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Abstract
In this study, we elaborate on and evaluate a new reduced basis method for model reduction of
the shallowwater equations using Proper Orthogonal Decomposition (POD) and artificial Neural
Networks (NNs). The method begins with the POD technique to construct reduced bases from
high-resolution solutions, followed by training two deep NNs to learn associated coefficients in
the reduced bases. The approach follows an offline-online strategy: the POD reduced basis, along
with the training of the NNs, is performed in an offline stage, and then the surrogate model can be
used in an online stage for real-time predictions. The method takes into account the POD-based
projection error, enabling the attainment of higher accuracy while preserving a limited number of
POD modes, even in the delicate situation of convection-dominated flow problems. This point is
crucial in our approach since it enables to limit the output dimension of the NNs, thus providing
the opportunity to employ smaller NNs (with less parameters). This may lead to the utilization
of potentially smaller datasets (i.e., the snapshots), better generalization of the obtained model,
and simpler explainability. The process is non-intrusive: it does not require opening the high-
resolution model code. The method is evaluated on a real-world test case aimed at simulating
inundation of the Aude river (Southern France). The results show that the proposed method
provides satisfying accuracy for the hydraulic variables (water elevation, discharge) compared to
the reference high-resolution 2D shallow water model, with quite small dimension NNs. Overall,
the method is promising, particularly for performing real-time simulations of large floodplains
hydrodynamics.

1. Introduction

The Reduced Order Model (ROM) theory (see, e.g., [24, 17, 5]) has gained significant attention in the field of
computational sciences, offering techniques to tackle the computational challenges posed by complex systems. The
goal is to simplify high-dimensional models while preserving their essential features. Model reduction methods can
be broadly categorized into intrusive and non-intrusive approaches, each with its advantages and limitations, see e.g.
[24, 17, 5] and references therein. In this paper, we adopt an offline-online non-intrusive strategy, applied to non-linear
hyperbolic problems, specifically to the 2D Shallow Water Equations (SWEs). This PDEs system describes well the
behavior of flood plain dynamics. Capturing complex features such as non linear travelling waves, over long time
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ROM of SWEs

integration periods, using e.g. Finite Volume (FV) schemes is CPU-time consuming, which is impractical for real-time
simulations or optimization and uncertainty quantification. To overcome these challenges, model reduction techniques
offer an alternative approach by reducing the dimensionality of the problem while preserving the crucial dynamics.
However, ROMs are particularly challenging in this situation of convection-dominated problems, see e.g. [24, 1, 4] and
references therein. Applying ROM techniques aims to strike a balance between computational efficiency and accuracy.
The reduction of these complex systems enables faster simulations, facilitates real-time decision-making processes,
and opens avenues for optimization and uncertainty quantification tasks.

The literature addressing ROMs for non linear hyperbolic systems like SWEs is already quite large. For intrusive
ROM approaches, let us mention for example [7, 28, 12, 29] and for non-intrusive ones [11, 30, 16], see Table 1.
To reduce the 2D SWEs model (considered as non-parametrized), [28, 7] propose POD-DEIM (Proper Orthogonal
Decomposition - Discrete Empirical Interpolation Method) approaches which are intrusive. [11] proposes a non-
intrusive method based on POD and Radial Basis Functions (RBF) interpolation. Considering the 2D SWEs as
a parametrized model, [? 29] propose intrusive approaches based on generalized polynomial chaos and POD-
Galerkin, respectively. [30, 16] address non-intrusive POD-NN (Neural Network) based reduction methods to reduce
parametrized SWEs. These POD-NN based methods rely on the usual offline-online strategy: a computationally
expensive offline phase is performed beforehand to construct the reduced-order model, while the online phase
efficiently computes the reduced system’s response given a new parameter value, without further involving the full-
order model (non-intrusive aspect). In these POD-NNmethods, the POD enables to identify the dominant modes of the
system, capturing themost significant features, while the NN serves as approximating the coefficients in the POD-based
Reduced Basis (RB). The ROMs techniques are often limited to Galerkin numerical approaches, therefore in practice
Finite Elements based numerical codes, see e.g. [24] and references therein. On the contrary, one of the extra interest
of the POD-NN methods is to be applicable to Finite Volume based codes. Such a combination of POD and NN has
been first introduced in [18], and later in [30]. In these pioneering studies, the method showed promising efficiency
for relatively simple PDE-based models, but also for the steady incompressible Navier-Stokes equations modeling an
academic driven cavity viscous flows. However, the application of the POD-NN method does not appear to have been
explored extensively on complex real-like cases modeled by non-linear hyperbolic systems like the one addressed in
the present study (a real-life flooding event), moreover solved by a finite volume solver. In such situations, the wave
propagation dominant feature is challenging in terms of reduction, therefore requiring an important number of modes
to accurately approximate the original system solutions.
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Paper Math. model,
num. scheme

ROM method Input vari-
able/dimension

Test case Non-intrusive?

Stefanescu et al.,
IJNMF 2014 [28]

2D SWEs
(ℎ, u, v), FD

Tensorial POD-
DEIM

time / 1 Analytical solu-
tion

Intrusive

Steinstraesser et
al., JCM 2021 [7]

2D SWEs
(ℎ, u, v), FV

POD-DEIM time / 1 Analytical solu-
tion

Intrusive

Dutta et al., JCP
2021 [11]

2D SWEs (ℎ,Q),
FE

RBF-POD time / 1 Kissimmee river
(USA)

✓

El Moçayd et al.,
EMA 2017 [? ]

1D SWEs (ℎ,Q),
FV

Generalized poly-
nomial chaos

(Q,Ks) / 2 or 4 Garonne river
(FR)

Intrusive

Strazzullo et al.,
JNMA 2022 [29]

2D SWEs, FE Galerkin POD Affinely
parametrized
(optimal control
context) / 3

Analytical solu-
tion

Intrusive

Wang et al., JCP
2019 [30]

1D Euler equa-
tions, FV

POD-NN (t; �1, �2) (IC
param.) / 3

Shock tube ✓

Ghorbanidehno
et al., AWR 2020
[16]

2D SWEs
(ℎ, u, v), FE

POD-NN Velocity data (In-
verse pb context)
/ 11

Real rivers por-
tions (USA)

✓

Table 1
A few references of ROM applied to SWEs (or Euler equations). (FV) Finite Volumes, (FE) Finite Elements, (FD) Finite
Differences.

In this work, we extend the aforementioned POD-NN method by learning, in addition to the reduced (projected)
solution, the projection error, through an additional NN. For non-linear convection-dominated or hyperbolic systems
such as the one considered here, this enhancement turns out to be beneficial for constructing an accurate, robust and
light surrogate model. Indeed, it allows for the correction of the reduced solution obtained from the standard POD-NN
method while limiting the output dimension of the NNs, i.e., the dimension of the reduced spaces. Obtaining smaller
latent spaces, and therefore smaller dimensions for regression within the context of NNs is of great interest for several
reasons. In particular, it prevents over-fitting during the learning phase, thereby promoting better generalization of the
resulting model, and it facilitates explainability, see e.g., [6, 22, 3]. Indeed, whenever possible, lower-dimensional and
sparse representation systems are preferred for these reasons [22]. Ultimately, the proposed method preserves twofold
advantages of the original POD-NN method: (i) it is generic, meaning it can be applied to any PDEs based problems
solved by any discretization schemes (FV or FE for example); (ii) it is non-intrusive as it only requires to run, in a
black-box fashion, the high-resolution model code multiple times in the offline phase. Due to the incorporation of this
error-learning step, we refer to our approach as an Error-Aware POD-NN (EA-POD-NN) reduction method.

The paper is organized as follows. After this introduction, Section 2 introduces the considered parametrized 2D
SWEs model, and its numerical resolution. Then, Section 3 presents, in a general manner, the developed EA-POD-
NN methodology. It outlines the steps involved in the offline and online phases of the method and describes the
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corresponding algorithms. Particular care is given in this section to highlight the limitations of the existing POD-
NN approach, thereby motivating the integration of the projection error within the process. Section 4 presents the
numerical experiments conducted to evaluate the performance and accuracy of the EA-POD-NN method. It discusses
the selected SWEs problems, the setup of the simulations, and the comparison of results between the initial high-
resolution model and the ROM using the proposed EA-POD-NN approach. Eventually, Section 5 provides a brief
conclusion, summarizing the key findings and main contributions of this study, and identifying potential areas for
future research based on the proposed approach.

2. The �-parametrized model and the reference high-resolution solutions

In this section, first, the general concept of High-Resolution (HR) solutions corresponding to a given set of input
parameters is recalled. Next, the flow model considered in our study is presented, followed by a discussion of the
numerical scheme and computational software employed to solve it.

2.1. Basic principle of the high-resolution solutions generation

The reduction method developed in this study can be formally applied to any �-parametrized non-linear PDE-based
model with the input parameter � = (�1,… , �N�

) ∈ ℝN� , which typically represents a set of physical parameters in
the bulk and/or boundary condition parameters. From a reduction point of view, the important characteristic of � is its
dimension N�: N� has to be quite small, say N� = (10) at most, otherwise an upstream reduction of � should be
considered in a pre-processing step e.g., based on the use of autoencoder [16].

