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COMPUTATIONAL KRYLOV-BASED METHODS FOR

LARGE-SCALE DIFFERENTIAL SYLVESTER MATRIX PROBLEMS

M. HACHED ∗ AND K. JBILOU†

Abstract. In the present paper, we propose Krylov-based methods for solving large-scale differ-
ential Sylvester matrix equations having a low rank constant term. We present two new approaches
for solving such differential matrix equations. The first approach is based on the integral expression
of the exact solution and a Krylov method for the computation of the exponential of a matrix times
a block of vectors. In the second approach, we first project the initial problem onto a block (or
extended block) Krylov subspace and get a low-dimensional differential Sylvester matrix equation.
The latter problem is then solved by some integration numerical methods such as BDF or Rosenbrock
method and the obtained solution is used to build the low rank approximate solution of the original
problem. We give some new theoretical results such as a simple expression of the residual norm and
upper bounds for the norm of the error. Some numerical experiments are given in order to compare
the two approaches.

Key words. Extended block Krylov, Krylov subspaces, Low rank, Differential Sylvester equa-
tions.

1. Introduction. In the present paper, we consider the differential Sylvester matrix equa-
tion (DSE in short) of the form

{
Ẋ(t) = A(t)X(t) +X(t)B(t) + E(t)F (t)T ; (DSE)
X(t0) = X0, t ∈ [t0, Tf ],

(1.1)

where A(t) ∈ R
n×n, B(t) ∈ R

p×p and E(t) ∈ R
n×s and F (t) ∈ R

p×s are full rank matrices, with

s ≪ n, p. The initial condition is given in a factored form as X0 = Z0Z̃
T
0 and the matrices A and B

are assumed to be large and sparse.
Differential Sylvester equations play a fundamental role in many areas such as control, filter design
theory, model reduction problems, differential equations and robust control problems [1, 4]. For such
differential matrix equations, only a few attempts have been made for large problems.

Let us first recall the following theoretical result which gives an expression of the exact solution
of (1.1).

Theorem 1.1. [1] The unique solution of the general differential Sylvester equation

Ẋ(t) = A(t)X(t) +X(t)B(t) +M(t); X(t0) = X0 (1.2)

is defined by

X(t) = ΦA(t, 0)X0Φ
T
BT (t, t0) +

∫ t

t0

ΦA(t, τ)M(τ)ΦT
BT (t, τ)dτ. (1.3)

where the transition matrix ΦA(t, t0) is the unique solution to the problem

Φ̇A(t, t0) = A(t)ΦA(t, t0), ΦA(t0, t0) = I.

Futhermore, if A is assumed to be a constant matrix, then we have

X(t) = e(t−t0)AX0e
(t−t0)B +

∫ t

t0

e(t−τ)AM(τ)e(t−τ)Bdτ. (1.4)

We notice that the problem (1.1) is equivalent to the linear ordinary differential equation
{

ẋ(t) = A(t)x(t) + b(t)
x0 = vec(X0)

(1.5)

where A = I ⊗ A(t) + BT (t) ⊗ I, x(t) = vec(X(t) and b(t) = vec(E(t)F (t)T ), where vec(Z) is the
long vector obtained by stacking the columns of the matrix Z, forming a sole column. For moderate
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size problems, it is then possible to directly apply an integration method to solve (1.5). However,
this approach is not suitable for large problems. From now on, we assume that the matrices A and
B are time independent.

In the present paper, we will consider projection methods onto extended block Krylov (or block
Krylov) subspaces associated to the pairs (A,E) and (BT , F ) defined as follows

Km(A,E) = range(E,AE, . . . , Am−1E)

for block Krylov subspaces, or

Km(A,E) = range(A−mE, . . . , A−1E,E,AE, . . . , Am−1E)

for extended block Krylov subspaces when the matrix A is nonsingular. Notice that the extended
block Krylov subspace Km(A,E) is a sum of two block Krylov subspaces associated to the pairs
(A,E) and (A−1, A−1E):

Km(A,E) = Km(A,E) + Km(A−1, A−1E).

To compute an orthonormal basis {V1, . . . , Vm}, where Vi is of dimension n× d where d = s for the
block Krylov and d = 2s in the extended block Krylov case, two algorithms have been defined: the
first one is the well known block Arnoldi algorithm and the second one is the extended block Arnoldi
algorithm [5, 17]; see Appendix A for the description of both algorithms.
These algorithms generate the blocks V1, V2, . . . , Vm, Vi ∈ R

n×d such that their columns form an
orthonormal basis of the block Krylov subspace Km(A,E) (with d = s) or the extended block Arnoldi
Km(A,E) (with d = 2s).
Both algorithms compute also d×d block upper Hessenberg matrices Tm,A = VT

m AVm. The following
algebraic relations are satisfied

AVm = Vm+1 T̂m,A, (1.6)

= Vm Tm,A + Vm+1 Tm+1,m ẼT
m, (1.7)

where T̂m,A = VT
m+1 AVm; Ti,j is the (i, j) block of T̂m,A of size d× d, and Ẽm = [Od×(m−1)d, Id]

T

is the matrix formed with the last d columns of the md × md identity matrix Imd where d = s for
the block Arnoldi and d = 2s for the extended block Arnoldi.
When the matrix A is nonsingular and when the computation of the products W = A−1V is not
difficult (which is the case for sparse and structured matrices), the use of the extended block Arnoldi
is to be preferred.

