patterns. We extract the net demand of each station in the same
time slot of four previous consecutive weeks as the historical usage features.

4.1.2 Spatio-Temporal Prediction. After identifying the related features i.e., f = [� � , � � , � � , � � ], we then propose
a ST-NetPre model to predict the net demand of each station in each time slot. Speciically, ST-NetPre is a
Tree-Enhanced Regression model that utilizes the strengths of XGBoost [9] and linear regression model. XGBoost
is one of the state-of-the-art models for prediction, which leverages some decision trees to learn the high-order
cross features for accurate prediction. Distinct from the original XGBoost that directly sums all over the weights
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of activated leaf nodes as the prediction results. ST-NetPre considers the value of activated leaf nodes as new
extracted cross features from XGBoost and then feeds them with raw input features together into a sparse linear
regression model to learn the importance of each feature, as shown in Eq. 2

�̂� (f� ) =
︁

�

� � (f� ⊕ ℎ� (f� )) + �0, (2)

where f� is the extracted four types of features, � is the number of decision trees in XGBoost, ℎ� (f� ) is all
the cross features learned from f� by XGBoost with � decision trees, and �̂� is the prediction result. To avoid
overitting, we also use a regularization term in the loss function:

L =

�︁

�=1

� (�� , �̂� ) +
︁

�

Ω(� � ). (3)

where � represents the squared loss function, Ω is the �2 norm.

4.2 Bike repositioning as a Markov Decision Process

The bike repositioning problem can be characterized by sequential decision-making, thus we formulate the
problem as a Markov Decision Process (MDP) with multi-agents and use the MARL techniques to solve it. In
particular, we carefully formulate the elements in MARL. We then give an independent spatio-temporal bike
repositioning algorithm (ST-IBR), and based on ST-IBR, we further propose a cooperative spatio-temporal bike
repositioning algorithm (ST-CBR) based on MARL. On the one hand, ST-CBR can adaptively fulill the highly
unbalanced spatio-temporal demand based on the result of demand prediction. On the other hand, it can provide
long-term repositioning beneits at low operation costs.

4.2.1 Problem Formulation. Formally, we formulate the bike repositioning task as an MDP for N agents, which
is deined by a six-tuple � = (S,A,R,P,N , �), where S is the state, A is the action space, R is the reward
function, P is the transition probability function, N is the number of agents, and � is the discount factor. An
agent acts in the environment according to a policy that instructs it to choose the best action at each MDP state.
The following are detailed deinitions:

• Agent� :We consider each worker in the BSS as an agent� ,� ∈ W ≡ {1, 2, . . . , N}. W represents the
set of N agents in the system. In particular, all the N agents are homogeneous in the BSS. As the workers
can switch the status between busy (i.e., working on a repositioning task) and idle (i.e., inishing the last
repositioning task), the number of active agents at each time slot N� may luctuate over time.

• State S: At each time slot � , agent� gets an environment state ��� ∈ S, which is denoted by the Cartesian
product of a global-view environment state �� and a local-view agent state �� , deined as:

��� = �� × �� . (4)

A typical global-view environment state �� during time slot � is deined as the current BSS spatio-temporal
status ��

�
plus the future net demand ��� :

�� = ��� + ��+1� , (5)

where the former ��
�
describes the distributions of bikes in the city, and the later ��+1� represents the

distribution of net demands during the next time slot � + 1, which is generated by the oline trained
predictor considering the environment spatio-temporal dynamics (e.g., geographical location, time, weather
conditions, etc.). In particular, �� indicates the current local-view state of the agent� , which includes three
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components: the index of agent� , current location of agent ���� and the time slot index � :

�� = [�, ����, �] . (6)

• Action space A: In our bike repositioning task, an action means a complete repositioning process by the
agent, which is deined as a tuple, describing where the agent should go to pick up how many bikes, and
where it should go to drop of these bikes. An action ��� is deined as:

��� =

(

�� , � � ,�
)

, (7)

It means the agent � should pick up� bikes from the origin station �� and drop of these bikes at the
destination station � � . Hence, to avoid illegal repositioning, at each time slot � , we need to get the valid
candidate action space irst for agent � based on the global-view environment state �� . Speciically, we
select the future jammed stations from the environment as the origin station set���� , which have suicient
bikes. The starved stations are selected as the destination station set ���� , which has enough empty docks.
According to ���� and ���� , we get the candidate action space A�

� of agent� :

