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ACTION OF THE AUTOMORPHISM GROUP ON THE JACOBIAN OF KLEIN’S

QUARTIC CURVE II: INVARIANT THETA-FUNCTIONS

DIMITRI MARKUSHEVICH AND ANNE MOREAU

ABSTRACT. Bernstein–Schwarzman conjectured that the quotient of a complex affine space

by an irreducible complex crystallographic group generated by reflections is a weighted projec-

tive space. The conjecture was proved by Schwarzman and Tokunaga–Yoshida in dimension 2

for almost all such groups, and for all crystallographic reflection groups of Coxeter type by

Looijenga, Bernstein–Schwarzman and Kac–Peterson in any dimension. We prove that the

conjecture is true for the crystallographic reflection group in dimension 3 for which the asso-

ciated collineation group is Klein’s simple group of order 168. In this case the quotient is the

3-dimensional weighted projective space with weights 1, 2, 4, 7. The main ingredient in the

proof is the computation of the algebra of invariant theta-functions. Unlike the Coxeter case,

the invariant algebra is not free polynomial, and this was the major stumbling block.
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INTRODUCTION

A general conjecture of Bernstein and Schwarzman [BS] claims that the quotient of Cn by

the action of an irreducible complex crystallographic group generated by reflections (complex

crystallographic reflection group for short) is a weighted projective space. The conjecture

is proved for almost all complex crystallographic reflection group for n = 2, as well as for

irreducible complex crystallographic reflection groups of Coxeter type of any rank n > 2.

A complex crystallographic reflection group is said to be of Coxeter type if it is obtained by

complexification of a real crystallographic group or, in other words, if the group of its linear

parts is conjugate to a finite subgroup of the orthogonal group O(n). See [MM] for more

historical comments and further references.

Since the 80’s, the conjecture remained widely open for any irreducible complex crystal-

lographic reflection group of rank n > 3 which is genuinely complex, that is not of Coxeter

type. In the present paper we prove the conjecture for the rank-3 complex crystallographic

reflection group Γ of type [K24] in the classification of Popov [Po]. We show that the quotient
1
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X = C3/Γ is isomorphic to a weighted projective space.1 More explicitly, the main result of

the article is the following:

Main Theorem (Theorem 5.3). The quotient variety J /G, where J = J (C) is the 3-

dimensional Jacobian of the plane Klein quartic curve C , by the full automorphism group G

of order 336 is isomorphic to the weighted projective space P(1, 2, 4, 7).

The group [K24] is in several regards the most intriguing one among the rank-3 complex

crystallographic reflection groups. Firstly, it is the only one whose projectivized group of

linear parts is simple, namely, is equal to Klein’s group H of order 168. The groups of linear

parts in all the other cases are solvable. Secondly, the quotient C3/Γ is isomorphic to the

quotient of the Jacobian J (C) of Klein’s quartic curve

C := {x3y + y3z + z3x = 0} ⊂ P2

by the full group

G = {±1} ×H

of its automorphisms as a principally polarized abelian variety. As follows from Hurwitz’

bound, C has a maximal number of automorphisms for a curve of genus 3. Algebraic varieties

acted on by Klein’s group, not only curves, are a recurrent subject of interest in algebraic

geometry. Thirdly, [K24] encloses a very rich number-theoretic content, for Klein’s curve C is

nothing else but the modular curve X(7), or else it can be viewed as a Shimura’s curve, while

its Jacobian is isomorphic, as an abstract abelian variety, to the cube of the elliptic modular

curve X0(49). The representation of the translation lattice of Γ that we use was given in [Ma].

An important ingredient of our proof for [K24] is the computation of the Hilbert function

of the algebra of Γ-invariant theta-functions. The proofs of the conjecture in the Coxeter case

obtained in 80’s passed through showing that the invariant algebra is free. As the quotient va-

riety is the spectrum of the invariant algebra, the freeness of the latter implies that the quotient

is a weighted projective space. But this idea does not work for genuinely complex complex

crystallographic reflection groups, since the invariant algebra is not anymore free. In the case

of [K24], we succeed to understand the structure of relations between generators of this alge-

bra. It turns out that the ideal of relations is principal and defines a hypersurface of degree 8

in the 4-dimensional weighted projective space P(1, 1, 2, 4, 7).

On the other hand, in [MM], we have determined the singularities of X: they are images of

the orbits whose stabilizers are not generated by reflections. We observed that the singularities

of X are analytically equivalent to those of P(1, 2, 4, 7), which prompted us to conjecture that

X is isomorphic to this weighted projective space. The latter also embeds in P(1, 1, 2, 4, 7) as

an octic hypersurface! It can be given by the equation y0y4 = y23. The last step of our proof

is to show that all degree-8 hypersurfaces in P(1, 1, 2, 4, 7) whose singularities are those of

P(1, 2, 4, 7) are equivalent to y0y4 = y23 by automorphisms of P(1, 1, 2, 4, 7).

As a byproduct, we see that P(1, 2, 4, 7) possesses a nontrivial deformation, obtained by

varying the coefficients of the octic in the 4-dimensional weighted projective space. This

deformation turns out to be versal, and is a partial smoothing, so that the general member of the

1The proof of the Bernstein–Schwarzman conjecture for [K24] appeared in the second version of the present

article, posted on arxiv in November 2022, and at that moment it was the only non-Coxeter complex crystallo-

graphic reflection group of rank > 2 for which the conjecture was established. In March 2023, Eric Rains posted

the preprint [Rains], in which he proves the conjecture in full generality.
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deformation family is a 2-Gorenstein Fano 3-fold with Picard group Z and only rigid isolated

singularities. Deformations of 1-Gorenstein weighted projective spaces in dimension 3 have

been studied in [DS].

Another noteworthy feature of our quotient X is the existence of a natural double cover

Y → X, a Calabi–Yau orbifold that can be used as a target space for the superstring compact-

ification; in particular, an interesting question is what its mirror family is. This double cover

is obtained as the quotient Y = C3/Γ0, where Γ0 is the subgroup of index 2 in Γ, the unimod-

ular part of Γ. It can also be realized as an anticanonical hypersurface in P(1, 2, 4, 7, 14) of

dimension 4. However, the known procedure of constructing mirrors of generic hypersurfaces

in a weighted projective space does not apply to this case, for Y is by no means generic, it is

a very special member of the anticanonical system on this weighted projective space having

non-isolated singularities. We hope to return to the study of this Calabi–Yau orbifold in future.

In another direction, we expect that the other complex crystallographic reflection groups of

rank 3 can be treated in much a similar way; the other classes should be easier to handle, since

their groups of linear parts are all solvable. However, it remains unclear how one can predict

the weights in general, except for the case of Coxeter type, where they are the exponents of

the extended Dynkin diagram of the associated affine root system.

Let us now detail our strategy to prove the main theorem. In general, a complex crystallo-

graphic group Γ of rank n is a group of affine transformations of Cn which fits in an exact

triple

0−→L−→Γ−→dΓ−→1,

where L ≃ Z2n is a lattice of maximal rank 2n in Cn, acting by translations, and dΓ is a

finite subgroup of the unitary group U(n). A complex crystallographic group is a complex

crystallographic reflection group if it is generated by complex affine reflections, where an

affine transformation of Cn is called a reflection if it is of finite order and its fixed locus is

an affine hyperplane. In our case dΓ = G; there is a unique G-invariant rank-6 lattice L in

C3, which turns out to be the period lattice Λ of Klein’s quartic C , and the above extension is

necessarily split, so that Γ = Λ⋊G.

The quotient Cn/Γ can be thought of as the quotient of the abelian variety Cn/L = A by

the induced action of the finite group of linear parts: Cn/Γ ≃ A/dΓ. The idea applied in the

case of irreducible complex crystallographic reflection groups of Coxeter type in [BS, Lo] is to

represent A as the Proj of the graded algebra S(L ) of sections of the powers of an ample line

bundle L onA, linearizable by the action of dΓ, and then Cn/Γ is the Proj of the dΓ-invariant

part:

S(L ) =

∞⊕

k=0

H0(A,L k), A = ProjS(L ), Cn/Γ ≃ A/dΓ = Proj
(
S(L )dΓ

)
.

The sections of the powers of L are given by theta-functions for the lattice L, and it is proven

that the invariant part is a polynomial algebra in n+ 1 free generators.

Mimicking this approach, we introduce the theta-functions θm,k : C3 → C of degree k > 0

for the lattice Λ in such a way that {θm,k}m∈Pk
is a basis of the space H0(J ,L k) of global

sections of the k-th power of an appropriate line bundle L on J = C3/Λ defining a principal

polarization, where m runs over a set Pk of representatives of 1
kZ3/Z3. Unlike the Coxeter

case, the thus defined line bundle L is not dΓ-invariant, only even powers of L can be dΓ-

linearized, and thus we have to work with the second Veronese subalgebra S(L 2) of S(L ).
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We have

X = A/dΓ ≃ ProjS(L 2)dΓ, S(L 2)dΓ =
∞⊕

p=0

H0(A,L 2p)dΓ.