The paper is organized as follows: In Section 2, we present a first approach based on the approxi-
mation of the exponential of a matrix times a block using a Krylov projection method. We give some
theoretical results such as a simple expression of the norm of the residual and upper bounds for the
norm of the error and perturbation results. In Section 3, the initial differential Sylvester matrix equa-
tion is projected onto a block (or extended block) Krylov subspace. The obtained low dimensional
differential Sylvester equation is solved by using the well known Backward Differentiation Formula
(BDF) and Rosenbrock methods. The last section is devoted to some numerical experiments.
Throught the paper, ‖.‖ and ‖ . ‖F will denote the 2-norm and the Frobenius norm, respectively.

2. Solutions via of the matrix exponential approximation . In this section,
we give a new approach for computing approximate solutions to large differential Sylvester equations
(1.1).
We recall that the exact solution to (1.1) can be expressed as follows

X(t) = e(t−t0)AX0e
(t−t0)B +

∫ t

t0

e(t−τ)A EFT e(t−τ)B dτ. (2.1)

For our first approach, we use this expression of X(t) to obtain low rank approximate solutions.

We first approximate the factors e(t−τ)AE and e(t−τ)BT
F and then, use a quadrature method to

compute the desired approximate solution. As the matrices e(t−τ)A and e(t−τ)BT
are large and

could be dense even though A and B are sparse, computing the exponential is not recommended.

However, in our problem, the computation of e(t−τ)A and e(t−τ)BT
are not needed explicitly as we

will rather consider the products e(t−τ)A E and e(t−τ)BT
F for which approximations via projection

methods onto block or extended block Krylov subspaces are well suited.
In what follows, we consider projections onto extended block Krylov (or just block Krylov) subspaces.
Let Vm = [V1, . . . , Vm] and Wm = [W1, . . . ,Wm] be the orthogonal matrices whose columns form an
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orthonormal basis of the subspace Km(A,E) and Km(BT , F ), respectively. Following [15, 16, 19],
an approximation to ZA = e(t−τ)A E can be obtained as

Zm,A(τ) = Vme(t−τ)Tm,A VT
mE (2.2)

where Tm,A = VT
mAVm. In the same way, an approximation to e(t−τ)BT

F , is given by

Zm,B(τ) = Wme(t−τ)Tm,B WT
mF, (2.3)

where Tm,B = WT
mBTWm. Therefore, the integrand in the expression (2.1) can be approximated as

e(t−τ)AEFT e(t−τ)B ≈ Zm,A(τ)Zm,B(τ)T . (2.4)

If for simplicity, we assume that X(0) = 0, an approximation to the solution of the differential
Sylvester equation (1.1) can be expressed as the product

Xm(t) = VmGm(t)Wm
T , t ∈ [t0, Tf ], (2.5)

where

Gm(t) =

∫ t

t0

Zm,A(τ)ZT
m,B(τ)dτ, (2.6)

with Em = VT
mE and Fm = WT

mF .

The next result shows that the md ×md matrix function Gm is solution of a low-order differential
Sylvester matrix equation.

Proposition 2.1. Let Gm(t) be the matrix function defined by (2.6), then it satisfies the following
low-order differential Sylvester matrix equation

Ġm(t) = Tm,AGm(t) +Gm(t)Tm,B
T +EmFT

m, t ∈ [t0, Tf ]. (2.7)

Proof. The proof can be easily derived from the expression (2.6) and the result of Theorem 1.1.

As a consequence, introducing the residual Rm(t) = Ẋm(t)−AXm(t)−Xm(t)B−EFT associated
to the approximation Xm(t), we have the following relation

VT
mRm(t)Wm = VT

m(Ẋm(t) −AXm(t) −Xm(t)B −EFT )Wm

= Ġm(t) − Tm,AGm(t) −Gm(t)Tm,B
T −EmFT

m

= 0,

which shows that the residual satisfies a Petrov-Galerkin condition.

As mentioned earlier and for our first exponential-based approach, once Zm,A(τ) and Zm,B(τ)
are computed, we use a quadrature method to approximate the integral (2.6) in order to get an
approximation of Gm(t) and hence to compute Xm(t) from (2.5).
The computation of Xm(t) (and of Rm(t)) becomes expensive as m increases. So, in order to stop
the iterations, one has to test if ‖ Rm(t) ‖< ǫ without having to compute extra products involving
the matrices A and B. The next result shows how to compute the norm of Rm(t) without forming
the approximation Xm(t) which is computed in a factored form only when convergence is achieved.

Proposition 2.2. Let Xm(t) = VmGm(t)WT
m be the approximation obtained at step m by the

block (or extended block) Arnoldi method. Then the residual Rm(t) satisfies the relation

‖ Rm(t) ‖2F=‖ TA
m+1,mḠm(t) ‖2F + ‖ TB

m+1,mḠm(t) ‖2F , (2.8)

and for the 2-norm, we have

‖ Rm(t) ‖= max{‖ TA
m+1,mḠm(t) ‖, ‖ TB

m+1,mḠm(t) ‖}, (2.9)

where Ḡm is the d × md matrix corresponding to the last d rows of Gm where d = 2s when using
the extended block Arnoldi algorithm and d = s with the block Arnoldi algorithm. Proof. . The

proof comes from the fact that the residual Rm(t) can be expressed as

Rm(t) = Vm+1

(
Ġm(t) − Tm,AGm(t) −Gm(t)Tm,B

T −EmFT
m −TB

m+1,mḠm(t)

TA
m+1,mḠm(t) 0

)
WT

m+1,

(2.10)
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where Gm(t) solves the low dimensional problem (2.7). Therefore, we get

‖Rm(t)‖2F =

∥∥∥∥
(

0 −TB
m+1,mḠm(t)

TA
m+1,mḠm(t) 0

)∥∥∥∥
2

F

= ‖ TA
m+1,mḠm(t) ‖2F + ‖ TB

m+1,mḠm(t) ‖2F .