A�
� =

{

���
}

=

{

(

�� , � � , �
)

| �� ∈ ���� , � � ∈ ���� , � = min
(

�
� (� )
� , �

� (� )
�

)}

,
(8)

where� is the number of moving bikes, constrained by the available bikes of start station �
� (� )
� and the

empty docks of end station �
� (� )
� . For an example, if there are � bikes at station �� , and � empty docks at

station � � , � > �, so� = min (�, �), the agent should move � bikes from �� to � � .
• Reward function R: In MDP, the reward function usually determines the optimization goal and relects
the immediate performance of the action taken under the current state. Formally, each agent� obtains the
immediate rewards � �� after taking action ��� under ��� and transiting to the next state ��+1� . For simpliication,
in this work, we mainly focus on maximizing the satisfaction of the user’s rent demands. we assume that a
user who wants to return a bike but arrives at a jammed station without an empty dock will choose the
nearest neighborhood station to return to. Hence, the reward is deined by the demand-supply gap��� during
(�, � + 1), which is calculated by the available bikes and net demands. In particular, as described in action
space, ��� =

(

�� , � � , �
)

, an action could afect the bikes distribution of two stations, thus the��� is deined as:

��� = �
����� (� )
� + �

��� (� )
� . (9)

For the start station, there are � bikes picked up, and the number of available bikes is updated by

�
� (� )
� = �

� (� )
� − �. The real net demand of the station is �

� (� )
� . If �

� (� )
� ≤ 0 and |�

� (� )
� | ≥ �

� (� )
� , there

are more rent demands and existing available bikes cannot satisfy the users’ rent demands, the gap �
����� (� )
�

between available bikes �
� (� )
� and the net demand �

� (� )
� is calculated by �

����� (� )
� = |�

� (� )
� | − �

� (� )
� . On the

contrary, if �
� (� )
� ≤ 0 and |�

� (� )
� | ≤ �

� (� )
� , indicating there are enough bikes for users to rent, �

����� (� )
� = 0. If

�
� (� )
� > 0, there is no extra rent demand, the �

����� (� )
� = 0. For the end station, the calculation of �

��� (� )
� is

the same as the start station �
����� (� )
� . Moreover, to avoid greedy repositioning and reduce the operation

cost, we encourage the agents to choose the action with a short travel distance. Speciically, we use the
total travel distance of a repositioning process as a reward constraint ��� . Precisely, �

�
� is the sum of the

pick-up distance and the drop-of distance, deined as follows:

��� = ���
(

����, �����
)

+ ���
(

����� , ���� �

)

, (10)
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where the function ��� calculates the real distance of these two locations. The irst part indicates the pick-up
distance, which is the distance of worker goes to the origin station to pick up bikes from their current
location. The second part is the drop-of distance which is the distance between the origin and destination.
Overall, the immediate reward � �� of action can be deined as follows:

� �� = −
(

��� + ����
)

, (11)

which are the negative sums of ��� and ���� . Agent’s goal is to maximize their reward function, which also
means both the demand-supply gap and the worker travel distance are minimized. In particular, to scale
distinct reward terms into the same range, we usually utilize the regularization ratio � . Each agent tries to
maximize its long-term gains ��

� :

��
� =

∞︁

ℎ=�

�ℎ−��ℎ� . (12)

• Discount factor � : As shown in Eq. 12, � is the discount factor. The value of � efectively decides how
much the agents care about long-term beneits relative to short-term gains. � is commonly selected from
[0, 1]. If � = 0, the agent will be completely shortsighted and only learn about actions that can get high
immediate rewards without considering any future long-term beneits. When � = 1, the agent weighs both
current and future rewards equally. A mathematical method to make an ininite sum inite is to limit � less
than 1 and larger than 0.

• Probability function P: At time step � , each agent takes an action ��� ∈ A�
� forming a set of joint action

a
t
= At

1 × ...×At
N, which induces a transition in the environment according to the state transition function

P
(

��+1 |�� , at
)

: S × A�
1 × ... × A�

�
→ S.

4.2.2 Independent bike repositioning. Based on the MDP formulation of the bike repositioning problem, we
irst propose an independent bike repositioning model (ST-IBR), a straightforward MARL approach that directly
applies the idea of independent Q-leaning to multi-agent settings. In our ST-IBR, each agent is fully independent
and has its own learner. Each learner uses an improved Actor-Critic (AC) framework, Deep Deterministic Policy
Gradient [22]. Typically, for each agent � , the Actor uses a policy network �� with parameters �� to select
action ��� based on current state ��� . After each action selection, the Critic evaluates whether the action made by
the Actor is better or worse through a state-action function �� (�

�
�, �

�
�), and outputs the Q-value for the agent.