Thus one cannot expect S(L 2)dΓ to be polynomial; what we prove is the isomorphism

between S(L 2)dΓ and the second Veronese algebra of P(1, 2, 4, 7), the latter being non-

polynomial.

Now we describe the content of the paper by sections. Section 1 gathers definitions and

preliminary results on the complex crystallographic reflection group Γ, the lattice Λ and asso-

ciated theta functions.

In Section 2, we compute the transformation formula for the action of the elements of the

modular group on our theta functions (Theorem 2.4).

In Section 3, we determine the Hilbert function of the algebra S(L 2)G, proving that it

coincides with the Hilbert function of the second Veronese algebra of P(1, 2, 4, 7), see Theo-

rem 3.3. This is the second step of the proof of the isomorphism X ≃ P(1, 2, 4, 7), in which

the first one was the study of the singularities of X, done in [MM, Theorem 4.3].

Next, we prove that X admits an embedding in the P(1, 1, 2, 4, 7) as a degree-8 hyper-

surface. This is done in Section 4. We first show that there exist 4 homogeneous elements

ϕ0, . . . , ϕ3 of S(L 2)G of degrees 1, 1, 2, 4 which are algebraically independent. The four

invariant theta-functions ϕi are chosen in an ad hoc way in Lemma 4.2, and their algebraic

independence is proved by evaluating their Jacobian. Using the known Hilbert function, we

deduce from this that there is a fifth element ϕ4 of S(L 2)G of degree 7, such that the five func-

tions ϕi generate S(L 2)G, and this makes X into a degree-8 hypersurface in P(1, 1, 2, 4, 7)

(Theorem 4.1).

Section 5 contains the last step of the proof of the main result: in Proposition 5.2, we show

that the degree-8 hypersurfaces in P(1, 1, 2, 4, 7) whose singularities are those of P(1, 2, 4, 7)

form just one orbit under the action of the group of coordinate changes in P(1, 1, 2, 4, 7).

ThusX is equivalent, modulo a coordinate change, to P(1, 2, 4, 7) embedded in P(1, 1, 2, 4, 7)

as a degree-8 hypersurface. This implies the main result of the paper (Theorem 5.3). In

Remark 5.4, we discuss the nontrivial deformations of P(1, 2, 4, 7) smoothing out the non-

isolated singularity, provided by the family of weighted octics in P(1, 1, 2, 4, 7).

In Section 6 we look at the quotient C3/Λ ⋊ W , where W is a maximal real reflection

subgroup of G, of order 48. The group Λ ⋊W is complex crystallographic, but is not gener-

ated by reflections. It is plausible that this quotient is a weak weighted projective space (see

Proposition 6.3), and we formulate a conjecture, generalizing this example, which says that

if Γ,Γ1 are commensurable complex crystallographic groups with the same linear parts, such

that Γ is complex crystallographic reflection, then Cn/Γ1 is a weak weighted projective space

(Conjecture 6.4). We also provide in Section 6 some heuristic explanation of our ad hoc choice

for generators of S(L 2)G (see Remark 6.1).
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1. THE GROUP, THE LATTICE AND THE ASSOCIATED THETA-FUNCTIONS

Let the complex vector space V = C3, with coordinates (z1, z2, z3), be endowed with its

standard Hermitian product 〈 | 〉 and its standard symmetric bilinear form ( | ), and consider

the complex root system Φ in it, consisting of the 42 vectors obtained from (2, 0, 0), (0, α, α)

and (1, 1, α), where α = 1+i
√
7

2 , by sign changes and permutations of coordinates. For each

φ ∈ Φ, the reflection of order 2

rφ : V −→ V, z 7−→ z − 2
〈φ|x〉
〈φ|φ〉φ

sends Φ onto Φ. As rφ = r−φ, we obtain 21 reflections in this way. We choose

φ1 = (0, α, α), φ2 = (0, 0, 2), φ3 = (1, 1, α)

as the basic roots and denote ri = rφi
, i = 1, 2, 3. We define the lattice Λ as the root lattice

Q(Φ) of Φ, that is Λ =
∑

φ∈Φ Zφ. We have

Λ = Oφ1 + Oφ2 + Oφ3, O = Z[α] = Z + αZ.

By [Ma, 235–236], Λ is the period lattice of Klein’s quartic; it can also be represented in the

form

Λ = {(z1, z2, z3) ∈ O
3 : z1 ≡ z2 ≡ z3 mod α, z1 + z2 + z3 ≡ 0 mod α}.

The group G is the full group of complex-linear automorphisms of Λ. It contains 21 re-

flections, all of order two, and is generated by the three basic reflections: G = 〈r1, r2, r3〉.
According to [ST, (10.1)], the following relations are defining for G:

(1) r21 = r22 = r23 = (r1r2)
4 = (r2r3)

4 = (r3r1)
3 = (r1r2r1r3)

3 = 1.

Klein’s simple group of order 168 is the unimodular part of G:

H = {h ∈ G : det(h) = 1}.

It is generated by the antireflections ρφ := −rφ; of course, the antireflections ρi = −ri
associated to the three basic roots φi (i = 1, 2, 3) suffice to generate H . According to [Po],

there is a unique extension of Λ by G, the split one, or the semi-direct product Γ = Λ ⋊ G,

and it is a complex crystallographic reflection group.

Remark that Λ contains the sublattice αQ, homothetic to the root lattice Q = Q(C3) of the

real root system C3, and thus G contains the Weil group W = W (C3) of order 48. The latter

consists of all the monomial matrices of size 3 whose only nonzero elements are ±1. We have

W = G ∩O(3), and G is the union of 7 cosets gi7W (i = 0, . . . , 6) for some element g7 of

order 7. We can choose g7 = ρ1ρ2ρ3 = −r1r2r3 = 1
2

( −1 1 α
−α −α 0
1 −1 α

)
. This is a handy way to

enumerate all the elements of G, say, for computer checks of some properties.

LetM denote the weight lattice of C3,M = Q∗ = Z3+ 1
2 (1, 1, 1). Then Λ = 2αM+αQ is

generated by the columns of the 6-by-3 period matrix Ω = (ω1 |ω2), where ω1, ω2 are square

blocks of size 3, the columns of ω2 being α times the elements of a basis of C3, and we set:

(2) ω2 = αC, ω1 = −2α(CT)−1, C =




1 0 0

−1 1 0

0 −1 2


 .
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The normalized period matrix of J is obtained by multiplying Ω on the left by ω−1
2 :

(3) ω−1
2 Ω = (Z | I), Z = ω−1

2 ω1 = τB,

where τ = −α 2 and

(4) B =
(
CTC

)−1
=

1

4



4 4 2

4 8 4

2 4 3


 .

is real symmetric and positive definite, so that Z = τB ∈ H3, where Hr denotes the Siegel

half-space of complex symmetric matrices of size r with positive definite imaginary part.

Let c1, c2 ∈ Rr be two vectors, k ∈ Z, k > 0, Z ∈ Hr . The classical theta-function with

period Z , characteristic c1Z + c2 and of degree k is the complex-valued function

Cr ∋ v 7−→ θk[
c1
c2
](v, Z) =

∑

u∈Zr

e2πik[(v+c2)
T(u+c1)+

1
2
(u+c1)

TZ(u+c1)].

When k = 1, the subscript k is usually omitted. For k = 1 and c1 = c2 = 0, the function

θ[
0
0](•, Z) represents a section of a uniquely determined line bundle L on the principally po-

larized abelian varietyA = Cr/(ZZr+Zr), and then for any k, c1, c2, the function θk[
c1
c2
](•, Z)

represents a section of the line bundle T ∗
c1Z+c2

(L k), the pullback of the tensor power L k of

L by the translation by the point c1Z + c2 mod (ZZr + Zr) of A. If we choose a set Pk of

representatives of 1
kZr/Zr, then the k3 theta-functions from {θk[c1c2](•, Z)}m∈Pk

represent a

basis of H0(A,T ∗
c1Z+c2

(L k)). See e.g. [BL].

Definition 1.1. Let Λ be as above, Z ∈ H3 as in (3), r = 3, k ∈ Z, k > 1, and m ∈ 1
kZ3. We

define the theta-function for Λ of degree k with characteristic m by the formula

θm,k(z) = θk[
m

0 ](ω
−1
2 z, Z) for any z ∈ V.

There is a unique line bundle L on J = V/Λ ≃ V/(ZZ3 + Z3) defining a principal

polarization such that the functions {θm,k}m∈Pk
form a basis of H0(J ,L k), where Pk is a

set of representatives of 1
kZ3/Z3, for all k > 1.

We denote by Sp(2r,Z) the symplectic group of automorphisms of Z2r preserving the

skew-symmetric bilinear form given by the matrix E:

Sp(2r,Z) = {A ∈M2r(Z) : A
TEA = E}, E = Er =

(
0 −Ir
Ir 0

)
,

where I (or Ir) denotes the identity matrix (of size r). We represent E and the matrices

γ =

(
a b

c d

)
∈ Sp(2r,Z) by their blocks of size r. A crucial ingredient of our computation

of the action of G on the theta-functions θm,k is a transformation formula under modular

transformations. The action of the modular transformation γ on a classical theta-function is

defined by

(5)
(
θk[

c1
c2
]
)γ

(v, Z) = θk[
c1
c2
](((cZ + d)T)−1v, (aZ + b)(cZ + d)−1).