To prove the expression (2.9) with the 2-norm , let us first remark that if

M =

(
0 M1

M2 0

)
, then MTM =

(
MT

1 M1 0
0 MT

2 M2

)
,

which shows that the singular values of M are the sum of the singular values of M1 and those of M2

which implies that

‖M‖ = σmax(M) = max{σmax(M1), σmax(M2)} = max{‖M1‖, ‖M2‖}.

Therefore, using this remark and the fact that

‖Rm(t)‖ =

∥∥∥∥
(

0 −TB
m+1,mḠm(t)

TA
m+1,mḠm(t) 0

)∥∥∥∥ ,

the result follows.

The approximate solution Xm(t) is computed only when convergence is achieved and in a factored
form which is very important for storage requirements in large-scale problems. This procedure is
described as follows.
Consider the singular value decomposition of the matrix Gm(t) = U ΣV where Σ is the diagonal
matrix of the singular values of Gm(t) sorted in decreasing order. Let Ul be the md × l matrix
of the first l columns of U corresponding to the l singular values of magnitude greater than some
tolerance dtol. We obtain the truncated singular value decomposition Gm(t) ≈ Ul Σl V

T
l where

Σl = diag[λ1, . . . , λl]. Setting Z̃m,A(t) = Vm Ul Σ
1/2
l and Z̃m,B(t) = Wm Vl Σ

1/2
l , it follows that

Xm(t) ≈ Z̃m,A(t)Z̃m,B (t)T . (2.11)

Therefore, only the matrices Z̃m,A(t) and Z̃m,B(t) are needed.

The following result shows that the approximation Xm is an exact solution of a perturbed differential
Sylvester equation.

Proposition 2.3. Let Xm(t) be the approximate solution given by (2.5). Then we have

Ẋm(t) = (A− Fm,A)Xm(t) +Xm(t) (B − Fm,B) +EFT . (2.12)

where Fm,A = Vm+1 T
A
m+1,m V T

m and Fm,B = Wm(TB
m+1,m)TWT

m+1

Proof. . As Xm(t) = VmGm(t)WT
m, we have

Ẋm(t)− (AXm(t)+Xm(t)B+EFT ) = VmĠm(t)WT
m − (AVmGm(t)WT

m +BVmGm(t)WT
m +EFT ).

(2.13)
Now, using the fact that

AVm = Vm Tm,A + Vm+1T
A
m+1,mẼT

m, and BT Wm = Wm Tm,B +Wm+1T
B
m+1,mẼT

m,

equation (2.13) becomes

Ẋm(t) − (AXm(t) +Xm(t)B + EFT ) = VmĠm(t)WT
m − ([Vm Tm,A + Vm+1Tm+1,mẼT

m]Gm(t)WT
m

+ VmGm(t)[Wm Tm,B +Wm+1T
B
m+1,mẼT

m]T +EFT ).

Therefore

Ẋm(t) − (AXm(t) +Xm(t)B + EFT ) = Vm[Ġm(t) − Tm,AGm(t) −Gm(t)T T
m,B − EFT ]Wm

− (Vm+1T
A
m+1,mẼT

mGm(t)Wm + VmGm(t)Ẽm(TB
m+1,m)TWT

m+1).

On the other hand we have VmGm(t) = Xm(t)Wm, Gm(t)WT
m = VT

mXm(t), VmẼm = Vm,

WmẼm = Wm and EFT = VmEmFT
mWT

m. So using these relations and the fact that Gm solves the
low dimensional differential Sylvester equation (2.7), we obtain the desired result.

4



The next result states that the error Em(t) = X(t) − Xm(t) satisfies also a differential Sylvester
matrix equation.

Proposition 2.4. Let X(t) be the exact solution of (1.1) and let Xm(t) be the approximate
solution obtained at step m. The error Em(t) = X(t) −Xm(t) satisfies the following equation

Ėm(t) − AEm(t) − Em(t)B = Fm,AXm(t) +Xm(t)Fm,B = −Rm(t), (2.14)

where Fm,A and Fm,B are defined in Proposition 2.3 and Rm(t) = Ẋm(t) − AXm(t) −Xm(t)B −
EFT . Proof. The result is easily obtained by subtracting the equation (2.12) from the initial
differential Sylvester equation (1.1).

Notice that from Proposition 2.4, the error Em(t) can be expressed in the integral form as follows

Em(t) = e(t−t0)AEm,0e
(t−t0)B −

∫ t

t0

e(t−τ)ARm(τ)e(t−τ)Bdτ, t ∈ [t0, Tf ]. (2.15)

where Em,0 = Em(0).

Next, we give an upper bound for the norm of the error by using the 2-logarithmic norm defined by

µ2(A) = lim
h→0+

‖I + hA‖2 − 1

h
=

1

2
λmax(A+AT ).

Proposition 2.5. Assume that the matrices A and B are such that µ2(A)+µ2(B) 6= 0. Then at
step m of the extended block Arnoldi (or block Arnoldi) process, we have the following upper bound
for the norm of the error Em(t) = X(t) −Xm(t),

‖ Em(t) ‖≤ ‖Em,0‖e(t−t0)(µ2(A)+µ2(B)) + αm
e(t−t0)(µ2(A)+µ2(B)) − 1

µ2(A) + µ2(B)
, (2.16)

where αm is given by αm = max
τ∈[t0, t]

(
max{‖ TA

m+1,mḠm(t) ‖2, ‖ TB
m+1,mḠm(t) ‖2}

)
. The matrix

Ḡm is the d ×md matrix corresponding to the last d rows of Gm. Proof. We first point out that

‖ etA ‖≤ eµ2(A)t. Using the expression (2.15) of Em(t), we obtain the following relation

‖ Em(t) ‖≤ ‖e(t−t0)AEm,0e
(t−t0)B‖+

∫ t

t0

‖e(t−τ)ARm(τ)e(t−τ)B‖dτ.