However, just as introduced before in MDP, the candidate action space A�
� is dynamic and changing over time,

so ST-IBR makes some diference with the traditional AC setting.
To solve the problem of dynamic action sets, the Actor in ST-IBR uses an in-action approximation way to

evaluate each state-action pair. As illustrated in Fig.5, for each candidate action e.g., ���,1, ..., �
�
�, |A�

� |
, it will input

into the Actor with current state ��� together, and ST-IBR uses a deterministic policy �̂� : S × A → R to get
the values of state-action (���, �

�
�, |A�

� |
) approximation �̂� (�

�
�, �

�
�, |A�

� |
). Moreover, to choose the best action ��

among candidates, ST-IBR uses a Boltzmann SoftMax selector to evaluate each pair and uses � as the temperature
parameter to control the selector exploration rate. :

��

(

���, � |�
�
�

)

=

exp
(

��� (�
�
�, �

�
�, � )

)

∑ |A�
� |

�=1 exp
(

��� (�
�
�, �

�
�, � )

) . (13)

Speciically, in ST-IBR, Actor works by directly adjusting the parameters �� of the policy �� to maximize the
objective � (��):

� (��) = Es,a∼D [��
�], (14)
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Fig. 5. Overview of ST-IBR.

by taking steps in the direction of ∇�� � (��):

∇�� � (��) = Es,a∼D [∇���� (�
�
�, �

�
�)∇���

��
(

���, �
�
�

)

] . (15)

The critic uses a DQN to learn the state-action function �̂� (�
�
�, �

�
�), parameterized by �� by minimizing the loss:

L (��) = Es, a, r, s′

[

(

� − �̂�
(

���, �
�
�,

) )2
]

, (16)

� = � �� + ��−�
(

��+1� , �−� (�
�+1
� , ��+1� )

)

, (17)

where �−� is the target � network, calculating the real state-action value. �−� is the target policy network. To
improve training stability, these earlier parameters in the target network are periodically updated with the latest
weights of evaluate network.

4.2.3 Cooperative bike repositioning. ST-IBR is a straightforward and feasible method to achieve independent
bike repositioning for each agent, however, it ignores the impact of other agents’ policies in the environment.
We present a cooperative bike repositioning approach ST-CBR, which is based on ST-IBR and takes the policies
of other agents into account to enhance agents’ cooperation. The number of idle agents luctuates with time,
therefore, it is hard to achieve interaction among variable agents directly through simple information sharing.
Mean Field Reinforcement Learning (MFRL)[47] is usually used to deal with the problem of variable agents and
dimensional explosion when dynamic large-scale agents interact together. The main idea of MFRL is pairwise
approximation. MFRL treats interactions among a large number of agents as interactions between one agent and
the average efect from other agents, which shields the impact of the exact number of interacting pairs. Inspired
by this idea, ST-CBR integrates our ST-IBR model with mean ield approximations to address the interaction of
variable agents. In the bike repositioning task, agents cooperate with each other to reduce the demand-supply
gap and travel distance by selecting an action from a list of potential actions with a high reward. In ST-CBR, the

average inluence of other agents ��� is thus deined as the number of idle workers, divided by the number of
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candidate actions in the current time slot. For example, if there are three idle agents in the system, the size of the
current candidate action space is 6, and the average inluence is 3/6.

Fig. 6. Overview of ST-CBR.

Fig. 6 gives an overview of our proposed ST-CBR. ST-CBR follows a centralized training and decentralized
execution way. During the training stage, ST-CBR enables agents to learn while interacting with others, i.e.,

in addition to the agent’s action ��� , the average inluence of other agents �
�
� is also used to learn the model,

which can help to improve the agents’ training stability and robustness. After the training stage, each agent can
independently work in a decentralized fashion. As a result, it is resistant to a "single point of failure."

Speciically, ��� is the average inluence of agents. The actor of ST-CBR learns the optimal policy by using the
policy gradient:

∇�� � (��) = Es,a∼D [∇���� (�
�
�, �

�
�)∇���

��

(

���, (�
�
�, �

�
�)

)

] . (18)

The critic of ST-CBR is trained by minimizing the loss:

L (��) = Es, a, r, s′

[

(

� − �̂�

(

���, �
�
�, �

�
�

))2
]

, (19)

� = � �� + ��−�
(

��+1� , �−� (�
�+1
� , ��+1� )

)

, (20)

In the same time slot, active agents share the same candidate action space, which may cause the collision of
action selection, i.e., various agents may choose the same action based on their own policy. Such conlict may
make the bike repositioning invalid. To solve this, we make the agents select the action sequentially during the
same time slot, once the action is selected by one agent, the current candidate sets will be updated for the other
agents.
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Table 1. Citi Bike data in New York City.

Number of Stations 321

Time 1 year

Historical Records 14,191,731

5 EXPERIMENT

5.1 Experimental Seting

Data Description. We utilize 1-year bike usage records data from Citi Bike in NYC, which has been introduced
in the previous data-driven investigation. In particular, our experiments focus on the 321 stations in the urban
center area of NYC, as illustrated in 2, since the severely unbalanced situation always happens in these stations.
In addition to the historical records data, we also collect the corresponding holiday data, meteorological data,
and POI data for feature engineering to achieve inal demand prediction. We use bike usage data from June to
October for evaluation and other months for training. The information of the dataset is shown in Table 1.