The following is a particular case of Igusa’s Theorem for a polarization of type (k, k, . . . , k):
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Theorem 1.2 (Igusa, [Ig, Theorem II.5.6]). For every (v, Z) ∈ Cr×Hr, c1, c2 ∈ Rg , m ∈ Pk

and γ =

(
a b

c d

)
∈ Sp(2r,Z), the matrix cZ + d is invertible and we have:

(
θk[

m+c′1
c′
2
]
)γ

(v, Z) = eπikv
T(cZ+d)−1cv det(cZ + d)

1
2 ·

∑

m′∈Pk

um,m′θk[
m′+c1

c2
](v, Z),

where [
c′1
c′2

]
=

(
a b

c d

)[
c1
c2

]
+

1

2

[
(cdT)0
(abT)0

]
,

(um,m′) ∈ U(kr), and (h)0 denotes the column vector of the diagonal elements of h for any

square matrix h.

In the next section, we will represent the automorphisms from G by modular transforma-

tions and compute explicitly the matrices (um,m′) for even k. As we will see, the presence

of the half-integer inhomogeneous term in the transformation formula for the characteristics

c1, c2 implies the non-invariance of L under the action of G; however, the even powers of L

are G-invariant.

2. THETA TRANSFORMATION FORMULA

We keep the notation of the previous section. The elements of G are complex 3-by-3 ma-

trices leaving invariant the lattice Λ. As Λ is generated by the columns of the 6-by-3 matrix

Ω = (ω1 |ω2), we can associate to each g ∈ G a matrix γ = γg =
(
a b
c d

)
∈ Sp(6,Z) in such

a way that

(ω1 |ω2)

(
aT cT

bT dT

)
= g(ω1 |ω2).

Obviously, the map g 7→ γg is a group homomorphism.

Lemma 2.1. Let g ∈ G, and let γ =
(
a b
c d

)
be as above. Then the following properties are

verified:

(i) (aZ + b)(cZ + d)−1 = Z;

(ii) det(cZ + d) = det g = ±1;

(iii) det d = ±1.

Proof. (i) We have:

ZT = Z = ω−1
2 ω1 = (gω2)

−1(gω1) = (ω1c
T + ω2d

T)−1 · (ω1a
T + ω2b

T) =

(ZcT + dT)−1(ZaT + bT) =
(
(aZ + b)(cZ + d)−1

)T
.

(ii) By definition of γ, ZcT + dT = (cZ + d)T is the matrix of g in the basis of C3 given

by the columns of ω2, so det g = det (cZ + d)T.

(iii) This is verified by a direct computation of the matrices γg for all elements g ∈ G. �

Corollary 2.2. For z ∈ V , we have

g · θ0,1(z) =
(
θ[

0
0]
)γg (v, Z) = χgθ[

ν′

ν′′](v, Z),

where

v = ω−1
2 z, χg = eπiv

T(cZ+d)−1cv(det g)1/2,

[
ν ′

ν ′′

]
= −1

2

(
dT −bT
−cT aT

)[
(cdT)0
(abT)0

]
.
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Proof. This immediately follows from the previous lemma, Igusa’s Theorem with k = 1 and

the inversion formula (
a b

c d

)−1

=

(
dT −bT
−cT aT

)

for matrices

(
a b

c d

)
∈ Sp(2r,Z). �

We see that the theta-function θ0,1, representing a section of L , acquires a half-integer

characteristic upon the action by an element g ∈ G whenever the diagonal elements of the

integer matrices cdT, abT are not all even. In this case g∗L is not L , but the translation of

L by a point of order 2.

Corollary 2.3. (i) For g ∈ G we have the equivalence g∗L ≃ L ⇐⇒ g ∈ W , where

W =W (C3) = G ∩O(3) is the subgroup of real matrices in G.

(ii) g∗L k ≃ L k for all g ∈ G⇐⇒ k is even.

Proof. By a direct computation we verify that for g ∈ G, the diagonal elements of the integer

matrices cdT, abT are all even if and only if g ∈W . This implies both assertions. �

Thus the problem of calculating the action of G on H0(J ,L k) has sense only for even k.

We are now going to calculate, in a particular case and only for even k, the matrix (um,m′)

from Igusa’s Theorem up to proportionality; we denote the matrix we find by (ũm,m′), as it is

a multiple of Igusa’s matrix (um,m′) which is not necessarily unitary.

For
(
a b
c d

)
∈ Sp(2r,Z) with det d = ±1 we define:

ã = a− bd−1c = (dT)−1, b̃ = b̃T = bãT, c̃ = c̃T = −cdT.

Theorem 2.4. Let k be a positive even integer, Pk a set of representatives of 1
kZr/Zr, γ ∈

Sp(2r,Z) such that det d = ±1, and Z = τB for a real symmetric positive definite matrix B

of size r, where τ ∈ C, Im τ > 0. Then θk[
m

0 ]
γ
= χ

∑
m′∈Pk

ũm,m′θk[
m′

0 ], where χ = χγ(v, Z)

is a nowhere vanishing analytic function on Cr × Hr, depending on γ, and

ũm,m′ = eπikb̃[m]
∑

m̂∈Pk

e2πik
(
m−dm′+ 1

2
c̃m̂
)T

m̂.

Proof. We decompose γ in a product of elementary transformations as follows:

γ =


1 b̃

0 1




=

σ1


 0 1

−1 0




=

σ2


1 c̃

0 1




=

σ3


0 −1

1 0




=

σ4


ã 0

0 d




=

σ5

,

and apply the factors of this decomposition successively.

Step 1.
(
θk[

m
0 ]
)σ1 (v, Z) = θk[

m
0 ](v, Z + b̃) =

∑

u∈Zr

e2πik(v
T(u+m)+ 1

2
(u+m)TZ(u+m)) · eπikb̃[u] · e2πikmTb̃u · eπikb̃[m] = eπikb̃[m]θk[

m

0 ](v, Z),

where we use the notation A[u] = uTAu for any symmetric matrix A of size r and any vector

u ∈ Cr, and eπikb̃[u] = e2πikm
Tb̃u = 1 for any u ∈ Zr, k even.

Step 2. We have
(
θk[

m
0 ]
)σ1σ2 (v, Z) = eπikb̃[m]θk[

m
0 ](−Z−1v,−Z−1) = eπikb̃[m]θk[

−m
0 ](Z−1v,−Z−1);
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θk[
−m

0 ](Z−1v,−Z−1) =
∑

u∈Zr

e
2πik
τ

(vTB−1(u−m)− 1
2
(u−m)TB−1(u−m)) =

e
πik
τ

A[v]
∑

u∈Zr

e−
πik
τ

A[u−m−v],

where A = B−1 and we used the hypothesis that Z = τB. To transform the latter expression,

we apply the Jacobi inversion formula (see for example [Gu, Ch. VI]):

∑

u∈Zr

eπitA[x+u] =
1√

(−it)r detA
∑

u∈Zr

e−
πi
t
A−1[u]+2πixTu,

for x ∈ Rr, t ∈ C, Im t > 0, A ∈ Mr(R), A
T = A, A > 0. We set t = −k/τ and

x = −m− v, and we obtain:

(
θk[

m

0 ]
)σ2 (v, Z) = χ0

∑

u∈Zr

eπikZ[u
k
]−2πik(m+v)T u

k = χ0

∑

u′∈ 1
k
Zr

eπikZ[u′]−2πik(m+v)Tu′

,

where χ0(v, Z) = eπikZ−1[v]√
(−ik)r detZ−1

. Now each u′ ∈ 1
kZr has a unique representation u′ =

u+m′ with u ∈ Zr and m′ ∈ Pk, and we obtain

(
θk[

m
0 ]
)σ1σ2 (v, Z) = χ0e

πikb̃[m]
∑

m′∈Pk

e2πikm
Tm′

θk[
m′

0 ](v, Z),

where χ0 = χ0(v, Z) is the nowhere vanishing analytic function in v, Z defined above.

Step 3. We have

(
θk[

m
0 ]
)σ1σ2σ3 (v, Z) = χ1e

πikb̃[m]
∑

m′∈Pk

e2πik(m
Tm′+ 1

2
c̃[m′])θk[

m′

0 ](v, Z),

where χ1(v, Z) = χ0(v, Z + c̃).

Step 4. The calculation is similar to that in Step 2:

(
θk[

m
0 ]
)σ1σ2σ3σ4 (v, Z) =

χ1(Z
−1v,−Z−1)eπikb̃[m]

∑

m′∈Pk

e2πik(m+ 1
2
c̃m′)

T
m′

θk[
m

0 ](Z
−1v,−Z−1) =

χ2

∑

m′∈Pk

∑

m′′∈Pk

ζm′,m′′θk[
m′′

0 ](v, Z), where ζm′,m′′ = eπikb̃[m]e2πik(m+ 1
2
c̃m′−m′′)

T
m′

and χ2(v, Z) = χ1(Z
−1v,−Z−1)χ0(v, Z).