Therefore, using (2.15) and the fact that ‖ e(t−τ)A ‖≤ e(t−τ)µ2(A), we get

‖ Em(t) ‖ ≤ ‖Em,0‖e(t−t0)(µ2(A)+µ2(B)) + max
τ∈[t0,t]

‖ Rm(τ) ‖
∫ t

t0

e(t−τ)µ2(A)e(t−τ)µ2(B)dτ

= ‖Em,0‖e(t−t0)(µ2(A)+µ2(B)) + max
τ∈[t0,t]

‖ Rm(τ) ‖ et(µ2(A)+µ2(B))
∫ t

t0

e−τ(µ2(A)+µ2(B))dτ.

Hence

‖ Em(t) ‖≤ ‖Em,0‖e(t−t0)(µ2(A)+µ2(B)) + max
τ∈[t0,t]

‖ Rm(τ) ‖ e(t−t0)(µ2(A)+µ2(B)) − 1

µ2(A) + µ2(B)
. (2.17)

Using the result of Proposition 2.2, we obtain max
τ∈[t0,t]

‖ Rm(τ) ‖= αm and then

‖ Em(t) ‖≤ ‖Em,0‖e(t−t0)(µ2(A)+µ2(B)) + αm
e(t−t0)(µ2(A)+µ2(B)) − 1

µ2(A) + µ2(B)
.

Notice that if the matrices A and B are stable (ie all the eigenvalues are in the open half plane) then
µ2(A) < 0 and µ2(B) < 0 which ensures the condition of Proposition 2.5 is satisfied. Notice also
that since Rm(τ) = −Fm,AXm(τ) − Xm(τ)Fm,B , where Fm,A = Vm+1 T

A
m+1,m V T

m and Fm,B =

Wm(TB
m+1,m)TWT

m+1, we get

‖Rm(τ)‖ ≤ max
τ∈[t0,t]

‖Ḡm(τ)‖
(
‖TA

m+1,m‖+ ‖TB
m+1,m‖

)
.

Hence, replacing in (2.17), we get the new upper bound

‖ Em(t) ‖≤ ‖Em,0‖e(t−t0)(µ2(A)+µ2(B)) + βm
e(t−t0)(µ2(A)+µ2(B)) − 1

µ2(A) + µ2(B)
, (2.18)
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where

βm = max
τ∈[t0,t]

‖Ḡm(τ)‖
(
‖TA

m+1,m‖+ ‖TB
m+1,m‖

)
.

In Figure 2.1, we compare the computed error to the two error upper bounds given by Formulae (2.16)
and (2.18) for A and B being two 100× 100 matrices obtained by the finite differences discretization
of linear differential operators on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary
conditions. Matrices E and F were chosen as rank 2 matrices which entries are randomly generated
over the interval [0, 1]. In order to compute the error, we took the approximate solution given by the
integral form of the solution as a reference.

1 2 3 4 5 6 7 8
10

−10

10
−5

10
0

10
5

size(A), size(B) = 100 × 100

m

 

 
Error estimate at final time (23)
Error estimate at final time (25)
Norm of the error

Fig. 2.1. Norm of the error vs number of Arnoldi iterations m

We observe that the bound (2.16) stated in Proposition 2.5 is slightly better in this example.
Next, we give another upper bound for the norm of the error Em(t) .

Proposition 2.6. Let X(t) be the exact solution to (1.1) and let Xm(t) be the approximate
solution obtained at step m. Then we have

‖Em(t)‖ ≤ ‖F ‖etµ2(B) Γ1,m(t) + ‖Em ‖etµ2(A)Γ2,m(t), (2.19)

where

Γ1,m(t) =

∫ t

t0

e−τµ2(B) ‖ZA(τ)− Zm,A(τ)‖dτ, Γ2,m(t) =

∫ t

t0

e−τµ2(A)‖ZB(τ)− Zm,B(τ)‖dτ.

Proof. From the expressions of X(t) and Xm(t), we have

‖Em(t)‖ =

∥∥∥∥
∫ t

t0

(
ZA(τ)ZB(τ)T − Zm,A(τ)Zm,B(τ)T

)
dτ

∥∥∥∥ , (2.20)

where Zm,A = Vme(t−τ)Tm,AEm, Zm,B(τ) = Wme(t−τ)Tm,BFm, ZA(τ) = e(t−τ)AE and ZB(τ) =

e(t−τ)BF . Then, using the relation

ZA(τ)ZB(τ)T − Zm,A(τ)Zm,B(τ)T = (ZA(τ) − Zm,A(τ))ZT
B + Zm,A(τ)(ZB(τ)− Zm,B(τ))T ,

we obtain

‖ZA(τ)ZB(τ)T − Zm,A(τ)Zm,B(τ)T ‖ ≤ ‖ZB(τ)‖ ‖(ZA(τ)− Zm,A(τ))‖
+ ‖Zm,A(τ)‖ ‖(ZB(τ) − Zm,B(τ))‖.

