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NUMERICAL METHODS FOR DIFFERENTIAL LINEAR MATRIX EQUATIONS VIA
KRYLOV SUBSPACE METHODS

M. HACHED ∗ AND K. JBILOU†

Abstract. In the present paper, we present some numerical methods for computing approximate solutions to some large
differential linear matrix equations. In the first part of this work, we deal with differential generalized Sylvester matrix equations
with full rank right-hand sides using a global Galerkin and a norm-minimization approaches. In the second part, we consider large
differential Lyapunov matrix equations with low rank right-hand sides and use the extended global Arnoldi process to produce
low rank approximate solutions. We give some theoretical results and present some numerical examples.

Sylvester equation, Lyapunov equation, Global Arnoldi, matrix Krylov subspace.
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1. Introduction. In this work, we are interested in computing a numerical solution of two kinds
of differential linear matrix equations. First, we consider the linear matrix differential equation with a
full right-hand side  Ẋ(t) =

q

∑
i=1

Ai X(t)Bi +C,

X(t0) = X0, t ∈ [t0, Tf ],

(1.1)

where Ai ∈Rn×n, Bi ∈Rp×p, i = 1, . . . ,q, C and X ∈Rn×p, and we assume that the right hand term C is
full rank and p ≪ n. Differential Sylvester and Lyapunov matrix equations are particular cases of (1.1).
The next differential matrix equation that will be considered in this paper, is the well known differential
Lyapunov matrix equation with a low rank right hand side{

Ẋ(t) = AX(t)+X(t)AT +BBT ; (DLE)
X(t0) = X0, t ∈ [t0, Tf ],

(1.2)

where the matrix A ∈ Rn×n is assumed to be large, sparse and nonsingular and B ∈ Rn×p is a full rank
matrix, with p ≪ n. The initial condition X0 = Z̃0Z̃T

0 is assumed to be a given symmetric and positive
low-rank matrix.
The differential linear matrix equations (1.1) and (1.2) play an important role in many areas such as con-
trol, filter design theory, model reduction problems, differential equations and robust control problems
[1, 7].
Notice that the two linear differential matrix equations above can be reformulated as

ẋ(t) = M x(t)+b, (1.3)

where x(t) = vec(X(t)), the matrix M is given by M =
q

∑
1
(BT

i ⊗ Ai) for problem (1.1) and M =

I ⊗A+A⊗ I for (1.2), while the right hand side b is given by b = vec(C) for (1.1) and b = vec(BBT )
for (1.2) respectively, and vec(C) is the long vector obtained by stacking the columns of the matrix C.
For small dimensional problems, classical solvers can be used to approximate the exact solution of (1.3)
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which can be written as

x(t) = etM x0 +
∫ t

t0
e(t−τ)M bdτ, (1.4)

However, in the cases for which the matrix M is very large, this approach would not be appropriate
as computational time grows up very quickly as the dimension of the problem gets larger.

The rest of the paper is organized as follows. In Section 2, we recall the definitions of the Kronecker
and the ⋄ products with some of their properties that will be of use in this work. In Section 3, we give
a numerical method for solving the problem (1.1) by using projections onto matrix Krylov subspaces,
based on a Global-Galerkin orthogonality condition. In Section 4, we will be interested in the numerical
solution of the Lyapunov differential matrix equation (1.2). The approximate solutions will be obtained
via projection onto matrix Krylov subspaces using the extended global Arnoldi algorithm. The last
section is devoted to some numerical examples.

2. Preliminaries.

2.1. Definitions. We begin by recalling some notations that will be used in the sequel. We define
the inner product

⟨Y,Z⟩F = tr(Y T Z),

where tr(Y T Z) denotes the trace of the matrix Y T Z such that Y,Z ∈ Rn×p. The associated norm is the
Frobenius norm denoted by ∥Z∥F =

√
⟨Z,Z⟩F .

The matrix product A⊗B = [ai, jB] denotes the well known Kronecker product of the matrices A and B
which satisfies the following properties:

1. (A⊗B)(C⊗D) = (AC⊗BD).
2. (A⊗B)T = AT ⊗BT .
3. (A⊗B)−1 = A−1 ⊗B−1, if A and B are nonsingular square matrices.