Step 5. θk[
m
0 ]

γ
(v, Z) = χ

∑

m′,m′′

ζm′,m′′θk[
m′′

0 ]

(
ã 0
0 d

)

(v, Z) = χ
∑

m′,m′′

ζm′,m′′θk[
ãTm′′

0 ](v, Z) =

χ
∑

m′,m′′

ζm′,(ãT)−1m′′θk[
m′′

0 ](v, Z) = χ
∑

m′′

ũm,m′′θk[
m′′

0 ](v, Z),

where ũm,m′′ is as in the statement of the theorem and χ(v, Z) = χ2((d
T)−1v, (dT)−1Zd−1).

�

Together with Igusa’s Theorem and Lemma 2.1, this theorem obviously implies the follow-

ing corollary.
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Corollary 2.5. For every even k > 0, the application of Theorem 2.4 to the theta-functions

θm,k for the lattice Λ introduced in Definition 1.1 provides a map g 7→ Ũg, where Ũg is the

complex matrix (ũm,m′) of size k3 defined in the statement of Theorem 2.4 with γg in place

of γ, and this map provides a group homomorphism from G to the projective unitary group

PU(k3) = U(k3)/(homotheties).

3. UNITARY ACTION OF G ON THETA-FUNCTIONS AND ITS CHARACTER

Neither Igusa’s Theorem, nor our approach applied in Theorem 2.4, allow us to conclude

that the matrices Ũg can be normalized by multiplying by some constants ǫg in such a way that

the normalized map g 7→ Ug = ǫgŨg is a group homomorphism G → U(k3). However we

managed to find convenient constants ǫg by trial and error. We will write U
(k)
g , Ũ

(k)
g when we

want to specify the degree k of theta-functions on which Ug, Ũg act.

Proposition 3.1. Let r1, r2, r3 be the basic reflections generating G introduced in Section 1.

Set Uj =
1
k3
Ũrj for j = 1, 2, U3 =

1
ik3
Ũr3 . Then U1, U2, U3 ∈ U(k3), and we denote by U

(k)
G

the subgroup of U(k3) generated by these three matrices.

(1) The Uj satisfy the same relations (1) as the basic reflections rj:

U2
1 = U2

2 = U2
3 = (U1U2)

4 = (U2U3)
4 = (U3U1)

3 = (U1U2U1U3)
3 = 1.

(2) U
(2)
G ≃ H and U

(k)
G ≃ G for all even k > 4.

Proof. We verify this for k = 2, 4, 6 by direct computation using the computer algebra system

Macaulay2 [M2]; the result for all even k follows from the fact that the algebra of even-degree

theta-functions on a p.p.a.v. is generated in degrees 6 6. �

We thus have a unitary representation ρk of G on the space H0(J ,L k) of dimension k3

for each even k > 0, defined by substituting the Uj in place of the rj in the words in the rj
defining all the elements of G. We denote by χk the character of this representation. In order

to determine it, we start by fixing the choice of representatives of the conjugacy classes of G.

The Klein’s simple group H has 6 conjugacy classes, represented by the following elements:

g1 = 1, g2 = ρ1, g3 = ρ1ρ3ρ1ρ2, g4 = ρ1ρ2, g7 = ρ1ρ2ρ3, g−1
7 ,

where ρi = −ri are the basic antireflections and the subscript p in gp stands for the order of

gp.

The conjugacy classes of G are deduced from these in an obvious way: to every conjugacy

class ClH(g) in H correspond two conjugacy classes in G of the same length: ClG(g) =

ClH(g) and ClG(−g) = −ClH(g). Also to each irreducible representation f ofH correspond

two irreducible representations of G, f̃ = f ◦ π and f̃ ⊗ det, where π : G → H ≃ G/〈−1〉
is the natural surjection.

The lengths of the conjugacy classes of H are given by the next table, providing the char-

acters of H . The characters of G are easily deduced from it.



ACTION OF THE AUTOMORPHISM GROUP ON THE JACOBIAN OF KLEIN’S QUARTIC CURVE II 11

g g1 g2 g3 g4 g7 g−1
7

|ClH(γ)| 1 21 56 42 24 24

χ1 1 1 1 1 1 1

χ3 3 −1 0 1 −α −α
χ
3

3 −1 0 1 −α −α
χ6 6 2 0 0 −1 −1

χ7 7 −1 1 −1 0 0

χ8 8 0 −1 0 1 1

Theorem 3.2. For any even k > 0, the character χk of ρk takes the following values on the

above representatives of the conjugacy classes:

g1 −g1 g2 −g2 g3 −g3 g4 −g4 g7 −g7 g−1
7 −g−1

7

k3 8 2k k2 k 2 k 3 + (−1)
k
2

(
k
7

)
if 7∤k,

−i
√
7 if 7|k 1

(
k
7

)
if 7∤k,

i
√
7 if 7|k 1

where

(
k

7

)
=





1 if k ≡ 1, 2 or 4mod 7

−1 if k ≡ 3, 5 or 6mod 7

0 if k ≡ 0mod 7.

is the Legendre symbol.

Proof. The result is obvious for g1 and needs some reasoning, following the same pattern, in

the other cases. We will illustrate this reasoning on the example of g = g7, where the details of

the calculation are most involved. We first observe that the normalization constant for g = g7
is ǫg = 1

ik3
, so that

χk(g) = trUg =
1

ik3
Σk, where Σk =

∑

m∈Pk

ũm,m.

By Theorem 2.4,

Σk =
∑

m,m′∈Pk

eπik
(
2m′T(id−d)m+b̃[m]+c̃[m′]

)
=

∑

06xi6k−1

e
πi
k
K[x],

where we pass to the summation over the integer column vector x = (x1, . . . , x6)
T =

k(m′,m)T ∈ Z6, K[x] = xTKx, as before, and K is the following integer matrix of size 6:

K =

(
c̃ I3 − d

I3 − dT b̃

)
.

Explicitly, we have:

γg =




−1 0 1
−1 1 0
0 0 1

0 −2 −1
0 −4 −2
−1 −3 −2

0 0 0
−1 1 −1
1 −1 2

−1 −1 0
1 0 0
−1 −1 −1


 , K =




0 0 0
0 1 −1
0 −1 2

2 1 0
−1 1 0
1 1 2

2 −1 1
1 1 1
0 0 2

1 2 1
2 4 2
1 2 2


 .
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By Gauss diagonalization over Z, we reduce the quadratic form x 7→ K[x] to the diagonal

representation y = (y1, . . . , y6) 7→ y21 + y22 + y23 − y24 − y25 − 7y26 . Thus

Σk =
∑

06xi6k−1

e
πi
k
K[x] =

∑

06yi6k−1

e
πi
k
(y21+y22+y23−y24−y25−7y26) =




k−1∑

y=0

e
πi
k
y2




3


k−1∑

y=0

e−
πi
k
y2




2


k−1∑

y=0

e−
7πi
k

y2


 .

The exponential sums in the last line belong to the class of Gauss sums. We use the following

formula for Gauss sums from [BEW]:

G(q, r) =

r−1∑

n=0

e
2πiq
r

n2
= (1 + i)κ−1

q

√
r

(
r

q

)
,

if 2 ∤ q, 4|r and gcd(q, r) = 1, where κq =

{
1 if q ≡ 1mod 4

i if q ≡ 3mod 4,
and

(
r

q

)
is the Jacobi

symbol (which coincides with the Legendre symbol when q is prime). Applying this formula,

we obtain:
k−1∑

y=0

e
πi
k
y2 = 1

2G(1, 2k) =
1 + i√

2

√
k,

k−1∑

y=0

e−
7πi
k

y2 =
1

2
G(7, 2k) =

1 + i√
2

(
k

7

)√
k if 7 ∤ k,

k−1∑

y=0

e−
7πi
k

y2 =
7

2
G(1, 2k1) =

1− i√
2

√
7k if k = 7k1.

We thus finish the calculation of Σk and obtain the value of χk(g) given in the table. �

By taking the scalar product of χk with the trivial character, we obtain:

Theorem 3.3. The Hilbert function of the algebra of invariant theta-functions

S(L 2)G =

∞⊕

p=0

H0(J ,L 2p)G,

is given by:

hS(L 2)G(
k
2 ) =

1
336

[
k3 + 21 k2 + 140 k + 294 + (−1)

k
2 × 42 + 48

(
k
7

)]
.

This coincides with the Hilbert function of the second Veronese algebra of P(1, 2, 4, 7).

Proof. The formula for the Hilbert function is an immediate consequence of Theorem 3.2. The

Hilbert series for P = P(1, 2, 4, 7) is given by

hP(t) =
1

(1− t)(1− t2)(1− t4)(1 − t7)
,

and that of the second Veronese of P is

h
(2)
P

(t) =
1

2
(hP(t

1/2) + hP(−t1/2)) =
1 + t4

(1− t)2 (1− t2) (1− t7)
.
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Denote hp the coefficients of the latter series, so that h
(2)
P

(t) =
∑

p>0 hpt
p; by [St, Theorem

4.4.1], the Hilbert function p 7→ hp is a rational quasipolynomial of degree 3 whose coef-

ficients are periodic with period 14. The dominant coefficient being constant, it suffices to

compare the initial segments of the sequences hS(L 2)G(p), hp of length 42 to see that they

coincide for all p > 0. In this way we conclude the proof.