6



Now as ‖ZB(τ)‖ ≤ e(t−τ)µ2(B)‖F‖ and since µ2(Tm,A) ≤ µ2(A), we also have ‖Zm,A(τ)‖ ≤
e(t−τ)µ2(Tm,A)‖Em‖ ≤ e(t−τ)µ2(A)‖Em‖. Using all these relations in (2.20), we get

‖Em(t)‖ ≤
∫ t

t0

[
e(t−τ)µ2(B)‖F ‖ZA(τ)− Zm,A(τ)‖ + e(t−τ)µ2(A)‖Em‖ ‖ZB(τ) − Zm,B(τ)‖

]
dτ

≤ ‖F ‖etµ2(B)

∫ t

t0

e−τµ2(B) ‖ZA(τ) − Zm,A(τ)‖dτ

+ ‖Em ‖etµ2(A)

∫ t

t0

e−τµ2(A)‖(ZB(τ) − Zm,B(τ))‖dτ,

which ends the proof.

One can use some known results [12, 16] to derive upper bounds for ‖ZA(τ) − Zm,A(τ)‖ and
‖ZB(τ) − Zm,B(τ)‖, when using Krylov or block Krylov subspaces. For general matrices A and B,
we can use the following result to get upper bounds for ‖ZA(τ)−Zm,A(τ)‖ and ‖ZB(τ)−Zm,B(τ)‖.

Proposition 2.7. When using the extended block Arnoldi (or the block Arnoldi), we get the
following upper bound for the exponential approximation error em,A(τ) = ZA(τ)− Zm,A(τ):

‖em,A(τ)‖ ≤ ‖TA
m+1,m‖

∫ τ

0
e(u−τ)ν(A)‖Lm,A(u)‖du, (2.21)

where Lm,A(u) = Ẽme(t−u)Tm,AEm and ν(A) = λmin

(
A+AT

2

)
. Proof. We have

ZA(τ) = e(t−τ)AE, and Zm,A(τ) = Vme(t−τ)Tm,AEm.

Then Z′
A(τ) = −Ae(t−τ)AE = −AZA(τ), and

Z′
m,A(τ) = −VmTm,Ae(t−τ)Tm,AEm = −[AVm − Vm+1T

A
m+1,mẼm]e(t−τ)Tm,AEm.

Hence,

Z′
m,A(τ) = −AZm,A(τ) + Vm+1T

A
m+1,mLm,A(τ), (2.22)

where Lm,A(τ) = Ẽme(t−τ)Tm,AEm.
Therefore, the error em,A(τ) = ZA(τ)− Zm,A(τ) is such that

e′m,A(τ) = −Aem(τ) − Vm+1T
A
m+1,mLm,A(τ),

which gives the following expression of em:

em,A(τ) = −
∫ τ

0
e(u−τ)AVm+1T

A
m+1,mLm,A(u)du. (2.23)

On the other hand, since τ − u > 0, it follows that

‖e(u−τ)A‖ ≤ e(τ−u)µ2(−A) = e(u−τ)ν(A).

Then, we get

‖em,A(τ)‖ ≤ ‖TA
m+1,m‖

∫ τ

0
e(u−τ)ν(A)‖Lm,A(u)‖du.

Notice that if ν(A) is not known but ν(A) ≥ 0 (which is the case for positive semidefinite matrices)
then we get the upper bound

‖em,A(τ)‖ ≤ ‖TA
m+1,m‖

∫ τ

0
‖Lm,A(u)‖du. (2.24)

To define a new upper bound for the norm of the global error Em(t), we can use the upper bounds
for the errors em,A and em,B in the expression (2.19) stated in Propostion 2.6 to get

‖Em(t)‖ ≤ ‖F ‖etµ2(B)
∫ t

t0

e−τµ2(B) ‖em,A(τ)‖dτ

+ ‖Em ‖etµ2(A)

∫ t

t0

e−τµ2(A)‖em,B(τ)‖dτ,
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and then we obtain

‖Em(t)‖ ≤ ‖F ‖etµ2(B) ‖TA
m+1,m‖

∫ t

t0

e−τµ2(B) Sm,A(τ)dτ (2.25)

+ ‖Em ‖etµ2(A)‖TB
m+1,m‖

∫ t

t0

e−τµ2(A)Sm,B(τ)dτ, (2.26)

where Sm,A(τ) =

∫ τ

0
e(u−τ)ν(A)‖Lm,A(u)‖du and Sm,B(τ) =

∫ τ

0
e(u−τ)ν(B)‖Lm,B(u)‖du.

As m is generally very small as compared to n and p, the factors Lm,A and Lm,B can be computed
using Matlab fuctions such as expm and the integral appearing in the right sides of (2.21) and (2.25),
can be approximated via a quadrature formulae.

We summarize the steps of our proposed first approach (using the extended block Arnoldi) in
the following algorithm

Algorithm 1 The extended block Arnoldi (EBA-exp) method for DSE’s

• Input X0 = X(t0), a tolerance tol > 0, an integer mmax.
• For m = 1, . . . ,mmax

– Apply the extended block Arnoldi algorithm to (A,E) and (BT , F ) to
get the orthonormal matrices Vm = [V1, ..., Vm] and Wm = [W1, ...,Wm]
and the upper block Hessenberg matrices Tm,A and Tm,B.

– Set Em = VT
mE, Fm = WT

mF and compute Zm,A(τ) = e(t−τ)Tm,AEm

and Zm,B(τ) = e(t−τ)Tm,BFm using the matlab function expm.
– Use a quadrature method to compute the integral (2.6) and get an ap-

proximation of Gm(t) for each t ∈ [t0, Tf ].
– If ‖ Rm(t) ‖= max{‖ TA

m+1,mḠm(t) ‖, ‖ TB
m+1,mḠm(t) ‖} < tol stop and

compute the approximate solution Xm(t) in the factored form given by
the relation (2.11).