More precisely, we set  such that � ∈  with dim() = N�. A set of Ns parameters are fixed by sampling
in some way the parameter space . We obtain the reference parameter set Ps = {�s}

Ns
s=1, Ps ∈ ()Ns . Next, the

�-parametrized model, denoted as �, is employed to generate theNs corresponding vector solutions uℎ: this is the
classically called HR solutions set, also called the snapshots set. These snapshots uℎ are stored in the so-called snapshot
matrix:

S =
[

uℎ(�1)|… |uℎ(�Ns
)
]

. (1)

2.2. The �-parametrized mathematical and numerical flow model

In the developed application, the considered model� relies on the 2D SWEs, employed in particular to simulate
river and floodplain flows dynamics. In this context, the parameter � could be related to boundary conditions, to the
initial conditions, or to the friction coefficient, etc.
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We denote by ℎ(x, t) (m) the water depth and by q(x, t) (m2s−1) the discharge. We have q = ℎU, where
U = (vx, vy)T (ms−1) denotes the depth-averaged velocity. For a given computational domain Ω ⊂ ℝ2 and a time
interval [0, T ], the 2D SWEs model is considered in its conservative form as:

(�)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

)tℎ + div(q) = 0 in Ω × ]0, T ]
)tq + div

(

q⊗ q
ℎ

+ gℎ
2

2
Id

)

= Sg(�;ℎ) + Sf (�;ℎ,q) in Ω × ]0, T ]
plus Initial Conditions, plus Boundary Conditions (B.C.)(�)

(2)

In the above equation, Sg(�;ℎ) is the gravity source term: Sg(�;ℎ) = −gℎ∇zb, with g the gravity magnitude and zb
the bed elevation; and Sf (�;ℎ,q) is the friction source term: Sf (�;ℎ,q) = −g n

2
‖U‖
ℎ7∕3

q, with n the Manning-Strickler
friction coefficient. The B.C. is a mix of conditions necessary for real-world applications. The domain boundary is
decomposed as )Ω = Γin ∪ Γwall ∪ Γout. At the Nin inflow boundaries (Γin = ∪Nink Γin,k), a discharge time series
Qin,k(�; t) is imposed on Γin,k for t ∈]0, T ]. On Γwall, the standard non-penetration conditions are imposed, i.e. q.n = 0
with n the normal vector to the boundary. At the outflow boundary Γout, a water elevationHout is prescribed. The initial
conditions (IC) consists in a steady state solution obtained for the inflow discharge value corresponding to the begining
of the hydrograph that will be used for the flood simulation, starting from no water over Ω. We refer to [27] for more
technical details.
For the forthcoming presentation of our reduction method in a general manner in Section 3, we denote by uℎ = (ℎ,q) =
(ℎ, ℎU) = (ℎ, qx, qy) the HR solution field of (2).

In this work, our primary focus is on the most important input parameter for operational users; that is, the inflow
discharge signal at upstream (inflow B.C.). Consequently, in the numerical applications, the � parameter will be related
to the discharge functionsQin,k(�, t). Moreover, as we are dealing with a time-dependent problem, we include the time
as a parameter (i.e., into �) as it represents a dimension in the space . We will therefore introduce tsn that refers to
the time sampling of the snapshots.

Given a parameter value �, the 2D SW system � is here numerically solved by the Finite Volume (FV) method
implemented into the open-source computational software DassFlow 2D [27, 21]. The solver relies on a well-balanced
Godunov-type scheme, using the hydrostatic reconstruction proposed by [2], and the explicit Euler time scheme with
adaptative time step to satisfy a target CFL (0.5 here). The mesh can consist in a mix of triangles and quadrangles.
The DassFlow 2D kernel code is written in Fortran 90, using MPI library. Moreover, the Fortran computational kernel
is wrapped in Python. This allows for seamless integration of these physics-based computations with other Python
libraries. These libraries can serve various purposes, in particular Python libraries like PyTorch for deep learning.
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3. The Error-Aware POD-NN reduction method

Let us now detail the proposed reduction method that allows to construct an efficient and accurate surrogate model,
here applied to the 2D SWEs-based model �. The presentation in this section is crafted in a general manner as
the proposed approach is generic and, consequently, can be applied in various contexts. Specifically, the presentation
follows the different aspects of the method, namely (i) the projection onto a RB, (ii) the POD technique for constructing
the RB, (iii) the learning of coefficients of the reduced solution using a deep NN, and (iv) the involvement of the
projection error.

3.1. Reduced basis and projection

Our method being based on a RB approach, let us start by properly defining the complete space, the reduced space
through its RB, and the relations between both. For illustration purpose, one can refer to Fig. 1 which will be detailed
in the following.

Let us denote Vℎ as the initial complete functional space that contains the discrete solution computed using the
HR model. Additionally, we introduce the basis of shape functions Φ(x) = {'i(x)}Nℎ

i=1 that generates Vℎ, meaning that
Vℎ = span Φ(x) with dim(Vℎ) = Nℎ. Then, let us define the reduced space Vrb ⊂ Vℎ such that Vrb = span Ξ(x), where
Ξ(x) = {�n(x)}

Nrb
n=1 constitutes the RB. Therefore, we have dim(Vrb) = Nrb, and we expect Nrb << Nℎ. Ultimately,

the initial complete solution uℎ(�; x) and the reduced one urb(�; x) can be written in algebraic form as follows:

uℎ(�; x) = �(x)T uℎ(�) ; urb(�; x) = �(x)T urb(�). (3)

Here,�(x) (respectively,�(x)) and uℎ(�) (respectively, urb(�)) are vectors inℝNℎ (resp. inℝNrb ) that collect the shape
functions and associated coefficients. In the remainder of this section, since the spaces Vℎ and Vrb remain constant for
all values of � ∈ , we will omit the dependence of the solutions on � for more simplicity in the notations.

Remark 1. Note that the definition of Vℎ encompasses all common discretization methods encountered in scientific
computing, such as FE, FV,DiscontinuousGalerkin, and so on. For instance,Φ(x) simply represents the nodal Lagrange
shape functions in the FE context or corresponds to constant functions per cell in a FV framework. In our application,
we will focus on the FV method, but it is worth noting that the proposed approach is applicable to other contexts, as
will be underlined later.

As a first relation between the two spaces, we can construct the matrix Brb ∈ ℝNℎ×Nrb , which encodes the change
of variables from the RB Ξ(x) to the complete one Φ(x). More precisely, it is defined as:

Brb =
[

�1|… |�Nrb

]

, (4)
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where �n denotes the vector gathering the coefficients of function �n(x) in the complete basis Φ(x). Thus, we can
write:

�(x) = BTrb�(x), (5)

and it follows that any reduced solution urb(x) ∈ Vrb can be represented in the complete basis Φ(x) as:

urb(x) = �(x)T urb = �(x)TBrburb = �(x)T u
Nℎ
rb . (6)

where

uNℎ
rb = Brburb ∈ ℝNℎ (7)

refers to the vector that contains the coefficients of the reduced solution urb(x) in the complete basis Φ(x).
Next, as a second relation, we can express the orthogonal projection from the complete space Vℎ onto the reduced

space Vrb. In our application, since the numerical solution is discretized using piecewise constant functions (see
Remark 1), we will simply consider the L2-scalar product. With this in mind, the projection matrix Prb ∈ ℝNℎ×Nℎ is
such that:

∀uℎ ∈ ℝNℎ , Prbuℎ = Brb BTrbuℎ = Brbu
Nrb
ℎ , (8)

where

uNrb
ℎ = BTrbuℎ ∈ ℝNrb (9)

refers to the vector that collects the coefficients in the RB Ξ(x) of the projection of uℎ(x) onto the reduced space Vrb
(see Fig. 1). With all this in hand, we can eventually define the projection error of uℎ(x) onto Vrb in the algebraic form
as follows:

eℎ = uℎ − Prbuℎ = uℎ − Brbu
Nrb
ℎ = uℎ − BrbBTrbuℎ, (10)

where eℎ ∈ ℝNℎ (see Fig. 1 again).
The key point now is to build a RB, or equivalently the matrix Brb, such thatNrb is small and Prbuℎ ≈ uℎ, meaning

eℎ ≈ 0 for any � ∈ . This will be performed with the classical POD method, which is outlined in next Section.
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Complete space:

Reduced space: Projection onto 

Solution in 

Projection error:

Figure 1: Schematic representation of the different spaces: Vℎ is the initial complete space (associated basis �(x)); Vrb ⊂ Vℎ
is the reduced space (associated basis �(x)); Nℎ and Nrb are the dimensions of Vℎ and Vrb, respectively; Brb is the change of
variables matrix; uNrbℎ is the projection vector in �(x) of uℎ onto Vrb; and eℎ is the corresponding projection error (expressed
in basis �(x)).

3.2. The POD reduced basis

The POD method is far from recent (see, e.g., [20]) and is now widely used in many fields of scientific computing
(refer to the following books [24, 17, 5] to name a few). The interest of the POD strategy is that it leads to a RB that
is optimal in a chosen norm with respect to a collection of complete solutions.

Starting with the snapshot matrix S ∈ ℝNℎ×Ns (See Eq. (1)), the principle of the POD method is to perform a
Singular Value Decomposition (SVD) and to retain the most significant left singular vectors. These retained singular
vectors constitute the POD modes that form the RB. For the SVD, we build the correlation matrix C as follows:

C = S ST . (11)

Note that, again, we use here theL2-scalar product due to the regularity of our discrete fields (see Remark 1). The next
step is to compute the eigenvalues {�i}Nℎ

i=1 (�i ∈ ℝ+) and eigenvectors {�i}Nℎ
i=1 (�i ∈ ℝNℎ and ‖�i‖L2 = 1) ofC, which

correspond, respectively, to the squares of the singular values and the left singular vectors of S: C �i = �i �i, 1 ≤

i ≤ Nℎ. Finally, Brb (introduced in Eq. (4)) is simply constructed with theNrb vectors {�i}Nrb
i=1 associated with theNrb

largest {�i}Nrb
i=1 .