�

4. HYPERSURFACE IN A WEIGHTED PROJECTIVE SPACES OF DIMENSION 4

For any theta-function θ of even degree k > 0, we denote by R(k)
G the Reynolds operator

(6) R(k)
G (θ) =

1

336

∑

g∈G
U (k)
g (θ).

We will call R(k)
G (θ) the G-average of θ; for given k, the G-averages of theta-functions of

degree k represent sections of L k which generate H0(J ,L k)G over C.

We will identify sections of L k with regular functions on the total space V(L −1) of the

line bundle L −1 which are fiber-homogeneous of degree k. Explicitly, V(L −1) is the quo-

tient of the trivial line bundle C × V over V = C3 by the action of Λ ≃ {Zu′ + u′′ | u′, u′′ ∈
Z3}:

Zu′ + u′′ : (t, v) 7→
(
e2πi(v

Tu′+ 1
2
Z[u′])t, v + Zu′ + u′′

)
,

and to each degree-k theta-function θ we associate the Λ-invariant function

(7) θ̃ : C × V → C, (t, v) 7→ tkθ(v),

which descends to a fiber-homogeneous function of degree k on V(L −1) denoted by the same

symbol θ̃.

Theorem 4.1. There exist five G-invariant theta-functions ϕi = ϕi,ki of degrees ki, where

(k0, . . . , k4) = (2, 2, 4, 8, 14), such that the associated sections of the powers L ki of L

generate S(L 2)G. The ideal of relations between these generators is generated by a single

relation of weighted degree 16, so that the quotient X = J /G is isomorphic to a hypersurface

in the weighted projective space P(1, 1, 2, 4, 7) of weighted degree 8.

Proof. It suffices to show that we can findG-invariant theta-functions ϕ0, ϕ1, ϕ2, ϕ3 of respec-

tive degrees 2, 2, 4, 8 such that the associated fiber-homogeneous functions ϕ̃i on V(L −1)

are algebraically independent. This is done below in Lemma 4.2. Then the functions ϕi,

i = 0, . . . , 3, generate the free polynomial subalgebra S ′ in S = S(L 2)G, and comparing

the initial segments of their Hilbert functions,

(hS (p))p>0 = (1, 2, 4, 6, 10, 14, 20, 27, 36, 46, 58, . . .),

(hS ′(p))p>0 = (1, 2, 4, 6, 10, 14, 20, 26, 35, 44, 56, . . .),

we see that the four ϕi generate S in degrees < 7, and hS (7) = hS ′(7) + 1, so that one

extra generator of degree 7, say ϕ4 is needed to generate S up to degree 7. Furthermore, there

are 35 monomials in ϕi, i = 0, . . . , 3, of degree 8, and two more monomials ϕ0ϕ4, ϕ1ϕ4

involving φ4, and as hS (7) = 36 is one less than the number of monomials of degree 8, there

is precisely one linear relation F8 = 0 between the 37 monomials of degree 8. One easily

verifies that hS (p) = hR(p) − hR(p − 8) for all p ∈ Z, where R denotes a free polynomial

algebra with generators of degrees 1, 1, 2, 4, 7, so that the natural map R/F8R → S is an
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isomorphism. Thus X is isomorphic to a hypersurface F8 = 0 of degree 8 in the weighted

projective space P(1, 1, 2, 4, 7) = ProjR. �

For the algebraic independence of ϕ̃0, . . . , ϕ̃3 it is necessary and sufficient that the Jacobian

J = J(ϕ̃i) is not identically zero. We will present explicitly an ad hoc example of ϕi(v) lying

in the images of the Reynolds operators R(ki)
G and satisfying this property; some motivation

for the choice of the example is given in Remark 6.1. We will verify that J(t0, v0) 6= 0 at a

specific point (t0, v0) by computing the differentials dϕ̃i(t0, v0) approximately as partial sums

of their Fourier series, which converge very rapidly. We recall that the period matrix of J is

Z = τB, where B is given by (4) and τ = 3+i
√
7

2 , and we denote q = e2πiτ = −e−π
√
7; we

also adopt the convention that qr = e2πiτr for any r ∈ Q.

Lemma 4.2. Let the vectors ξi (i = 0, . . . , 3) of Z3 be defined by

ξ0 = 0, ξ1 =
1

2
(0, 0, 1), ξ2 =

1

4
(1, 1, 0), ξ3 =

1

8
(2, 1, 1),

the first three being equal to the vectors µi (10) from Section 6, with the basis (bi) of M used

to identify M with Z3, and ξ3 =
7
8µ3. Define four G-invariant theta functions on J by

ϕ0 = R(2)
G (θξ0,2), ϕ1 = R(2)

G (θξ1,2), ϕ2 = R(4)
G (θξ2,4), ϕ3 = R(8)

G (θξ3,8),

where the operators R(k)
G are defined in (6). Associate to ϕi the Λ-invariant functions ϕ̃i on

C × V , as in (7), and denote by J the Jacobian J(ϕ̃i). Set (t0, v0) =
(
1,
(
1
8 ,

1
16 ,

1
4

))
. Then

J(t0, v0) 6= 0.

Proof. Let us choose Pk =
{
ν
k | ν ∈ {0, 1, . . . , k − 1}3

}
for a set of representatives of

1
kZ3/Z3. We have

θξi,ki =
∑

u∈Z3+ξi

q
ki
2
B[u]e2kiπiv

Tu (i = 0, 1, 2, 3, (ki) = (2, 2, 4, 8)).

We compute the G-averages of these four theta-functions, using formula (6). By Proposi-

tion 3.1 and Theorem 2.4, the elements u
(g,ki)
m′,m (m′,m ∈ Pki) of the matrices U

(ki)
g belong

to the cyclotomic field Q
(
e

πi
ki

)
. We introduce the matrices of the Reynolds operators on the

theta functions of degree ki:

R(k)
G =

(
r
(k)
m′,m

)
m′,m∈Pk

, r
(k)
m′,m =

1

336

∑

g∈G
u
(g,k)
m′,m, k = 2, 4, 8.

The exact values of the elements of the matrices U
(ki)
g , belonging to Q

(
e

πi
8

)
, and the resulting

Reynolds matrices were computed with Macaulay2 [M2]. We have:

ϕi =
∑

m∈Pki

r
(ki)
ξi,m

θm,ki =
∑

u∈ 1
ki

Z3

r
(ki)
ξi,u

q
ki
2
B[u]e2kiπiv

Tu,
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where r
(ki)
ξi,u

is defined to be r
(ki)
ξi,m

for the unique m ∈ Pki such that u ≡ mmodZ3. Replacing

further u by 1
ki
u with u running over Z3 and differentiating, we obtain:

∂ϕ̃i/∂t = 2kit
ki−1

∑

u∈Z3

q
1

2ki
B[u]

r
(ki)

ξi,
1
k
u
e2πiv

Tu,

∂ϕ̃i/∂vj = 2πitki
∑

u∈Z3

q
1

2ki
B[u]

r
(ki)

ξi,
1
k
u
uje

2πivTu, j = 1, 2, 3.

As B is positive definite, these infinite sums of powers of q contain only a finite number of

summands Ni(c) with exponent 6 c for any given constant c, Ni(c) ∼ 4π
3
√
detB

(2kic)
3
2 , and,

since |q| < 1, converge uniformly on compact subsets of C × V . The convergence is in fact

very rapid. For example, in the case of the slowest convergence, when i = 3, ki = 8, if we stop

summation at the terms of order q7/2 ≈ −2.3211 i · 10−13, then N3(3.5) = 3527, and all the

vectors u ∈ Z3 occurring in the truncated sum are in the block |u1| 6 10, |u2| 6 10, |u3| 6 14.

Computing the determinant of the thus obtained approximate Jacobian matrix at the point

(t0, v0), we obtain: J(t0, v0) ≈ 0.000064967853 + 0.000075028580 i, all the shown decimal

digits being exact. �

5. DEGREE-8 HYPERSURFACES IN P(1, 1, 2, 4, 7) WITH CORRECT SINGULARITIES

The goal of this section is to show that a hypersurface in P(1, 1, 2, 4, 7) defined by a

degree-8 homogeneous polynomial whose singularities are those of P(1, 2, 4, 7) is actually

isomorphic to P(1, 2, 4, 7). To achieve this, we shall classify the degree-8 hypersurfaces in

P(1, 1, 2, 4, 7) whose singularities are those of P(1, 2, 4, 7).

Recall that P(1, 2, 4, 7) embeds in P(1, 1, 2, 4, 7) as the degree-8 hypersurface given by the

equation

F 0
8 = y23 − y0y4.