Episode Seting. As we can see in Fig. 2, seriously unbalanced situations usually happen in the morning and
evening rush hours, and the station can be self-balanced during the midnight hours. Thus, we mainly learn
the repositioning strategy during the daytime, i.e., the episode in our works is set from 06:00 to 20:00, and the
objective of our method is to maximize the rewards during an episode. We divide the episode into several time
slots �� . The setting of time slot �� inluences the performance of both prediction and repositioning. For prediction,
a too short time interval can not get accurate results. For repositioning, a too-long interval will cause more
waiting time for idle workers. To solve this, we set the time slot �� as a 1-hour duration in ST-NetPre to get

accurate net demand prediction of each time slot, and we split the time slot �� into three small time interval �
�
� i.e.,

�
�
� = 20 minutes to conduct each of repositioning, as illustrated in Fig. 7. We use the average net demand of each
small time interval as the predicted net demand. For example, if the predicted net demand in �� is 9, the average

net demand during �
�
� is 9/3 = 3.

Initial Bikes Seting. To verify the efectiveness of our scheduling strategy, especially under conditions where
the number of bikes in the system is signiicantly insuicient, it is indeed important to start with various random
initial bike inventories to simulate diferent scenarios. By doing so, we can assess how well our scheduling
strategy adapts to diferent situations and ensures that more users are satisied despite the limited number of
bicycles available. So, we conducted experiments under the diferent numbers of initial bikes. At the beginning of
an episode, we set the initial bikes of each station as a random value that is between 0 and the product of � and
|�� |, |�� | is the capacity of a station �� , and � relects the percentage of available bikes at the station, � ∈ (0, 1]. For
example, if � = 0.8, the capacity of a station is �� = 20, and the product of � and |�� | is 16, so we set the initial
bikes for this station to be 16. This percentage allows us to better understand the availability of bikes at each
station and analyze the eiciency of our proposed optimization technique for diferent degrees of bicycle scarcity.
During our experimentation with various random initial bike inventories at the stations, we indeed ensured
that the total number of bikes present at all stations was equal to the total number of bikes available within the
system. This was done to maintain consistency and uphold the integrity of our research.

Simulator Seting. Unlike standard supervised learning, where the labeled datasets are provided to evaluate
the learning models by training and testing paradigm, DRL requires a dynamic simulation environment for
training and evaluation due to the interactive characteristic. Hence, we design a BSS simulator based on real-
world datasets that models the generation of bike usage demands, simulates the procedure of assigning bike
repositioning tasks for agents, and tracks changes of status in BSS. The simulator is used to train and evaluate RL
algorithms. In the BSS simulator, the simulation process in an episode is shown in Fig. 7.
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Fig. 7. Simulator Seting.

Speciically, the activities in an episode are conducted sequentially:

• Get initial status. At the beginning of an episode, we irst get the initial station status, i.e., the distribution
of bikes, and the status of agents. At the beginning of each episode, we set all the agents idle.

• Predict net demand. The features of stations in time slot �� are extracted and inputted into our proposed
ST-NetPre, and the net demand of each station is predicted. We then get the net demand of a small time

interval �
�
� by dividing the net demand equally into three parts.

• Execute repositioning task.During each �
�
� , agents interact with the environment and get the action indication

by ST-CBR. Agents reposition the bikes from a jammed station to a starved station in advance. The status
of stations and agents is updated correspondingly. The distribution of bikes is updated after repositioning.
The status of agents changes between busy and idle. If the agents are assigned the repositioning task, the
status of agents is updated to busy. Otherwise, vice versa.

• Get real net demand. After repositioning, a sequence of rent and return events is generated by a real-world
bike usage record dataset. If there are enough bikes, the users’ rent demand can be satisied. Otherwise,
users fail to rent bikes and leave.

• Update status. The status of stations is updated based on real net demand. To avoid illegal status, the number
of bikes in each station is clipped to the range of 0 and the maximum capacity. If the repositioning task

has been inished during the current time interval �
�
� , the status of the agent is updated to idle for the next

repositioning task, and the location of the agent is updated as the inal stayed station.