Let us observe at this stage that BrbBTrb ≠ INℎ
since Prbuℎ = BrbBTrbuℎ only approximates uℎ due to the fact that

Vrb ⊂ Vℎ (remind Eq. (8) and Fig. 1). An error estimation is actually available in this context. More precisely, let us
define the space of semi-orthonormal matrices of dimensionNrb: ⊥Nrb

= {B ∈ ℝNℎ×Nrb , BTB = INrb
}. The interest

of the POD matrix Brb is that it minimizes, over all possible Nrb-dimensional semi-orthonormal matrices B ∈ ⊥Nrb
,

the projection error (10) onto the whole set of snapshots. Mathematically, this reads:

Ns
∑

s=1
‖uℎ(�s) − BrbBTrbuℎ(�s)‖

2
L2 = min

B∈⊥Nrb

Ns
∑

s=1
‖uℎ(�s) − BTBuℎ(�s)‖2L2 =

Nℎ
∑

s=Nrb+1
�s, (12)
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which result from the Schmidt-Eckart-Young theorem, see, e.g., [24].
Benefiting from the above error estimation, the dimension of the RB can be fairly defined. In practice, Nrb is

defined as the minimal value such that:

R(Nrb) =
∑Nrb
i=1 �i

∑Nℎ
i=1 �i

≥
(

1 − �2POD
)

, (13)

meaning that the signal of the snapshots captured by the most significantNrb PODmodes is conserved (in theL2-norm
here) within (100 − �POD)%. The chosen value for "POD will be specified and accounted for in Section 4.

The construction of the RB is obviously performed during the offline phase. This actually constitutes the initial
step of the present reduction method (refer to Algorithm 1 for an overview of the complete offline phase carried out
in this work). Once again, it is worth noting that the strategy employed so far can be applied to any �-parametrized
model, solved by any discretization method. It only requires theNs HR solutions to form the snapshot matrix S.
3.3. The POD-NN method

The goal now is to compute, for a new set of parameters �new ∈  which does not belong to Ps, a good
approximation of the complete solution uℎ(�new; x) (or equivalently of the complete solution vector uℎ(�new)) in the
reduced space Vrb. To achieve this, the novel method proposed in the present study relies on an enriched version of the
POD-NN method first introduced in [18]. In the present section, we detail the original POD-NN method.

The POD-NNmethod basic idea is to start from the projection defined in Eq. (8) (see also Fig. 1) and to learn, using
a deep NN, the coefficients in the RB Ξ(x) of the projection of uℎ(�new) onto Vrb; that is, to learn uNrbℎ (�new) ∈ ℝNrb ,
see Eq. (9). More precisely, let us introduce the following mapping:

F1 ∶  ⊂ ℝN� → ℝNrb

� ↦ uNrb
ℎ (�) = BTrbuℎ(�).

(14)

It maps each set of input parameters � ∈  to the coefficientsBTrbuℎ(�) in the RBΞ(x) of the projection of the complete
solution uℎ(�) onto Vrb.

In the offline phase, this non-linear mapping F1 is approximated by employing an artificial NN, particularly a
multi-layer perceptron (see Fig. 2). In practice, training the aforementioned NN can be performed using supervised
learning based on input-output pairs obtained from the snapshots S (see Eq. (1)). Denoting by1(�1)(�) the considered
NN with associated parameters (weights and biases) gathered in vector �1, this leads to minimizing the following loss
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function for the training:

1(�1) =
1
Ns

Ns
∑

s=1
‖1(�1)(�s) − BTrbuℎ(�s)‖

2
L2 , (15)

Training 1 constitutes Step 8 of our offline phase, see Algorithm 1.

(or          )

(or        )

(or                     )

(or            )
(or      ):

Figure 2: NN approximation of the map F1, see Eq. (14) (or F2, see Eq. (19)). Note that N�, Nrb and Ner are on the order
of 10. In practice the hidden layers are taken with the same number of neurons and the latter is larger than the numbers
of input and output neurons (see Section 4 for the exact chosen values).

Remark 2. It is important to notice at this stage that the reduction step, which transforms uℎ ∈ ℝNℎ into uNrb
ℎ ∈ ℝNrb

with Nrb << Nℎ is crucial in the process. This step allows to obtain only a few ouput neurons for the NN (in our
application Nrb = (10), see Section 4), making it possible to consider a deep NN with a number of parameters N�1

(i.e., �1 ∈ ℝN�1 ) reasonable compared to the number of data (i.e., the Ns snapshots) during training. Of course, for
the same reason, the number of input neurons of the network must be low, i.e., the number of physical parametersN�

(� ∈ ℝN� ) must be small, which is also a limitation ofmore conventional reducedmethods that require the computation
of snapshots beforehand (the largerN�, the larger the number of snapshots).

Next, during the online phase, all that is required is to perform a forward pass of the NN1 given a new (unseen)
set of physical parameters �new and the optimized �1 obtained after training. This process computes the reduced
coefficients urb(�new) and is known to be very fast, as the forward evaluation of a NN simply involves affine and
element-wise activation transformations. This makes the online phase achievable in real-time. Finally, the reduced
solution can be written in the original basis Φ(x) using Eq. (7): uNℎ

rb (�new) = Brburb(�new) ∈ ℝNℎ (which is also very
fast to perform). In particular, this allows the utilization of existing subroutines from the initial computational code
for post-processing. The entire online phase performed in this work is summarized in Algorithm 2. The procedures
mentioned above correspond to Steps 1 and 2 of the online phase.
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Remark 3. In the proposed method, we ultimately only need to utilize the initial computational code associated with
the HR model� in a black-box fashion to run it multiple times (Ns times) with different parameters. Subsequently,
the method is entirely independent of the considered HRmodel� and underlying code since, in particular, the online
phase is decoupled from�. Consequently, the method has the twofold advantages of being generic (it can be applied
to any type of problem solved by any discretization method), and non-intrusive (we never need to delve into the code
itself). Here, we leverage on these properties to apply the strategy to a non-linear problemwith a non-affine dependence
on the parameters and where a Galerkin approach is not used at the discretization level, which is a well-known scenario
in which traditional reduced-order methods fail.

3.4. The Error-Aware POD-NN method

The POD-NN method considered so far requires the ability to strongly reduce the dimension of the problem. More
precisely, we need to have Nrb = (10), so that it is possible to employ a deep NN with a number of parameters N�1

reasonable compared to the number snapshots Ns (see Fig. 3 that illustrates the different constraints). Therefore, in
some situations, especially in the case of convection-dominated flow problems, it is requested to further enhance the
accuracy of the method to mitigate the Kolmogorov barrier to reducibility (see, e.g., [4] for the concept of reduction
complexity). To achieve this in a straightforwardmanner withminimal computational overhead, we propose to integrate
the ROMerror estimation. Note that this generic idea has been developed, e.g., in [31]within the framework ofGaussian
processes. The idea is here to learn, in addition to the projection of uℎ(�) onto Vrb, the projection error introduced in
Eq. (10) (see also Fig. 1):

eℎ(�) = uℎ(�) − BrbBTrbuℎ(�), (16)

and to benefit from the latter to correct the reduced solution obtained so far.
For this purpose, we follow the same procedure used to construct the reduced solution, but this time starting with

the snapshot error matrix E ∈ ℝNℎ×Ns :

E =
[

eℎ(�1)|… |eℎ(�Ns
)
]

, (17)

which collects the projection errors of the already computed snapshots {uℎ(�s)}Ns
s=1 (see Eq. (1)). Consequently, we

first apply the POD strategy (same operations as in Section 3) to compute the corresponding error RB {�n(x)}
Ner
n=1

(where we again anticipateNer << Nℎ) or, in practice, the error RB matrix Ber ∈ ℝNℎ×Ner :

Ber =
[

�1|… |�Ner

]

. (18)
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Figure 3: Due to a high reduction complexity for convection-dominated problems, (see, e.g., [4] for the concept of the
Kolmogorov barrier to reducibility), it appears beneficial to complement the basic POD-NN method with the projection
error learning to achieve an accurate solution. Indeed, without it (see red path), a large Nrb is needed, which implies a
large number of output neurons and therefore a large N�1 , requiring potentially a large amount of data for training, i.e., a
large Ns. Conversely, with the projection error learning (see green path), Nrb et Ner can be limited (here Nrb = (10) and
Ner = (10)), resulting in two ANNs of reasonable size (N�1 and N�2 reasonable), and thus a potential reasonable number
of snapshots for training.

Note that Ber also serves as the change-of-variable matrix from basis {�n(x)}Ner
n=1 to the initial complete one Φ(x). At

this stage, similarly as in Eq. (14), we introduce the following mapping:

F2 ∶  ⊂ ℝN� → ℝNer

� ↦ eNer
ℎ (�) = BTereℎ(�),

(19)

which maps each set of input parameters � ∈  to the coefficientsBTereℎ(�) of the projection of the error eℎ(�) onto the
subspace spanned by {�n(x)}Ner

n=1. The remaining task of the extended offline phase is therefore to train a new artificial
NN, denoted by2(�2)(�), to approximate the non-linear mapping F2 (refer to Fig. 2 once again). As for the reduced
solution, the latter is performed by minimizing the following loss function:

2(�2) =
1
Ns

Ns
∑

s=1
‖2(�2)(�s) − BTereℎ(�s)‖

2
L2 . (20)

For a better understanding and conciseness, the additional operations to learn the projection error in the offline phase
are outlined in Algorithm 1 (see Steps 6, 7 and 9).