We also use the matrix product ⋄ defined in [5] as follows.
DEFINITION 2.1. Let Z = [Z1, ...,Zm] and W = [W1, ...,Wl ] be matrices of dimension n×mp and

n× l p respectively, where Zi and Wj (i = 1, ...,m j = 1, ..., l) are Rn×p. Then the Rm×l matrix Z T ⋄W
is defined as:

Z T ⋄W = [
〈
Zi,Wj

〉
F ]1≤i≤m;1≤ j≤l

A block matrix W = [W1, ...,Wl ] is said to be F-orthonormal if

〈
Wi,Wj

〉
F = δi, j =

{
0 i f i ̸= j
1 i f i = j i, j = 1, ..., l. (2.1)

which is equivalent to

W T ⋄W = Il .

For more details about the properties of the ⋄ matrix product, see [5].
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Let A and V be n× n and n× p matrices, respectively, then the matrix (also called the global) Krylov
subspace Km(A,V ) associated to the pair (A,V ) is the subspace of Rn×p generated by V,AV, . . . ,Am−1V ,
i.e.,

Km(A,V ) = span{V,AV, . . . ,Am−1V}.

In the next proposition, we recall the global QR (gQR) factorisation of an n×mp matrix Z. The algo-
rithm of such a matrix factorisation is given in [5].

PROPOSITION 2.2. [5] Let Z =
[

Z1, Z2, . . . , Zm
]

be an n×mp matrix with Zi ∈ Rn×p,
i = 1, . . . ,m. Then, the matrix Z can be factored as

Z = Q (R⊗ Ip),

where Q = [Q1, . . . ,Qm] is an n×mp F-orthonormal matrix satisfying QT ⋄Q = Im and R is an upper
triangular matrix of dimension m×m.
The following proposition will be useful later.

PROPOSITION 2.3. [20] Let Vm = [V1, · · · ,Vm], be an n×mp F-orthonormal matrix. Let Z = [zi, j]
and G = [gi, j] be matrices of sizes m× r and mp×q respectively, where r and q are any integers. Then
we have

∥Vm(Z ⊗ Ip)∥F = ∥Z∥F

and

∥Vm G∥F ≤ ∥G∥F .

3. The Global-Galerkin Krylov subspace method for linear matrix differential equations. In
this section, we consider the differential linear matrix equation (1.1) and will present an iterative pro-
jection method to get numerical approximate solutions. Let A be the linear matrix operator defined as
follows

A : Rn×p −→ Rn×p

X −→
q

∑
i=1

Ai X Bi.

Notice that the transpose of the operator A with respect to the inner product ⟨. , .⟩F is defined as the

application mapping X ∈ Rn×p A T (X) =
q

∑
i=1

AT
i X BT

i .

Let V be any n× p matrix then we define the matrix Krylov subspace associated to the pair (A ,V ) and
an integer m defined by

Km(A ,V ) = span{V,A (V ), . . . ,A m−1(V )},

Where A i(V ) is defined recursively as A i(V ) =A (A i−1(V )). Notice that the matrix Krylov subspace
Km(A ,V ) is a subspace of Rn×p, which means that if a matrix Y is in Km(A ,V ), then we have Y =
m

∑
i=1

αiA
i−1(V ) where αi ∈ R, i = 1, . . . ,m. Next, we remind the modified global Arnoldi algorithm

[19] that allows us to construct an F-orthonormal basis V1,V2, . . . ,Vm of the matrix Krylov subspace
Km(A ,V ), i.e.

⟨Vi,Vj⟩F = δi, j, for i, j = 1, · · · ,k,
3



Algorithm 1 The Modified Global Arnoldi algorithm
• Set V1 =V/∥V∥F .
• For j = 1, . . . ,k

1. Ṽ = A (Vj),
2. for i = 1, . . . , j.

(a) hi, j = ⟨Vi,Ṽ ⟩F
(b) Ṽ = Ṽ −hi, jVi,
(c) EndFor

3. h j+1, j =∥ Ṽ ∥F ,
4. Vj+1 = Ṽ/h j+1, j.

• EndFor.

where δi, j denotes the classical Kronecker symbol. The algorithm is described as follows.
The matrix H̃m denotes the (m+1)×m upper Hessenberg matrix whose nonzero entries hi, j are defined
by Algorithm 1 and Hm is the m×m matrix obtained from H̃m by deleting its last row. The n×mp block
matrix Vm = [V1,V2, . . . ,Vm] is F-orthonormal which means that the matrices V1, . . . ,Vm are orthonormal
with respect to the scalar product ⟨ ., .⟩F which is equivalent to

V T
m ⋄Vm = Ip. (3.1)

We have the following relations

[A (V1), . . . ,A (Vm)] = Vm(Hm ⊗ Ip)+Em+1, (3.2)

where Em+1 = hm+1,m [0n×p, . . . ,0n×p,Vm+1], and

[A (V1), . . . ,A (Vm)] = Vm+1(H̃m ⊗ Ip). (3.3)