• End

3. Projecting and solving the low dimensional problem.

3.1. Low-rank approximate solutions. In this section, we show how to obtain low
rank approximate solutions to the differential Sylvester equation (1.1) by first projecting directly the
initial problem onto block (or extended block) Krylov subspaces and then solve the obtained low
dimensional differential problem. We first apply the block Arnoldi algorithm (or the extended block
Arnoldi) to the pairs (A,E) and (BT , F ) to get the orthonormal matrices Vm andWm, whose columns
form orthonormal bases of the extended block Krylov subspaces Km(A,E) and Km(BT , F ), respec-
tively. We also get the upper block Hessenberg matrices Tm,A = VT

mAVm and Tm,B = WT
mBTWm.

Let Xm(t) be the desired low rank approximate solution given as

Xm(t) = VmYm(t)WT
m, (3.1)

satisfying the Petrov-Galerkin orthogonality condition

VT
mRm(t)Wm = 0, t ∈ [t0, Tf ], (3.2)

where Rm(t) is the residual Rm(t) = Ẋm(t) − AXm(t) − Xm(t)B − EFT . Then, from (3.1) and
(3.2), we obtain the low dimensional differential Sylvester equation

Ẏm(t) − Tm,A Ym(t) − Ym(t) T T
m,B − EmFT

m = 0, (3.3)

where Em = VT
m E and Fm = WT

m F . The obtained low dimensional differential Sylvester equation
(3.3) is the same as the one given by (2.7). We have now to solve the latter differential equation by
some integration method such as the well known Backward Differentiation Method (BDF) [3] or the
Rosenbrock method [3, 18].
Notice that all the properties and results such as the expressions of the residual norms or the upper
bounds for the norm of the error given in the last section are still valid with this second approach.
The two approaches only differ in the way the projected low dimensional differential Sylvester matrix
equations are numerically solved.
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3.2. BDF for solving the low order differential Sylvester equation (3.3).
We use the Backward Differentiation Formula (BDF) method for solving, at each step m of the
extended block Arnoldi (or block Arnoldi) process, the low dimensional differential Sylvester matrix
equation (3.3). We notice that BDF is especially used for the solution of stiff differential equations.
At each time tk , let Ym,k of the approximation of Ym(tk), where Ym is a solution of (3.3). Then, the
new approximation Ym,k+1 of Ym(tk+1) obtained at step k + 1 by BDF is defined by the implicit
relation

Ym,k+1 =

p−1∑

i=0

αiYm,k−i + hkβF(Ym,k+1), (3.4)

where hk = tk+1 − tk is the step size, αi and βi are the coefficients of the BDF method as listed in
Table 3.1 and F(Y ) is given by

F(Y ) = Tm,A Y + Y T T
m,B + Em FT

m.

p β α0 α1 α2

1 1 1
2 2/3 4/3 -1/3
3 6/11 18/11 -9/11 2/11

Table 3.1

Coefficients of the p-step BDF method with p ≤ 3.

The approximate Ym,k+1 solves the following matrix equation

−Ym,k+1 + hkβ(Tm,AYm,k+1 + Ym,k+1T T
m,B + EFT ) +

p−1∑

i=0

αiYm,k−i = 0,

which can be written as the following Sylvester matrix equation

Tm,A Ym,k+1 + Ym,k+1T
T
m,B + Em,k F

T
m,k = 0. (3.5)

We assume that at each time tk, the approximation Ym,k is factorized as a low rank product Ym,k ≈
Ũm,kṼ

T
m,k , where Ũm,k ∈ R

n×mk and Ṽm,k ∈ R
p×mk , with mk ≪ n, p. In that case, the coefficient

matrices appearing in (3.5) are given by

Tm,A = hkβTm,A − 1

2
I; Tm,B = hkβTm,B − 1

2
I,

Em,k+1 = [
√

hkβE
T ,

√
α0Ũ

T
m,k, . . . ,

√
αp−1Ũ

T
m,k+1−p]

T

and

Fm,k+1 = [
√

hkβF
T ,

√
α0Ṽ

T
m,k, . . . ,

√
αp−1Ṽ

T
m,k+1−p]

T .

The Sylvester matrix equation (3.5) can be solved by applying direct methods based on Schur de-
composition such as the Bartels-Stewart algorithm [2, 9].
Notice that we can also use the BDF method applied directly to the original problem (1.1) and
then at each iteration, one has to solve large Sylvester matrix equations which can be done by using
Krylov-based methods as developed in [6, 13].

3.3. Solving the low dimensional problem with the Rosenbrock method.
Applying Rosenbrock method [3, 18] to the low dimensional differential Sylvester matrix equation
(3.3), the new approximation Ym,k+1 of Ym(tk+1) obtained at step k + 1 is defined, in the ROS(2)
particular case by the relations

Ym,k+1 = Ym,k +
3

2
K1 +

1

2
K2, (3.6)

where K1 and K2 solve the following Sylvester equations

T̃m,AK1 +K1T̃m,B = −F(tk , Ym,k), (3.7)
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and

T̃m,AK2 +K2T̃m,B = −F(tk+1, Ym,k +K1) +
2

h
K1, (3.8)

where

T̃m,A = γTm,B − 1

2h
I and T̃m,B = γT T

m,B − 1

2h
I,

and

F(Y ) = Tm,AY + Y T T
m,B + EmFT

m.

We summarize the steps of the second approach (using the extended block Arnoldi) in the following
algorithm

Algorithm 2 The extended block Arnoldi (EBA) method for DSE’s

• Input X0 = X(t0), a tolerance tol > 0, an integer mmax.
• For m = 1, . . . ,mmax

– Apply the extended block Arnoldi algorithm to the pairs (A,E) and
(BT , F ) to compute the orthonormal bases Vm = [V1, ..., Vm] and Wm =
[W1, ...,Wm] and also the the upper block Hessenberg matrices Tm,A and
Tm,B.