Remark 4. It is important to notice at this stage that the reduction step, which transforms uℎ ∈ ℝNℎ into uNrb
ℎ ∈ ℝNrb

with Nrb << Nℎ is crucial in the process. This step allows to obtain only a few ouput neurons for the NN (in our
application Nrb = (10), see Section 4), making it possible to consider a deep NN with a number of parameters N�1
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(i.e., �1 ∈ ℝN�1 ) reasonable compared to the number of data (i.e., the Ns snapshots) during training. Of course, for
the same reason, the number of input neurons of the network must be low, i.e., the number of physical parametersN�

(� ∈ ℝN� ) must be small, which is also a limitation of more conventional reduced methods based on POD.

Next, during the online phase, it is possible to estimate the projection error at a new set of physical parameters
�new by simply performing a forward pass of the NN 2 using the optimized �2 obtained after training. The reduced
projection error can also be written in the original basis Φ(x) such as: eNℎ

rb (�new) = Bererb(�new) ∈ ℝNℎ . In this basis,
we eventually complement the former reduced solution uNℎ

rb (�new) of Section 3 with the present projection error, which
yields the final corrected reduced solution as follows:

(

uNℎ
rb (�new) + e

Nℎ
rb (�new)

)

= ũNℎ
rb (�new) ≈ uℎ(�new). (21)

The overall online phase is outlined in Algorithm 2; more precisely, Steps 3 to 5 constitute the additional operations
to perform to correct the initial reduced solution with a learning of the projection error. This phase can be carried out
very quickly since it merely consists in performing forward passes of trained NNs.

Remark 5. Let us note here that the computational overhead of the proposed methodology compared to the standard
POD-NN method is negligible. Indeed, the training of the second NN can be conducted in parallel with the first during
the offline phase (steps 8 and 9 of Algorithm 1 can be executed concurrently), and similarly, the evaluation of the
reduced solution and its correction can be performed in parallel (steps 1-2 and 3-4 can be carried out concurrently in
Algorithm 2).

As mentioned in the introduction, because our approach incorporates NNs with POD and takes into account the
projection error, we refer to it as an Error-Aware POD-NN reduction method. Complementing the POD-NN strategy
with the projection error enables to attain higher accuracy while preserving a limited number of POD modes, thus
providing the opportunity to employ smaller NNs therefore with much less parameters. This may lead to the utilization
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of less data (the snapshots) for training, better generalization of the model, and simpler explainability [6, 22, 3].

Algorithm 1: The Error-Aware POD-NN reduction method: the offline phase
function [Brb,1(�1), Ber,2(�2) ] = POD-NN-OFFLINE(Ns, "POD).

1. Generate the reference parameters values by sampling the hypercube : Ps = {�s}Ns
s=1 ∈ ()

Ns .
2. Compute the associated complete numerical solutions with the HR model and form the snapshot matrix:
S =

[

uℎ(�1)|… |uℎ(�Ns
)
]

∈ ℝNℎ×Ns .
3. Build up the correlation matrix C = S ST ∈ ℝNℎ×Nℎ .
4. Compute its eigenelements (�i, �i)Nℎ

i=1, with �i ∈ ℝ+ and �i ∈ ℝNℎ
(

‖�i‖L2 = 1
):

C �i = �i �i, 1 ≤ i ≤ Nℎ.
5. Take theNrb vectors {�i}Nrb

i=1 associated with theNrb largest {�i}Nrb
i=1 (by using criterion (13) based on "POD)

to form the RB matrix: Brb =
[

�1|⋯ |�Nrb

]

∈ ℝNℎ×Nrb with Nrb << Nℎ.
6. By making use of the POD projection error defined as eℎ(�) = uℎ(�) − BrbBTrbuℎ(�), form the snapshot error

matrix: E =
[

eℎ(�1)|… |eℎ(�Ns
)
]

∈ ℝNℎ×Ns .
7. Apply the POD procedure to E (see Steps 3 to 5 above) to compute the error RB matrix:
Ber =

[

�1|… |�Ner

]

∈ ℝNℎ×Ner with Ner << Nℎ.
8. Train artificial NN 1 which approximates mapping F1 defined in (14), by minimizing the loss function

1(�1) =
1
Ns

∑Ns
s=1 ‖1(�1)(�s) − BTrbuℎ(�s)‖

2
L2
.

9. Train artificial NN 2 which approximates mapping F2 defined in (19), by minimizing the loss function
2(�2) =

1
Ns

∑Ns
s=1 ‖2(�2)(�s) − BTereℎ(�s)‖

2
L2
.

Algorithm 2: The Error-Aware POD-NN reduction method: the online phase (real-time computations)
function [uNℎ

rb (�new)] = POD-NN-ONLINE(�new; Brb, 1(�1), Ber, 1(�2)).
1. Given a new set of input physical parameters gathered in �new, and taking the optimal �1 obtained from

Algorithm 1 (Step 9), evaluate the output urb(�new) of artificial NN 1.
2. Deduce the reduced solution in basis Φ(x): uNℎ

rb (�new) = Brburb(�new) ∈ ℝNℎ .
3. Given the same new set of input parameters �new, and taking the optimal �2 obtained from Algorithm 1 (Step

10), evaluate the output erb(�new) of artificial NN2.
4. Deduce the reduced projection error in basis Φ(x): eNℎ

rb (�new) = Bererb(�new) ∈ ℝNℎ .
5. Deduce the final corrected reduced solution: ũNℎ

rb (�new) = u
Nℎ
rb (�new) + e

Nℎ
rb (�new).
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4. Numerical experiments and discussions

In this section, we numerically evaluate the proposed EA-POD-NN method on a real-world flooding event of
relatively high magnitude occurred on the Aude River in the southeastern region of France in 2018. The flood
hydraulic model was built in [14] based on HR terrain elevation data provided by IGN (French geographical national
institute) and hydrometeorological data from SCHAPI (French national flood forecasting center) and Météo France.
The DassFlow 2D software [27, 21] is employed for numerically solving the 2D SWEs following the FV numerical
scheme described at the end of Section 2.2. The spatial domain Ω represents a floodplain located at the confluence
of the Aude and Fresquel rivers. This domain is discretized using a triangular unstructured mesh (with 7 267
elements), refined along the rivers and generated using Gmsh [15]. It is inflowed by two real hydrographs Qin,k(�, t)
at 2 upstream points on )Ω the border of Ω (see Fig. 4). The open-source software DassFlow 2D is available on
GitHub (https://dasshydro.github.io/codes_presentation/pres_dassflow/). Additionally, the datasets can be obtained
upon request for traceability purposes.

Again, the primary focus is on the �-parameter related to the inflow discharge functions which is the most important
factor controlling flooding dynamics, particularly crucial in operational context where fast and accurate hydraulic
simulations of flooding are needed after hydro-meteorological forecasts of discharge. In this context, two test cases
are carried out, representative of real complexity of concomitant or not flood inflows (therefore different intensities of
non-linear waves interactions):

1. Case A) The two inflows are simultaneous.
In this case, the classical POD-NN method with Nrb = 5 modes only turns out to be sufficient to satisfactorily
reduce the flow model.Nrb = 5 corresponds to the tolerance �2 = 10−2 in Eq. (13).

2. Case B) The two inflows are non-simultaneous therefore involving more complex non-linear waves interactions.
In this case, the classical POD-NN method with Nrb = 5 modes only struggles to accurately reproduce the
solution. On the contrary, the proposed EA-POD-NN method enables to provide a good accuracy withNrb = 5

andNer = 16 (corresponding to �2 = 10−1 in Eq. (13).

Moreover, a last section proposes a comparison of the two methods in particular in terms of NNs dimensions.
Let us introduce at this stage some notations for the physical and numerical quantities that will be used throughout

this section, especially in the majority of the figures:

• U =
√

v2x + v2y denotes the velocity norm in (ms−1).

• ℎref in (m) (resp. Uref in (ms−1)) denotes the reference 2D hydraulic model water depth (resp. the reference 2D
hydraulic model velocity norm).
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• ℎPOD-NN in (m) (resp. UPOD-NN in (ms−1)) denotes the approximated water depth (resp. the approximated
velocity norm) with the POD-NN method. Similarly, ℎEA-POD-NN in (m) (resp. UEA-POD-NN in (ms−1)) denotes
the approximated water depth (resp. the approximated velocity norm) with the EA-POD-NN method.

• "ℎ(x, t) = (ℎref − ℎPOD-NN) or "ℎ(x, t) = (ℎref − ℎEA-POD-NN), resp. "U (x, t) = (Uref − UPOD-NN) or
"U (x, t) = (Uref − UEA-POD-NN), denotes the difference between the reference solution ℎref (resp. Uref ) and
the approximated solution ℎPOD-NN or ℎEA-POD-NN (resp. UPOD-NN or UEA-POD-NN).

• Finally, "ℎ(t) (resp. "U (t)) denotes the spatial average over Ω of the error on water depth (resp. of the error on
velocity norm).

4.1. General design of the numerical experiments

To start with, we outline here the design of the numerical experiments considered to reduce the 2D hydraulic
simulation of the 2018 flood event that occurred in the southeastern region of France. This event was characterized
by intense rainfall on upstream catchments, river overflow, and extensive flooding over the studied domain Ω. The
maximal submersion depths and flow velocity norm over the floodplain simulated by the reference 2D hydraulic model
are shown in Fig 4(Top), along with the real hydrographs from gauging stations that are used as inflows. A T = 60h

simulation time period is chosen for the reference 2D SWmodel numerical solution, to enable sufficient time for flood
propagation and recession over the domain Ω.