Starting from an initial guess X0(t) ∈Rn×p and the corresponding residual R0(t) = Ẋ0(t)−A (X0(t))−
C, at step m, we define the approximation Xm as follows

Xm(t) = X0(t)+Zm(t) with Zm(t) ∈ Km(A ,R0(t)) (3.4)

and

Rm(t) ⊥F Km(A ,R0(t)). (3.5)

where

Rm(t) = Ẋm(t)−A (Xm(t))−C

The Galerkin condition (3.5) is equivalent to

V T
m ⋄Rm(t) = 0. (3.6)

The condition (3.4) can be written as

Xm(t) = X0(t)+
m

∑
i=1

y(i)m (t)Vi = X0(t)+Vm(ym(t)⊗ Ip), (3.7)
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where ym(t) is a vector of Rm and y(i)m (t) is the i-th component of ym(t). Therefore, the residual Rm(t)
can be expressed as

Rm(t) = Ẋm(t)−A (Xm(t))−C

= Ẋ0(t)−A (X0(t))+Vm(ẏm(t)⊗ Ip)−A (Vm(ym(t)⊗ Ip))−C

= Vm(ẏm(t)⊗ Ip)−A (
p

∑
i=1

y(i)m (t)Vi)+R0(t)

= Vm(ẏm(t)⊗ Ip)− (
p

∑
i=1

y(i)m (t)A (Vi))+R0(t)

= Vm(ẏm(t)⊗ Ip)− [A (V1),A (V2), . . . ,A (Vm)](ym(t)⊗ Ip))+R0(t).

Using the relation (3.2), it follows that

Rm(t) = Vm(ẏm(t)⊗ Ip)−Vm(Hm ⊗ Ip)(ym(t)⊗ Ip))−Em+1(ym(t)⊗ Ip)+R0(t).

On the other hand, Em+1 can be expressed as Em+1 = hm+1,mVm+1[0,0, . . . , I] which can be written as
Em+1 = hm+1,mVm+1(Ẽ ⊗ Ip). Then we get a new expression of the residual given by

Rm(t) = Vm(ẏm(t)⊗ Ip)−Vm(Hmym(t)⊗ Ip)−hm+1,mVm+1(Ẽym(t)⊗ Ip)+R0(t). (3.8)

Using the properties of the ⋄ product given in [5] and the fact that V T
m ⋄Vm+1 = 0, the F-orthogonality

condition (3.6) reduces to the low dimensional linear differential system of equations

ẏm(t) = Hmym(t)+ cm(t), (3.9)

where cm =−V T
m ⋄R0(t) ∈ Rm.

The solution of the ODE (3.9) is given by

ym(t) = et Hmym(0)+
∫ t

0
e(t−τ)Hm cm(τ)dτ. (3.10)

The computation of the exponential form (3.10) can be done applying a quadrature method to compute
the projected exponential. In our numerical tests, a scaling and squaring strategy, implemented in the
MATLAB expm function was used, see [16, 21] for more details.
In the next algorithm, we summarize the main steps of the global-Galerkin
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Algorithm 2 The global-Galerkin (GG) algorithm
1. Choose a tolerance ε and a maximum number of Arnoldi iteration mmax.
2. Compute β = ||R0(t)||F , and V1 = R0(t)/β .
3. For m = 1 ... mmax

(a) Construct the F-orthonormal basis V1,V2, . . . ,Vm by Algorithm 1.
(b) Determine ym as solution of problem (3.10).
(c) Compute the residual norm ||Rm(t)||F .
(d) If ||Rm(t)||F < ε stop, else, Goto (a).

4. EndFor.
5. Compute the approximation Xm = X0 +Vm(ym ⊗ Ip).

4. Global projection methods for large differential Lyapunov equations with low-rank right-
hand sides. In this section, we consider the following large scale differential Lyapunov equation (1.2).
Those differential matrix equations play a fundamental role in many topics such as control, model
reduction problems, differential equations and robust control problems [1, 7]. When the size n of the
problem is large, the global-Galerkin (GG) approach is no longer interesting as the right-hand side BBT

is a n×n matrix. In order to take advantage of the structure of the right-hand side, we introduce in this
section an approach based on the computation of low-rank approximate solutions to the exact solution
X using the extended global Arnoldi process [9, 13, 14, 25]. In [12], methods based on the projection
onto extended block Krylov subspaces showed to be an efficient tool . Nevertheless, the block Krylov
methods can suffer from breakdowns when numerical colinearities appear between the vectors generated
by the block Arnoldi process, resulting in a degradation of the accuracy. As an alternative, we propose
a global Arnoldi approach to solve (1.2)
The expression of the exact solution is given by