– Use the BDF or the Rosenbrock method to solve the low dimensional
differential Sylvester equation

Ẏm(t)− Tm,A Ym(t) − Ym(t) T T
m,B − EmFT

m = 0, t ∈ [t0, Tf ]

– If ‖ Rm(t) ‖< tol stop and compute the approximate solution Xm(t) in
the factored form given by the relation (2.11).

• End
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4. Numerical examples. In this section, we compare the approaches presented in this
paper. The exponential approach (EBA-exp) summarized in Algorithm 1, which is based on the
approximation of the solution to (1.1) applying a quadrature method to compute the projected ex-
ponential form solution (2.6). We used a scaling and squaring strategy, implemented in the MATLAB
expm function; see [11, 14] for more details. The second method (Algorithm 2) is based on the BDF
integration method applied to the projected Sylvester equation as described in Section (3.2). Finally,
we considered the EBA-ROS(2) method as described in Section (3.3). The basis of the projection
subspaces were generated by the extended block Arnoldi algorithm for all methods. All the experi-
ments were performed on a laptop with an Intel Core i7 processor and 8GB of RAM. The algorithms
were coded in Matlab R2014b.

Example 1. For this example, the matrices A ∈ R
n×n and B ∈ R

p×p were obtained from the
5-point discretization of the operators

LA = ∆u− f1(x, y)
∂u

∂x
+ f2(x, y)

∂u

∂y
+ g1(x, y),

and

LB = ∆u− f3(x, y)
∂u

∂x
+ f4(x, y)

∂u

∂y
+ g2(x, y),

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions. The number of
inner grid points in each direction are n0 for A and p0 for B and the dimension of the matrices A

and B are n = n2
0 = and p = p20 respectively. Here we set f1(x, y) = x+10y2, f2(x, y) =

√
2x2 + y2,

f3(x, y) = x+2y, f4(x, y) = exp(y−x) , g1(x, y) = x2−y2 and g2(x, y) = y2−x2. The time interval
considered was [0, 2] and the initial condition X0 = X(0) was X0 = Z0Z

T
0 , where Z0 = 0n×2.

For all projection-based methods, we used projections onto the Extended Block Krylov subspaces
Kk(A,B) = Range(B,AB, . . . , Am−1 B,A−1 B, . . . , (A−1)m B) and the tolerance was set to 10−10

for the stop test on the residual. For the EBA-BDF and Rosenbrock methods, we used a constant
timestep h. The entries of the matrices E and F were random values uniformly distributed on the
interval [0, 1] and their rank were set to s = 2.
To the authors’ knowledge, there are no available exact solutions of large scale matrix Sylvester
differential equations in the literature. In order to check if our approaches produce reliable results,
we first compared our results to the one given by Matlab’s ode23s solver which is designed for stiff
differential equations. This was done by vectorizing our DSE, stacking the columns of X one on top
of each other. This method is not suited to large-scale problems. Due to the memory limitation of
our computer when running the ode23s routine, we chose a size of 100× 100 for the matrices A and
B.
In Figure 4.1, we compared the component X11 of the solution obtained by the methods tested
in this section, to the solution provided by the ode23s method from Matlab, on the time interval
[0, 2], for size(A), size(B) = 100 × 100 and a constant timestep h = 10−2. We observe that all
the considered methods give good results in terms of accuracy. The relative error norms at final
time Tf = 2 were of order O(10−10) for the EBA-exp method and O(10−12) for the others. The
runtimes were respectively 0.6s for EBA-exp, 7.3s for EBA-BDF(1), 20.8s for EBA-BDF(2) and 29.2s
for EBA-ROS(2). The ode23s routine required 978s. In Table 4.1, we give the obtained runtimes
in seconds, the number of Arnoldi iterations and the Frobenius residual norm at final time, for the
resolution of Equation (1.1) for t ∈ [0, 2], with a timestep h = 0.01. The results in Table 4.1 show

EBA-exp EBA-BDF(1) EBA-BDF(2) EBA-ROS(2)
n, p = 2500, 2500 3.8s (m = 16) 6.1s (m = 18) 13.6s (m = 18) 28.8s (m = 23)

‖Rm(Tf )‖F 1.04× 10−8 2.45× 10−10 2.45× 10−10 3.05× 10−10

n, p = 10000, 10000 35.2s (m = 22) 38.4s (m = 25) 80.3s (m = 25) 104.7s (m = 33)
‖Rm(Tf )‖F 4.4× 10−9 4.1× 10−11 4.2× 10−11 5.8× 10−11

n, p = 22500, 10000 137.3s (m = 22) 166.5s (m = 30) 342.3s (m = 30) 246s (m = 35)
‖Rm(Tf )‖F 4.2× 10−8 3.7× 10−11 3.6× 10−11 1.78× 10−9

Table 4.1

Runtimes in seconds and the residual norms

that the EBA-exp method is outperformed by the other approaches in terms of accuracy, although
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Fig. 4.1. Values of X11(t) for t ∈ [0, 2]

it allows to obtain an acceptable approximation more quickly. The EBA-BDF(1) appears to be the
better option in terms of time and accuracy.