Its singular locus is the union of two irreducible components, P1 = ℓ and an isolated point

p. The singularity at p is of analytic type 1
7 (1, 2, 4). Here, for a cyclic group µd of order d

we denote by 1
d(ν1, ν2, ν3) the (analytic equivalence class of the) cyclic quotient singularity

C3/µd, where the generator cd of µd acts by cd : (z1, z2, z3) 7→ (ǫν1z1, ǫ
ν2z2, ǫ

ν3z3), ǫ =

exp
(
2πi
d

)
. At all but one points of ℓ, the singularity ofX is of type 1

2(1, 0, 1), that is C×A1, the

Cartesian product of C with a surface singularity C2/〈−1〉 of type A1. The type of singularity

at q, the unique point of ℓ where the type of singularity changes, is 1
4(1, 2, 3).

Let us describe in affine charts the hypersurface {F 0
8 = 0} in P(1, 1, 2, 4, 7). Write

y0, . . . , y4 the coordinates in P(1, 1, 2, 4, 7) with weights

n0 = 1, n1 = 1, n2 = 2, n3 = 4, n4 = 7.

Set yi = 1, and quotient C4 with coordinates (y0, . . . , ŷi, . . . , y4) by the action of the cyclic

group µni
with weights (n0, . . . , n̂i, . . . , n4) to obtain the affine chart Ui of P(1, 1, 2, 4, 7).

Note that U0 and U1 are smooth charts isomorphic to C4 since n0 = n1 = 1.

The restriction of F 0
8 to U0 is {y23 − y4 = 0}. The hypersurface F 0

8 |U0 = 0 is a smooth

hypersurface parameterised by (y1, y2, y3), isomorphic to C3.

The restriction of F 0
8 to U1 is y23 − y0y4. The singular locus of F 0

8 |U1 = 0 is the line

y0 = y3 = y4 with type C ×A1.
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The restriction of F 0
8 to U2 is {y23 − y0y4 = 0}/12 (1, 1, 0, 1). Let us consider the quotient

C3/12 (1, 0, 1), where the coordinates of C3 are denoted by (u, v, w). One can identify this quo-

tient with the quadric y0y4 − y23 = 0 in C4 through the mapping (u, v, w) 7→ (y0 = u2, y1 =

v, y3 = uw, y4 = w2). From this we observe that {y0y4 − y23 = 0}/12 (1, 1, 0, 1), is the same

as C3/14 (1, 2, 3). As a result, the restriction of F 0
8 to U2 is isomorphic to C3/14 (1, 2, 3). Note

that this is the affine chart x2 = 1 in P(1, 2, 4, 7) with coordinates (x0, x1, x2, x3).

The restriction of F 0
8 to U3 is {y0y4 = 1}/14 (1, 1, 2, 3). This chart is contained in U0 ∪U4.

The restriction of F 0
8 to U4 is {y23 − y0 = 0}/17 (1, 1, 2, 4), which is isomorphic to

C3/17 (1, 2, 4), that is the affine chart x3 = 1 in P(1, 2, 4, 7).

Let now consider a hypersurface X in P(1, 1, 2, 4, 7) defined by any degree-8 homogeneous

equation F8 = 0 such that the singularities of X are those of P(1, 2, 4, 7).

Lemma 5.1. Write

F8 =y4ϕ1(y0, y1) + c0y
2
3 + c1y

2
2y3 + c2y

4
2 + y2y3ϕ2(y0, y1) + y32ψ2(y0, y1)

+ y3ϕ4(y0, y1) + y22ψ4(y0, y1) + y2ϕ6(y0, y1) + ϕ8(y0, y1),

with cj ∈ C and ϕi, ψi homogeneous polynomials of degree i. Then both c0 and ϕ1 are

nonzero.

Proof. Assume first that c0 = 0. Then Q3 = (0, 0, 0, 1, 0) is in X. It is the origin of the chart

U3 = C4/14 (1, 1, 2, 3) of P(1, 1, 2, 4, 7). Denote by X̃3 ⊆ C4 the hypersurface defined by

{F8|y3=1 = 0} and let Q̃3 ∈ X̃3 be such that the image of Q̃3 in the quotient C4/µ4 is Q3.

The germ of the canonical sheaf ωX̃3,Q̃3
is generated by

σ = resX̃3

(
dy0 ∧ dy1 ∧ dy2 ∧ dy4

F8|y3=1

)
,

of weight −1 for the µ4-action. So the Gorenstein index of X̃3/
1
4 (1, 1, 2, 3) = X|U3 in Q3

is 4. But X has no singularity of index 4. We conclude that c0 is nonzero.

Assume now that ϕ1 = 0. Denote X4 = X|U4 We have X4 = X̃4/
1
7 (1, 1, 2, 4), where

X̃4 ⊂ C4 is the hypersurface defined by the equation {F8|y4=1 = 0}. Under our assump-

tion, F8 does not contain y4, so F8|y4=1 = F8 defines the affine cone of an octic surface in

P(1, 1, 2, 4) with coordinates y0, y1, y2, y3. The cone has to be smooth outside of its vertex O,

the origin of the affine space C4 with the same coordinates. Indeed, assume the contrary. Then

O is a non-isolated singularity, so the image Q4 of O in X4 also is a non-isolated singularity.

Hence the unique isolated cyclic quotient singularity p ∈ X of type 1
7(1, 2, 4) is different from

Q4. Moreover, p ∈ X is not a hypersurface singularity, but all the singularities of X \Q4 are

hypersurface, so p cannot be located in the chart U4. Then, looking at the singularities of X in

the other charts, we see that all of them are hypersurface ones, except possibly points on the

axis (y2, y3). By proving that c0 6= 0, we have excluded the possibility that Q3 belongs to X,

so the only non-hypersurface singularity that may occur in a chart Ui with i 6= 4 is of the type

(hypersurface in C4)/12 (1, 1, 0, 1). The embedding dimension of such singularity is at most

that of C4/12 (1, 1, 0, 1), equal to 7, but the embedding dimension of p is 12. So no point of a

chart Ui for i 6= 4 can fit to the role of p, hence this case is impossible, and the singularity of

X̃4 at O is an isolated quasi-homogeneous singularity.
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It remains to see that under this assumption the quotients {F8 = 0}/17 (1, 1, 2, 4) and

C3/17 (1, 2, 4) cannot be isomorphic. This follows from the fact that the first one is non-

canonical, whilst the second one is canonical. Indeed, X̃4 = {F8 = 0} is non-canonical

by Reid’s criterion of canonicity (Theorem 4.1 of [Re]) with monomial valuation α defined

by (α(yi)) = (18 ,
1
8 ,

1
4 ,

1
2 ); this implies that X4 = X̃4/µ7 is non-canonical (ibid., Proposition

1.7). The canonicity of the second singularity follows from ibid., Theorem 3.1 and Remark

3.2. We conclude that ϕ1 is nonzero. �

By Lemma 5.1, one can assume that c0 6= 1 and use the change of coordinates

y3 7−→ d0y3 + d1y
2
2 + y2f2(y0, y1) + f4(y0, y1),

with dj ∈ C, d0 ∈ C∗, and fi homogeneous polynomials of degree i, to normalize the value

of c0 and to kill the terms containing y3 to the power 1. We obtain for F8 an expression as in

the lemma, but with the constraints

c0 = −1, c1 = 0, ϕ2 = 0, ϕ4 = 0.

Next, again by the lemma, ϕ1 6= 0, and we can change variables y0, y1 in such a way that

in new variables we have ϕ1 = y0, so that there is no monomial y1y4 in the expression for F8.

Then, we use the change of coordinates

y4 7−→ y4 + y32g1(y0, y1) + y22g3(y0, y1) + y2g5(y0, y1) + g7(y0, y1),

with gi homogeneous of degree i, to kill all the monomials divisible by y0. As a result, we

obtain an expression of the form

(8) F8 = y0y4 − y23 + a1y
4
2 + a2y

3
2y

2
1 + a3y

2
2y

4
1 + a4y2y

6
1 + a5y

8
1, ai ∈ C.

Set ν = min{i : ai 6= 0}. Finally, using changes of coordinates of the form y1 7→ κy1,

y2 7→ λy2 + µy21, κ, λ ∈ C∗, µ ∈ C, we can reduce F8 to one of the following normal forms:

(9)

ν = ∞ : F8 = y0y4 − y23 ,

ν = 5: F8 = y0y4 − y23 + y81,

ν = 4: F8 = y0y4 − y23 + y2y
6
1,

ν = 3: F8 = y0y4 − y23 + (y22 + a5y
4
1)y

4
1 ,

ν = 2: F8 = y0y4 − y23 + (y32 + a4y2y
4
1 + a5y

6
1)y

2
1 ,

ν = 1: F8 = y0y4 − y23 + y42 + (a3y
2
2 + a4y2y

2
1 + a6y

4
1)y

4
1 .

Proposition 5.2. Except for the case ν = ∞, the degree-8 hypersurface X defined by F8 = 0

in P(1, 1, 2, 4, 7), with F8 one of the above normal forms, has a singularity of a type different

from the types of singularities of P(1, 2, 4, 7).