X(t) = e(t−t0)AX0e(t−t0)AT
+

∫ t

t0
e(t−τ)A BBT e(t−τ)AT

dτ. (4.1)

4.1. Projecting by using the extended global Arnoldi process. We will consider extended global
Krylov subspaces associated to the pair (A,B) and defined as follows

Km(A,B) = span(A−m, . . . ,A−1B,B,AB, . . . ,Am−1B). (4.2)

Notice that

Km(A,B) = Km(A,B) + Km(A−1,A−1B),

where Km(A,B) is the global Krylov subspace associated to the pair (A,B). To compute an F-orthonormal
basis of Km(A,B), we can use the extended global Arnoldi algorithm defined as follows [13]
If the upper triangular 2× 2 matrices H j+1, j ( j = 1, . . . ,m) are full rank, then Algorithm 3 computes
an F-orthonormal basis of the global extended Krylov subspace Km(A,B); the obtained n×2mp matrix
Vm = [V1, . . . ,Vm] is F-orthonormal

VT
m ⋄Vm = I2m.

Let Tm = VT
m ⋄ (AVm) = [Ti, j] with Ti, j = V T

i ⋄ (AVj) ∈ R2×2, i, j = 1, . . . ,m. Then it can be shown
that Tm is a 2m×2m upper block Hessenberg matrix whose elements can be obtained from the matrix-
coefficients Hi, j computed by the extended global Arnoldi algorithm. Let T̃m =VT

m+1 ⋄ (AVm), then Tm

6



Algorithm 3 The extended global Arnoldi algorithm

1. Compute the global QR decomposition: [B,A−1B] =V1(R⊗ Ip)
2. For j = 1, . . . ,m

(a) Set V (1)
j : the first p columns of Vj and V (2)

j : the second p columns of Vj,

(b) Set V j = [V j−1,Vj] and U = [AV (1)
j ,A−1V (2)

j ],
(c) F-orthogonalize U w.r. to V j to get Vj+1, i.e.
(d) For i = 1,2, . . . , j

i. Hi, j =V T
i ⋄U ,

ii. U =U −Vi(Hi, j ⊗ Ip)
(e) EndFor

3. Compute the QR decomposition U =Vj+1(H j+1, j ⊗ Ip)
4. EndFor

can be obtained from T̃m by deleting the last 2 rows of T̃m.

We have the following algebraic relations [13].

AVm = Vm+1(T̃m ⊗ Ip) (4.3)
= Vm(Tm ⊗ Ip)+Vm+1(Tm+1,mET

m ⊗ Ip), (4.4)

where ET
m = [0,0, . . . , I2] is the matrix of the last two rows of the identity matrix I2m.

Let Xm(t) be the desired low-rank approximate solution given as

Xm(t) = Vm(Ym(t)⊗ Ip)VT
m, t ∈ [t0, Tf ], (4.5)

where Ym(t) ∈ R2m×2m, solves the low dimensional differential Lyapunov equation

Ẏm(t)−Tm Ym(t)−Ym(t)TT
m −BmBT

m = 0, t ∈ [t0, Tf ], (4.6)

with Bm = V T
m ⋄B. Notice that

[B,A−1B] =V1(R⊗ Ip), and Bm = r1,1e(2m)
1 , (4.7)

with R = [ri, j], 1 ≤ i, j ≤ 2 and e(2m)
1 is the first vector of the canonical basis of R2m.

The low-dimensional differential Lyapunov equation (4.6) will be solved by using some classical linear
differential equation solvers.
In order to limit the computational effort, we give an upper of the norm of the residual that will allow to
stop the iterations without explicitly forming Xm(t) which will be given only at the end of the process.

THEOREM 4.1. Let Rm(t) be the residual obtained at step m, then we have

∥Rm(t)∥F ≤
√

2∥Tm+1,mET
mYm(t)∥F , t ∈ [t0, Tf ]. (4.8)

Proof. Using (4.3) and (4.5), the residual Rm(t) = Ẋm(t)−AXm(t)−Xm(t)AT −BBT is expressed
as

Rm(t) = Vm(Ẏm(t)⊗ Ip)VT
m −

[
Vm(Tm ⊗ Ip)+Vm+1(Tm+1,mET

m ⊗ Ip)
]
(Ym(t)⊗ Ip)VT

m

− Vm(Ym(t)⊗ Ip)
[
Vm(Tm ⊗ Ip)+Vm+1(Tm+1,mET

m ⊗ Ip)
]T −BBT .
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Therefore, using the fact that Ym is solution of the low dimensional differential problem (4.6), the resid-
ual can be expressed as follows

Rm(t) = Vm+1

([
0 Ym(t)EmT T

m+1,m
Tm+1,mET

mYm(t) 0

]
⊗ Ip

)
VT

m+1.