4.1.1. Representation of the inflows signals

Anecessary condition to apply the reductionmethodwithout additional pre-processing is to have an input parameter
� of quite small dimension: N� = (10) (see sections 2 and 3). Hence, an effective representation of inflows is
performed using a minimal number of key parameters: the maximum peak flow discharge Qmax (m3s−1), and the
corresponding time of peak tpeak (ℎ), defined as tpeak = (tmax − t0) the duration between t0 the onset of rising water
levels and tmax the corresponding attainment of Qmax, see Fig. 4 (Top right) for the first inflow (red curve). In this
manner, hydrographs are approximated using triangular signals, see Fig. 6(bottom): we will henceforth refer to them
as input triangular hydrographs in comparison to real input hydrographs. Therefore, in the present case, we have two
input signals, each dependent on 2 parameters: Qin,k(tpeak,k, Qmax,k; t) for k = 1, 2. The concept of utilizing Qmax and
tpeak as representative parameters is rooted in their ability to characterize the fundamental aspects of flood initiation.
Qmax quantifies the peak discharge intensity, reflecting the maximum flow rate reached during the flood. On the other
hand, tpeak encapsulates the time it takes for the river to transition from its initial state to the point of maximum
discharge, offering insights into the flood’s temporal evolution. This simple parameterization enables to represent the
inflow hydrographs while preserving their essential features, i.e. peak flow magnitude and timing, therefore ensuring
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Figure 4: (Top) The reference 2D hydraulic model of the 2018 flood on the Aude River domain Ω at t = 25.2h around
maximum flooding. (Left) The water depth ℎref in (m). (Middle) The velocity norm Uref in (ms−1). (Right) The real input
hydrographs from gauging stations; (Red) for the Aude river Qin,1 with tpeak,1 = 11.94h and Qmax,1 = 922m3s−1, (Blue) for the
Fresquel river Qin,2 in m3s−1 with tpeak,2 = 9.16h and Qmax,1 = 198m3s−1; the black line corresponds to maximal flooding time
at which spatial maps are plotted. (Bottom) Comparison between the reference 2D hydraulic model inflowed by the real
or triangular hydrographs. We recall that the triangular hydrographs are characterized by a piecewise linear approximation
from the flood start time t0 to the peak time tpeak and to the recession end, see also Fig. 6(bottom). (Left) difference in
terms of "ℎ on water depth ℎ, (Middle) difference in terms of "U on velocity norm U . (Right) Temporal variation of the
spatially averaged absolute difference |

|

"ℎ|| for ℎ, ||"U || for U , and the errors "Qin,1 and "Qin,2 of reproduction of real inflow
hydrographs with triangular ones.

consistent flood inundationmodeling as shown by the limited errors in space and time on submersion depth and velocity
norm between the reference 2D SWmodel run with real or triangular hydrographs, see Fig. 4(Bottom). In particular, the
errors are relatively lower at peak time and maximum flooding rather than during more dynamic phases of submersion
and recessions i.e. corresponding to hydrograph rising limb and also during recession.

As mentioned previously, two test cases are considered with different input parameters, corresponding to increas-
ingly complex inflow signals and resulting SW model responses over the floodplain:

1. Case A): simultaneous inflow hydrographs: � = (tpeak, Qmax,1, Qmax,2; tsn), soN� = 4.
2. Case B): non-simultaneous inflow hydrographs: � = (tpeak,1, Qmax,1, tpeak,2, Qmax,2; tsn), soN� = 5.

For both cases, the different steps of Algorithm 1 are performed to achieve the offline phase of the reduction method
(see Section 3). Case-specific parameters values are detailed for each experiment in the following paragraphs.

Note that considering more complex inputs such as more inflow BCs with temporal variations and/or spatially
distributed forcing term such as rain signal (i.e. a source term into the mass equation), that is an input dimension
N� > (10), an upstream reduction (for example using an AutoEncoder) would be needed as remarked in Section 2.1.
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4.1.2. Snapshots matrix construction

Here, the array Ps = {�s}Ns
s=1 (see Section 2.1) ofNs parameters sets is obtained by uniformly samplingM times

the discharge related parameters in � considering upper and lower bounds around the reference values of the 2018 real
flood hydrographs (the detailed values will be specified later). The last parameter tsn defines the Nt physical times
at which the snapshots of the reference 2D SW model are computed. It is fixed a priori in function of the response
dynamics of the physical model to reduce. Overall, we haveNs =M ×Nt.

Remark 6. It is important to note that the snapshot time parameter tsn conditions the capture of information in the
reduction process of the physical model. Here hydraulic simulations were performed over a span of 60 hours. However,
in the context of SW model reduction, we select the time interval starting from the point corresponding to the onset
of rising water levels for the inflows. This selection allows us to concentrate on the period where the flood dynamics
exhibit significant changes, aligning with the goals of SW model reduction. Also, this approach ensures that the NNs
focus on capturing meaningful flow variations that occur starting from the rising phase.

Next, for each pair of inflow hydrographs Qin;k=1,2(�s, t), we compute the model output vectors uℎ(�s) =

[hs, vsx, v
s
y]
T which is of dimension Nℎ = 3 × Nx = 21 801, where Nx = 7 267 counts the number of cells of

the mesh covering Ω. Note eventually that each model output h, vx or vy consists in Nt temporal snapshots of model
outputs spatial fields. This enables to obtain the (Nℎ ×Ns) snapshot matrix S as follows:

S = [h, vx, vy]T =

⎡

⎢

⎢

⎢

⎢

⎣

h(�1; x)| ⋯ |h(�Ns
; x)|

vx(�1; x)| ⋯ |vx(�Ns
; x)

vy(�1; x)| ⋯ |vy(�Ns
; x)|

⎤

⎥

⎥

⎥

⎥

⎦

.

Once S is built, one can perform the other steps of the offline phase for the POD-NN and EA-POD-NN algorithms (see
Algorithm 1).

4.1.3. RB matrix construction

The second step involves constructing the reduced matrix Brb ∈ RNrb×Nℎ by applying the POD method to the
snapshots matrix S. In the two cases A) and B) previously defined, we conserve 99.9% of the total energy of the system
that is �2POD = 10−2 in Eq. (13). Then, we obtain Nrb = 5. Concerning the error matrix E, we set �2er = 10−1, this
providesNer = 17 for Case A) andNer = 16 for Case B). The corresponding eigenvalues of the correlation matrix C
are presented in Fig. 5. Note that the behaviour of the eigenvalues of the correlation matrix of the errors (Cer = E ⋅ET )
is similar for both cases A) and B).
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Constraints

Case 1: Ns < Nℎ Correlation matrix C = STS of size Ns ×Ns

Case 2: Ns > Nℎ Correlation matrix C = SST of size Nℎ ×Nℎ

Last layer size: NL > Nrb

Over-fitting or not: N� vs Ns

Table 2
The conditions that must be adhered to in the the offline phase for both numerical test cases. These conditions concern
the following parameters: Ns representing the number of snapshots, N� denoting the number of parameters of the NN,
and NL indicating the number of neurons in the last layer of the NN.

Remark 7. The Kolmogorov Nrb-width [10, 24] enables to measure the degree of reductibility of model. A link
between the KolmogorovNrb-width and the PODmodel construction is presented in [24]. This link relies on the decay
of the eigenvalues. In Fig. 5, we observe a slow decay of the eigenvalues, which is typical in the case of non-linear
convection-dominated problems [4]. That is, the error in the right hand side of Eq. (12) is large. This turns the SWEs
reduction problem to be challenging.

Remark 8. For the EA-/POD-NN approach, certain numerical constraints must be adhered to. These constraints are
summarized in Tab 2.

4.2. Case A): simultaneous inflows

We present here the results obtained in Case A) involving simultaneous inflow hydrographs, and ROMs with
Nrb = 5 andNer = 17.

4.2.1. The parameter space

As mentioned above, the same tpeak for both inflows is considered here, so that the parameter reads � =

(tpeak, Qmax,1, Qmax,2, tsn) and is of dimension N� = 4. Following previous discussions, the parameters ranges are
defined as follows: tpeak ∈ [11.2, 12.69], Qmax,1 ∈ [600, 1200], and Qmax,2 ∈ [100, 400]. Then, the snapshots time
input parameter is chosen as tsn ∈ [3.6, 60]. Recapitulating, one has  = [11.2, 12.69] × [600, 1200] × [100, 400] ×

[3.6, 60]. A visual representation of the parameter set sample Ps = {�s}
Ns
s=1 with a focus around tpeak, Qmax,1, and

Qmax,2 is given in Fig. 6.
The snapshot matrix S ∈ ℝNℎ×Ns is constructed with a number of snapshots fixed as Ns = M ×Nt = 189 000

(withM = 1 000 simulations using the DassFlow software and Nt = 189 writing times, i.e. a dtw = 18min writing
time step). Note that quasi similar results could be obtained with dtw = 36min, as will be chosen for the second case
with non-simultaneous hydrographs because of memory limitations. Note finally that such writing time steps remain
significantly lower than the flood propagation time that is around 3ℎ over the studied zone.

M. Allabou et al.: Preprint submitted to Elsevier Page 19 of 37



ROM of SWEs

Figure 5: (Left) The decay of eigenvalues of the correlation matrix C (log-scales). (Right) The zoom on the first 10
eigenvalues. (Top) For the case with simultaneous hydrographs (N� = 4). (Bottom) For the case with non-simultaneous
hydrographs (N� = 5).