5.2 Prediction Performance

As introduced earlier, we regard the historical real bike usage data as the ground truth. The prediction performance
is measured by the Mean Absolute Error (MAE). MAE can better show the real situation of prediction error. It
calculates the total absolute diferences between real values and predicted values divided by the total number

of predictions,��� (�, �̂) =
∑�

�=1 |��−�̂� |

�
, where �� is the real value of net demand, �̂� is the predicted result by a

model. We compare our ST-NetPre with other state-of-the-art prediction approaches, e.g., Linear Regression
(LR), which is commonly used for regression problems; XGBoost [9], a state-of-the-art tree-based boosting
method; Deep Neural Network (DNN) [24], which has experienced great success in many ields because its great
power of high-order feature representation learning; Wide&Deep (W&D) model [10], a typical hybrid network
structure that contains a linear "wide" component to learn the importance of low-order cross features and a
"deep" component to model high-order feature interactions simultaneously.
Fig. 8 shows the MAE of diferent models. Thanks to our comprehensive feature engineering, the extracted

features are substantially related to the consumers’ bike usage behaviors, thus all of the prediction algorithms
perform well. Compared with baselines, our proposed ST-NetPre has the best prediction performance, the MAE
is 1.4, which indicates the net demand prediction of most bike stations is accurate. The XGBoost and W&D also
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achieve good performance. The XGBoost is the basic model of ST-NetPre. W&D can better learn the low- and
high-order cross features to enhance the prediction result.

Fig. 8. MAE of Diferent Models. Fig. 9. Performance comparison w.r.t. the diferent feature

classes in ST-NetPre.

We also conducted an evaluation of the performance of diferent feature classes. Speciically, Fig. 9 illustrates
the results for various feature classes in ST-NetPre. ST-NetPre-T, ST-NetPre-S, ST-NetPre-C, and ST-NetPre-H
have the same architecture as ST-NetPre but consider features diferently. ST-NetPre-T assesses the efectiveness
of temporal features in demand prediction, while ST-NetPre-S and ST-NetPre-C correspond to considering spatial
features and contextual features, respectively. ST-NetPre-H focuses on historical features only. The results indicate
that ST-NetPre achieves the best performance when incorporating all features, whereas using a single feature
class generally results in poorer performance. This underscores the importance of considering multiple feature
classes in the demand prediction model to achieve more accurate and reliable outcomes.

5.3 Repositioning Performance.

5.3.1 Metrics and Baselines. As introduced in the reward setting, the model measures whether the repositioning
is worse or better by a reward function, that is related to both the demand-supply gap and operation cost (i.e.,
the travel distance of moving bikes) in an episode. In this work, the performance of the demand-supply gap is
measured by GRR, which is the demand-supply gap reduction ratio compared with no repositioning. Moreover,
we use ATD to evaluate the operation cost of diferent methods, which is the average travel distance of each
repositioning over one episode.
To show the efectiveness of our proposed method, we compare it with several state-of-the-art repositioning

approaches as follows:

• No Repositioning (NO). There is no bike repositioning strategy in the BSS simulator.
• Random Repositioning (RAN). No further strategy is taken into account by the random repositioning
procedure. Agents always randomly choose an action from candidates at each time interval.

• Greedy Demand-First Repositioning (DEM). The greedy demand-irst repositioning method prefers to
achieve higher GRR by assigning agents to stations with a large demand-supply gap. During each time
interval, all the actions in the candidate action space will be sorted by the number of moving bikes. In
DEM, agents always select the action that the number of moving bikes is the largest which means it can
meet more user demands by repositioning. Multiple actions with the same number of moving bikes will be
further ordered by the repositioning distance, and the nearest one will be chosen.

ACM Trans. Sensor Netw.



Eficient Bike-sharing Repositioning with Cooperative Multi-Agent Deep Reinforcement Learning • 19

• Greedy Distance-First Repositioning (DIS). Greedy Distance-First Repositioning focuses on a lower
reposition cost, i.e., ATD. The nearest repositioning task will be given priority. It calculates the repositioning
distance of each candidate action and selects the nearest one to execute. Following the similar principle as
mentioned in DEM, a repositioning task with a larger demand-supply gap will be executed irst if multiple
tasks have the same repositioning distance.

• DQN [19]. The DQN is frequently used in solving MARL problems. The problem formulation is the same
as our proposed method, while the decision model is only based on Deep Q-learning. As introduced in
Section 4.2, since the action sets are variable, we use the in-action approximation methods to solve the
problem. The Q network is built with both state and action as inputs. Speciically, the state is fed into an
MLP with three hidden layers (128, 64, 32), and the action is fed into an MLP with one hidden layer (32).
We use the ReLU [30] activation between hidden layers. Then we concat the two parts and transform the
inal linear output of the Q-network with ReLU.

• ST-IBR. The independent bike repositioning model ST-IBR as we introduced in Section 4.2.2. The network
setting of state-action function approximation (i.e., the critic) is the same as that in DQN. The policy
network (i.e., the actor) is parameterized by an MLP with four hidden layers (256, 128, 64, 32) for state
input and one hidden layer (32) for action input. The ReLU activation is used between hidden layers and
transforms the inal linear output of the Q-network and policy network with ReLU and sigmoid function
respectively.