Therefore, applying Proposition 2.3, we get for any t ∈ [t0, Tf ] the following upper bound

∥Rm(t)∥2
F ≤ 2∥Tm+1,mET

mYm(t)∥2
F . (4.9)

□

4.2. Solving the low dimensional differential Lyapunov equation. We have now to solve the low
dimensional differential Lyapunov equation (4.6) by some integration method such as the well known
Backward Differentiation Formula (BDF). We notice that BDF is especially used for the solution of stiff
differential equations.
At each time tk, let Ym,k denote the approximation of Ym(tk), where Ym is a solution of (4.6). Then, the
new approximation Ym,k+1 of Ym(tk+1) obtained at step k+ 1 by l-step BDF is defined by the implicit
relation

Ym,k+1 =
l−1

∑
i=0

αiYm,k−i +hkβF (Ym,k+1), (4.10)

where hk = tk+1 − tk is the step size, αi and βi are the coefficients of the BDF method as listed in Table
4.1 and F (X) is given by

F (Y ) = Tm Y +Y TT
m + Bm BT

m.

l β α0 α1 α2
1 1 1
2 2/3 4/3 -1/3
3 6/11 18/11 -9/11 2/11

TABLE 4.1
Coefficients of the l-step BDF method with l ≤ 3.

The approximate Ym,k+1 solves the following matrix equation

−Ym,k+1 +hkβ (TmYm,k+1 +Ym,k+1TT
m +BmBT

m)+
l−1

∑
i=0

αiYm,k−i = 0,

which can be written as the following algebraic Lyapunov matrix equation

Tm Ym,k+1 + Ym,k+1T
T

m +Bm,k BT
m,k = 0. (4.11)

We assume that at each time tk, the approximation Ym,k is factorised as a low rank product Ym,k ≈
Zm,kZm,k

T , where Zm,k ∈ Rn×mk , with mk ≪ n. In that case, the coefficient matrices appearing in (4.11)
are given by

Tm = hkβTm − 1
2

I and Bm,k+1 = [
√

hkβBm,
√

α0Zm,k, . . . ,
√

αl−1Zm,k+1−l ].
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The Lyapunov matrix equation (4.11) can be solved by applying direct methods based on Schur decom-
position such as the Bartels-Stewart algorithm [2, 11].

In the following algorithm, we summarise the main steps of the extended global Arnoldi method for
solving the differential Lyapunov matrix equation (1.2).

Algorithm 4 The extended global Arnoldi for differential Lyapunov equations (EGA-BDF)
1. Inputs: Coefficient matrices A, B, a maximum number of extended Arnoldi iteration mmax and

a tolerance tol.
2. For m = 1, . . . ,mmax

(a) Apply the extended global Arnoldi Algorithm to the pair (A,B) to get an F-orthonormal
matrix Vm = [V1, . . . ,Vm] and the upper block Hessenberg matrix Tm.

(b) Solve the low dimensional problem (4.6) by the BDF method.
(c) If Rm(t)< tol stop and compute the obtained approximate solution

3. EndFor.

4.3. Using the approximation of the exponential of a matrix. In this subsection, we will see
how to use the expression (4.1) to get low rank approximate solutions. It is known [15, 18] that for any
square matrix A, we have the Cauchy’s integral representation

f (A) =
1

2πi

∫
Γ

f (λ )(λ I −A)−1dλ , (4.12)

where f is an analytic function on and inside a closed contour Γ ⊂ C that encloses the spectrum σ(A).
Then

f (A)B =
1

2πi

∫
Γ

f (λ )(λ I −A)−1Bdλ . (4.13)

The approximation of the product f (A)B is a very important issue; see [3, 10, 17, 24]. Using the
extended global Arnoldi algorithm, we can show [19] that

(λ I −A)−1B ≈ Vm
(
(λ I −Tm)

−1r11e2m
1 ⊗ Ip)

)
,

where Vm is the F-orthonormal matrix obtained from the extended global Arnoldi process applied to the
pair (A,B) and Tm = VT

m ⋄ (AVm). Then

(λ I −A)−1B ≈ r11Vm
(
(λ I −Tm)