Example 2 In this second example, we considered the particular case
{

Ẋ(t) = A(t)X(t) +X(t)A(t) −E(t)F (t)T ; (DSE)
X(t0) = X0, t ∈ [t0, Tf ],

(4.1)

where the matrix A = Rail1357 was extracted from the IMTEK collection Optimal Cooling of Steel
Profiles 1. We compared the EBA-BDF(1) method to the EBA-exp and EBA-ROS(2) methods for
the problem size n = 1357 on the time interval [0 , 2]. The initial value X0 was chosen as X0 = 0
and the timestep was set to h = 0.001. The tolerance for EBA stop test was set to 10−7 for
all methods and the projected low dimensional Sylvester equations were numerically solved by the
solver (lyap from Matlab at each iteration of the extended block Arnoldi algorithm for the EBA-
BDF(1), EBA-BDF(2) and EBA-ROS(2) methods. As the size of the coefficient matrices allowed it,
we also computed an approximate solution of (4.1) applying a quadrature method to the integral
form of the exact solution given by Formula(1.4) and took it as a reference solution. In Table 4.2,
we reported the runtimes, in seconds, the number m of Arnoldi iterations and the Frobenius norm
‖E(Tf )m‖F of the error at final time. As can be seen from the reported results in Table 4.2, the
EBA-exp method clearly outperforms all the other listed options.
In Figure (4.2), we plotted the Frobenius residual norm ‖Rm(tf )‖F at final time Tf in function of
the number m of Arnoldi iterations for the EBA-exp method.

5. Appendix A. Here we recall the extended block Arnoldi (EBA) and block Arnoldi (BA)
algorithms, when applied to the pair (A,E). EBA is described in Algorithm 3 as follows

1https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
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EBA-exp EBA-BDF(1) EBA-BDF(2) EBA-ROS(2)
Runtime (s) 48.4 s (m = 18) 471.9 s (m = 18) 1549.2s (m = 23) 1827s (m = 21)
‖Em(Tf )‖F 1.28× 10−10 5× 10−5 1.48× 10−4 4.9× 10−5.

Table 4.2

Optimal Cooling of Steel Profiles: runtimes, number of Arnoldi iterations and error norms
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Fig. 4.2. Residual norm vs number m of Arnoldi iterations

Algorithm 3 The extended block Arnoldi algorithm (EBA)

• Inputs: A an n× n matrix, E an n× s matrix and m an integer.
• Compute the QR decomposition of [E,A−1E], i.e., [E,A−1E] = V1Λ;

Set V0 = [ ];
• For j = 1, . . . ,m

• Set V
(1)
j : first s columns of Vj and V

(2)
j : second s columns of Vj

• Vj = [Vj−1, Vj ]; V̂j+1 =
[

AV
(1)
j , A−1 V

(2)
j

]

.

• Orthogonalize V̂j+1 w.r.t Vj to get Vj+1, i.e.,
For i = 1, 2, . . . , j

Hi,j = V T
i V̂j+1;

V̂j+1 = V̂j+1 − Vi Hi,j ;
Endfor i

• Compute the QR decomposition of V̂j+1, i.e., V̂j+1 = Vj+1 Hj+1,j .

• Endfor j.

The block Arnoldi algorithm is summarized in Algorithm 4 as follows

Since the above algorithms implicitly involve a Gram-Schmidt process, the obtained blocks Vm =
[V1, V2, . . . , Vm] (Vi ∈ R

n×d) ,where d = s for the block Arnoldi and d = 2s for the extended block
Arnoldi, have their columns mutually orthogonal provided none of the upper triangular matrices
Hj+1,j are rank deficient. Hence, after m steps, Algorithm 3 and Algorithm 4 build orthonormal
bases Vm of the Krylov subspaces Km(A,E) = Range(E,AE, . . . , Am−1 E,A−1 E, . . . , (A−1)m E)
or Km(A,E) = Range(E,AE, . . . , Am−1 E), respectively and a block upper Hessenberg matrix Hm

whose nonzero sub-blocks are the Hi,j . Note that each submatrix Hi,j (1 ≤ i ≤ j ≤ m) is of order
d.
Let Tm ∈ R

d×d be the restriction of the matrix A to the extended Krylov subspace Km(A,E) (or
to the block Krylov subspace Km(A,E)), i.e., Tm = VT

m AVm. Then it can be shown that matrix
Tm is also block upper Hessenberg with d × d blocks, see[10, 17] . For the block Arnoldi algorithm,
Tm = Hm while for the extended block Arnoldi algorithm, a recursion can be derived to compute
Tm from Hm without requiring matrix-vector products with A, see [17]. We notice that for large
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Algorithm 4 The block Arnoldi algorithm (BA)

• Inputs: A an n× n matrix, E an n× s matrix and m an integer.
• Compute the QR decomposition of E, i.e., E = V1R1.
• For j = 1, . . . ,m

1. Wj = AVj ,
2. for i = 1, 2, . . . , j

– Hi,j = V T
i Wj ,

– Wj = Wj − Vj Hi,j ,

3. endfor
4. QjRj = Wj (QR decomposition)
5. Vj+1 = Qj, and Hj+1,j = Rj .

• EndFor j

and non structured problems, the inverse of the matrix A is not computed explicitly and in this case
we can use iterative solvers with preconditioners to solve linear systems with A.

6. Conclusion. We presented in the present paper two new approaches for computing ap-
proximate solutions to large scale differential Sylvester matrix equations. The first one comes natu-
rally from the exponential expression of the exact solution and the use of approximation techniques
of the exponential of a matrix times a block of vectors. The second approach is obtained by first
projecting the initial problem onto a block Krylov (or extended Krylov) subspace, obtain a low di-
mensional differential Sylvester equation which is solved by using the well known BDF or Rosenbrock
integration method. We gave some theoretical results such as the exact expression of the residual
norm and also upper bounds for the norm of the error. Numerical experiments show that both ap-
proaches are promising for large-scale problems, with a clear advantage for the EBA-exp method in
terms of computation time although the EBA-BDF(1) method shows to offer a good balance between
the execution time and the accuracy in some cases.
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