• ST-CBR. As described in Section 4.2.3, ST-CBR is our proposed cooperative bike repositioning method
with mean ield approximation. Compared with ST-IBR, ST-CBR can take the other agents’ policies into
consideration to enhance the cooperation between agents. The network architecture is the same as ST-IBR,
with the exception that a mean action of other agents is fed as an additional input to the critic network, as
shown in Fig. 6. We add an MLP with one hidden layer (32) for the mean action input. Moreover, ST-CBR
follows a centralized training and decentralized execution way.

In our model, both the target network and the evaluation network have the same architecture. We use the
Adam Optimizer with a learning rate of 0.01 for the actor and 0.001 for the critic. The discounted factor � is 0.90.
To stabilize the training process, we use an experience replay bufer[29] for all methods and use an evaluate
network to estimate the value, and a target network to calculate the real value, and the size of the replay bufer is
10,000. The batch size is 512. We update the network parameters after every 600 samples are added to the replay
bufer. We use the Boltzmann SoftMax selector to select the action. We adopt the �-greedy policy in all methods.
Throughout the training phase, � is annealed linearly from 0.9 to 0.1, while during the evaluation phase, it is
ixed at � = 0.1.

5.3.2 Result Analysis.

Demand-supply gap reduction ratio (GRR). Table. 2 shows the performance comparison regarding the demand-
supply gap reduction ratio. The percentage diference shown for all methods is with respect to No Repositioning
(NO). We can clearly see that ST-CBR surpasses all the baselines under the diferent distribution of initial bikes.
RAN sufers from the lowest GRR since it is a fully random way, without any policy or rule instruction. DIS is the
second lowest method, that’s because DIS is a Greedy Distance-First Repositioning method, it aims to select the
action with the shortest travel distance instead of considering the demand-supply gap. Though DEM is a Greedy
Demand-First Repositioning method, it is myopic and can not consider the long-term inluence of repositioning.
Hence, the reinforcement learning-based methods, e.g., DQN, ST-IBR, and ST-CBR perform better than DEM.
Through the efective Actor-Critic framework and the idea of MFRL, ST-CBR takes other agents’ policies into
consideration, enabling cooperation among agents, thus the performance is better than the other independent
learning methods, e.g., DQN and ST-IBR. Moreover, as the number of initial bikes decreases, the performance of
methods is getting worse. This phenomenon is not diicult to understand. If there is not a suicient number
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Table 2. Performance comparison regarding the demand-supply gap reduction ratio (GRR). The percentage diference shown

for all methods is with respect to No Repositioning (NO).

Setting 0∼ 70% initial bikes 0∼ 50% initial bikes 0∼ 30% initial bikes 0∼ 10%initial bikes

Metrics Normalized GRR Normalized GRR Normalized GRR Normalized GRR

RAN 49.06% ± 0.25% 45.66% ± 0.20% 36.19% ±0.26% 30.66% ± 0.29%

DEM 65.21% ± 0.14% 57.56% ± 0.11% 50.22% ± 0.28% 35.70% ± 0.24%

DIS 52.26% ± 0.18% 47.69% ± 0.23% 40.34% ± 0.26% 32.92% ± 0.17%

DQN 67.88% ± 0.13% 63.82% ± 0.21% 54.10% ± 0.26% 36.71% ± 0.33%

ST-IBR 70.47% ± 0.20% 68.62% ± 0.19% 56.29% ± 0.16% 37.32% ± 0.30%

ST-CBR 76.37% ± 0.15% 72.70% ± 0.32% 64.77% ± 0.14% 39.06% ± 0.10%

Table 3. Performance Comparison regarding the Average Travel Distance (ATD).

Metrics RAN DEM DIS

Normalized ATD (km) 4.219 ± 0.231 4.003 ± 0.145 1.926 ± 0.133

Metrics DQN ST-IBR ST-CBR

Normalized ATD (km) 2.608 ± 0.148 2.311 ± 0.106 2.098 ± 0.180

of bikes in the system, the impacts of repositioning methods are limited. Nevertheless, ST-CBR is still the best
repositioning method over all baselines.
Average Travel Distance (ATD). Performance Comparison regarding the Average Travel Distance (ATD) is

shown in Table. 3. RAN has the largest ATD. DEM has the second largest ATD since it aims to adopt the action
that has a large demand-supply gap, without considering the travel distance. As shown in Fig. 2, we can notice
that the stations in the neighborhood usually have similar bike usage patterns. DEM may need to pick up bikes
from a more distant jammed station to a starved station to meet more user demands. Both DIS and ST-CBR
perform well in terms of ATD. DIS is a Greedy Distance-First Repositioning method, while it can not achieve a
trade-of between GRR and ATD. DQN, ST-IBR, and ST-CBR achieve the trade-of between GRR and ATD through
the reward function. Compared with DIS, ST-CBR is with a slight advantage in ATD. Meanwhile, ST-CBR has the
best performance in GRR.