4.2.2. The training phase (during the offline phase)

For the training of the NNs, the data of sizeNs = 189 000 is classically partitioned into 80% for the actual training,
10% for the test and 10% for the validation. To ensure that the number of NNs parameters remains small relative to
the data dimension, we determine the number of parameters of the NN 1 as 3% (resp. of the NN 2 as 5%) of
the training data dimension Ns, yielding N�1 = 4 405 for 1 with Nrb = 5 for the output layer, and N�2 = 9 977

with Ner = 17 for the output layer of 2 in the case of simultaneous inflows (resp. Ner = 16 in the case of non
simultaneous inflows). The number of hidden layers for 1 is 10 with 20 neurons per layer and for 2 it is 10 with
30 neurons per layer. The chosen activation function is ’RELU’. We train the NNs over 10 000 epochs which leads to
"NN = 10−7 in terms of loss function. The loss function on the validation data set is observed to well decrease too.
An Adam optimizer [19] is used for the gradient descent to minimize the loss function. The latter computes the loss
between the HR projected output uNrb

ℎ (�s) = BTrbuℎ(�s) (resp. eNer
ℎ (�s) = BTereℎ(�s)), 1 ≤ s ≤ Ns, and the NN output

1(�1)(�s) (resp. 2(�2)(�s)) using the Mean Square Error (MSE), in line with Eqs. (15) and (20).
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Figure 6: Simultaneous inflows case. (Top) The sampled parameter sets Ps, blue points for offline phase, red and brown
points being random parameter sets that will be used for online prediction; (left) For the first hydrograph Qin,1 on the
Aude River and (right) for the second hydrograph Qin,2 on the Fresquel River (corresponding to red and blue hydrographs,
respectively, in Fig. 4). (Bottom) Input inflow hydrographs for (left) red and (right) brown points that will be used for
online prediction (vertical dashed lines correspond to the time of maximum flooding at which spatial error analysis will be
performed).

4.2.3. The online prediction phase

After successfully completing the training phase and optimizing the NNs parameters, we move to the prediction
stage, where the model demonstrates its ability to rapidly forecast hydraulic variables (ℎ, vx, vy)(x, t) for new parameter
values, denoted as �new. These new parameter values are in the parameter space range (�new ∈ ) but distinct from all
the points in Ps (let us recall that these new parameter values correspond to the red and brown points in Fig. 6 (Top),
which are different from the blue points that form Ps). In contrast, the chosen parameter tsn defines the times at which
the snapshots are performed in the offline phase and the prediction time in online phase. These two points �new are
carefully selected: the first (brown point in Fig. 6(Top)) is chosen to be in close proximity to the training phase data
points, while the second (red point in Fig. 6(Top)) is taken at a considerable distance from the training data points.
This deliberate selection allows us to rigorously evaluate the predictive capabilities and precision of our approximation
model. The performances obtained in reducing the 2D SWmodel are depicted in their spatio-temporal dimensions with
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several graphes (see Figs. 7 to 10), especially at maximal flooding which is a crucial instant for operational forecasting,
with related spatial statistics of "ℎ(x, tpeak) and "U (x, tpeak), but also in terms of temporal variability of "ℎ(t) and "U (t).

More precisely, spatial performances of the online solution u□(�new) at maximum flooding are first shown in Figs.
7 and 8 for �new,1 = (11.11, 800, 380; 24) (red point in Fig. 6) and �new,2 = (12, 1000, 340; 25.2) (brown point in
Fig. 6). Then, the spatial values of misfit to the reference 2D SW simulation uh(�new) are depicted at peak time in
histograms in Fig 9 and in terms of Cumulative Distribution Function (CDF) of their spatial variability in Fig. 10.
In particular, the median value of |"ℎ(x, tpeak)| (or |"U (x, tpeak)|) is 10−3 m (or 0.7 × 10−3 ms−1) with EA-POD-NN
and 3 × 10−3 m (or 10−3 ms−1) with POD-NN for �new,1. Also, the median value of |"ℎ(x, tpeak)| (or |"U (x, tpeak)|) is
2 × 10−3 m (or 10−3 ms−1) with EA-POD-NN and 5 × 10−3 m (or 4 × 10−3 ms−1) with POD-NN for �new,2.

Next, the temporal variation of errors spatial averages |"ℎ|(t) (or |"U |(t)) in Fig. 10 shows that submersion depth
(or flow velocity magnitude) stays below 0.1m (or 0.1ms−1) over the whole spatio-temporal domain for both reduction
approaches. For instance, the median error value is 0.006m (or 0.005ms−1) with EA-POD-NN and 0.0252m (or 0.016
ms−1) with POD-NN for �new,1 and 0.007 m (or 0.007 ms−1) with EA-POD-NN and 0.025 m (or 0.019 ms−1) with
POD-NN for �new,2. Also, the maximum value of the temporal variation of errors spatial averaged |"ℎ|(t) (or |"U |(t))
is 0.04 m (or 0.03 ms−1) with EA-POD-NN and 0.12 m (or 0.08 ms−1) with POD-NN for �new,1 and 0.04 m (or 0.03
ms−1) with EA-POD-NN and 0.10 m (or 0.08 ms−1) with POD-NN for �new,2.

Overall, both the classic POD-NN and proposed EA-POD-NN demonstrate good performance in reproducing flow
depth and velocity in this moderately complex dynamic flooding scenario. The accuracy achieved in both spatial and
temporal aspects of flow variables highlights the applicability of both methods for reducing the 2D SW model in this
case with simultaneous inflows. Nevertheless, a slight improvement in accuracy is already noticeable with the proposed
EA-POD-NN, suggesting that this approach may also prove high-performance in more complex flooding scenarios, as
demonstrated below.

4.3. Case B): non-simultaneous inflows

We present here the results obtained in Case B) involving non-simultaneous inflow hydrographs, and ROMs with
Nrb = 5 andNer = 16.

4.3.1. The parameter space and training phase

This case is for non-simultaneous inflow hydrographs and the parameter reads� = (tpeak,1, Qmax,1, tpeak,2, Qmax,2; tsn)

and is of dimensionN� = 5. Again, parameters ranges are defined around the values of the reference hydrograph and
are as follows: tpeak,1 ∈ [7.83, 14.77], Qmax,1 ∈ [600, 1200], tpeak,2 ∈ [7.44, 9.22], and Qmax,2 ∈ [100, 400].
In summary, one has  = [7.83, 14.77] × [600, 1200] × [7.44, 9.22] × [100, 400] × [7.2, 60]. A visual representation
of Ps, with a focus on tpeak,1, Qmax,1, tpeak,2, and Qmax,2 is given in Fig. 11.
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Figure 7: Simultaneous inflows case. Comparison of the model outputs at maximum flooding time for �new =
(11.11, 800, 380, 24.0) (red point in Fig. 6 (Top)), (Top) For the water depth ℎ. (Bottom) For the velocity norm U .
(Left) The reference solution: 2D SW model with triangular inflow, i.e. uℎ(�new) . (Middle) The difference "ℎ or "U for the
calssic POD-NN uℎ,POD−NN (�new). (Right) The difference "ℎ or "U for the proposed EA-POD-NN uℎ,EA−POD−NN (�new).

Figure 8: Simultaneous inflows case. Comparison of the model outputs at maximum flooding time for �new =
(12, 1000, 340, 25.2) (brown point in Fig. 6 (Top)), (Top) For the water depth ℎ. (Bottom) For the velocity norm U .
(Left) The reference solution: 2D SW model with triangular inflow, i.e. uℎ(�new) . (Middle) The difference "ℎ or "U for the
classic POD-NN uℎ,POD−NN (�new). (Right) The difference "ℎ or "U for the proposed EA-POD-NN uℎ,EA−POD−NN (�new).

The snapshot matrix S ∈ ℝNℎ×Ns , with a number of snapshots fixed asNs =M ×Nt = 180 225, withM = 2 025

simulations using DassFlow software andNt = 89 writing times, i.e. dtw = 36min writing time steps - chosen due to
numerical memory capacity constraints but this dtw remains significantly lower than the flood propagation time that
is around 3ℎ over the studied zone. Note that with dtw = 18min as in the previous case (results not presented): (i) the
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Figure 9: Simultaneous inflows case. The histogram of the mean and the StD of spatial values of |"ℎ| and |"U | at
maximum flooding time. (Left) For the classic POD-NN method. (Right) For the proposed EA-POD-NN method. (Top)
For �new = (11.11, 800, 380, 24.0) (red point in Fig. 6. (Bottom) For �new = (12, 1000, 340, 25.2) (brown point in Fig. 6).

POD-NN method leads to an inaccurate reduction in terms of predicted physical variables, (ii) the EA-POD-NN gives
model reduction performances that are comparable to those obtained with dtw = 36min.

Note that the training phase is performed in this case with the same tolerances and reduced dimensionNrb = 5 as in
first case (cf. section 4.1.3). The only difference is that the reduced dimension for errors reduced matrixBer ∈ ℝNℎ×Ner

isNer = 16. The number of NNs parameters areN�1 = 4 405 for1 withNrb = 5 for the output layer, andN�2 = 9 977

withNer = 16 for the output layer of2. The number of hidden layers for1 is 10 with 20 neurons per layer and for
2 it is 10 with 30 neurons per layer.

4.3.2. The prediction phase (online phase)

Evaluation against reference SW model with triangular inflows. For the prediction stage, again, we perform a
prediction for a new parameter value, denoted as �new. This new parameter value is in the parameter space range, i.e.
�new ∈ , but is distinct from all the calibration parameter sets that compose Ps. This new value �new corresponds
to the red point in Fig. 11 and is selected at a considerable distance from the training data points. Fig. 12 shows a
comparison between the reference HR solution (DassFlow solution) and the predicted solution by the EA-POD-NN
method.
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Figure 10: Simultaneous inflows case. Comparison between the classic POD-NN and the proposed EA-POD-NN methods
performances. (Top) The CDF of the absolute difference |"ℎ| or |"U |. (Bottom) The mean of the absolute difference
|"ℎ| or |"U | with respect to the real time. (Left) For �new = (11.11, 800, 380, 24.0) (red point in Fig. 6. (Right) For
�new = (12, 1000, 340, 25.2) (brown point in Fig. 6).