Proof. Let ν = 5. Then X passes through the origin of the chart U2. We have U2 =

C4/12 (1, 1, 0, 1), andX2 := X∩U2 is the quotient X̃2/
1
2(1, 1, 0, 1), where X̃2 = {y0y4−y23+

y81 = 0} ⊂ C4. Since y0y4− y23 + y81 is µ2-invariant and the differential dy0∧dy1∧dy3∧dy4
is not, the generator

resX̃2

(
dy0 ∧ dy1 ∧ dy3 ∧ dy4

y0y4 − y23 + y81

)

of ω
X̃2,O

, where O is the origin of C4, is anti-invariant under µ2. So Q2, the image of O in

U2, is a singular point of Gorenstein index 2. But in P(1, 2, 4, 7), the only point of Gorenstein

index 2 is the origin of the chart x2 = 1, with singularity 1
4(1, 2, 3). The latter singularity is
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non-isolated: the whole image of the coordinate axis with weight 2 consists of singular points

of the quotient. Hence it cannot be equivalent to the isolated singularity {y0y4 − y23 + y81 =

0}/12 (1, 1, 0, 1). Thus the case ν = 5 is impossible.

The cases 2 6 ν 6 5 are all treated in the same way: in all of them we find an isolated

singularity of Gorenstein index 2 at the origin of the chart U2, which is impossible.

Let us look now at the case ν = 1. In the chart U2, we have

X ∩ U2 = X̃2/
1
2 (1, 1, 0, 1),

where X̃2 ⊂ C4 is defined by the equation F̃ = 0 with F̃ = y0y4−y23+1+a3y
4
1+a4y

6
1+a5y

8
1.

The singular locus of X̃2 is given by y0 = y3 = y4 = 0, y21 = γ, where γ is a double root of

a5t
4 + a4t

3 + a3t
2 +1 = 0. But this polynomial cannot have double roots. Indeed, otherwise

X would have singular points in the chart U1, which are of the type of isolated hypersurface

singularities:

X ∩ U1 = {y0y4 − y23 + y42 + a3y
2
2 + a4y2 + a5 = 0} ⊂ C4.

this contradicts the fact that the only isolated Gorenstein singularity of P(1, 2, 4, 7) is of type
1
7(1, 2, 4), and this is not a hypersurface singularity.

Therefore X̃2 is smooth and the singularities of X̃2/µ2 = X∩U2 can only occur in a subset

of the fixed locus of µ2. Thus Sing(X) ∩ U2 is the image of the set

{y0 = y1 = y4 = 0} ∩ X̃2 = {y0 = y1 = y4 = −y23 + 1 = 0}.
Hence X has two isolated singular points of type 1

2(1, 1, 1) which are (0, 0,±1, 0). But this is

impossible. �

This brings us to the main result of the paper:

Theorem 5.3. The quotient X = J /G of the Jacobian J of the Klein quartic C by its full

automorphism group G is isomorphic to the weighted projective space P(1, 2, 4, 7).

Proof. This is an obvious consequence of Theorem 4.1, Lemma 5.1, Proposition 5.2 and [MM,

Theorem 4.3]. �

Remark 5.4. By arguments, similar to those used in the reduction of F8 to normal forms (9),

one can easily verify that in the 45-dimensional group of coordinate changes in P(1, 1, 2, 4, 7),

the stabilizer of the octic form F 0
8 = y0y4−y23 is 13-dimensional and the connected component

of the identity in it is generated by the changes of the form

y0 7→ λ0y0, y4 7→ λ−1
0 y4, y1 7→ µy0 + λ1y1, y2 7→ λ2y2 + h2(y0, y1),

y3 7→ y3 + y0y2h1(y0, y1) + y0h3(y0, y1),

y4 7→ y4 + 2(h1(y0, y1)y2 + h3(y0, y1))y3 + y0(h1(y0, y1)y2 + h3(y0, y1))
2,

where λi ∈ C∗, µ ∈ C and the hi are homogeneous of degree i in y0, y1. Thus the dimension

of the orbit of F 0
8 is 45 − 13 = 32. As the vector space of octic forms is of dimension 37,

the orbit of F 0
8 is of codimension 5. A transversal slice to the orbit can be given by (8).

This family of hypersurfaces in P(1, 1, 2, 4, 7) represents a versal deformation of the weighted

projective space P(1, 2, 4, 7) inside the space of octics in P(1, 1, 2, 4, 7). The computation of

the infinitesimal deformation space Ext1(Ω1
X ,OX) shows that dimT 1

X = 5, and this implies

that (8) is a complete versal deformation of X. It is interesting to note that this family contains
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partial smoothings of X with only 3 singular points, of which two are of type 1
2(1, 1, 1) (the

singular points found in the proof of the case ν = 1 of Lemma 5.2) and the third one is
1
7(1, 2, 4). These three singular points are non-smoothable, and even infinitesimally rigid by

the result of Schlessinger [Schl].

6. RELATION TO QUOTIENTS BY THE WEYL GROUP FOR THE ROOT SYSTEMS B3, C3

As we already noticed, G contains the Weyl group W = W (B3) = W (C3) of order 48.

We are going to look at the invariants under the action of W . For any g ∈ W , the symplectic

matrix γg =
(
a b
c d

)
is bloc-diagonal, that is b = c = 0, and a = (dT)−1 is nothing but

the matrix of g−1 in the basis given by the columns of ω2 = αC (we keep the notation from

previous sections). It easily follows from the definitions that g ·θm,k is just θdm,k. This implies

that the space of W -invariant theta-functions of degree k consists of the functions RW θm,k,

m running over (CT)−1(F )∩Pk , where F is a fundamental domain for the action of the (real)

affine crystallographic group M ⋊W on the space MR =M ⊗R containing the weight lattice

M , and RW is the Reynolds operator of taking the average over the action of W . Saying that

F is a fundamental domain we mean that F is the disjoint union of an open convex polyhedron

in MR with finitely many polyhedra of smaller dimensions contained in its boundary such that

every W -orbit in MR has exactly one representative in F . We are now going to fix the choice

of a particular fundamental domain F .

There is a tower of degree two extensions

Q = Q(C3) ⊂ Q∨ = Q(B3) ⊂M = Q∗,

the three lattices being invariant underW , so taking the semi-direct product withW , we obtain

a tower of degree two extensions of the corresponding real affine crystallographic groups:

W̃ = Q⋊W ⊂ W̃ ∨ = Q∨ ⋊W ⊂ W̃ ∗ =M ⋊W.

Both W̃ and W̃ ∨ are affine Weyl groups and are generated by affine reflections. By [Bo,

VI.2.2], they have fundamental domains which are closed tetrahedra, called alcoves. For W̃ ,

the vertices of the standard alcove C̃ = C
W̃

are f0 = 0, f1 = (1, 0, 0), f2 = 1
2(1, 1, 0),

f3 = 1
2(1, 1, 1). Denoting by x1, x2, x3 the coordinates in the euclidean space R3, in which

we place our lattices Q and M , we obtain an alcove C̃∨ = C
W̃∨

for W̃ ∨ as a half of C̃ cut out

by the mirror x1 =
1
2 of a reflection contained in W̃∨ but not in W̃ . Thus C̃∨ is the tetrahedron

with vertices O = f0, A = 1
2f1, E = f2, N = f3. The subgroup of W̃ ∗ leaving invariant

the tetrahedron OAEN is of order 2; besides the identity, it contains an element R of order 2,

the axial symmetry, or rotation by the angle π with axis KL, where K,L are the middles of

AE,ON respectively (see the figure below).

Now we can get a fundamental domain F of W̃ ∗ as follows: first choose a plane P contain-

ing KL and pick up one of the two halves in which P dissects C̃∨, say, C1. The intersection

D = P ∩ C̃∨ is a face of C1, and it is dissected by KL in two halves D1,D2 symmetric to

each other by the action of R. Then we obtain the following set of representatives of the orbits

of R acting on C̃∨: the polyhedron C1, in which we include all of its faces, except for the face

D, from which only the closed part D1 is included. The representatives of the orbits of R in

C̃∨ are at the same time the representatives of the orbits of W̃ ∗ in V ∗
R

, so the constructible set

we have described is a fundamental domain for W̃ ∗.
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x1

x2

x3

L

N

E

AO

K

R

To obtain a particular fundamental domain F , we choose in the above construction the plane

OKN for P , the tetrahedron OAKN for C1, then the triangle KON for the face D, and we

keep in F only a half of it, the triangle D1 = OKL. On the picture, F is hatched; the triangle

OKL is hatched in a darker gray color as it is included in F and the remaining part of the face

OKN is not included. The sides of the three closed triangles of the boundary of F contained

in F , as well as the edge AN contained in F , are drawn by thick lines. Only the part OL of

the edge ON drawn by a thick line is contained in F , and the edge KN , not contained in F ,

is drawn by a thin line. The black points O, A, K , L are contained in F , while the vertex N is

not in F and is represented by a white point.

Looijenga in [Lo] provides a recipe for the choice of generators of the algebra of W -

invariant theta-functions for the lattice of the form τQ + Q; his generators are the averages

of the theta-functions θfi,ki with characteristics fi, the vertices of the alcove, the degrees ki
being the smallest positive integers such that kifi ∈M .