Efectiveness of Prediction. In particular, to evaluate the performance of prediction in repositioning, almost all
the baselines, we also conduct a version without prediction. The only diference between them is the calculation
of candidate actions. If the one is based on the prediction result, the candidate actions consider the net demand
for the next time interval, so that the worker will move a certain number of bikes from a predicted jammed
station to a predicted starved station. If the one isn’t based on prediction, the calculation of candidate action space
doesn’t consider the predicted net demand, just based on the current station status. The variants of baselines
without prediction are RAN-NP, DEM-NP, DQN-NP, ST-IBR-NP, and ST-CBR-NP. Table. 4 shows the performance
of methods without prediction in terms of GRR. ST-CBR-NP has the best performance among these methods.
ST-IBR-NP and DQN-NP follow behind. Compared to Table. 2, we can clearly see that the GRR of methods with
prediction is better than that without prediction. The careful net demand prediction is critical for repositioning,
as it can help the model ind the stations that really need to be scheduled.

Efectiveness of Reward Seting. As introduced in Section 4.2.1, the reward function consists of the demand-
supply gap and operation cost. To evaluate the efectiveness of the reward function, we remove the operation cost
in the reward function of RL methods, i.e., DQN-ND, ST-IBR-ND, and ST-CBR-ND. Table. 5 shows the performance
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Table 4. Performance comparison regarding the demand-supply gap reduction ratio (GRR). The percentage diferences shown

for all methods (without prediction) are relative to No Repositioning (NO).

Setting 0∼ 70% initial bikes 0∼ 50% initial bikes 0∼ 30% initial bikes 0∼ 10%initial bikes

Metrics Normalized GRR Normalized GRR Normalized GRR Normalized GRR

RAN-NP 42.16% ± 0.13% 34.61 % ± 0.21% 27.18% ± 0.11% 20.13% ± 0.42%

DEM-NP 59.11% ± 0.16 % 51.91% ± 0.27% 43.13% ± 0.19% 33.61% ± 0.31%

DIS-NP 46.31% ± 0.12% 42.14% ± 0.10% 33.90% ± 0.24% 27.26% ± 0.26%

DQN-NP 61.43% ± 0.20% 56.93% ± 0.17% 50.62% ± 0.23% 30.28% ± 0.17%

ST-IBR-NP 63.81% ± 0.14% 60.01% ± 0.20 % 52.38% ± 0.15% 32.01% ± 0.14%

ST-CBR-NP 71.88% ± 0.13% 67.08% ±0.12% 56.45% ± 0.22 % 34.32% ± 0.17%

Table 5. Performance Comparison regarding the Average Travel Distance (ATD) (without considering the operation cost).

Metrics DQN-ND ST-IBR-ND ST-CBR-ND

Normalized ATD (km) 3.020 ± 0.130 2.981 ± 0.108 2.866 ± 0.124

of these methods regarding the ATD. All methods without considering the operation cost sufer from a worse
performance in ATD. Compared to Table. 3, we can see that ATD is larger than the corresponding method which
considers the operation cost in the reward function. The reward function we formulated can eiciently minimize
the demand-supply gap, meanwhile, minimize the travel distance of agents.

Fig. 10. Stations Clustering

Robustness of the Repositioning Method. Previous experiments have been conducted on the whole city.
To evaluate the robustness of our proposed method, we also implement experiments in diferent small regions
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Table 6. Performance comparison of methods in terms of GRR and ATD over diferent clusters.