The prediction performances with this online phase are analyzed, in terms of "ℎ(x, t) and "U (x, t), for both POD-NN
and EA-POD-NN methods, with similar graphes as before: spatial fields of errors at maximum flooding are shown in
Fig. 12 and the corresponding values are depicted by histograms of spatial values of " at maximum flooding time in
function of physical variable values in Fig. 13. Again, reduction error is significant with the proposed EA-POD-NN
method over this more complex case with non-simultaneous hydrographs. This is confirmed by the temporal variation
and the Cumulative Distribution Function (CDF) of absolute error spatial average shown in Fig. 13 which clearly shows
that the error with EA-POD-NN is 10 times lower than with POD-NN. Namely, the median value of error on ℎ (or U )
is 0.02 m (or 0.012 ms−1) with POD-NN and 1.6 × 10−3 m (or 9 × 10−4 ms−1) with EA-POD-NN. Also, the temporal
variation of errors spatial averages |"ℎ|(t) (or |"U |(t)) are shown in Fig. 14. In the latter, the maximum values of the
temporal variation of errors spatial averaged is 0.002 m (or 0.002 ms−1) with EA-POD-NN and 0.44 m (or 0.27 ms−1)
with POD-NN. The maximum value of the temporal variation of errors spatial averaged |"ℎ|(t) (or |"U |(t)) is 0.02 m
(or 0.02 ms−1) with EA-POD-NN and 1.11 m (or 0.79 ms−1) with POD-NN.
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Figure 11: Non-simultaneous inflows case. (Top) The sampled parameter sets Ps, blue points for offline phase, red point
being random parameter sets for online prediction; (left) For the first hydrograph Qin,1 on the Aude River and (right) for the
second hydrograph Qin,2 on the Fresquel River (red and blue hydrographs in Fig. 4). (Bottom left) The sampled parameter
sets Ps with focus on time of peak tpeak,1 for the first hydrograph on the Aude River and tpeak,2 for the second hydrograph
on the Fresquel River. (Bottom right) Input inflow hydrographs for red point used for online prediction - vertical dashed
lines correspond to the time of maximum flooding at which spatial error analysis are performed in each case.

These relatively good performances show the capability of EA-POD-NN method to accurately reduce the 2D SW
model in this case with non-simultaneous inflows. Results also show the limitations of the classical POD-NN to reduce
of the SW model for this more complex case with non-simultaneous hydrographs.

Evaluation against reference SW model with real inflows. Now let us go further and test the predictability
of our model first when taking the real hydrographs in Fig. 4 (right) as input inflows for the reference 2D HR
hydraulic model; second when taking triangular hydrographs corresponding to a parameter �. The latter is given by
�new = (11.94, 922, 9.16, 198, 25) and it is out of the range of the space parameter points Ps given in Fig. 11. The
predicted hydraulic variables at peak flow are comparable to those of the reference HR hydraulic model as shown
in spatial maps of Fig. 15 with real like hydrographs (resp. in 18 with triangular hydrographs corresponding to the
paramerter �new = (11.94, 922, 9.16, 198, 25)). The associated error histogram is shown in Fig. 16 with real like
hydrographs (resp. in 19 with triangular hydrographs). The temporal variation of spatially averaged error analysis
is presented in Fig. 17 with real like hydrographs (resp. in 20 with triangular hydrographs). These results show the
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relatively good accuracy of the reduction compared to the reference model. For instance, in the case of real input
hydrographs, the maximum value of the temporal variation of errors spatial averaged with POD-NN on ℎ (or U ) is
0.99m (or 0.73ms−1) and equal to 3 times those one obtained by the EA-POD-NN (0.34m (or 0.22ms−1)). Moreover,
with triangular hydrographs corresponding to the parameter �new = (11.94, 922, 9.16, 198, 25), the maximum value of
the temporal variation of errors spatial averaged with POD-NN on ℎ (or U ) is 1.03 m (or 0.74 ms−1) and equal to 5
times those one obtained by the EA-POD-NN (0.20 m (or 0.11 ms−1)). Again, the EA-POD-NN is able to reduced the
SWmodel in this complex case with non-simultaneous inflows where the parameter �new = (11.94, 922, 9.16, 198, 25)
is taken out of the learning set (�new ∉ Ps). While, the POD-NN is no more applicable to reduce the SW model.

Figure 12: Non-Simultaneous inflows case. Comparison of the model outputs at maximum flooding time for �new =
(8.66, 1100, 8.38, 300, 22.2) (red point in Fig. 11), (Top) For the water depth ℎ. (Bottom) For the velocity norm U . (Left)
The reference solution: 2D SW model with triangular inflow, i.e. uℎ(�new) . (Middle) The difference "ℎ or "U for POD-NN
uℎ,POD−NN (�new). (Right) The difference "ℎ or "U for EA-POD-NN uℎ,EA−POD−NN (�new).

4.4. Computational costs, complexity and comparison of methods

To provide further insight into the developed approach, we now investigate more precisely the NNs complexity
which is a critical aspect in the explainability of machine learning based models. We compare the proposed EA-
POD-NN method to the standard POD-NN method for similar complexities, as well as to the POD-NN method with
much higher complexity. The complexity of the ROM approximator is determined by the depth of the NN(s) and the
number of neurons per layer, the latter depending on the number of modes Nrb, plus Ner in the case of EA-POD-
NN. The experiments are performed on the most challenging case with non-simultaneous inflows (Case B) described
in Section 4.3), studying the impact of the NNs complexity and a smaller amount of training data (i.e. with a lower
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Figure 13: Non-simultaneous inflows case. (Top) The histogram of the mean and the StD of spatial values of the absolute
difference |"ℎ| and |"U | at maximum flooding time. (Left) with POD-NN method. (Right) with EA-POD-NN method for
�new = (8.66, 1100, 8.38, 300, 22.2) (red point in Fig. 11. (Bottom) The CDF of the absolute absolute difference |"ℎ| and
|"U |. (Left) with POD-NN method. (Right) with EA-POD-NN method for �new = (8.66, 1100, 8.38, 300, 22.2) (red point in
Fig. 11.

Figure 14: Non-simultaneous inflows case. The mean on the absolute difference |"ℎ| or |"U | with respect to the real time
with POD-NN and EA-POD-NN methods for �new = (8.66, 1100, 8.38, 300, 22.2) (red point in Fig. 6. The horizontal dashed
lines correspond to to the maximum value of the absolute difference |"ℎ| or |"U |.

number of snapshotsNs). For all comparisons presented here, we useNs = 20 025. The setup for the various numerical
experiments designed for comparison purposes is as follows.
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Figure 15: Non-simultaneous inflows case (real hydrographs). Comparison of the model outputs at maximum flooding time.
(Top) For the water depth ℎ. (Bottom) For the velocity norm U . (Left) The reference solution: 2D SW model with real
inflow hydrographs (Fig. 4 right), i.e. uℎ(�new) . (Middle) The difference "ℎ or "U for POD-NN uℎ,POD−NN (�new). (Right)
The difference "ℎ or "U for EA-POD-NN uℎ,EA−POD−NN (�new).

Setup 1: the EA-POD-NN method (see Section 3) with Nrb = 5, Ner = 10 and N�1 + N�2 = 11 335. The
number of error modes has voluntarily been slightly reduced compared to Ner = 16 in the previous numerical
experiments (Case B in Sections 4.3 ), while it still provides a good ROM accuracy, as shown after.

Setup 2: the POD-NN method as in [18] with Nrb = 10 and N� = 11 085, i.e. with an equivalent complexity
as the one of EA-POD-NN of Setup 1 in terms of CPU time and of memory storage (about the same number of
parameters), see Tab. 3.

Setup 3: the POD-NN method with a much greater NN complexity:Nrb = 63 andN� = 54 593.
This last experiment is the only one which does not satisfy the non-over fitting constraintN� < Ns, see Tab. 3.

Firstly, as already indicated in Remark 5, it is important to note that adding an additional NN does not increase
CPU time in the online phase because the two NNs can be evaluated in parallel. In other words, steps 1-2 and 3-4 of
Algorithm 2 can be executed in parallel, see a synthesis in Tab. 3. Similarly, this applies to the NNs training in the
offline phase but with an additional step in the proposed EA-POD-NN method that requires to compute Ber in addition
to Brb (steps 6 and 7 in Algorithm 1). This additional cost is paid during the offline phase: it does not impact the
real-time aspect during the online phase.

Furthermore, the results of the 3 setups, comparing the proposed EA-POD-NN method and the standard POD-NN
method, are presented in a similar manner as previously, in terms of errors flow depth and velocity in the online phase
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Figure 16: Non-simultaneous inflows case (real hydrographs). (Top) The histogram of the mean and the StD of spatial
values of the absolute difference |"ℎ| and |"U | at maximum flooding time with real inflow hydrographs (Fig. 4 right). (Left)
with POD-NN method. (Right) with EA-POD-NN method. (Bottom) The CDF of the absolute absolute difference |"ℎ|
and |"U |. (Left) with POD-NN method. (Right) with EA-POD-NN method

Figure 17: Non-simultaneous inflows case (real hydrographs). The mean on the absolute difference |"ℎ| or |"U | with respect
to the real time with POD-NN and EA-POD-NN methods with real inflow hydrographs (Fig. 4 right). The horizontal dashed
lines correspond to to the maximum value of the absolute difference |"ℎ| or |"U |.

with spatial patterns of errors at maximum flooding time (Fig. 21), error histograms on those spatial errors on predicted
flow at max flooding time (Fig. 22), temporal variations of average spatial error (Fig. 23).