−1 ⊗ Ip) Ẽ1
)
, (4.14)

where Ẽ1 = e2m
1 ⊗ Ip. Therefore, if the contour Γ also contains the spectrum of Tm, (which is the case

for example if we choose the contour of field of values of the matrix A) we get

f (A)B ≈ r11Vm
1

2πi

∫
Γ

f (λ )
(
(λ I −Tm)

−1 ⊗ Ip) Ẽ1
)

dλ , (4.15)

which can be written as

f (A)B ≈ r11Vm
1

2πi

∫
Γ

f (λ )
(
(λ I −Tm)

−1 ⊗ Ip) Ẽ1
)

dλ = r11Vm( f (Tm)⊗ Ip) Ẽ1. (4.16)

Using the fact that Ẽ1 = e2m
1 ⊗ Ip, we get

f (A)B ≈ r11Vm( f (Tm)e2m
1 ⊗ Ip). (4.17)
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Notice that using some Kronecker product relations, the expression (4.15) can also be written

f (A)B ≈ 1
2πi

r11Vm

∫
Γ

f (λ )
(

λ I − [Tm ⊗ Ip]
−1
)

Ẽ1dλ , (4.18)

and then

f (A)B ≈ r11Vm f (Tm ⊗ Ip)Ẽ1. (4.19)

The two expressions on the right hand sides in (4.17) and (4.19) are the same. Applying these results to
the function f (x) = ex, we get the approximation to the exponential appearing in the expression of the
exact solution (4.1)

e(t−τ)AB ≈ r11Vm(e(t−τ)Tm e2m
1 ⊗ Ip). (4.20)

Assuming that X0 = 0, we consider approximations Xm(t) to the solution (4.1) as follows

Xm(t) =
∫ t

t0
Zm(τ)Zm(τ)

T dτ, (4.21)

where

Zm(τ) = r11Vm(e(t−τ)Tme2m
1 ⊗ Ip). (4.22)

Hence, from (4.21) and (4.22), we get

Xm(t) = Vm(Gm(t)⊗ Ip)VT
m, (4.23)

where

Gm(t) =
∫ t

t0
G̃m(τ)G̃m(τ)

T dτ, (4.24)

with G̃m(τ) = r11e(t−τ)Tme2m
1 . So, to compute the approximation Xm(t), we need to compute the integral

(4.24) which will be done by using a quadrature formula.
In the sequel, we state some theoretical results on the residual norm and on the error of the method
proposed in this section. These theorems are an adaptation of those stated in [12] to the extended global
Arnoldi projection spaces. The next theorem states that the matrix function Gm is solution of a low
dimensional differential Lyapunov equation.

THEOREM 4.2. The function Gm defined by the relation (4.24) satisfies the following differential
Lyapunov equation,

Ġm(t) = TmGm(t)+Gm(t)TT
m + r2

11e2m
1 (e2m

1 )T . (4.25)

Proof. The proof can easily be obtained by deriving the expression (4.24). □
Next, we give a result that allows us the computation of the norm of the residual.

THEOREM 4.3. Let Xm(t) =Vm(Gm(t)⊗ Ip)VT
m be the approximation obtained at step m. Then the

residual Rm(t) satisfies

∥ Rm(t) ∥F≤ ∥Tm+1,m∥F∥Ḡm(t) ∥2, (4.26)

where Ḡm(t) is the 2×2mp matrix obtained by extracting the last two rows of Gm(t).
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THEOREM 4.4. Let Xm(t) be the approximate solution given by (4.23). Then we have

Ẋm(t) = AXm(t)+Xm(t)AT +Lm. (4.27)

where Lm = BBT −Lm −LT
m with Lm(t) =Vm+1Tm+1,m(Ḡm(t)⊗ Ip)VT

m.
The error Em(t) = X(t)−Xm(t) satisfies the following equation

Ėm(t) = A Em(t)+Em(t)AT −Rm(t), (4.28)

and then

Em(t) = e(t−t0)AEm,0e(t−t0)AT
+

∫ t

t0
e(t−τ)ARm(τ)e(t−τ)AT

dτ, t ∈ [t0, Tf ]. (4.29)

where Em,0 = Em(t0).

Proof. The proof of (4.28) is obtained by using the expression (4.23) of the approximate solution
Xm(t) and the relation (4.25). The expression (4.29) of the error is easily derived by extracting the initial
problem (1.2) from the expression of the residual Rm(t). □

THEOREM 4.5. Assume that X(t0) = Xm(t0), then we have the following upper bound

∥ Em(t) ∥F≤∥ Tm+1,m ∥F ∥ Ḡm ∥∞

e2(t−t0)µ2(A)−1
2µ2(A)

, ∀t ∈ [t0, Tf ], (4.30)

with µ2(A) =
1
2

λmax(A+AT ) is the 2-logarithmic norm and ∥ Ḡm ∥∞= max
τ∈[t0, t]

∥ Ḡm(τ) ∥2 where Ḡm(τ)

is the 2×2mp matrix obtained by extracting the last two rows of Gm(τ).