Clusters Cluster �1

Metrics Normalized GRR Normalized ATD

RAN 57.98% ± 0.13% 2.211 ± 0.121

DEM 72.91% ± 0.17% 2.809 ± 0.111

DIS 60.66% ± 0.33% 1.896 ± 0.089

DQN 75.88% ± 0.23% 2.083 ± 0.058

ST-IBR 84.47% ± 0.20% 1.911 ± 0.075

ST-CBR 88.37% ± 0.31% 1.759 ± 0.180

Clusters Cluster �2

Metrics Normalized GRR Normalized ATD

RAN 55.96% ± 0.20% 2.318 ± 0.198

DEM 66.91% ± 0.23% 2.403 ± 0.104

DIS 60.29% ± 0.20% 1.526 ± 0.067

DQN 76.26% ± 0.14% 1.986 ± 0.067

ST-IBR 82.26% ± 0.22% 1.722 ± 0.201

ST-CBR 89.79% ± 0.26% 1.657 ± 0.096

Clusters Cluster �3

Metrics Normalized GRR Normalized ATD

RAN 54.76% ± 0.16% 2.811 ± 0.115

DEM 67.98% ± 0.15% 3.103 ± 0.128

DIS 60.45% ± 0.12% 2.099 ± 0.135

DQN 73.26% ± 0.34% 2.370 ± 0.167

ST-IBR 79.26% ± 0.36 % 2.260 ± 0.099

ST-CBR 85.67% ± 0.19% 2.094 ± 0.185

in the city respectively. We have noticed that from Fig. 2, the bike use pattern has strong regional unbalanced
characteristics. Hence, we cluster the stations into diferent clusters based on location information by K-Means
[21]. The clustering result is shown in Fig. 10, i.e., �1, �2, �3. From Fig. 2 and Fig. 10, we can see that each
cluster contains both jammed and starved stations, implying that each cluster can keep self-balanced through
repositioning policy. Moreover, to ensure fairness, the number of agents in the whole city should be the sum of
agents in each cluster. For example, there are twelve agents to learn the strategy and conduct repositioning tasks
in the experiments of the whole city, there are four agents for each clustered region. In this experiment, we set
the initial bikes as the random value between 0 and 70% of the station capacity. Table. 6 shows the performance
comparison of methods in terms of GRR and ATD over diferent clusters. We can clearly see that, for diferent
clusters, ST-CBR performs best on the measures of both GRR and ATD, it can help the BSS to reposition bikes to
minimize the demand-supply gap at low cost. Compared with the results of the whole city, as shown in Table. 2,
the metrics are better under the experiment of each cluster. The reason is that our repositioning is a station-level
method, the candidate action space is large in the whole city. Repositioning in each cluster rather than the whole
city can reduce the searching space of actions (i.e., the number of candidate stations is small), which can help
improve the performance of the methods. Moreover, as the range of a cluster is much smaller than the whole city,
the repositioning distance is reduced accordingly.
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6 DISCUSSION

• Proitability of operators and user experience are both critical for the development of the bike-sharing
system. From our studies, we found our proposed BikeBrain can satisfy highly dynamic bike usage demand,
thereby improving the user experience and increasing the proits of BSS. Although our experiments are
based on Citi bike in NYC, they can be easily generalized to other cities or even other bike-sharing systems.
Feature engineering needs to be reworked in new cities. Moreover, the leet management problem in
ride-sharing is also similar to bike repositioning. We believe that our method has the potential to be adopted
to enhance the system management of other forms of sharing systems. Diferent from our worker-based
repositioning method which needs to hire extra workers to perform the repositioning task, the drivers in
the ride-sharing system will perform the repositioning task by themselves.

• Although our proposed method can eiciently alleviate the demand-supply unbalance in the bike-sharing
system and have the ability to generalize to other cities and platforms, there are also some limitations
to be aware of. Firstly, reinforcement learning is known to be unstable and hyperparameters afect the
behavior of the learning system. We need to pay attention to improving the stability of reinforcement
learning in future work. Secondly, though we have conducted extensive experiments through a simulator,
that is designed with real-world historical data, to ensure the performance of each experiment, it is hard to
guarantee the performance in a real-world situation. In future work, we are trying to collaborate with BSS
operators and conduct experiments in real scenarios.

7 CONCLUSION

In this paper, we propose BikeBrain, a novel bike repositioning system with joint predicting and repositioning
bikes in BSS to alleviate demand-supply unbalance at low operation cost. Our research holds signiicant social
implications, including improved urban mobility, reduced traic congestion, and promotion of sustainable and
eco-friendly transportation. Speciically, we irst propose a net demand prediction model ST-NetPre. To ensure
the prediction performance, we conduct comprehensive data-driven investigations and extract a series of features
that are highly related to users’ bike usage patterns. Then we carefully formulate the bike repositioning as an
MDP with multi-agents and propose ST-CBR, an eicient spatio-temporal cooperative multi-agent reinforcement
learning algorithm. ST-CBR not only enables cooperation between a dynamic number of agents via mean-ield
reinforcement learning but also learns optimal repositioning strategies to bridge the gap between user demand
and supply at low operation costs. We conduct extensive experiments based on a large-scale real-world bike
usage record dataset from a typical bike-sharing system Citi Bike and multi-source urban data. Results have
shown the efectiveness of our proposed method over several state-of-the-art baselines on the demand-supply
gap and operation cost measures. Despite BikeBrain’s success in addressing demand-supply imbalances and its
potential for generalization to other cities, there are still some limitations to consider. Reinforcement learning
can be unstable, and hyperparameters can afect the system’s behavior, which should be addressed in future
work. Additionally, while our experiments used a simulator designed with real-world data, the performance
in real-world scenarios may vary. Collaborating with bike-sharing operators to conduct experiments in real
scenarios could help validate and reine our method, further enhancing its applicability and efectiveness in
real-world situations.
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