Using the same complexity (number of NNs parameters and CPU time), a comparison between Setup 1 and Setup 2
shows that the EA-POD-NNmethod (Nrb = 5 andNer = 10) is more accurate than the classical POD-NN (Nrb = 10).
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Figure 18: Non-simultaneous inflows case (triangle hydrographs). Comparison of the model outputs at maximum flooding
time. (Top) For the water depth ℎ. (Bottom) For the velocity norm U . (Left) The reference solution: 2D SW model
with triangle inflow hydrographs for �new = (11.94, 922, 9.22, 198, 25), i.e. uℎ(�new) . (Middle) The difference "ℎ or "U for
POD-NN uℎ,POD−NN (�new). (Right) The difference "ℎ or "U for EA-POD-NN uℎ,EA−POD−NN (�new).

This is borne out by the spatial error patterns, which are lower for EA-POD-NN with Setup 1 than the standard POD-
NN with Setup 2. Also, the histogram of the mean and the standard deviation of spatial values of |"ℎ| and |"U | for
the EA-POD-NN method are almost below 0.5m compared with those of Setup 2 (between 1m and 2m). The CDF of
absolute error spatial average shows that the error with Setup 1 is lower than the one with Setup 2. Namely, the median
value of error on ℎ (orU ) is 0.23m (or 0.02ms−1) with Setup 2 and 0.028m (or 0.010) with Setup 1. The average of the
absolute difference |"ℎ| or |"U | with respect to the real time for Setup 1 are better compared to the ones obtained with
Setup 2. Finally, Setup 3 of higher complexity withNrb = 63, shows that POD-NNprovides equivalent precision results
as EA-POD-NN with Setup 1, but for a much larger NN, which here corresponds to a higher number of parameters
than the number of data (snapshots), potentially resulting in over-fitting and thus hindering model generalization.
The results obtained through these experiments show that:

• The proposed EA-POD-NN method (Setup 1) is more accurate in prediction compared to the POD-NN method
(Setup 2) for equivalent CPU time and memory cost (in the online phase).

• To reach results of similar accuracy, the POD-NN method requires a larger number of modes (here e.g.
Nrb = 63), so a larger NN that is more memory-intensive. Additionally, this can easily lead to a larger number
of parameters in the NN than the number of snapshots, potentially resulting in over-fitting and thus hindering
model generalization.
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Figure 19: Non-simultaneous case (triangle hydrographs). (Top) The histogram of the mean and the StD of spatial
values of the absolute difference |"ℎ| and |"U | at maximum flooding time with triangle inflow hydrographs for �new =
(11.94, 922, 9.22, 198, 25). (Left) with POD-NN method. (Right) with EA-POD-NN method. (Bottom) The CDF of the
absolute absolute difference |"ℎ| and |"U |. (Left) with POD-NN method. (Right) with EA-POD-NN method

Figure 20: Non-simultaneous inflows case (triangle hydrographs). The mean on the absolute difference |"ℎ| or |"U |
with respect to the real time with POD-NN and EA-POD-NN methods with triangle inflow hydrographs for �new =
(11.94, 922, 9.22, 198, 25). The horizontal dashed lines correspond to to the maximum value of the absolute difference |"ℎ|
or |"U |.

Finally, the long-term advantage of having smaller latent spaces and therefore smaller NNs with the EA-POD-NN
method will be to facilitate the explainability of the method. This makes the proposed EA-POD-NN method better
suited for large applications e.g. over larger computational domains.
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Offline Phase: Algorithm 1 Online Phase: Algorithm 2 N� Non
over-
fitting:
N� < Ns

Algorithm steps Step 1-2 Step 3-5 Step 6-7 Step
8//9

Step 1-
2//3-4
for flood
duration

Memory
(Mo)

- -

DassFlow - - - - 118.21 s 1287.34 - -

EA-
POD-
NN
Nrb = 5
&
Ner = 10

1h10min 1h33min 1h31min 18min 5.46 s 126.96 N�1 =
4425 &
N�2 =
6910
Total:
N�1 +
N�2 =
11 335

✓

POD-
NN
Nrb = 10

1h10min 1h33min - 18min 5.40 s 123.91 11 082 ✓

POD-
NN
Nrb = 63

1h10min 1h33min - 18min 5.62 s 165.63 54 593 ×

Table 3
CPU-time of different steps of the offline and online phases given in Algorithm 1, 2 of Setup 1: EA-POD-NN method with
Nrb = 5, Ner = 10, Setup 2: POD-NN with Nrb = 10 and Setup 3: POD-NN with Nrb = 63 in the case where Ns = 20 025.
The CPU time (resp. memory cost) is indicated in the sixth (resp. seventh) column over the flood time window for (i)
the FV simulation with DassFlow and for (ii) the online prediction at multiple times with the NNs based approaches.
Computations were performed in 11th Gen Intel(R) Core(TM) i9-11950H, 2.60GHz with 32Gb of RAM capacity.

5. Conclusion

From the obtained results, and in line with the objectives of this research, the following few conclusions can
be made. The basic POD-NN method as proposed in [18, 30], see also Section 3, enables to reduce the 2D SW
model on a moderately complex case in the sense of the tested dynamics with simultaneous inflow hydrographs,
parameterized in low dimension. However for more complex non-linear waves interactions like those produced by
the two non-simultaneous inflows hydrographs (Section 4.3), the basic POD-NN method requires to be performed on
much larger NNs therefore more CPU-time consuming, more memory requirements and larger datasets (equivalently
greater number of snapshots). The proposed EA-POD-NN method, that additionally learns the projection error onto
the RB, enables to reduce accurately the 2D SW model (comparisons based on the same parameter sampling) in
actual low dimension bases (here O(10) number of modes). In the present application, this enables to well simulate
the complex flood case with the two non simultaneous hydrographs. The spatio-temporal hydraulic variables are
sufficiently accurately predicted. Higher accuracy on simulated flow is obtained with the proposed EA-POD-NN
method than with the standard POD-NN method when considering the same complexity, for equivalent CPU and
memory cost in online phase. Achieving a specific level of accuracy with a smaller NN is of great interest for
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Figure 21: Spatial error patterns on predicted flow variables in the online phase. Comparison of complexity between (left)
Setup 1: EA-POD-NN withNrb = 5 andNer = 10, (middle) Setup 2: POD-NN withNrb = 10 and (right) Setup 3: POD-NN
with Nrb = 63 in the non-simultaneous inflows case at maximum flooding time for �new = (8.66, 1100, 8.38, 300, 22.2) (red
point in Fig. 11), (Top) Water depth ℎ. (Bottom) Velocity norm U . (Left) Setup 1 The difference "ℎ or "U for EA-POD-NN
uℎ,EA−POD−NN (�new) with Nrb = 5 and Ner = 10. (Middle) Setup 2 The difference "ℎ or "U for POD-NN uℎ,POD−NN (�new)
with Nrb = 10. (Right) Setup 3 The difference "ℎ or "U for POD-NN uℎ,POD−NN (�new) with Nrb = 63.

Figure 22: Error metrics in space and time on predicted flow variables in the online phase. Comparison of complexity
between (left) Setup 1: EA-POD-NN with Nrb = 5 and Ner = 10, (middle) Setup 2: POD-NN with Nrb = 10
and (right) Setup 3: POD-NN with Nrb = 63 in the non-simultaneous inflows case at maximum flooding time for
�new = (8.66, 1100, 8.38, 300, 22.2) (red point in Fig. 11). The histogram of the mean and the StD of spatial values of
the absolute difference |"ℎ| and |"U | at maximum flooding time. (Left) Setup 1 The difference "ℎ or "U for EA-POD-NN
uℎ,EA−POD−NN (�new) with Nrb = 5 and Ner = 10. (Middle) Setup 2 The difference "ℎ or "U for POD-NN uℎ,POD−NN (�new)
with Nrb = 10. (Right) Setup 3 The difference "ℎ or "U for POD-NN uℎ,POD−NN (�new) with Nrb = 63.

several reasons. This approach prevents over-fitting during the learning phase, thereby favoring better generalization
of the obtained model and improved interpretability, see e.g. [22, 6]. When feasible, lower-dimensional and sparse
representation systems are always preferable for these reasons [6]. The EA-POD-NNmethod, which we present, offers
such advantages compared to the simpler POD-NN method, and the learning of projection error in the EA-POD-NN
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Figure 23: Comparison of complexity between Setup 1: EA-POD-NN with Nrb = 5 and Ner = 10, Setup 2: POD-NN with
Nrb = 10 and Setup 3: EA-POD-NN with Nrb = 63 for �new = (8.66, 1100, 8.38, 300, 22.2) (red point in Fig. 6. (Left) The
CDF of the absolute absolute difference |"ℎ| and |"U |. (Right) The mean on the absolute difference |"ℎ| or |"U |.

improves the predictive capability of the NN.
The proposed EA-POD-NN method is able to predict with a good accuracy the ROM solution of non linear hyperbolic
systems, here the 2D SW model, solved by Finite Volumes, in complex real-world situations. Its interesting precision-
to-cost ratio would enable tackling large dimensional real cases over larger computational domains. In the river
hydraulics context, it could be of interest for tackling large floodplains at river networks scale (see e.g. [13] with
simplified flow model or e.g. [23] with complete flow models). The obtained surrogate model could then be used as
a digital twin [9, 26], allowing for rapid flood forecasts given the registered scenario. Immediate research work will
pertain in improving the capability of the method to be applicable in higher dimensional input parameters. In a flood
modeling context, this may be more complex inflow hydrographs or spatially distributed friction fields. This should
enable to generalize its applicability to the variety of real hydrological signals and rivers-floodplains connectivities, as
well as to optimization or uncertainty quantification tasks. Moreover, the required snapshots number may be reduced
by enforcing the model residual to vanish at some points, as in the Physics Informed NNs methods for instance [25, 8].
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