Proof. Using the expression (4.29) of Em(t) and the fact that ∥ etA ∥≤ eµ2(A)t , we get

∥ Em(t) ∥ ≤ ∥ Tm+1,m ∥F ∥ Ḡm ∥∞

∫ t

t0
e2(t−τ)µ2(A)dτ

≤ ∥ Tm+1,m ∥F ∥ Ḡm ∥∞ e2tµ2(A)
∫ t

t0
e−2τµ2(A)dτ

= ∥ Tm+1,m ∥F ∥ Ḡm ∥∞

e2(t−t0)µ2(A)−1
2µ2(A)

,

which gives the desired result. □

REMARK 1. Note that if the matrix A is not invertible, then we can replace the extended global
Arnoldi algorithm by the global Arnoldi. In this case, all the relations stated in this section still hold
with some modifications. From a numerical point of view, when feasible, the extended global Arnoldi
method has to be preferred.

5. Numerical examples. In this section, we apply the approaches presented in this work to the
two problems that are considered in this paper. All computations were performed on a laptop with an
Intel Core i7 processor and 8GB of RAM. The algorithms were coded in Matlab R2014b.

Example 1. In the first case, we consider the generalized Lyapunov equation{
Ẋ(t) = A1 X(t)B1 +A2 X(t)B2 +C,
X(t0) = X0,

(5.1)
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where A1 and A2 are matrices obtained from the 5-point discretization on the unit square [0,1]× [0,1] of
the operators

LA1 = ∆u− f1(x,y)
∂u
∂x

+ f2(x,y)
∂u
∂y

+g1(x,y),

and

LA2 = ∆u− f3(x,y)
∂u
∂x

+ f4(x,y)
∂u
∂y

+g2(x,y),

respectively, with homogeneous Dirichlet boundary conditions. The number of inner grid points in each
direction is n0 and the size of the matrix A was n× n, where n = n2

0. Here we set f1(x,y) = 10xy,
f2(x,y) = ex2y, f3(x,y) = 100y, f4(x,y) = x2y , g1(x,y) = 20y and g2(x,y) = xy. The time interval
considered was [0, 2], with the initial condition X0 = 0n×p. The coefficients of matrices Bi ∈ Rp×p,
i = 1, 2, and C ∈ Rn×p have been randomly generated. For our tests, we set p = 2. We applied the
global-Galerkin algorithm (GG) described by Algorithm 2, which consists in projecting the differential
problem onto a global Arnoldi subspace and then solve it by a quadrature method to compute the expo-
nential form (3.10) of the solution. The Frobenius norm of the residual at final time is then computed
and while the tolerance is not met, we repeat the process increasing the dimension of the projection
subspace. In order to confirm that our approach produces reliable results, we compared the outputs
obtained by the GG method to the one given by a direct computation of the exponential form (1.4).
This was done by vectorizing our DLE, stacking the columns of X one on top of each other and using a
scaling and squaring method as implemented in the MATLAB expm function. This method is not suited
for large-scale problems. We chose a size of 100×100 for the matrices A1 and A2.
In Figure 5.1, we plotted the component X11 of the solution obtained by the GG method to the one pro-
vided by the direct computation of the exponential form (1.4), on the time interval [0, 2], for size(Ai) =
100×100, i = 1,2.

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7
x 10

−3 global Arnoldi exp/direct

 

 

GG

direct

FIGURE 5.1. Values of X11(t) for t ∈ [0, 2]
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We observe that both considered methods give similar results in terms of accuracy. The error norms
∥XGG(t f )−Xdirect(t f )∥ at final time t f = 2 was of order 10−8 and the Frobenius relative norm of the
residual was of order 10−9. The runtimes were respectively 2.3 s for the GG and 8.5 s for the direct
method.
In Table 5.1, we give the obtained runtimes in seconds and the relative Frobenius residual norms at final
time for the resolution of Equation (5.1) for t ∈ [0, 2]. In order to minimize the computational time, the
resolution of the projected differential equation was done every 50 steps of the global Arnoldi algorithm.

size(Ai) GG Direct method Residual norm
900×900 11.9 s 398.2 s O(10−9) (m = 200)