Remark 6.1. In the previous sections, we worked with theta-functions θm,k defined in Sec-

tion 1 for a different lattice, τM +Q, so Looijenga’s recipe does not apply θm,k , but we can

use it as a heuristic principle for the choice of theta-functions that would be candidates for

generators of the G-invariant subalgebra. We can try the G-averages of the theta-functions

whose characteristics are the vertices µi of a “pseudo-fundamental domain” FG ⊂ F for G,

or a “pseudo-alcove” which is just a smaller tetrahedron with vertex O contained in F , having

the correct lattice volume with respect to M , equal to 1
336 , and the expected weights ki. Recall

that b1 = f1, b2 = 2f2, b3 = f3 are the columns of the matrix (CT)−1, that is they form

a basis of M dual to the standard basis of the root system C3; this is the basis in which we

write the characteristics of our theta-functions. From this we see, in particular, that the lattice

volume of F with respect to M is 1
48 . We can pick up the following ad hoc candidate for the

“pseudo-alcove”: take the tetrahedron FG with vertices

(10) µ0 = 0, µ1 =
1
2b1, µ2 =

1
4(b1 + b2), µ3 =

1
7(2b1 + b2 + b3).

FG obviously has the M -volume 1
336 , and the smallest ki such that kiµi ∈ M coincide with

the weights of the expected weighted projective space: (k0, k1, k2, k3) = (1, 2, 4, 7). We

thus may expect that the algebra S(L 2)G is generated by the G-averages of the even-degree

theta-functions that are obtained as products of theta functions whose characteristics are the
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vertices of FG: θ2µ0,1, θµ1,2, θµ2,4, θµ0,1θµ3,7, θ2µ3,7. To present four algebraically independent

G-invariant theta functions of degrees 2, 2, 4, 8 in Lemma 4.2, we chose another set, for which

the computations are slightly easier: θµ0,2, θµ1,2, θµ2,4, θ 7
8
µ3,8

.

We are now returning to the quotient J /W . As we saw above, the theta-functions

{RW θm,k}m∈(CT)−1(F )∩Pk
form a basis of the W -invariant theta-functions of degree k on

J . The fact that J /W is not a complex crystallographic reflection quotient manifests itself

in that F is not a closed simplex, but a constructible set, which we can describe as follows:

(11) F = OAKN ∪OAK ∪OKL ∪OAL ∪ANK ∪ANL ∪AN.
Here we denote by A1 . . . An the convex hull of points A1, . . . , An in a real affine space, and

by A1 . . . An its relative interior. From this we can deduce the Hilbert function of the invariant

algebra S(L )W :

Proposition 6.2. The Hilbert function hS : k 7→ dimH0(J ,L k)W of the algebra S =

S(L )W is the sum of a polynomial E and a function ℓ : k 7→ d0k + d1, where d0, d1 are

4-periodic functions of the integer variable k,

E(k) = 1
48k

3+ 3
16k

2+2
3k+1, d0 =

{
0 if k ≡ 0 or 2

− 3
16 if k ≡ ±1

, d1 =





0 if k ≡ 0

−11
16 if k ≡ ±1

−1
4 if k ≡ 2

(mod 4).

The Hilbert series h S(t) =
∑∞

k=0 hS(k)t
k of S is given by:

(12) h S(t) =
1− t+ t2

(1− t)2(1− t2)(1 − t4)
.

Proof. By Ehrhart’s Theorem, the number of integer points hP (k) in the integer multiples kP

of an open or closed polytope P in Rn with rational vertices is a quasi-polynomial in the integer

variable k of degree equal to the dimension of P . A quasi-polynomial is a polynomial function

whose coefficients are periodic. The common period of the coefficients of the Ehrhart quasi-

polynomial of P is the smallest positive integer d such that dP is a lattice polytope, that is,

all the coordinates of its vertices are integers (see, for example, [St, Theorem 4.6.25]). By the

above, hS coincides with the function hF counting the number of points of M in the multiples

kF of F . By (11), hF (k) can be represented as a linear combination, with coefficients ±1, of

the numbers hσ(k) for σ running through a finite set of open or closed simplices with rational

vertices of dimensions between 0 and 3:

hF = hOAKN +hOAK+hOKL+hOAL+hALN +hANK−hOA−hOK−hOL+hAN +hO.

Each of the terms of this linear combination is a quasi-polynomial of degree at most 3 with

period d = 4, the least common denominator of the coordinates of the vertices of the simplices

σi, so hF also is such a quasi-polynomial. Moreover, the dominant coefficient of hF is constant

and is equal to the inverse of the lattice volume of F , that is 1
48 , so it suffices to compute 12

consecutive values of hF in order to determine the coefficients as solutions to a system of

linear equations. Here is the result of computation of hS(k) = hF (k) for 0 6 k 6 12 by

Macaulay2 [M2]:

1, 1, 3, 4, 8, 10, 16, 20, 29, 35, 47, 56, 72 . . .

These values determine completely hS , and we thus obtain the formulas from the statement of

the proposition. �
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Proposition 6.3. Consider the quotient X ′ = P3/µ2 × µ4 of the projective space P3 by a

group of order 8, where µn denotes a cyclic group of order n and the generators of µ2, µ4

act by diagonal matrices diag(1, 1,−1, 1), diag(i, 1, 1,−1) respectively. Then X ′ and J /W
have the same Hilbert functions.

Proof. We represent X ′ as a toric variety, the equivariant compactification XΣ,N of the 3-

dimensional algebraic torus T := (C∗)3, defined by a fan Σ in the 3-dimensional R-vector

space N ⊗ R, where N ≃ Z3 is the lattice of 1-parametric subgroups in T (see e.g. [Fu] for

definitions and basic properties of toric varieties). Let y0, . . . , y3 be the homogeneous co-

ordinates of P3 and T0 = (C∗)3 the standard torus in the affine chart C3 of P3 with affine

coordinates u1 = y1/y0, u2 = y2/y0, u3 = y3/y0. The simplicial fan Σ defining P3

is determined by its 1-dimensional cones, or rays, which are spanned by the four vectors

(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−1) of the lattice N0 = Z3. The dual to N0 is the lattice

M0 = Z3 of exponents of monomials in the coordinate algebra C[M0] = C[u1, u2, u3] of the

affine chart of P3 that we have chosen. To get the quotient by µ2 × µ4, we replace M0 by the

sublattice M = M
µ2×µ4
0 of exponents of µ2 × µ4-invariant monomials, which is given by

M = {(m1,m2,m3) ∈ M0 : m3 ≡ 0mod 2, −m1 −m2 +m3 ≡ 0mod 4};

this is the lattice of exponents of the monomials um = um1
1 um2

2 um3
3 which form a basis of the

regular functions on the quotient torus T := T0/µ2 × µ4. The dual N = M
∗ =

(
M

µ2×µ4
0

)∗
is the overlattice of N0 = Z3 generated by the vectors (1, 0, 0), 12(0, 1, 0),

1
4(−1,−1, 1), and

X ′ = XΣ,N is the equivariant compactification of T defined by the same fan Σ as the original

P3, but taken with respect to the lattice N. The primitive vectors of N generating the rays of

the fan are v0 = (1, 0, 0), v1 = 1
2 (0, 1, 0), v2 = −1

2(1, 1, 1), v3 = (0, 0, 1), and we get 4

T-invariant divisors Di in X ′, defined by Di = Dvi , where Dvi denotes the closure in X ′ of

the kernel of vi viewed as a 1-parametric subgroup of T. The Cartier indices of these divisors

for i = 0, 1, 2, 3 are respectively 4, 2, 2, 4. We omit the routine verification of the following

assertion, which makes more precise the statement we are proving:

Proposition 6.3′. In the above notation, the Hilbert functions k 7→ h0(X ′,OX′(kDi)) coin-

cide with hS for both divisors Di of Cartier index 4, that is for i = 0 and 3.

�

It is plausible that the two quotients are indeed isomorphic. We observe that X ′ belongs to

the class of projective toric varieties of dimension n whose fan contains n+ 1 rays. Such va-

rieties are called weak weighted projective spaces; some authors call them fake weighted pro-

jective space (see [Kas]), but we prefer the adjective weak because the class of weak weighted

projective spaces contains all the weighted projective spaces. A weak weighted projective

space is a weighted projective space if and only if the primitive vectors of N on the rays R∗
+vi

of its fan generate the whole of N. One easily sees that this is not the case for X ′. This brings

us to the following generalization of the Bernstein–Schwarzman conjecture:

Conjecture 6.4. If Γ, Γ1 are commensurable complex crystallographic groups acting on Cn

such that dΓ1 = dΓ, and if Γ is irreducible and generated by reflections, then the quotient

Cn/Γ1 is a weak weighted projective space. It is is a genuine weighted projective space if and

only if Γ1 is also generated by reflections.
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The cases when Γ is one of the complex crystallographic reflection groups (Q+ τQ)⋊W

or (Q+τQ∨)⋊W treated by Looijenga and Bernstein–Schwarzman and Γ1 = Λ⋊W , where

Λ = Q+ τM , are particular cases of this conjecture: while C3/Γ is known to be a weighted

projective space, we expect that C3/Γ1 is the weak weighted projective space X ′.
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