2500×2500 35.4s > 1000 s O(10−9) (m = 300)
6400×6400 78.2s > 1000s O(10−9) (m = 350)

TABLE 5.1
runtimes and residual norms for GG and direct method

The results in Table 5.1 illustrate that the GG method allows the numerical resolution of equation (1.3)
in cases for which direct methods are not suitable for being too slow or due to memory limitations. In
Figure 5.2, we plotted the norm of the residual at final time t = 2 for the GG method for size(Ai)=
2500×2500 in function of the number m of global Arnoldi iterations.

m
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Relative residual Frobenius norm vs m, size(Ai) = 2500× 2500

FIGURE 5.2. Residual norms vs the number of global Arnoldi iterations m

In the next examples, we consider the low-rank Lyapunov equation{
Ẋ(t) = AX(t)+X(t)AT +BBT ; (DLE)
X(t0) = X0, t ∈ [t0, Tf ],

(5.2)

Provided that A is not singular, we used the Extended global Arnoldi BDF (EGA-BDF) and the EGA-
exp methods as introduced in Sections 4.2 and 4.3 respectively. The steps of the EGA-exp method only
differs from Algorithm 4 in the way the projected equation is solved, using the exponential method,
described in Section 4.3 instead of the BDF method.

Example 2. The matrix A was obtained from the 5-point discretization of the operators

LA = ∆u− f1(x,y)
∂u
∂x

+ f2(x,y)
∂u
∂y

+g1(x,y),
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on the unit square [0,1]× [0,1] with homogeneous Dirichlet boundary conditions. The number of inner
grid points in each direction is n0 and the dimension of the matrix A was n = n2

0. Here we set f1(x,y) =
10xy, f2(x,y) = ex2y and g1(x,y) = 20y. The coefficients of B ∈ Rn×p were randomly generated. The
time interval considered was [0, 2] and the initial condition X0 = X(0) was chosen as the low rank
product X0 = Z0ZT

0 , where Z0 = 0n×p.
In Table 5.2, we give the obtained runtimes in seconds, for the resolution of Equation (1.2) for t ∈ [0, 2],
with a timestep h = 0.001 and the Frobenius norm of the residual at the final time. The rank of matrix
B was set to p = 2. The projected differential equations were solved every 5 iterations of the extended
Arnoldi algorithm.

size(A) EGA-exp GA-BDF(1) Residual norm
40000×40000 14.3 s 21.5 s O(10−9) (m = 35)

250000×250000 166 s 180.5 s O(10−8) (m = 45)
TABLE 5.2

runtimes and residual norms for EGA-exp and EGA-BDF(1)

The figures in Table 5.2 illustrate the ability to numerically solve large scale low-rank differential Lya-
punov equations. The EGA-exp method is slightly faster that the EGA-BDF(1) method and both meth-
ods performed similarly in terms of accuracy.

Example 3. In this last example, we applied the EGA-exp and EGA-BDF(1) methods to the well-known
problem Optimal Cooling of Steel Profiles. The matrices were extracted from the IMTEK collection 1.
We compared both methods for problem sizes n = 5177 and n = 20209, on the time interval [0 ,1000].
The initial value X0 was chosen as X0 = 0 and the timestep was set to h = 1 for the BDF(1) integration
scheme. The tolerance for the Arnoldi stop test was set to 10−7 for both methods. The integration of the
projected differential equations were done every 2 steps of the Extended global Arnoldi algorithm.

size(A) EGA-exp EGA-BDF(1) Residual norms
5177×5177 17.6 s 19.4 s O(10−7) (m = 50)

20209×20209 70 s 82.5 s O(10−7) (m = 70)
TABLE 5.3

Optimal Cooling of Steel Profiles: runtimes and residual norms for EGA-exp and EGA-BDF(1)

In Table 5.3, we listed the obtained runtimes which again showed that both methods are interesting in
terms of execution time and are similar in terms of accuracy.

6. Conclusion. We presented in the present paper different new approaches for computing approx-
imate solutions to large scale differential differential matrix equations. These approaches are based on
projection onto matrix Krylov subspaces using the globlal and the extended global Arnoldi algorithms.
For problems with full rank right hand sides, the problem reduces to the computation of solutions of dif-
ferential linear systems of equations by classical methods. In the second part of this work, we considered
a differential Lyapunov matrix equation with a decomposed low rank hand sides. The initial problem
was projected onto matrix Krylov subspaces to get low dimensional differential Lyapunov equation that
is solved by the classical BDF methods. The numerical examples provided in this work showed that
both methods are promising for large-scale problems.

1https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
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